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Floquet engineering of isolated systems is often based on the concept of the effective time-independent
Floquet Hamiltonian, which describes the stroboscopic evolution of a periodically driven quantum system in
steps of the driving period and which is routinely obtained analytically using high-frequency expansions. The
generalization of these concepts to open quantum systems described by a Markovian master equation of Lindblad
type turns out to be nontrivial: On the one hand, already for a two-level system two different phases can be
distinguished, where the effective time-independent Floquet generator (describing the stroboscopic evolution)
is either again Markovian and of Lindblad type or not. On the other hand, even though in the high-frequency
regime a Lindbladian Floquet generator (Floquet Lindbladian) is numerically found to exist, this behavior is,
curiously, not correctly reproduced within analytical high-frequency expansions. Here, we demonstrate that a
proper Floquet Lindbladian can still be obtained from a high-frequency expansion, when treating the problem
in a suitably chosen rotating frame. Within this approach, we can then also describe the transition to a phase at
lower driving frequencies, where no Floquet Lindbladian exists, and show that the emerging non-Markovianity
of the Floquet generator can entirely be attributed to the micromotion of the open driven system.
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I. INTRODUCTION

Floquet engineering, that is the idea of manipulating the
properties of a coherent quantum system by means of strong
time-periodic driving, has been successfully applied to artifi-
cial many-body systems of ultracold atoms in optical lattices
[1–8]. These systems are well isolated from their environment
and therefore well described by the Schrödinger equation.
However, with the recent progress in the engineering of
quantum materials as well as complex photonic many-body
systems [9,10], also the control of these systems via periodic
forcing becomes an interesting and promising perspective.
They are typically interacting with an environment, which
introduces dissipation to the system’s dynamics (see, e.g.,
Ref. [9]). It is, therefore, desirable to extend the concept of
Floquet engineering to open quantum systems. In this con-
text, two questions are of interest. The first one concerns the
properties of the nonequilibrium steady state that such open
periodically modulated systems approach in the long-time
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limit [11–23]. The second question, which will be discussed
in this paper, concerns the transient dynamics of these sys-
tems. Here, analogously to the Floquet engineering of isolated
quantum systems, one can ask whether it is possible to find
an effective time-independent description of the stroboscopic
dynamics of the system [24–33].

While for a closed system the stroboscopic dynamics can
always be recast into an effective coherent evolution gov-
erned by a time-independent Floquet Hamiltonian [6,34], it
is not obvious whether such a mapping exists for an open
periodically modulated system. More specifically, when con-
sidering the Markovian evolution described by Lindblad-type
master equations, the question is whether the stroboscopic
dynamics can be described by an effective time-independent
Floquet generator of the Lindblad type (henceforth addressed
as Floquet Lindbladian). The existence of such Floquet Lind-
bladians has implicitly been assumed in recent works [25,27–
29]. However, in Ref. [24] it was shown that, already for
a simple two-level system, there is no guarantee that such
an operator exists. Namely, extensive parameter regions were
found, where it does not exist, while in other extensive param-
eter regions, including the high-frequency limit, it does exist.

The high-frequency regime plays an important role for
Floquet engineering of isolated systems. On the one hand, it
is appealing because in this regime unwanted heating via res-
onant excitations is suppressed [6,34–37]. On the other hand,
it is possible to calculate the Floquet Hamiltonian by using
systematic high-frequency expansions, such as the Magnus
expansion [38], and thus to analytically predict the proper-
ties of the Floquet system. It is, therefore, very natural to
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generalize such high-frequency expansions to open systems,
as it has been done in various recent papers [25,27–29,33,39].
However, it was observed that the corresponding expansions
usually do not provide time-independent Floquet generators of
Lindblad type [25,26,33]. Below we will demonstrate this fail-
ure of the Magnus expansion for the model used in Ref. [24],
despite the fact that the Floquet Lindbladian was explicitly
shown to exist.

In this paper, we address the question as to whether it
is possible to construct a high-frequency expansion that is
consistent with respect to the expected Lindblad-type strobo-
scopic evolution of the model. For this purpose, we compare
four different approaches. First, they are distinguished by the
expansion technique they are based on: (i) a Magnus expan-
sion [38] or (ii) a van Vleck–type high-frequency expansion
[34]. Second, they differ by the reference frame, in which the
model system is treated, i.e., either (a) in the direct frame or
(b) in a suitably chosen rotating frame. We find that it is the
appropriately chosen rotating reference frame [approach (b)],
which allows to compute Lindblad-type Floquet generators in
the high-frequency limit for our model. As a second major
result, we find that the breakdown of the existence of a Flo-
quet Lindbladian, which was found by using the procedure
described in Ref. [24], can be related to the micromotion of
the system [34]. This becomes apparent when performing the
van Vleck–type high-frequency expansion [approach (ii)] in
the rotating frame.

The remaining part of this paper is organized as follows.
In Sec. II we summarize the results of Ref. [24] by outlining
the general concept of the Floquet Lindbladian and applying
this concept to a driven two-level system. In Sec. III we
introduce the Magnus expansion, as well as the extended
Floquet Hilbert space for the open system and generalize the
related van Vleck high-frequency expansion to open quantum
systems. In Sec. IV we study the problems that arise when
the high-frequency expansions are performed in the direct
frame of reference. In Sec. VI we show that both the Magnus
and the van Vleck high-frequency expansions provide a valid
Lindbladian in the high-frequency limit, when applied in the
rotating frame that we introduce in Sec. V. Moreover, we
discuss the nontrivial role played by the micromotion.

II. FLOQUET LINDBLADIAN

In order to make the considerations self-consistent, we start
by briefly summarizing the main findings of Ref. [24], where
the existence of the Floquet Lindbladian is discussed.

A. Definition of the Floquet Lindbladian and the problem
of its existence

We consider the time-dependent Markovian master equa-
tion [40–43]

∂tρ = L(t )ρ = −i[H (t ), ρ] + D(t )ρ, (1)

for the system’s density operator ρ, described by a time-
periodic Lindbladian generator L(t ) = L(t + T ). In this work
we set h̄ = 1, therefore, all energies are given in units of
frequency. The Lindbladian is characterized by a Hermitian

time-periodic Hamiltonian H (t ) and a dissipator

D(t )ρ =
∑

i

γi(t )

[
Li(t )ρL†

i (t ) − 1

2
{L†

i (t )Li(t ), ρ}
]
, (2)

with jump operators Li(t ) and non-negative rates γi(t ), which
both, in general, are time periodic with the same period T .
Note that the time-dependent variation of L(t ) may be due
to a time-periodic modulation of the coherent evolution, gov-
erned by the Hamiltonian H (t ), and/or due to a time-periodic
modulation of the dissipative channels, represented by the
rates γi(t ) � 0 and the jump operators Li(t ). This time-local
form guarantees that the corresponding evolution, for any
time t , can be described with a completely positive (CP)
and trace-preserving (TP) map [40]. Following the terminol-
ogy of Ref. [44], such an evolution is called time-dependent
Markovian [44]. Correspondingly, the evolution generated by
a time-independent Lindbladian is termed Markovian. We
follow this nomenclature (note that there are also alterna-
tive terminologies, e.g., time-dependent and time-independent
Markovian evolutions can be combined together and simply
called “Markovian” [41]).

The time-dependent Markovian evolution generated by
time-dependent Lindbladians is the subject of our analysis.
Note that the non-negativity of the rates is only a sufficient
condition to produce an evolution in the form of a CPTP map
for any time t . There are cases when the rates can acquire
negative values but the resulting map nevertheless remains
completely positive and trace preserving [45,46]. We also
consider such Lindbaldians as relevant evolution generators;
important is that the corresponding stroboscopic maps [see
Eq. (7)] belong to the CPTP class.

Let us briefly outline the Lindblad master equation for the
time-homogeneous case [47]. A quantum dynamical semi-
group is an evolution P (t, t0) of the density matrix � in a
Hilbert space H,

�(t ) = P (t, t0)�(t0), (3)

where henceforth we use the shorthand P (t ) = P (t, 0). The
semigroup should obey several constraints: It is continuous
limt→0+ P (t )� = �, trace preserving Tr[P (t )�] = Tr(�), has
the semigroup property P (t + s) = P (t )P (s), i.e., the evolu-
tion has no memory of its history (it is Markovian), and is
completely positive P (t ) ⊗ 1 � 0, where 1 is the identity on
the space L(H) of linear operators acting in Hilbert space H.

As it was shown by Gorini, Kossakowski, and Sudarshan
[48] and Lindblad [49], the superoperator L that generates this
semigroup, i.e.,

∂tρ(t ) = Lρ(t ), or equally P (t ) = exp(Lt ), (4)

has to be of the form

L = −i[H, ·] +
N2−1∑
i, j=1

di j

(
Ai · A†

j − 1

2
{A†

jAi, ·}
)

(5)

(henceforth referred to as the Lindblad form), where H is a
Hermitian operator (Hamiltonian), {Ai} is a Schmidt-Hilbert
basis in L(H) [dim(H) = N], and d � 0 is a Hermitian and
positive-semidefinite Kossakowski matrix. The corresponding
jump operators Li and rates γi can be found by diagonalizing
the Kossakowski matrix.
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Let us turn now to the superoperator P (t ) describing the
map that is generated by a time-dependent Lindbladian L(t ),
as in Eq. (1), which formally yields

P (t ) = T exp

(∫ t

0
dt L(t )

)
, (6)

where T is the time-ordering operator. By definition, the map
P (t ) is completely positive and trace preserving, i.e., it is a
quantum channel [50].

Since the evolution is time periodic, it is interesting to
consider the stroboscopic dynamics, given by the one-cycle
evolution map [51,52]

P (T ) = T exp

[ ∫ T

0
dt L(t )

]
. (7)

The repeated application of it describes the stroboscopic evo-
lution of the system, i.e., for all ρ(0) one has

ρ(nT ) = P (T )nρ(0). (8)

In analogy to the case of a closed system,1 we can now
formally define a Floquet generator, i.e., a time-independent
superoperator K, such that

P (T ) = exp (KT ) or K = log(P )

T
(9)

for the open driven system described by Eq. (1). As it was
discussed in Ref. [24], it is not guaranteed that this Floquet
generator K is of Lindblad form. However, if it is of Lindblad
form, we will call it Floquet Lindbladian and write

LF = K. (10)

At first glance, it may appear counterintuitive that the effec-
tive generator K is not of the Lindblad form. The map P (T ) is
time-dependent Markovian [53] and therefore is CP divisible
[41–44,54]. That is, for any t and t ′, 0 < t ′, t < T , the map
can be split as P (t ) = P (t, t ′)P (t ′), with P (t, t ′) being a
CPTP map. Here, as a result of time inhomogeneity, P (t, t ′) is
not simply a function of the time difference t − t ′. The set of
dynamical maps that are time-dependent Markovian is larger
than the set of Markovian maps [53]. Hence, by implementing
a time-dependent protocol, one may end up with a CPTP map
that can only be obtained with a time-independent generator
of a non-Lindblad form. Therefore, the existence of a Floquet
Lindbladian is not guaranteed.

Whether the Floquet generator is of the Lindblad form
or not is relevant for Floquet engineering. Namely, if it is
of the Lindblad form, the stroboscopic evolution can be in-
terpreted as the result of a time-independent Lindblad-type
master equation, which is just monitored stroboscopically.

1Note that, despite the fact that the Floquet generator of an iso-
lated system is Hermitian and can, thus, be considered a Floquet
Hamiltonian, its properties can be rather different from those of a
Hamiltonian of an undriven system. Namely, for generic (interacting
nonintegrable) systems, the eigenstates of the Floquet Hamiltonian
are expected to be superpositions of states at all energies corre-
sponding to infinite-temperature ensembles in the sense of eigenstate
thermalization [68,69].

If, in turn, no Floquet Lindbladian exists, the stroboscopic
evolution, despite being Markovian by construction, cannot be
interpreted as a stroboscopically monitored continuous time-
independent Markovian process.

Note that, due to the multibranch structure of the complex
logarithm, there is a whole family of Floquet superoperators
Kx, labeled by a set of integers x = {x1, . . . , xnc} that specifies
a particular branch of the logarithm, where nc is the number
of complex-conjugated pairs in the spectrum of P (T ). In
order to find a Floquet Lindbladian or refute its existence,
we have to check whether at least one of these candidates
Kx is of the Lindblad form. Details on this procedure can
be found in Appendix A. In short, the test is checking two
conditions, which require that Kx has to (i) preserve Her-
miticity and (ii) has to be conditionally completely positive
[53]. Also note that, given that one has extracted operator
Kx from the matrix logarithm, one can always recast it in a
quasi-Lindblad form, formally given by Eq. (5), with some
operator H and Kossakowski matrix d . The implementation
of the test is then equivalent to testing H for Hermiticity and
d for positive semidefiniteness, d � 0. We will use this test
when performing the high-frequency expansions in Secs. IV
and VI.

If there is no set of integers x such that condition (i) and
(ii) are fulfilled, then no Floquet Lindbladian exists. In this
situation, it is instructive to quantify the distance from Marko-
vianity for the non-Lindbladian generator Kx, by picking the
branch giving the minimal distance. For this purpose, we
compute the measure for non-Markovianity proposed by Wolf
et al. [53]. This measure is based on adding a noise term μN
of strength μ to the generator and determining the minimal
strength required to make at least one of the candidates Lind-
bladian, i.e.,

μmin = min
x∈Znc

min

{
μ � 0

∣∣∣Kx + μN is a valid
Lindblad generator

}
. (11)

Here, N is the generator of the depolarizing channel
exp(T μN )ρ = e−μT ρ + [1 − e−μT ] 1

N .
Various other measures for non-Markovianity have been

proposed in the literature [55,56]. Aside from the one intro-
duced above, in Ref. [24] we also calculated a measure that
qualifies the violation of the positivity of the Choi represen-
tation of the map [57] and found that for our specific model
(up to a factor of 1

2 ) it coincides with the measure of Ref. [53].
However, while these measures might provide different values
for the distance from Markovianity in the regions where no
Floquet Lindbladian exists, all of them will classify the same
regions in parameter space as Markovian (those where the
Floquet generator can be brought into the Lindblad form).
Thus, the phase diagram will be independent of the chosen
Markovianity measure.

B. Model

To illustrate the problem, we consider a driven two-
level system described by the master equation ∂τ�(τ ) =
L(τ )�(τ ) with time-periodic Lindbladian generator L(τ ) =
−i[H (τ ), ·] + κ (σ− · σ+ − 1

2 {σ+σ−, ·}), with H (τ ) = 	
2 σz +

E cos(
τ − ϕ) σx. Here σx, σz, and σ− are standard Pauli and
lowering operators. After introducing t = τ	, i.e., using 1/	
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FIG. 1. Distance to Markovianity μmin of the Floquet generator
K obtained from the one-cycle evolution superoperator as a function
of driving strength E and frequency ω, for weak dissipation γ = 0.01
and two driving phases (a) ϕ = 0 and (b) ϕ = π/2. In the white
region, where μmin = 0, it is of Lindblad type, so that a Floquet
Lindbladian LF exists. On the dashed line the Floquet map P (T ) pair
of eigenvalues coincide when crossing the negative real semiaxis.

as unit for time, we find ∂t�(t ) = L(t )�(t ) with

L(t ) = −i[H (t ), ·] + γ
(
σ− · σ+ − 1

2 {σ+σ−, ·}) (12)

and

H (t ) = 1
2σz + E cos(ωt − ϕ) σx. (13)

This model is characterized by four dimensionless parame-
ters: the relative dissipation strength γ = κ/	 as well as the
relative strength E = E/	, frequency ω = 
/	, and phase ϕ

of the driving.
In Fig. 1 we present the distance from Markovianity for the

effective time-independent Floquet generator of our model,
obtained using the procedure described in the previous sec-
tion. Note that the spectrum of a CPTP map is invariant
under complex conjugation. Thus, for the two-level system we
have at most one pair of complex eigenvalues and, therefore,
have to check a single integer x labeling the branches of the
operator logarithm. If we find a branch x0 with a generator of
the Lindblad form, then this would be our Floquet Lindbla-
dian LF = Kx0 . In Fig. 1(a), we mark the region where such
a branch was found and therefore the Floquet Lindbladian
exists with white color. In the region where no such branch
exists, we plot the distance from Markovianity μmin for the
closest branch. For weak dissipation γ = 0.01 and ϕ = 0, an
extended non-Lindbladian phase is surrounded by a Lindbla-
dian phase (white region) where μmin = 0 so that LF can be
constructed.

For sufficiently large and small driving frequencies ω as
well as for zero driving (E = 0) and in the regime of strong
driving amplitudes E , a Floquet Lindbladian is found to exist.
Only for intermediate driving frequencies ω and sufficiently
small (but finite) driving strengths E , a lobe-shaped region
exists, where the Floquet generator is not Markovian, i.e., not
of Lindblad type.

Figure 1(b) shows the phase diagram for another driving
phase ϕ = π/2. Remarkably, compared to ϕ = 0, Fig. 1(a),
the non-Lindbladian phase covers now a much smaller region

FIG. 2. Distance to Markovianity μmin for different values of the
driving phase ϕ. Other parameters are as in Fig. 1.

of the parameter space. In Fig. 2 we plot the same phase
diagram again, but for multiple intermediate values of the
driving phase ϕ and observe how the non-Lindbladian region
continuously changes its shape with driving phase and appears
to be smallest for ϕ = π/2. The phase boundaries therefore
depend on the driving phase or, in other words, on when dur-
ing the driving period we monitor the stroboscopic evolution
of the system.

In the coherent case (γ = 0 for our model), we can de-
compose the time-evolution operator of a Floquet system from
time t0 to time t like (see, e.g., Ref. [34])

U (t, t0) = UF (t ) exp[−i(t − t0)Heff]U
†
F (t0), (14)

where UF (t ) = U (t + T ) is a unitary operator describing the
time-periodic micromotion of the Floquet states of the sys-
tem and Heff is a time-independent effective Hamiltonian.
The Floquet Hamiltonian HF

t0 , defined via U (t0 + T, t0) =
exp(−iT HF

t0 ) so that it describes the stroboscopic evolution of
the system at times t0, t0 + T , ..., is for general t0 then given
by (see, e.g., Ref. [34])

HF
t0 = UF (t0)HeffU

†
F (t0). (15)

Thus, the operator HF
t0 depends on the micromotion via a t0-

dependent unitary rotation. However, in the dissipative system
the micromotion will no longer be captured with a unitary
operator. This explains why the effective time-independent
generator of the stroboscopic evolution can change its char-
acter in a nontrivial fashion, e.g., from Lindbladian to
non-Lindbladian form, as a function of t0 (or, equivalently,
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of the driving phase ϕ). In Sec. VI, we will present strong
evidence for the fact that the breakdown of “Lindbladianity”
of the Floquet generator is entirely due to the impact of the
micromotion operator.

The fact that the Floquet generator for the stroboscopic
evolution K is found to be of Lindblad form in the high-
frequency regime (Fig. 1) suggests that it is possible to
analytically approximate this Floquet Lindbladian by us-
ing systematic high-frequency expansions. However, in the
literature it was found that one of the most conventional high-
frequency expansions, the Magnus expansion [38], generally
does not produce a valid Lindblad generator [25,26]. Below,
in Sec. IV we show that this is also the case, when directly
applying the Magnus expansion to our model (12). We will
then show how a high-frequency expansion that is consistent
with the phase diagrams of Fig. 1 can still be obtained by con-
ducting it in a suitably chosen rotating frame. In the rotating
frame, it even explains the transition to the non-Lindbladian
phase as a consequence of the nonunitary micromotion, when
the frequency is lowered.

III. HIGH-FREQUENCY EXPANSIONS AND EXTENDED
FLOQUET SPACE FOR OPEN QUANTUM SYSTEMS

A standard tool to extract the Floquet Hamiltonian in the
high-frequency limit is the Magnus expansion [38]. In line
with what has been developed in the literature [25,26] we
apply the Magnus expansion to the special case of a time-
periodic Lindblad superoperator. For a two-level system it
takes the general form

L(H, d ) = −i[H, ·] +
∑
n,m

dnm

(
σn · σm − 1

2
{σmσn, ·}

)
,

(16)

with traceless Hamiltonian H governing the coherent evo-
lution and Kossakowski matrix d governing the dissipative
component of the evolution. Recall that for the evolution to
be physical, i.e., completely positive and trace preserving, the
Kossakowski matrix has to be positive semidefinite, d � 0.
With this notation, commutators of Lindblad superoperators
can be evaluated by using the general expressions for the
commutators of two general two-level system Lindblad su-
peroperators (see Appendix D).

As an alternative approach to compute the Floquet genera-
tor of an open system, we will also work out a non-Hermitian
version of van Vleck degenerate perturbation theory in the
Floquet space of time-periodic density matrices. This ex-
tended Floquet state space is given by the product space of
the original state space of density matrices with that of time-
periodic functions. This approach is a generalization of the
method described in Ref. [34] for isolated driven quantum
systems. It has the advantage that it clearly isolates the ef-
fect of the micromotion. Namely, it gives rise to an effective
generator that is independent of the driving phase. Combining
this object with a driving-phase-dependent micromotion oper-
ator then provides the Floquet generator for the stroboscopic
evolution.

A. Magnus expansion

Because the Lindblad superoperator is time periodic, we
can expand it in the Fourier series

L(t ) =
∑
n∈Z

eiωntLn. (17)

The Magnus expansion [38] is a general high-frequency
expansion for linear differential equations with periodic coef-
ficients. Therefore, it can be directly applied to our problem.
It gives rise to one candidate K for LF . Let us denote this
expansion of the generator by

KMag =
∞∑

n=1

K(n), (18)

which we approximate by truncating the series after some
order k, giving

KMag,k =
k∑

n=1

K(n). (19)

The leading coefficients read as

K(1) = 1

T

∫ T

0
dt L(t ) = L0, (20)

K(2) = 1

2T

∫ T

0
dt

∫ t

0
dt ′[L(t ),L(t ′)] (21)

= i
∞∑

n=1

[Ln,L−n] + [L0,Ln − L−n]

nω
, (22)

K(3) = 1

6T

∫ T

0
dt

∫ t

0
dt ′

∫ t ′

0
dt ′′([L(t ), [L(t ′),L(t ′′)]]

+ [L(t ′′), [L(t ′),L(t )]]). (23)

For an expression of the third-order contribution in terms of
the Fourier components of L(t ) see Appendix B.

B. Floquet space

Since L(t ) is periodic, we can apply Floquet’s theorem to
Eq. (1) and find that the fundamental solutions of Eq. (1) are
Floquet states of the form

�a(t ) = e−i
at �a(t ), (24)

where index a runs over all N2 fundamental solutions, with
complex numbers 
a (replacing the quasienergies in the case
of an isolated system) and time-periodic operators �a(t ) =
�a(t + T ) (replacing the Floquet modes). Note that the repre-
sentation in Eq. (24) is not unique, namely, by setting


a −→ 
a + mω, m ∈ Z (25)

�a(t ) −→ eimωt�a(t ) (26)

we could find an equivalent representation of Eq. (24), that
will later appear as a (seemingly) independent solution in the
Floquet space formalism.
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We can expand the time-periodic operators �a in a Fourier
series

�a(t ) =
∑
n∈Z

eiωnt �a,n. (27)

Plugging both Fourier expansions (17) and (27) into Eq. (1),
we find∑

n

(−i
a + iωn) �a,neiωnt =
∑
k,m

Lk�a,m eiω(k+m)t . (28)

Recall that the Ln are superoperators that act on the �a,n,
which are linear operators on H, �a,n ∈ L(H).

By comparing the prefactors of the exponential functions,
we find an eigenvalue equation in the “extended” Hilbert
space L(H) ⊗ T , where T shall denote the space of time-
periodic functions with period T . It reads as


a�a,n =
∑

m

(iLn−m + δnm mω 1) �a,m =
∑

m

Q̄nm �a,m,

(29)
where Q̄ is the extended-space representation of the superop-
erator,

Q(t ) = iL(t ) − i∂t . (30)

This superoperator is the generalization of the quasienergy
operator H (t ) − i∂t found for isolated systems to the open
system.

Similar to the case of isolated systems, Eq. (29) possesses
a transparent block structure


a

⎛
⎜⎜⎜⎝

. . .

�a,−1

�a,0

�a,1

. . .

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

. . .

iL0 − ω 1 iL−1 iL−2

iL1 iL0 iL−1

iL2 iL1 iL0 + ω 1
. . .

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

. . .

�a,−1

�a,0

�a,1

. . .

⎞
⎟⎟⎟⎠;

(31)

however, the entries in the vectors are now operators and
the entries in the matrix are non-Hermitian (but Hermiticity-
preserving) superoperators.

C. The van Vleck high-frequency expansion

The aim of the van Vleck high-frequency expansion is to
find a rotation D̄ that block diagonalizes the problem in the
extended space,

Q̄′ = D̄−1Q̄D̄, (32)

such that

Q̄′
nm = δnm(iKeff + mω 1). (33)

This transformation to a block-diagonal form is desired since
Eq. (31) is block diagonal for a time-independent generator.
As we will see, this transformation therefore leads into a frame
where the dynamics is governed by the time-independent gen-
erator Keff . However, in contrast to the closed system, Q̄ is

not necessarily Hermitian, so the rotation D is in general not
a unitary transformation. Still, the spectrum 
a is of course
invariant under this transformation.

In analogy to the coherent case [34], it suffices to take into
account time-periodic transformations D(t ) = ∑

n eiωntDn,
therefore, in extended space the operator D̄nm may only de-
pend on the difference of the phonon indices D̄nm = Dn−m.
First of all, we observe that for two time-local time-periodic
superoperators,

A(t ) =
∑
n∈Z

eiωntAn and B(t ) =
∑
n∈Z

eiωntBn, (34)

the product of both operators in the time domain

C(t ) = A(t )B(t ) =
∑

n,m∈Z
eiω(n+m)tAnBm (35)

=
∑

n,m∈Z
eiωntAn−mBm, (36)

leads in the extended space to

C̄nm = Cn−m =
∑
k∈Z

An−m−kBk (37)

=
∑
k∈Z

An−kBk−m = (ĀB̄)nm. (38)

Therefore, products in the time domain directly translate into
products in the extended space and vice versa. As a result, the
inverse transformation D̄−1 in the extended space is just the
representation of the inverse transformation in time,

D−1(t ) =
∑

n

eiωnt (D−1)n with D−1(t )D(t ) = 1, (39)

i.e., we have (D̄−1)nm = (D−1)n−m.
Thus, the transformation in Eq. (32) becomes �′

a(t ) =
D−1(t )�a(t ), and therefore �′(t ) = D−1(t )�(t ). The equation
of motion in the transformed frame reads as

∂t�
′(t ) = (∂tD−1(t ))�(t ) + D−1(t )∂t�(t )

≡ L′(t )�′(t ). (40)

Thus, much like to the coherent case, this transformation is
equivalent to

L′(t )[·] = (∂tD−1(t ))D(t ) · +D−1(t )L(t )[D(t )·], (41)

resembling a gauge transformation.
As pointed out already in the literature [29] and in analogy

to the closed system, Eq. (14), the effective generator Keff

appearing in Eq. (33) fulfills

P (t, t0) = D(t ) exp[(t − t0)Keff]D−1(t0). (42)

It is the time-independent generator describing the evolution
in a “rotating frame of reference.” However, since the dynam-
ics is dissipative, the time-periodic “micromotion” operator
D(t ) that describes this transformation is generally not unitary
anymore. Defining a general Floquet generator Kt0 via

P (t0 + T, t0) = exp (Kt0 T ), (43)

so that K = K0 corresponds to the Floquet generator defined
by Eq. (9) for the case of t0 = 0, it can be expressed in terms
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of the effective generator Keff and the micromotion operator
D(t ):

Kt0 = D(T + t0)KeffD−1(t0). (44)

Since the micromotion superoperator D(t0) is generically
nonunitary, it is possible that it maps a Lindbladian effective
generator K to a non-Lindbladian Floquet generator Kt0 . This
explains the driving-phase dependence (which is equivalent to
a dependence on t0) observed in Fig. 1. Moreover, below we
find strong evidence suggesting that Keff is always of Lindblad
type, so that the non-Markovianity of K, as it is found in the
non-Lindbladian lobes of Fig. 1, must entirely entirely be to
the micromotion captured by D(t0).

In Ref. [29] a high-frequency expansion for both the effec-
tive generator Keff and the micromotion superoperator D(t )
was derived. Here we present an alternative derivation of
such a high-frequency expansion by applying van Vleck–type
degenerate perturbation theory the extended Floquet space.
Genealizing the reasoning of Ref. [34] to the non-Hermitian
problem of the open system, we decompose Q into an unper-
turbed block-diagonal part Q̄0 and a perturbation V̄ that can
also contain block-off-diagonal terms,

Q̄ = Q̄0 + λV̄, (45)

with (Q̄0)nm = δnmmω1. Applying van Vleck perturbation
theory, we obtain (Appendix C)

Keff =
∞∑

n=1

K(n)
eff , (46)

D(t ) = exp[G(t )] with G(t ) =
∞∑

n=1

G (n)(t ), (47)

where (see also [29])

K(1)
eff = L0, (48)

K(2)
eff = i

∞∑
n=1

[Ln,L−n]

nω
, (49)

K(3)
eff

=−
∑
n �=0

⎛
⎜⎜⎜⎝ [Ln, [L0,L−n]]

2n2ω2
+

∑
m �= 0,

m �= n

[Lm, [Ln−m,L−n]]

3nmω2

⎞
⎟⎟⎟⎠,

(50)

and

G (1)(t ) = −i
∑
n �=0

einωt Ln

nω
, (51)

G (2)(t ) = −
∑
n �=0

einωt

⎛
⎜⎜⎜⎝ [L0,Ln]

n2ω2
+

∑
m �= 0,

m �= n

[Ln−m,Lm]

2mnω2

⎞
⎟⎟⎟⎠.

(52)

These expressions take exactly the same structure as those
found for isolated systems [34].

IV. HIGH-FREQUENCY EXPANSION: DIRECT FRAME

Let us now apply both types of high-frequency expan-
sion described in the previous section to our model system.
Although a Lindblad-type Floquet generator is found numer-
ically to exist in the high-frequency regime, this behavior is
not reproduced by both the Magnus and the van Vleck–type
expansions when directly applied to the model (12).

A. Emergence of non-Lindbladian terms in the
Magnus expansion

Let us compute the leading terms of the Magnus expansion
for the effective Floquet generator for the two-level system
defined in Eq. (12) with driving phase ϕ = 0. The Fourier
expansion of our model yields three nonvanishing terms,

L0 = −i
[σz

2
, ·

]
+ γ

(
σ− · σ+ − 1

2
{σ+σ−, ·}

)
(53)

and

L1 = L−1 = −i
E

2
[σx, ·]. (54)

The second order of the expansion drops out K(2) = 0 (as well
as all other even orders). Using Eq. (23), up to the third order
we, therefore, find

KMag,3 = L0 + 2

ω2
[L0, [L0,L1]] − 1

ω2
[L1, [L0,L1]]. (55)

By using the general expressions for the commutator of
two general two-level system Lindblad superoperators that we
present in Appendix D, we compute

[L0,L1] = L(Ha, da), (56)

with

with Ha = E

2
σy and da = γ E

⎛
⎝0 0 −i

0 0 −1
i −1 0

⎞
⎠, (57)

where L(H, d ) is defined in Eq. (16). Similarly, we find

[L0, [L0,L1]] = L(Hb, db), (58)

with

Hb = −E

2
σx and db = 2γ E

⎛
⎝0 0 1

0 0 −i
1 i 0

⎞
⎠, (59)

as well as

[L1, [L0,L1]] = L(Hc, dc), (60)

with

Hc = E2

2
σz + O(γ 2) and dc =γ E2

⎛
⎝ 0 i 0

−i 2 0
0 0 −2

⎞
⎠+O(γ 2).

(61)

Altogether, in third-order Magnus expansion (and first order
in γ ), the Floquet generator is approximated by

KMag,3 = L(HMag,3, dMag,3), (62)
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FIG. 3. (a) Distance (the Frobenius norm) d = ||KMag,3 − Kx0 ||F
between the generator KMag,3 obtained with the third-order Mag-
nus expansion in the direct frame and the exact generator Kx0 ∈
log[P (T )]/T from branch closest to a Lindblad generator. (b) Typ-
ical graph f (λ) of the characteristic polynomial of matrix dMag,3/γ

of the third-order Magnus expansion KMag,3 of the Floquet genera-
tor. The matrix dMag,3 therefore has one negative eigenvalue for all
parameters ε, ω and γ > 0.

with

HMag,3 = − ε

ω
σx + 1

2
(1 − ε2)σz (63)

and

dMag,3 = γ

⎛
⎝ 1 i(1 − ε2) 4ε/ω

−i(1 − ε2) 1 − 2ε2 −4iε/ω
4ε/ω 4iε/ω 2ε2

⎞
⎠, (64)

where ε = E/ω.
The matrix distance of the matrix representation of the

superoperator KMag,3 to the matrix representation of the exact
Floquet generator K is shown in Fig. 3(a). Note that although
for high frequencies ω → ∞ this distance approaches zero,
for any finite γ �= 0 the generator KMag,3 is not a valid Lind-
bladian generator in the whole region of the parameters. This
can be seen from the characteristic polynomial of its dissipator
matrix dMag,3, which apart from the prefactor γ reads as

f (λ) = det(dMag,3/γ − λ1) (65)

= −λ3 + 2λ2 − λ

(
4ε2 − 5ε4 − 32ε2

ω2

)
− 2ε6. (66)

As illustrated in Fig. 3(b), for λ → −∞ we have f (λ) → ∞,
but at the same time one finds f (0) = −2ε6 < 0. There-
fore, there will always be a negative eigenvalue λ and the
Kossakowski matrix dMag,3 is not positive semidefinite. As a
result, the third-order Magnus approximation of the Floquet
generator KMag,3 is not of Lindblad form. This is unsatis-
factory since the Floquet generator has been shown to be
of Lindblad form numerically in the limit of large driving
frequencies.

As was already pointed out in the literature [25], the nega-
tive eigenvalue emerges due to the fact that the characteristic
polynomial has terms that are of higher order than 1/ω2 up
to which the Magnus expansion was performed. It is indeed
expected that the characteristic polynomial is correct only up
to this order,

f (λ) = −λ3 + 2λ2 − 4ε2λ, (67)

and that the next higher order will only be revealed after
evaluating the Magnus expansion up to fourth order and so
on. Note that if we only take into account the terms up to
order 1/ω2 [Eq. (67)], indeed, the characteristic polynomial
only has non-negative eigenvalues, so one could argue that
complete positivity is only violated in orders higher than
1/ω2. However, if one would want to find a generator that is a
valid Lindbladian in this order 1/ω2, there is no well-defined
procedure on how to modify the terms in the dissipator matrix
d , such that its characteristic polynomial is exactly the one in
Eq. (67).

The problem of a non-Lindbladian generator KMag is not
originating from a wrong choice of branch for KMag. We have
also checked the other branches of KMag numerically and they
also do not yield a valid Lindbladian generator. In the high-
frequency limit ω → ∞, we generally expect that it suffices to
investigate the principal branch. This is because for the high-
frequency expansion KMag(ω) one has (cf. Appendix A)

KMag,x(ω) = KMag(ω) + iω
nc∑

c=1

xc[Pc(ω) − Pc∗(ω)]. (68)

In the high-frequency limit, the principal branch KMag(ω)
converges to the diabatic (or rotating-wave) Lindbladian
KMag(ω) → L0, therefore, all the projectors will also con-
verge, Pc(ω) → Pc(∞). As long as

�⊥[Pc(∞) − Pc∗(∞)]��⊥ �= 0, (69)

the matrices Vc in the Markovianity test, Eq. (A11), will scale
linearly with ω in that limit. Therefore, for ω → ∞ all ma-
trices Vx(ω) for branches different from x = 0 will diverge,
leaving only the principal branch as a candidate.

B. Non-Lindbladian terms in the van Vleck
high-frequency expansion

Let us now investigate the effective generator Keff using
the van Vleck high-frequency expansion. Since again the sec-
ond order vanishes, it provides in third-order high-frequency
approximation and first order with respect to γ :

Keff,3 = L0 − 1

ω2
[L1, [L0,L1]]. (70)

Employing Eq. (61), we obtain

Keff,3 = L(Heff,3, deff,3), (71)

with

Heff,3 = 1
2 (1 − ε2)σz (72)

and

deff,3 = γ

⎛
⎝ 1 i(1 − ε2) 0

−i(1 − ε2) 1 − 2ε2 0
0 0 2ε2

⎞
⎠. (73)

Here we may directly read off one eigenvalue of deff,3/γ :

λ3 = 2ε2. (74)

The other eigenvalues follow from solving

0 = f̃ (λ) = λ2 − 2(1 − ε2)λ − ε4. (75)
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Again, f̃ (0) = −ε4 < 0 while asymptotically f̃ is positive,
therefore, there must be one negative eigenvalue, and also the
effective generator is non-Lindbladian. Thus, the van Vleck
high-frequency expansion shares the problems of the Magnus
expansion that it does not provide an effective generator of
Lindblad form in the high-frequency limit.

V. ROTATING FRAME OF REFERENCE

When considering Floquet engineering in the high-
frequency limit, we know from isolated systems that often
the regime of strong driving, with the driving amplitude
comparable to ω (which is large compared to other relevant
system parameters), is of special interest since here the driving
leads to a noticeable modification of the system properties.
A prominent example is coherent destruction of tunneling
[58–60], occurring when the amplitude of the energy mod-
ulation between two tunnel-coupled states is equal to about
2.4ω. To, nevertheless, be able to treat this regime using high-
frequency expansions, typically a gauge transformation to a
rotating frame of reference is performed, before conducting
the high-frequency expansion. This frame is defined so that
it integrates out the strong driving term, corresponding to
the transition to the interaction picture with the driving term
playing the role of the unperturbed Hamiltonian. Comparing
the results of a high-frequency expansion in the original frame
with those obtained in the rotating frame, the terms of the
latter correspond to a partial resummation of infinitely many
terms of the previous. Namely, while in the original frame
the nth-order contains powers of the driving amplitude �n,
each order of the rotating-frame expansion can contain ar-
bitrary powers of the driving amplitude. The rotating-frame
expansion is, thus, nonperturbative with respect to the driving
amplitude.

We will now perform such a transformation to a rotating
frame also for the open quantum system. However, differently
from the case of isolated systems, it will now not only improve
the convergence properties of the high-frequency expansion
for strong driving. Rather remarkably, it also ensures that the
leading orders of the expansion give rise to approximations
to the Floquet generator that can be of Lindblad type. Thus,
the problem discussed in the previous section, namely, that
the Magnus and the van Vleck expansions do not provide
Lindblad-type generators when directly applied to our model
system, is cured when conducting the high-frequency expan-
sions in the rotating frame of reference.

A. Rotating frame of reference

We decompose the time-dependent Lindbladian into its
time average and a driving term

L(t ) = L0 + Ld (t ), (76)

with

Ld (t ) =
∑
n �=0

einωtLn. (77)

Let us, for the sake of simplicity, assume that Ld (t ) commutes
with itself at different times,

[Ld (t ),Ld (t ′)] = 0, ∀ t, t ′ (78)

which is equivalent to [Ln,Lm] = 0, ∀ n, m �= 0. In analogy
to the coherent case of isolated systems, we consider the
transformation generated by the driving term

�̃(t ) = �−1(t )�(t ), (79)

with

�−1(t ) = exp

(
−

∫ t

0
dt ′Ld (t ′)

)
. (80)

We denote operators in the rotating frame with a tilde. In
case that only the coherent part of the Lindbladian (i.e., the
Hamiltonian) is driven, Ld (t ) = −i[Hd (t ), ·], this transforma-
tion reduces to a unitary rotation of the density matrix

�̃(t ) = U †(t )�(t )U (t ), (81)

with

U (t ) = exp

(
−i

∫ t

0
dt ′Hd (t ′)

)
. (82)

The equation of motion in the rotating frame reads as

∂t �̃(t ) = (∂t�
−1(t ))�(t ) + �−1(t )∂t�(t ) ≡ L̃(t )�̃(t ) (83)

with gauge-transformed Lindbladian

L̃(t )[·] = (∂t�
−1(t ))�(t ) · +�−1(t )L(t )[�(t )·]. (84)

Now, because Ld (t ) commutes with itself at different times,
also �(t ) commutes with Ld (t ), therefore, we find

L̃(t )[·] = −Ld (t ) · +�−1(t )Ld (t )[�(t )·] + �−1(t )L0[�(t )·]
(85)

= �−1(t )L0[�(t )·]. (86)

By construction, we have eliminated the driving term, at the
expense that the transformed static term has now acquired a
periodic time dependence.

From the time-evolution operator in the rotating frame,
P̃ (t ) (where here and in the following the initial time of the
evolution is always understood to be t = 0), we can define
the Floquet Lindbladian K̃ in the rotating frame in analogy to
Eq. (9),

P̃ (T ) = exp(K̃T ). (87)

Since for our choice of the driving term Ld (t ), one has∫ νT
0 dt Ld (t ) = 0, ν ∈ N0, the transformation �(t ) becomes

the identity at stroboscopic times t = νT . Thus, at strobo-
scopic times the rest frame and the rotating frame coincide,
so that

�̃(νT ) = �(νT ) (88)

as well as

P̃ (νT ) = P (νT ). (89)

In particular, one has P̃ (T ) = P (T ), which implies that

K̃ = K. (90)

Note that this is not true for a general choice of Ld (t ), e.g., if
Ld (t ) does not commute with itself at different times.
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B. Explicit transformation for our model system

We now work out the transformation to the rotating frame
for our model system [Eq. (12)]. Since only the Hamiltonian
is driven, the transformation is unitary:

�̃(t ) = U †(t )�(t )U (t ), (91)

where

U (t ) = exp [−iχ (t )σx], with χ (t ) = E

ω
sin(ωt ). (92)

We again consider driving phase ϕ = 0 only. We find

L̃(t )[·] = − i
[

1
2 σ̃z(t ), ·]

+ γ
(
σ̃−(t ) · σ̃+(t ) − 1

2 {σ̃+(t )σ̃−(t ), ·}). (93)

Here the rotated Pauli operators read as

σ̃z(t ) = U †(t )σzU (t )

= cos[2χ (t )]σz + sin[2χ (t )]σy, (94)

σ̃±(t ) = U †(t )σ±U (t )

= σx ± i{cos[2χ (t )]σy − sin[2χ (t )]σz}. (95)

In order to perform the high-frequency expansions in the
rotating frame, let us now determine the Fourier components
of the transformed Lindbladian L̃(t ) [Eq. (93)]. Using the
definition z = 2E/ω, we may rewrite the Fourier transform

Fn{cos[2χ (t )]} ≡ 1

T

∫ T

0
cos[2χ (t )]e−inωt dt (96)

= 1

T

∫ T

0

1

2

(
eiz sin(ωt ) + e−iz sin(ωt )

)
e−inωt dt

(97)

= 1

2
[Jn(z) + J−n(z)] = enJn(z). (98)

Here Jn(z) is the nth Bessel function of the first kind, we have
used J−n(z) = (−1)nJn(z) and defined

en =
{

1, n even
0, n odd, and on =

{
0, n even
1, n odd. (99)

Similarly, we find

Fn{sin[2χ (t )]} = −ionJn(z), (100)

Fn{sin[2χ (t )] cos[2χ (t )]} = −i
on

2
Jn(2z), (101)

Fn{cos[2χ (t )]2} = 1
2 [δn0 + enJn(2z)], (102)

Fn{sin[2χ (t )]2} = 1
2 [δn0 − enJn(2z)], (103)

so that the Fourier components of the Lindblad generator in
the rotating frame read as

L̃n = L(Hn, dn), (104)

with

Hn = Jn(z)

2
(enσz − ionσy) (105)

FIG. 4. (a) Distance to Markovianity μmin of the Floquet gener-
ator K̃Mag,1(= K̃eff,1 = K̃vV,1) obtained with the first-order Magnus
expansion in the rotating frame for the same model and parameter
γ = 0.01 as in Fig. 1(a). The generator is a valid Lindbladian for
for all parameters (E , ω). (b) Distance (the Frobenius norm) d =
||K̃ − Kx0 ||F between the generator K̃ obtained by the first-order
Magnus expansion K̃Mag,1 in the rotating frame and the candidate
Kx0 ∈ log[P (T )]/T for the Floquet Lindbladian LF of branch x0,
which is closest to the valid Lindbladian generator.

and

dn = γ

⎛
⎜⎝

δn0 ienJn(z) −onJn(z)

−ienJn(z) δn0+enJn(2z)
2

i
2 onJn(2z)

onJn(z) i
2 onJn(2z) δn0−enJn(2z)

2

⎞
⎟⎠. (106)

(Note that each of the individual Fourier components L̃n can
be brought to Lindblad form simply by the multiplication with
a suitable phase factor.)

VI. HIGH-FREQUENCY EXPANSION: ROTATING FRAME

Let us now perform both types of high-frequency expan-
sion in the rotating frame of reference.

A. Magnus expansion in the rotating frame

1. First-order Magnus expansion in the rotating frame

The lowest order of the Magnus expansion in the rotating
frame reads as

K̃Mag,1 = L̃0 = L(HMag,1, dMag,1), (107)

with

HMag,1 = J0(z)

2
σz (108)

and

dMag,1 = γ

⎛
⎝ 1 iJ0(z) 0

−iJ0(z) 1
2 [1 + J0(2z)] 0

0 0 1
2 [1 − J0(2z)]

⎞
⎠,

(109)

where, again, z = 2E/ω. Note that for z → 0, i.e., for E → 0
or ω → ∞ [such that J0(z) → 1] we recover the static Hamil-
tonian and dissipator, as expected. In Fig. 4(b) we plot the
distance of the matrix representation of the superoperator of
this approximation K̃ to the exact Floquet generator and see
a much better agreement than what one finds for the lowest
order in the direct frame [cf. Fig. 3(a)], especially for smaller
values of ω. This is expected because the transformation to
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the rotating frame integrates out the driving term which cor-
responds to a partial resummation of infinitely many orders in
E/ω, here entering via the nonlinear function Bessel function
J0. In the direct frame, however, the leading-order correction
in the Magnus expansion only captures terms up to order
(E/ω)2.

The eigenvalues of the coefficient matrix dMag,1 read as

λ1/2 = γ
[
μ(z) ±

√
μ(z)2 + J0(z)2 − 1

2 [1 + J0(2z)]
]
, (110)

λ3 = γ

2
[1 − J0(2z)], (111)

with μ(z) = [3 + J0(2z)]/4. The corresponding generator is a
valid Lindbladian generator only if all three eigenvalues are
non-negative. This is generally the case since

J0(z)2 − 1

2
[1 + J0(2z)] (112)

= J0(z)2 − 1

2

∑
k∈Z

Jk (z)2 − 1

2

∑
k∈Z

Jk (z)J−k (z) (113)

= J0(z)2 −
∑
k∈Z

J2k (z)2 = −
∑
k �=0

J2k (z)2 � 0. (114)

In the first step we have used the identity Jn(y + z) =∑
k∈Z Jk (y)Jn−k (z) and that 1 = ∑

k∈Z Jk (z)2. This shows that
the values that the square root in Eq. (110) takes will be
smaller than μ(z). Therefore, the first-order expansion in the
rotating frame produces a nontrivial generator K̃Mag,1 that is a
valid Lindbladian for all parameter values [Fig. 4(a)].

When comparing the result that we obtain in the rotating
frame, Eq. (107), to the one that we obtain when directly
performing the Magnus expansion, Eq. (62), we find that by
expanding the Bessel function to second order, J0(z) ≈ 1 −
z2/4, by using z = 2ε we recover the terms ∝ ε2 in Eq. (62),

while the terms ∝ ε/ω will be found in the next order of the
rotating-frame Magnus expansion.

2. Second-order Magnus expansion in the rotating frame

The second-order term of the rotating-frame Magnus ex-
pansion reads as

K̃(2) = i
∑
n>0

[L̃n, L̃−n] + [L̃0, L̃n − L̃−n]

nω

=
∑
n>0

2on
[L̃0, iL̃n]

nω
, (115)

where in the second step we have used that for the Fourier
components in Eq. (104) we have L̃−n = (−1)nL̃n.

By employing the general expressions derived in Appendix
D, we find that for odd n

[L̃0, iL̃n] = L(Hn, dn), (116)

with

Hn = −J0(z)Jn(z)

2
σx (117)

and

dn = γ

2

⎛
⎝ 0 0 fn(z)

0 0 −4iJ0(z)Jn(z)
fn(z) 4iJ0(z)Jn(z) 0

⎞
⎠, (118)

where fn(z) = Jn(z)[1 + J0(2z)] + Jn(2z)J0(z). Moreover, we
ignored terms of second or higher order in γ . Thus, up to
second order, the Magnus expansion in the rotating frame
reads as

K̃Mag,2 = L(HMag,2, dMag,2), (119)

with

HMag,2 = J0(z)

[
1

2
σz − ν(z)

ω
σx

]
(120)

and

dMag,2 = γ

⎛
⎝ 1 iJ0(z) 1

ω
{ν(z)[1 + J0(2z)] + J0(z)ν(2z)}

−iJ0(z) 1
2 [1 + J0(2z)] − 4i

ω
J0(z)ν(z)

1
ω
{ν(z)[1 + J0(2z)] + J0(z)ν(2z)} 4i

ω
J0(z)ν(z) 1

2 [1 − J0(2z)]

⎞
⎠, (121)

where we have introduced ν(z) = ∑
n>0[onJn(z)/n]. Since in

leading order ν(z) � z/2, we also recover the terms ∝ ε/ω in
Eq. (62).

In Fig. 5(b) we show the distance of the matrix represen-
tation of the superoperator of K̃Mag,2 to the exact Floquet
generator and see a small improvement compared to the
first-order result in Fig. 4(b). However, the distance from
Markovianity, which is plotted in Fig. 4(a), acquires qualita-
tively different behavior in second order. While the Floquet
generator was always Markovian (i.e., of Lindblad form) in
first order, in second order we can now distinguish parameter
regions, where it is of Lindblad type, from others, where it is
not. Remarkably, the map shown in Fig. 5(a) resembles very
much the exact phase diagram of Fig. 1(a). Namely, we can

clearly observe a lobe-shape region, where the Floquet gener-
ator is non-Markovian. While this region is larger than in the
exact phase diagram, the transition between Lindbladian and
non-Lindbladian Floquet generator is qualitatively captured
correctly by the Floquet-Mangus expansion. Only at very
low frequencies, where we cannot expect the high-frequency
expansion to provide meaningful results, we find as an artifact
a thin non-Markovian stripe, which is not present in the exact
phase diagram.

B. The van Vleck high-frequency expansion in the
rotating frame

After having seen that, starting from the rotating frame
of reference, the Magnus expansion qualitatively reproduces
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FIG. 5. (a) Distance to Markovianity μmin of the Floquet gen-
erator K̃Mag,2 obtained with the second-order Magnus expansion in
the rotating frame for the same model and parameter γ = 0.01 as
in Fig. 1. Note that we only calculate distances for ω � 0.3, values
below this are drawn in white. (b) Matrix distance d of the candidate
K̃Mag,2 to the candidate K obtained from the logarithm of P (T ).

the exact phase diagram, let us now also evaluate the leading
orders of the van Vleck expansion. Different, however, from
the previous section, where we were able to derive analytic
expressions for the Magnus expansion, here calculations get
quite involved and so we treat this expansion numerically.
For this purpose, it is convenient to first discuss the action of
the transformation to the rotating frame �(t ) in the extended
Floquet space.

1. Floquet-space formalism

Both the rotating-frame transformation �(t ) and the micro-
motion D(t ) are generalized gauge transformations. Instead
of finding D(t ) directly, however, we may first perform a
transformation to the rotating frame �̃(t ) = �−1(t )�(t ), and
then find the micromotion transformation there. Since �(t ) is
periodic, we have

�(t ) =
∑

n

einωt�n, (122)

so we also may represent it in extended space �̄nm = �n−m.
Note that this representation is only possible since we assume
the driving term Ld (t ) to commute with itself at different
times, so that no time ordering is needed. As a result, �(t )
is a time local, and thus also time periodic, superoperator.

As a result, in the rotating frame the generalized
quasienergy operator reads as

¯̃Q = �̄−1Q̄�̄. (123)

Like in the direct frame, the goal is to find a transformation D̃
such that

Q̄′ = ¯̃D−1 ¯̃Q ¯̃D, (124)

where Q̄′ is block diagonal.
With respect to the original frame of reference, the micro-

motion operator is given by the combination

D(t ) = �(t )D̃(t ). (125)

From this expression, we can once more directly see that
for strong driving the high-frequency expansion in the direct
frame will at least have a slow convergence only. Namely,

the transformation � involves a summation of infinitely many
terms in E/ω.

In the regular (nonextended) superoperator space, the
rotating-frame quasienergy operator reads as

Q̃(t ) = iL̃(t ) − i∂t . (126)

Here the time-periodic Lindbladian generator in the rotating
frame, L̃, is given by Eq. (86). Its Fourier components L̃n are
directly related to its Floquet-space representation

¯̃L = �̄−1L̄0�̄, i.e., ¯̃Lnm = L̃n−m =
∑

k

�−1
n−kL0�k−m,

(127)

which allows for their efficient numerical calculation. To this
end, let us determine the coefficients �n. In Appendix F we
show that for driving terms of the form

Ld (t ) = φ(t )L′
d , (128)

with scalar function φ(t ) = ∑
m �=0 eimωtφm, one finds the ex-

plicit Floquet-space expression

�̄ =
∏
m �=0

f̄ (m)

(
φmL′

d

imω

)
ḡ(m)

(
φmL′

d

imω

)
. (129)

Here we have introduced f̄ (m)
nl = f (m)

n−l , ḡ(m)
nl = g(m)

n−l as well as

f (m)
n (x) =

{
Jk (x) if n = km, k ∈ Z,

0 else. (130)

g(m)
n (x) =

{
e−xIk (x) if n = km, k ∈ Z,

0 else, (131)

with Bessel functions of first kind Jk , and modified Bessel
functions of first kind Ik . Since �−1(t ) is directly obtained
from �(t ) by setting φ(t ) → −φ(t ), we find �̄−1 from
Eq. (129) by setting φm → −φm.

For our example system we have

φ(t ) = 2 cos(ωt ), L′
d = L1 = L−1 = −i

[E

2
σx, ·

]
. (132)

From Eq. (129) (or an explicit calculation) we find

�n = Jn

(
2L1

iω

)
, (133)

which finally yields

L̃n =
∑

k

Jn−k

(
−2L1

iω

)
L0Jk

(
2L1

iω

)
. (134)

By translating superoperators into (N2 × N2)-dimensional
matrices as shown in Appendix E, we therefore have an al-
ternative procedure to the one we obtained in Sec. V B to
calculate the operators L̃n and from this the van Vleck high-
frequency expansion. An explicit calculation of L̃n using this
matrix representation is given in Appendix G. [Plugging this
result into the first order of the Magnus expansion (20), one
recovers K̃Mag,1 of Sec. VI A 1.]

Equation (134) is a good starting point for numeri-
cal investigations because it can be evaluated easily, after
having represented the superoperators L0,L1 by (N2 × N2)-
dimensional matrices. From the expressions in Sec. III C we
can then compute the terms of the van Vleck high-frequency
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expansion in the rotating frame. We compute both the approx-
imate effective generator K̃eff,n = ∑n

k=1 K̃
(k)
eff , as well as the

approximate micromotion operator D̃n(t ) = exp[
∑n

k=1 Gk (t )].
Note that for the latter, the expansion of the exponent is
truncated, rather than that of the full exponential function.
For isolated systems, this makes sure that the micromotion
operator is unitary also in finite orders of the approximation
[34]. Combining both approximations, we can compute the
nth-order approximation to the Floquet generator

K̃vV,n = D̃n−1(0)K̃eff,nD̃−1
n−1(0). (135)

Here we only need to consider the micromotion correction up
to the order of n − 1 since all terms contained in K̃eff,n are
of order one or higher. The approximation (135) is generally
different from the one obtained from the truncated Magnus
expansion in the rotating frame. If, instead, we had expanded
and truncated D̃n(t ) directly, rather than its exponent, we
would have recovered the Magnus approximation.

2. First-order van Vleck high-frequency expansion in the
rotating frame

Note that from comparing Eq. (20) to (48) we learn that in
the leading first order (i.e., zeroth order in 1/ω), the van Vleck
high-frequency expansion of the effective generator K̃eff and
the Magnus expansion K̃Mag coincide, K̃eff,1 = K̃Mag,1, there-
fore, in first order also the effective generator exists for all
parameter values. Additionally, in leading (zeroth) order the
micromotion operator is simply the identity D̃0(0) = 1, so that
in leading (first) order, the Floquet generator is equal to the
effective generator

K̃vV,1 = K̃eff,1 = K̃Mag,1. (136)

Thus, in the rotating frame for the first-order van Vleck Flo-
quet generator K̃vV,1 both the distance to Markovianity as well
as the distance from the exact Floquet generator are identical
to the ones shown in Fig. 4. In particular, K̃vV,1 is of Lindblad
type in the whole parameter plane (E , ω) [cf. Fig. 4(a)].

3. Second-order van Vleck high-frequency expansion in the
rotating frame

From the second order on, the truncated van Vleck ex-
pansion for the Floquet generator K̃vV,n deviates both from
the effective generator K̃eff,n and from the truncated Mag-
nus expansion of the Floquet generator K̃Mag,n. However,
since for our model we have L̃−n = (−1)nL̃n and, therefore,
[L̃n, L̃−n] = 0, the second-order contribution to the effective
generator vanishes, so that

K̃eff,2 = K̃eff,1. (137)

Thus, the only new contribution to the Floquet generator

K̃vV,2 = D̃1(0)K̃eff,2D̃−1
1 (0) = D̃1(0)K̃eff,1D̃−1

1 (0) (138)

stems from the micromoton operator D̃1(0).
In Fig. 6, we plot the distance from Markovianity (a) [as

well as the distance from the exact Floquet generator for
K̃vV,2 (b)]. Apart from some artifacts at very low frequen-
cies, we find a lobe-shaped non-Markovian region, where no
Floquet Lindbladian can be found. Thus, like the Magnus

FIG. 6. (a) Distance to Markovianity μmin of the Floquet gen-
erator K obtained with the second-order van Vleck high-frequency
expansion K̃vV,2 in the rotating frame, where we do not expand the
exponential in D̃(t ) = exp[G̃(t )]. We present the same model and
parameter γ = 0.01 as in Fig. 1(a). Note that we only calculate
distances for ω � 0.3; values below this are drawn in white. (b) Dis-
tance d of the candidate K̃vV,2 to the exact candidate K obtained from
the logarithm of P (T ).

expansion, also the van Vleck expansion explains the structure
of the exact phase diagram shown in Fig. 1(a). However,
the phase boundaries obtained within the second-order van
Vleck approximation [Fig. 6(a)] are closer to the exact ones
[Fig. 1(a)] than those obtained with the Magnus expansion
[Fig. 4(a)].

Apart from providing a quantitatively better approximation
to the exact results, the van Vleck expansion has another
(and more important) advantage compared to the Magnus
expansion. Namely, it disentangles effects that result from
the micromotion, which are contained in D̃(t0), from those
contained in the t0-independent effective generator K̃eff . Since
K̃eff,2 is Markovian in the whole parameter plane (E , ω), we
can now clearly see that for our model system the origin of
the region with non-Markovian Floquet generator lies (en-
tirely) in the nonunitary micromotion. While this statement
is obtained from a second-order high-frequency van Vleck
expansion only, the very good agreement with the exact phase
diagram strongly suggests that this statement remains true
also beyond this approximation. This is confirmed also by
the third-order van Vleck approximation, which is discussed
below. Note that the phase diagram will not be changed
further, when transforming from the rotating to the direct
frame of reference, because both are related by a unitary
transformation for our model system since the driving term is
Hermitian.

The relation of regions with non-Markovian Floquet gen-
erator with the nonunitary micromotion of the system is
consistent also with the strong dependence of the phase di-
agram on the driving phase, which is equivalent to a variation
of the time t0, with t0 = ϕT/2π . Compare Figs. 1(a) and 1(b)
corresponding to ϕ = 0 and π/2, respectively, or the subfig-
ures of Fig. 2. In order to explain why the non-Markovian
lobe in the phase diagram is largest for ϕ = t0 = 0 and shrinks
with increasing ϕ, until it finds its smallest extent for ϕ = π/2
or t0 = T/4, let us inspect the first-order van Vleck approxi-
mation of the micromotion operator (which describes the role
of the micromotion in the second-order approximation of the
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FIG. 7. Distance to Markovianity μmin of the candidate K̃eff,3

for the effective generator obtained from a third-order van Vleck
high-frequency expansion in the rotating frame for the same model
and parameter γ = 0.01 as in Fig. 1. We only calculate for ω � 0.1;
values below this are drawn in white.

Floquet generator). It reads as

D̃1(t0) = exp

(
−i

∑
n �=0

einωt0
L̃n

nω

)
(139)

= exp

(
−i

∞∑
k=1

2[ok cos(kωt0) + eki sin(kωt0)]
L̃k

kω

)
,

(140)

where in the second step we have employed that for our
model L̃−n = (−1)nL̃n. When the exponent of this expres-
sion becomes small, the micromotion operator approaches
the identity, which describes a unitary rotation that does not
induce any non-Markovian behavior. The largest contribution
to the exponent stems from the k = 1 term, which vanishes
precisely when t0 = T/4 corresponding to the driving phase
ϕ = π/2 at which the non-Markovian region is smallest.
Thus, the van Vleck expansion provides analytical insight into
the origin of the phase dependence of the phase diagram.

4. Third-order van Vleck high-frequency expansion in the
rotating frame

In order to support the conclusions drawn from the second-
order van Vleck expansion in the previous section, let us
now briefly discuss the third order. Calculating numerically
the effective generator K̃eff,3, in Fig. 7 we show the resulting
distance from Markovianity. Apart from artifacts appearing at
very small frequencies, K̃eff,3 is of Lindblad form essentially
everywhere in the parameter plane (E , ω). This confirms that
non-Markovian behavior must be an effect of the micromo-
tion.

It is interesting to see that the high-frequency expansion is
able to capture the transition between the two phases and it is
remarkable that rather good agreement with the exact phase
diagram is found also down to quite low frequencies. But for
very low frequencies, eventually also qualitative deviations

from the exact result become visible. This is not surprising
since the high-frequency expansion cannot be expected to
converge in this regime. For the Magnus expansion (and thus
also for the van Vleck expansion), convergence is guaranteed
as long as [38,61] ∫ T

0
||L(t )||2dt < π. (141)

Here, ||A||2 = max||x||2=1 ||Ax||2 is the induced 2-norm.
We can gain a very rough estimate for the region of conver-

gence by discussing the undriven limit of E = 0 and γ = 0.
As shown in Appendix G, the matrix representation of the
generator then reads as L|E=0,γ=0 = diag(0,−i, i, 0), there-
fore, ||(L|E=0,γ=0)||2 = 1. Thus, for E = 0 and γ = 0 we find
that the Magnus expansion is only expected to converge for
ω > 2. For finite values of the driving strength E the norm
of L(t ) will increase and thus the radius of convergence will
decrease even further.

As a result, Fig. 7 shows that within the region of conver-
gence of the Magnus expansion, K̃eff,3 is a valid Lindbladian.
Our hypothesis that the effective Lindbladian could exist for
all parameters is therefore not violated by the third order of the
van Vleck high-frequency expansion in the rotating frame.

VII. SUMMARY AND OUTLOOK

In this paper, we have studied the description of a
time-periodically driven open quantum system using high-
frequency expansions (Magnus or van Vleck type). In
particular, we have focused on the resulting approximations
for the effective time-independent Floquet generator, which is
defined so that it describes the stroboscopic evolution of the
system in steps of the driving period. Our work is generally
motivated by the interesting perspective to apply the concepts
of Floquet engineering also to open quantum systems. More
specifically, it was initiated by a discrepancy that arose from
two observations: On the one hand, we found in previous
work that the Floquet generator of a simple open periodically
driven Markovian two-level system is of Lindblad type in the
high-frequency regime [24]. On the other hand, it was pointed
out that the Floquet generator resulting from a high-frequency
expansion is generally not of Lindblad type [25,26,33]. We
have found that high-frequency expansions can correctly de-
scribe the behavior of the system, when applied in a rotating
frame of reference. Moreover, by going beyond the leading
first order, the high-frequency expansion can even explain
the transition to another regime, where the Floquet gener-
ator is not of Lindblad type. By isolating the effect of the
micromotion within the van Vleck approach, this transition
can be attributed entirely to the properties of the nonunitary
micromotion of the system, and its dependence on the driving
phase can be explained.

Our analysis emphasizes that the approach that some recent
works [33] take to argue about the nonexistence of a Floquet
Lindbladian in an interacting system on the basis of the perfor-
mance of high-frequency expansions might not be conclusive.

We hope that our results will stimulate further research of
periodically driven open quantum systems. Since we focused
on a specific model, it is, for instance, a very natural question
under what conditions our findings can be generalized to
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other models, for instance, to the case of non-Markovian com-
pletely positive stroboscopic evolution when time-dependent
rates γi(t ) can become negative [45,46]. Such behavior may
arise from a microscopic derivation of the equation of motion
of a (Floquet) system coupled to a heat bath [62,63] and
is typically neglected in the Floquet-Born-Markov secular
formalism [64,65]. Applying our approach to such micro-
scopically derived master equations is, therefore, another
interesting perspective.

Finally, it is an open question as to whether the observation
that the origin of the non-Markovianity of the Floquet gener-
ator lies in the micromotion, which was made here based on
a high-frequency expansion of a specific model, generalizes
to all or a subclass of time-periodically Markovian quantum
systems.
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APPENDIX A: FINDING THE FLOQUET GENERATOR
FROM THE EXACT MAP P (T )

Here, we summarize the results of Ref. [24] concerning
the question of the existence of a Floquet Lindbladian. In
the time-periodically modulated isolated system, i.e., in our
notation (1) with γi(t ) = 0 for all i, it is well known that there
always exists an effective time-independent Hamiltonian HF ,
the Floquet Hamiltonian, such that

P (T ) = exp (−i[HF , ·]T ). (A1)

How can one see that such a Floquet Hamiltonian HF exists?
For the coherent dynamics, the evolution operator reduces to
a unitary rotation of the density matrix

P (T ) = U (T ) · U (T )†. (A2)

The unitary one-cycle evolution operator U (T ),

U (T ) = T exp

[
− i

∫ T

0
dt ′H (t ′)

]
(A3)

yields a countably infinite set of Hermitian generators,
HU,{x1,...,xN }, xa ∈ Z, U (T ) = e−iHU T , parametrized by a
choice of a branch of the logarithm logU (T ). This can be
seen most easily by representing the evolution operator U (T )
[Eq. (A3)] in its spectral decomposition. Since it is unitary we
may represent it as

U (T ) =
N∑

a=1

e−iεaT Pa (A4)

with real numbers εa and (Hermitian) orthogonal projectors
Pa onto the eigenspace a. Now it becomes apparent that, when
computing the logarithm of U (T ), for every subspace a there
is a freedom to pick a branch of the complex logarithm giving

a whole set

log[U (T )]{x1,...,xN } = −i
N∑

a=1

(εaT + 2πxa)Pa (A5)

parametrized by N integer numbers xa ∈ Z. For the corre-
sponding Hermitian generator,

HU,{x1,...,xN } =
N∑

a=1

(εa + ωxa)Pa, (A6)

this change of branch corresponds to a redefinition of the
“energy” εa → εa + ωxa, where ω = 2π/T is the driving fre-
quency. That means, the “energies” εa are only defined up
to integer multiples of ω, which is why they are typically
referred to as quasienergies. Note that in the case of the
coherent dynamics, any of these generators can be chosen as
Floquet Hamiltonian HF since all of the generators HU,{x1,...,xN }
are Hermitian. This choice can be made, e.g., by using the
principal branch, ∀ xs ≡ 0, or the branch closest to the time-
averaged Hamiltonian H (t ).

Since P (T ) is a Hermiticity-preserving map, its spectrum
is invariant under complex conjugation. Thus, its N2 eigenval-
ues are either real or appear as complex-conjugated pairs (we
denote the numbers of real eigenvalues and complex pairs by
nr and nc, respectively). The Jordan normal form of the map
P (T ) can thus be represented as

P (T ) =
nr∑

r=1

λrPr +
nc∑

c=1

(λcPc + λ∗
cPc∗), (A7)

where λr are the real eigenvalues, λc, λ
∗
c the pairs of complex

eigenvalues, and Px the corresponding (not necessarily Hermi-
tian) orthogonal projectors on the corresponding subspaces.

Again, due to the nature of the complex logarithm, the
Floquet generator K in Eq. (9) is not uniquely defined, but
for every branch of the logarithm we get a different operator.
A straightforward procedure to test whether a given candidate
K is a valid Lindblad generator is the Markovianity test pro-
posed by Wolf et al. in Refs. [53,66], which is based on two
conditions: (i) The operator K must preserve Hermiticity, i.e.,

Kσ = Kσ †

for all σ ∈ L(H) that are Hermitian σ = σ †. (ii) For the sec-
ond test, the operator K has to be conditionally completely
positive [53], i.e., it has to fulfill

�⊥K��⊥ � 0. (A8)

Here �⊥ = 1 − |�〉〈�| is the projector on the orthorg-
onal complement of the maximally entangled state |�〉 =∑N

i=1(|i〉 ⊗ |i〉)/
√

N with {|i〉} denoting the canonical basis of
H. Moreover, K� = N (K ⊗ 1)[|�〉〈�|] ∈ L(H2) is the Choi
matrix of K. If one of the branches of the operator logarithm
obeys both conditions it can be called Floquet Lindbladian
LF . Already here the contrast with the unitary case becomes
apparent: it is not guaranteed that such branch exists and, if it
exists, the other branches typically do not provide a Lindbla-
dian Floquet generator as well.

Condition (i) simply demands that the spectrum of the can-
didate K has to be invariant under complex conjugation. This
means, in turn, that the spectrum of the map P (T ) should not
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contain negative real eigenvalues λr = −|λr | (strictly speak-
ing, there must be no negative eigenvalues of odd degeneracy).
That is, because if one would set the logarithm of such an
occasion, e.g., to log(λr ) = iπ + log(|λr|), the spectrum is
not invariant under conjugation anymore. In this case, there
is no Floquet Lindbladian.

If P (T ) has no negative real eigenvalues, we find that we
may represent the family of all candidates K{x1,...,xnc } as

K{x1,...,xnc } = K0 + iω
nc∑

c=1

xc(Pc − Pc∗), (A9)

where K0 is the generator that follows from the principal
branch of the logarithm of P (T ). We have the freedom to pick
integer numbers x = {xc} ∈ Znc that determine the branch of
the logarithm for every pair of complex eigenvalues. Note that
for the isolated system all eigenvalues of P (T ) lie on the unit
circle, therefore, all eigenvalues of K are purely imaginary (or
zero). In the isolated system, with the freedom in Eq. (A9)
we recover that the eigenvalues of the Floquet Hamiltonian
HF , the quasienergies, are only defined up to multiples of
the driving frequency ω, so all branches lead to a valid Lind-
bladian evolution. For the open system, typically only a few,
sometimes even none of the branches lead to a generator that
is of Lindblad form.

For that, we need to check condition (ii), which is more
complicated and involves properties of the eigenelements of
the Floquet map. As coined in Refs. [53,66], by plugging the
candidates, Eq. (A9), into the test for conditional complete
positivity, Eq. (A8), it comes in handy to define a set of nc + 1
Hermitian matrices

V0 =�⊥K�
0 �⊥, Vc = iω�⊥(Pc − Pc∗)��⊥, c=1, . . . , nc.

(A10)
The condition is fulfilled, if there is a set of nc integers, x ∈
Znc , such that

Vx = V0 +
nc∑

c=1

xcVc � 0. (A11)

Finally, when the test is successful for one branch, the
Floquet Lindbladian LF is found, and we can extract from
it the corresponding time-independent Hamiltonian and jump
operators.

APPENDIX B: DISCREPANCY TO THE MAGNUS
EXPANSIONS PRESENTED IN THE LITERATURE

Here, we discuss a discrepancy in the general expressions
of the second order of the Magnus expansion (in terms of the
Fourier components of the generator) that are presented in
Refs. [25,67]. One should therefore be cautious when using
these expressions.

As it was shown in the literature [25,67], by plugging the
Fourier expansion (17) into the conventional Magnus expan-
sion [38] one finds on the lowest orders

K(1) = L0, (B1)

K(2) =
∞∑

n=1

[Ln,L−n] + [L0,Ln − L−n]

nω
. (B2)

However, on third order there is a discrepancy between the
results in the different works. In Ref. [25] it is presented

K(3)
FCM =

∑
n �=0

∑
m �=0

(
[[Ln,L−n],Lm]

2nmω2
− [Ln, [Lm,L−n−m]]

3nmω2

)

−
∑
n �=0

∑
m �=0,m �=n

[Ln, [L0,Lm]]

2nmω2

+
∞∑

n=1

∑
m �=0,m �=−n

[[Ln,Lm] + [L−n,L−m],L0]

2n(n + m)ω2
,

(B3)

while in Ref. [67] it was found

K(3)
LMV = −

∑
n �=0

∑
m �=0

(
[Lm, [L−m,Ln]]

nmω2
+ [Lm, [Ln,L0]]

2nmω2

)

−
∑
n �=0

∑
m �=0,m �=n

[Lm, [Ln−m,L−n]]

3nmω2

+
∑
n �=0

(
[L0, [L0,Ln]]

2n2ω2
− [Ln, [L0,L−n]]

2n2ω2

)
, (B4)

where we have adapted the expression to our notation for the
dissipative Floquet system. Here, by n �= 0 we denote the sum
over n ∈ Z \ {0}.

Note that with these expressions for our two-level system
model with ϕ = 0 we find

K(3)
FCM = 1

ω2
[L0, [L0,L1]] + 1

3ω2
[L1, [L0,L1]], (B5)

K(3)
LMV = 1

ω2
[L0, [L0,L1]] − 1

ω2
[L1, [L0,L1]], (B6)

which differ by the prefactors of both terms from the direct
calculation

K(3) = 2

ω2
[L0, [L0,L1]] − 1

ω2
[L1, [L0,L1]]. (B7)

This is worrisome because the result of the direct calculation
was obtained in the same way, but for a special choice of the
driving, so in principle all expressions should coincide.

However, in Ref. [67] another expression for the second-
order term is presented. This expression was obtained by
performing the Floquet-Magnus expansion, yielding an ef-
fective Hamiltonian/generator in the rotated basis (the basis
rotation DF is unitary, if the dynamics is coherent)

�(t ) = DF eL̄F t D−1
F ≡ eLF t . (B8)

The Floquet Lindbladian LF can then be obtained in second
order in 1/ω by finding L̄F up to second order combined with
the second order of the expansion of the rotation matrix

DF = exp[i(S(1)/ω + S(2)/ω2)]. (B9)

With this identification it is found

K(1)′ = K(1), K(2)′ = K(2), (B10)

K(3)′
LMV = K(3)

LMV −
∑
n �=0

∑
m �=0

[L0, [Lm,Ln−m]]

nmω2
(B11)
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and argued that the difference between the both expressions
is due to approximations in the derivation of the Floquet-
Magnus expansion [67].

Interestingly, in our case of the driven two-level system, by
calculating

K(3)′
LMV = 2

ω2
[L0, [L0,L1]] − 1

ω2
[L1, [L0,L1]] (B12)

we recover the expression in Eq. (B7) that we found by
directly performing the conventional Magnus expansion. We
therefore expect that there could be a small error in the direct
derivation of K(3)

LMV via the Magnus expansion and that it
maybe also holds that K(3)

LMV = K(3)′
LMV. As a result, the only

expression that could be correct is K(3)′
LMV.

APPENDIX C: DEGENERATE PERTURBATION THEORY
IN EXTENDED SPACE FOR THE DISSIPATIVE SYSTEM

For the coherent system, it was shown [34] that a high-
frequency expansion can be derived from a canonical van
Vleck degenerate perturbation theory in the extended Hilbert
space. Here we list the steps that are necessary to generalize
this ansatz to the open system.

To this end, let us suppose that we may divide the
quasienergy superoperator in the following fashion:

Q̄ = Q̄0 + λV̄, (C1)

where the spectrum of the operator Q̄0 is known. Note that
since the system is dissipative, we need to consider the right
eigenvectors

Q̄0|a, m〉〉 = 
(0)
a,m|a, m〉〉 (C2)

as well as the left eigenvectors

〈〈ã, m|Q̄0 = 〈〈ã, m|
(0)
a,m (C3)

since for non-Hermitian operators these will differ in general.
Here we split the photon index m from the eigenindex since
the spectrum will obey



(0)
a,m+n = 
(0)

a,m + nω. (C4)

It holds the orthogonality relation

〈〈ã, m |b, n〉〉 = δabδmn. (C5)

Note that even though we denote the eigenvectors as ket- and
bra-vectors, they are actually density matrices, so, e.g., in
Eq. (C5) the inner product that is occurring is actually relying
on the Frobenius inner product

(A, B)F = tr(A†B). (C6)

Let us elaborate a bit on this point. The eigenvectors have the
form

|a, m〉〉 ≡

⎛
⎜⎜⎜⎝

. . .

�a,m,−1

�a,m,0

�a,m,1

. . .

⎞
⎟⎟⎟⎠, (C7)

〈〈ã, m| ≡ (. . . �̃a,m,−1 �̃a,m,0 �̃a,m,1 . . .). (C8)

As we show in Appendix E as an example for the
two-level system, it is possible to map density matri-
ces �i j (here, i, j are the matrix indices) in the N-
dimensional Hilbert space H onto N2-dimensional vectors
|�〉 = |�11, . . . �1N ,�21, . . . , �NN 〉. Then, superoperators
are just (non-Hermitian) matrices of shape N2 × N2. We can
then use standard linear algebra to diagonalize the matrix
representation of the superoperator. For this matrix we find
eigenvectors |�b〉, 〈�̃a| fulfilling 〈�̃a |�b〉 = δab. Translating
it back to density matrices we find

δab =〈�̃a |�b〉=
∑
i, j

(�̃a)∗i j (�b)i j = tr(�̃†
a�b) = (�̃a,�b)F .

(C9)

Therefore, the inner product in the extended Hilbert space,
Eq. (C5), reads as

〈〈ã, m |b, n〉〉 =
∑

k

(�̃a,m,k,�b,n,k )F . (C10)

Remarkably, using this language, one is able to generalize
the perturbative procedure that was found in Ref. [34]. The
aim is to find a transformation to the new basis states of the
perturbed problem,

|a, m〉〉B = D̄|a, m〉〉, B〈〈ã, m| = 〈〈ã, m|D̄−1, (C11)

such that in the transformed basis the quasienergy operator is
block diagonal,

B〈〈b̃, m| Q̄|a, n〉〉B = 0, ∀ m �= n. (C12)

It is clear that the left eigenvectors have to transform with
D̄−1 because also in the transformed basis, it has to hold
B〈〈ã, m |b, n〉〉B = δabδmn.

Now, like in the coherent case [34], we can separate the
block-diagonal part of this equation

[D̄−1(Q̄0 + λV̄D + λV̄X )D̄]D = Q̄0 + W̄D, (C13)

from the block-off-diagonal part

[D̄−1(Q̄0 + λV̄D + λV̄X )D̄]X = 0 (C14)

with some block-diagonal operator W̄ = W̄D. Here, we use
the convention

ĀD =
∑

m

P̄mĀP̄m, ĀX =
∑
m �=n

P̄mĀP̄n (C15)

with projector P̄m = ∑
a |a, m〉〉〈〈ã, m|. By representing the

rotation as

D̄ = exp(ḠX ) it directly follows D̄−1 = exp(−ḠX ).
(C16)

Here the rotation Ḡ = ḠX is chosen such that it does not affect
the blocks with the same photon number m. We then can
expand the operators

ḠX =
∞∑

n=1

λnḠ (n)
X , W̄D =

∞∑
n=1

λnW̄ (n)
D , (C17)

plug this into Eqs. (C13) and (C14), sort it by orders of λ,
and find exactly the same expressions as in Appendix C of
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Ref. [34]. Let us just present the first nontrivial order ∝ λ1,
where it has to hold

W̄ (1)
D = V̄D, as well as

[
Ḡ (1)

X , Q̄0
] = V̄X . (C18)

Very similar to the coherent case, the occurring commutators
[Ḡ (n)

X , Q̄0] may be unraveled by taking matrix elements of the
form

〈〈ã, m|[Ḡ (1)
X , Q̄0

]|b, n〉〉 = (
a,m − 
b,n)〈〈ã, m|Ḡ (1)
X |b, n〉〉

(C19)

= 〈〈ã, m|V̄X |b, n〉〉, (C20)

with m �= n. Therefore, we see that the argumentation for the
closed system can be directly translated to the open system
by replacing the real quasienergies ε(0)

a,m with the complex
eigenvalues 
(0)

a,m, the bra-vectors 〈〈a, m| with left eigenvec-
tors 〈〈ã, m|, and the rotation Ū with D̄ as well as Ū † with
D̄−1.

Thus, like in the coherent case, we may find a high-
frequency expansion of the superoperator by taking

Q0 = −i∂t , such that Q0|a, m〉〉 = mω|a, m〉〉 (C21)

and with the natural basis |a, m〉〉. Note that Q0 is Hermitian,
therefore, the left eigenvectors are just 〈〈a, m|.

APPENDIX D: COMMUTATOR OF TWO GENERAL
TWO-LEVEL SYSTEM LINDBLAD SUPEROPERATORS

Here we derive general expressions for the commutator
of two arbitrary Lindbladians L(1) and L(2) for a two-level

system. The Lindbladians L(1) and L(2) can be represented as

L(i) = −i[H (i), ·] +
∑
nm

d (i)
nm

(
σn · σm − 1

2
{σmσn, ·}

)
, (D1)

where the indices n, m in the following run over 1,2,3. Their
commutator therefore reads as

[L(1),L(2)] = − [H (1), [H (2), ·]] + [H (2), [H (1), ·]]

− i
∑
nm

d (1)
nm

(
σn[H (2), ·]σm − 1

2
{σmσn, [H (2), ·]}

−[H (2), σn · σm] + 1

2
[H (2), {σmσn, ·}]

)

+ i
∑
nm

d (2)
nm

(
σn[H (1), ·]σm − 1

2
{σmσn, [H (1), ·]}

−[H (1), σn · σm] + 1

2
[H (1), {σmσn, ·}]

)

+
∑
nm,kl

(
d (1)

nm d (2)
kl − d (1)

kl d (2)
nm

)

×
[
σn

(
σk · σl − 1

2
{σlσk, ·}

)
σm

−1

2

{
σmσn, σk · σl − 1

2
{σlσk, ·}

}]
. (D2)

This can be simplified to read as

[L(1),L(2)] = − i[H coh, ·] + i
∑
nm

d (1)
nm

(
[H (2), σn] · σm + σn · [H (2), σm] − 1

2
{[H (2), σmσn], ·}

)

− i
∑
nm

d (2)
nm

(
[H (1), σn] · σm + σn · [H (1), σm] − 1

2
{[H (1), σmσn], ·}

)

+
∑
nm,kl

(
d (1)

nm d (2)
kl − d (1)

kl d (2)
nm

)[
σn

(
σk · σl − 1

2
{σlσk, ·}

)
σm − 1

2

{
σmσn, σk · σl − 1

2
{σlσk, ·}

}]
(D3)

with resulting Hamiltonian due to the coherent parts

H coh = −i[H (1), H (2)] = 2
∑
kql

εkql h
(1)
k h(2)

q σl . (D4)

In the last step we have represented the Hamiltonians in the
Pauli basis

H (i) = h(i)
0 1 +

∑
k

h(i)
k σk . (D5)

Note that the first three lines of Eq. (D3) are already in
Lindblad form. The third line, however, needs more work,
but one can show that it can be brought to Lindblad

form∑
nm,kl

(
d (1)

nm d (2)
kl − d (1)

kl d (2)
nm

)[
σn

(
σk · σl − 1

2
{σlσk, ·}

)
σm

− 1

2

{
σmσn, σk · σl − 1

2
{σlσk, ·}

}]
(D6)

= −i[Hdiss, ·] +
∑
mn

ddiss
mn

(
σm · σn − 1

2
{σmσn, ·}

)
(D7)

with resulting Hamiltonian due to the dissipative parts

Hdiss = −2
∑
nmkq

εnmqRe
(
d (1)

nk

)
Re

(
d (2)

mk

)
σq, (D8)

as well as

ddiss
nm = 2i

∑
k

Im
(
d (1)

nk d (2)
mk − d (1)

mk d (2)
nk

)
. (D9)
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Therefore, in total the commutator reads as

[L(1),L(2)] = − i[H coh + Hdiss, ·]

+
∑
nm

(
dc−d

nm + ddiss
nm

) [
σn · σm − 1

2
{σmσn, ·}

]
,

(D10)

where we have also evaluated the terms coming from the
mixed coherent and dissipative terms

dc−d
nm = 2

∑
kl

[(
d (1)

lm h(2)
k − d (2)

lm h(1)
k

)
εknl

+ (
d (1)

nl h(2)
k − d (2)

nl h(1)
k

)
εkml

]
. (D11)

APPENDIX E: MATRIX REPRESENTATION OF THE
MOST GENERAL TWO-LEVEL SYSTEM LINDBLADIAN

For the two-level system the Hilbert space is H = C2.
Under the identification

� =
(

a b
c d

)
→ |�〉 =

⎛
⎜⎝

a
b
c
d

⎞
⎟⎠ (E1)

we may represent density matrices as vectors and superopera-
tors as matrices. Here we provide an explicit translation table
of the superoperator into matrix notation for the most general
static two-level system Lindbladian.

The most general Lindbladian has the form

L = −i

[∑
k

hkσk, ·
]

+
∑
mn

dmn

(
σm · σn − 1

2
{σnσm, ·}

)
(E2)

with coefficient matrix

d =
⎛
⎝ a d + ie f + ig

d − ie b s + it
f − ig s + it c

⎞
⎠. (E3)

After some algebra one finds its matrix form as

L =

⎛
⎜⎝

−a − b − 2e ih1 − h2 + f + is −ih1 − h2 + f − is a + b − 2e
ih1 + h2 + f − is − 2ig − 2t −2ih3 − a − b − 2c a − b − 2id −ih1 − h2 − f + is − 2ig − 2t

−ih1 + h2 + f + is + 2ig − 2t a − b + 2id 2ih3 − a − b − 2c ih1 − h2 − f − is + 2ig − 2t
a + b + 2e −ih1 + h2 − f − is ih1 + h2 − f + is −a − b + 2e

⎞
⎟⎠.

(E4)

APPENDIX F: FOURIER COMPONENTS OF THE
SUPEROPERATOR GENERATING THE

ROTATING-FRAME TRANSFORMATION

Here we prove Eq. (129) which provides an explicit expres-
sion of the extended-space superoperator �̄ generating the
(generalized) rotating-frame transformation for an operator of
the form of Eq. (128).

By definition,

�n = 1

T

∫ T

0
dt e−inωt exp

(∫ t

0
dt ′Ld (t ′)

)
. (F1)

We can further evaluate this expression if we assume that, like
for our model system, it holds that

Ld (t ) = φ(t )L′
d (F2)

with some periodic scalar function φ(t ) = ∑
m �=0 eimωtφm.

Then, we may evaluate

∫ t

0
dt ′Ld (t ′) = χ (t )L′

d (F3)

with

χ (t ) =
∫ t

0
dt ′φ(t ′) =

∑
m �=0

eimωt − 1

imω
φm. (F4)

We may rewrite eimωt − 1 = cos(mωt ) − 1 + i sin(mωt ).
This gives

�n = 1

T

∫ T

0
dt e−inωt exp

(∑
m �=0

sin(mωt )

mω
φmL′

d

+
∑
m �=0

cos(mωt ) − 1

imω
φmL′

d

)
(F5)

= 1

T

∫ T

0
dt e−inωt

∏
m �=0

exp

(
sin(mωt )

mω
φmL′

d

)

× exp

(
cos(mωt ) − 1

imω
φmL′

d

)
. (F6)

We may now represent L′
d using its spectral decomposition

L′
d =

∑
a

λa

∣∣�(d )
a

〉〉〈〈
�̃(d )

a

∣∣ (F7)

and may use the Bessel functions of first kind Jn to evaluate

f (m)
n (x) = 1

T

∫ T

0
dt e−inωt+ix sin(mωt ) (F8)

= 1

T

∫ T

0
dt e−inωt

∑
k∈Z

Jk (x)eikmωt (F9)

=
{

Jn/m(x) if n = km, k ∈ Z
0 else. (F10)

165414-19



SCHNELL, DENISOV, AND ECKARDT PHYSICAL REVIEW B 104, 165414 (2021)

Similarly, with the modified Bessel functions of first kind In

we find

g(m)
n (x) = 1

T
e−x

∫ T

0
dt e−inωt+x cos(mωt ) (F11)

=
{

e−xIn/m(x) if n = km, k ∈ Z
0 else. (F12)

Note that in Eq. (F6) occurs the Fourier transform of a product
of the functions that we transformed above, which gives rise

to a relatively involved structure. A compact form can be
obtained in extended Hilbert space where it holds

�̄ =
∑

a

∏
m �=0

f̄ (m)

(
φmλa

imω

)
ḡ(m)

(
φmλa

imω

)∣∣�(d )
a

〉〉〈〈
�̃(d )

a

∣∣
(F13)

=
∏
m �=0

f̄ (m)

(
φmL′

d

imω

)
ḡ(m)

(
φmL′

d

imω

)
. (F14)

APPENDIX G: EXPLICIT CALCULATION OF THE PERTURBATIVE EXPANSION IN EXTENDED SPACE FOR THE
DRIVEN-DISSIPATIVE TWO-LEVEL SYSTEM

Instead of the explicit rotating-frame transformation on the level of the superoperator, as presented in Sec. V B for the driven-
dissipative two-level system, here we calculate the components L̃n in matrix representation by using Eq. (134). This matrix
representation can be used to evaluate the Floquet-Magnus expansion numerically.

For our model system, by using Eq. (E4) we find the matrix representations

A = iL1 = iL−1 = E

2

⎛
⎜⎝

0 −1 1 0
−1 0 0 1

1 0 0 −1
0 1 −1 0

⎞
⎟⎠ (G1)

and

L0 =

⎛
⎜⎝

−4γ 0 0 0
0 −i − 2γ 0 0
0 0 i − 2γ 0

4γ 0 0 0

⎞
⎟⎠. (G2)

We start by diagonalizing the Hermitian matrix A. One can show that A = UDU † with

U = 1

2

⎛
⎜⎜⎝

−1 0
√

2 −1
−1

√
2 0 1

1
√

2 0 −1
1 0

√
2 1

⎞
⎟⎟⎠ and D =

⎛
⎜⎝

−E 0 0 0
0 0 0 0
0 0 0 0
0 0 0 E

⎞
⎟⎠. (G3)

As can be seen from the power series of Jk it holds that Jk (−2A/ω) = UJk (−2D/ω)U † yielding

Jk

(
−2A

ω

)
= 1

2

⎛
⎜⎝

ak ck −ck bk

ck ak bk −ck

−ck bk ak ck

bk −ck ck ak

⎞
⎟⎠(z), (G4)

where we set z = 2E/ω and define the functions

ak (z) = ekJk (z) + δk0, (G5)

bk (z) = −ekJk (z) + δk0, (G6)

ck (z) = okJk (z). (G7)

Here we have used that Jk (0) = δk0, Jk (−z) = (−1)kJk (z), and the definitions

ek =
{

1, k even
0, k odd and ok =

{
0, k even
1, k odd. (G8)

With this, we evaluate

L0Jk

(
−2A

ω

)
=

⎛
⎜⎝

−4γ ak −4γ ck −4γ ck 4γ bk

(−i − 2γ )ck (−i − 2γ )ak (−i − 2γ )bk (i + 2γ )ck

(−i + 2γ )ck (i − 2γ )bk (i − 2γ )ak (i − 2γ )ck

4γ ak 4γ ck −4γ ck 4γ bk

⎞
⎟⎠(z) (G9)
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and

L̃n =
∑
k∈Z

Jk−n

(
−2A

ω

)
L0Jk

(
−2A

ω

)

= −γ
∑
k∈Z

Jk−n(z)Jk (z)

⎛
⎜⎝

en pk onqk −onqk −en pk

on pk enqk −enqk −on pk

−on pk −enqk enqk on pk

−en pk −onqk onqk en pk

⎞
⎟⎠ − γ δn0

⎛
⎜⎝

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞
⎟⎠

+ 1

2

⎛
⎜⎝

−4γ enJ0 −ionJ0 −ionJ0 −4γ enJ0

on(−4γ J0 − iJn) −ien(J0 + Jn) −ien(J0 − Jn) on(−4γ J0 + iJn)
on(4γ J0 + Jn) −ien(−J0 + Jn) −ien(−J0 − Jn) on(4γ J0 + iJn)

4γ enJ0 ionJ0 ionJ0 4γ enJ0

⎞
⎟⎠(z), (G10)

with pk = 2ek + ok , as well as qk = 2ok + ek . Therefore, we finally find the representation of the zeroth-order expansion

K(1) = L̃0 =

⎛
⎜⎝

−γ [2J0 + 2 f + g] 0 0 −γ [2J0 − 2 f − g]
0 −iJ0 − γ [1 + f + 2g] −γ [1 − f − 2g] 0
0 −γ [1 − f − 2g] iJ0 − γ [1 + f + 2g] 0

γ [2J0 + 2 f + g] 0 0 γ [2J0 − 2 f − g]

⎞
⎟⎠(z), (G11)

where we define f (z) = ∑
k∈Z ekJk (z)2 as well as g(z) = ∑

k∈Z okJk (z)2. Note that it holds

f (z) + g(z) =
∑
k∈Z

Jk (z)2 = 1, (G12)

which allows to express K(1) in terms of J0(z) and g(z) only:

K(1) =

⎛
⎜⎝

−γ [2J0 + 2 − g] 0 0 −γ [2J0 − 2 + g]
0 −iJ0 − γ [2 + g] γ g 0
0 γ g iJ0 − γ [2 + g] 0

γ [2J0 + 2 − g] 0 0 γ [2J0 − 2 + g]

⎞
⎟⎠(z). (G13)

By comparing the matrix representation K(1) to the most general form of the two-level system Lindbladian, Eq. (E4), we find the
Hamiltonian and the dissipator matrix

K(0) = L(H, d ), with H = J0(z)

2
σz and d = γ

⎛
⎝ 1 iJ0(z) 0

−iJ0(z) 1 − g(z) 0
0 0 g(z)

⎞
⎠. (G14)

Note that this is exactly the same result that we obtained in Eq. (107). To see this, we use the Bessel function identity Jn(y + z) =∑
k∈Z Jk (y)Jn−k (z) to rewrite

J0(2z) =
∑
k∈Z

Jk (z)J−k (z) =
∑
k∈Z

(−1)kJk (z)2 =
∑
k∈Z

ekJk (z)2 −
∑
k∈Z

okJk (z)2 = f (z) − g(z). (G15)

Together with f (z) + g(z) = 1 we find that

g(z) = 1
2 [1 − J0(2z)]. (G16)
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