
sensors

Article

Big Data Workflows: Locality-Aware Orchestration Using
Software Containers

Andrei-Alin Corodescu 1, Nikolay Nikolov 2, Akif Quddus Khan 3, Ahmet Soylu 4,*, Mihhail Matskin 5,
Amir H. Payberah 5 and Dumitru Roman 2,*

����������
�������

Citation: Corodescu, A.-A.; Nikolov,

N.; Khan, A.Q.; Soylu, A.; Matskin,

M.; Payberah, A.H.; Roman, D. Big

Data Workflows: Locality-Aware

Orchestration Using Software

Containers. Sensors 2021, 21, 8212.

https://doi.org/10.3390/s21248212

Academic Editor: Haipeng Dai

Received: 7 November 2021

Accepted: 7 December 2021

Published: 8 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Informatics, University of Oslo, 0373 Oslo, Norway; alin.corodescu@gmail.com
2 SINTEF AS, Software and Service Innovation, 0373 Oslo, Norway; nikolay.nikolov@sintef.no
3 Department of Computer Science, Norwegian University of Science and Technology, 2815 Gjøvik, Norway;

akif.q.khan@ntnu.no
4 Department of Computer Science, OsloMet—Oslo Metropolitan University, 0166 Oslo, Norway
5 Department of Computer Science, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden;

misha@kth.se (M.M.); payberah@kth.se (A.H.P.)
* Correspondence: ahmet.soylu@oslomet.no (A.S.); dumitru.roman@sintef.no (D.R.)

Abstract: The emergence of the edge computing paradigm has shifted data processing from cen-
tralised infrastructures to heterogeneous and geographically distributed infrastructures. Therefore,
data processing solutions must consider data locality to reduce the performance penalties from data
transfers among remote data centres. Existing big data processing solutions provide limited support
for handling data locality and are inefficient in processing small and frequent events specific to the
edge environments. This article proposes a novel architecture and a proof-of-concept implemen-
tation for software container-centric big data workflow orchestration that puts data locality at the
forefront. The proposed solution considers the available data locality information, leverages long-
lived containers to execute workflow steps, and handles the interaction with different data sources
through containers. We compare the proposed solution with Argo workflows and demonstrate a
significant performance improvement in the execution speed for processing the same data units.
Finally, we carry out experiments with the proposed solution under different configurations and
analyze individual aspects affecting the performance of the overall solution.

Keywords: big data workflows; orchestration; data locality; software containers

1. Introduction

In recent years, harnessing large data sets from various sources has become a pil-
lar of rapid innovation for many domains such as marketing, finance, agriculture, and
healthcare [1]. The big data domain has evolved rapidly, and new challenges have arisen at
different levels of the technological stack, from the complex business logic to the infrastruc-
ture required to process the ever-increasing volume, velocity, and variety of data. Working
with big data is a complex process involving collaboration among a wide range of speciali-
sations (such as distributed systems, data science, and business domain expertise) [2–4].
Handling such complexity naturally comes with an increased cost, and the value extracted
from the data must, thereby, offset this cost.

Big data workflows formalise and automate the processes that data go through to
produce value by providing necessary abstractions for defining workflows and efficiently
leveraging underlying hardware resources. In the context of big data workflows, we con-
sider computing resources, such as processors (CPUs), memory, and storage, as relevant
hardware resources (from now on referred to as just resources) among others, e.g., [5,6]. Big
data workflows usually integrate various data sets and leverage different programming
languages or technologies to process data. Therefore, a desirable feature of a big data
workflow system is to orchestrate workflows in a technology-agnostic manner, both in

Sensors 2021, 21, 8212. https://doi.org/10.3390/s21248212 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2748-8929
https://doi.org/10.3390/s21248212
https://doi.org/10.3390/s21248212
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21248212
https://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/21/24/8212?type=check_update&version=2

Sensors 2021, 21, 8212 2 of 27

terms of data integration and processing logic. Accordingly, approaches based on software
containers have emerged to create and execute workflows using processing steps in line
with these considerations. While it is beneficial to leverage software containers, packaging
and isolating applications for deployment, to better separate concerns in a big data work-
flow system, higher-level abstractions come with a performance penalty; thus, it becomes
more relevant to ensure the system performs as efficiently as possible.

Traditionally, cloud service providers have been the standard solution for working
with big data. However, cloud services are inherently centralised in a small number of
locations (i.e., data centres) worldwide. Moreover, with the advent of the Internet of
Things (IoT), significant amounts of data are generated at edge networks [7]. With the
data processing happening on geographically distributed systems across edge and cloud
resources, reducing the delay and cost of transferring data over the network becomes crucial.
Transferring massive amounts of data to the cloud is expensive and may incur latency,
making low-latency scenarios unfeasible. To address these issues, the edge computing
paradigm [8] aims to complement cloud computing by leveraging hardware resources
situated closer to the edge of the network to offload processing, reduce transfer cost, and
satisfy the latency requirements. However, existing solutions are mainly designed for
cloud-only workloads, making them unsuitable or inefficient for workloads spanning both
the cloud and edge. In this context, in order to alleviate the aforementioned problems, this
article addresses the following research questions:

• How can data locality be implicitly integrated with container-centric big data work-
flow orchestration?

• How can software containers be used to facilitate the interaction with different data
management systems as part of big data workflows?

• How can containers encapsulating processing logic be used to improve the perfor-
mance of big data workflows?

To this end, we propose a novel architecture for container-centric big data workflow
orchestration systems that makes containerised big data workflow systems more efficient
on cloud and edge resources [9]. Our proposed approach considers (i) data locality, (ii)
leverages long-lived containers (i.e., containers whose life-cycle is not tied to a particular
data unit) to execute workflow steps, and (iii) handles the interaction with different data
sources through containers. We compare our proposed approach with a similar existing
solution, Argo workflows. The comparison shows that by considering data locality, our pro-
posed approach significantly improves the performance in terms of data processing speed
(up to five times better). We also present a set of experiments with different configurations
analysing individual aspects affecting the performance of the overall solution.

The rest of the article is structured as follows. Section 2 gives the relevant context.
Section 3 provides an analysis of the problem. Section 4 discusses related work. Section 5
presents the proposed solution and Section 6 describes its implementation. Finally, Section 7
provides experimental evaluation of the proposed solution, and Section 8 concludes the
article and outlines the future work.

2. Background

Big data has quickly gained momentum as it allows the exploitation of data to uncover
hidden trends that give valuable insights that drive business decisions and support research
(e.g., [10,11]). Big data solutions have been successfully leveraged in a large number of
industries. The general applicability of big data patterns stems from the fact that many
real-world phenomena can be better understood and predicted given sufficient data. The
characteristics, e.g., volume, velocity, and variety of big data, translate into challenges at all
levels of the technology stack for big data processing:

1. At the infrastructure level , significant raw network, storage, memory, and processing
resources are required to handle big data. Often these resources are provided by
multiple machines, organised in a distributed system.

Sensors 2021, 21, 8212 3 of 27

2. At the platform level, software frameworks that can effectively leverage the available
resources and handle the ever-changing needs of big data operations need to be
continuously developed.

3. At the application level, algorithms running on the previously mentioned platforms
need to be devised and combined to extract value from the data. Applications can
also facilitate the interaction with a big data solution (e.g., visualisation tools used by
business executives to analyse the results produced by the solution).

Devising algorithms and tools that help process and extract value from the data
further amplify the complexity and cost of building comprehensive big data solutions.
Consequently, another V, the value the solution generates, which needs to offset the high
cost, is often included as a central characteristic of big data.

2.1. Big Data Workflows

Raw data must be taken through a series of operations (e.g., cleaning, aggregation,
and transformation) before producing valuable insights. While it is possible for each of
these steps to be manually triggered and independently controlled in an ad-hoc manner,
workflow orchestration tools facilitate the automation of the execution and sequencing of
these operations, allowing reliable and reproducible execution of complex processes. Key
concepts used in workflow orchestration [12] (see Figure 1) include:

• Step: Steps are the atomic units upon which workflows are defined. A step encapsu-
lates business logic units that receive data as input from a data source, processes them,
and then pushes the outputs to a data sink.

• Workflow: Individual steps can be linked together to form a workflow. A workflow
is a linear sequence of steps with the semantics of executing the steps. Big data
workflows are specified in more complex configurations. A widely used model stems
from graph theory, which describes a workflow as a directed acyclic graph (DAG).

• Data communication medium: The distributed nature of big data processing war-
rants the existence of a data communication medium through which information can
be exchanged between the components of the system. Thereby, both the inputs and
the outputs of a step connect to such channels.

• Control flow communication medium: To be able to execute the workflows, control
messages (e.g., triggering a step, notifying when a step has finished) have to be ex-
changed within the system through a control flow communication medium. Examples
of such communication mediums include point-to-point network communication
between components and message queues.

Figure 1. Workflow as sequence of steps with communication mediums.

Sensors 2021, 21, 8212 4 of 27

Creating big data workflows is a complex process involving knowledge from multiple
domains (hardware provisioning, cluster management, data handling, different processing
steps, definition of workflows according to business needs, and orchestration). Delegating
the different responsibilities to independent components allows easier development of
both the orchestration frameworks and the workflows running on top of them, reducing
the costs and making big data workflows more accessible.

2.2. Cloud and Edge Computing

Cloud computing paves the way for accessible, affordable, and efficient big data
processing through scalable, elastic, and “pay-per-use” models. Cloud deployments are
best suited for cases where the producer of data is mainly centralised. However, with
the advancement of ubiquitous computing, tremendous amounts of data are produced
by devices (e.g., sensors, personal devices, and vehicles) at the edge of the network. With
the number of such devices increasing rapidly, the traditional model for using centralised
cloud resources becomes infeasible. Edge computing [8] complements cloud computing by
performing computations on resources physically located closer to the edge of the networks.
In this respect, Computing Continuum [13] refers to all available resources for a system,
from the edge of the network to the cloud.

Although the edge computing paradigm addresses some fundamental limitations
of cloud computing, it also faces a different set of challenges [14]. Among others, these
notably include:

• Hardware resources on edge devices exhibit different characteristics and capabilities
compared to cloud resources (e.g., processor architectures, processor clock speeds,
and amounts of memory). Therefore, software running on such devices has to be
designed to consider these resource constraints. At the same time, edge deployments
offer limited or no elasticity.

• Edge resources are geographically distributed, and the latencies can differ significantly
depending on the distance between the communicating parties.

• Geographical distribution also raises logistical challenges, as these devices can be
spread over wide areas and sometimes even in hard-to-reach locations, making provi-
sioning and maintenance a significant challenge.

• The nature of edge resources also makes them prone to failures at the device level
(hardware failures) or supporting infrastructure (network failures). Software solutions
targeting edge deployments need to tolerate failures gracefully and, if possible, operate
offline for extended periods.

• Security and privacy are two complex domains where edge computing plays a signif-
icant role. On the one hand, processing data closer to the source can make it easier
to adhere to a certain jurisdiction and ensure better security and privacy. On the
other hand, large-scale edge deployments are inherently more complicated to secure,
mainly due to their geographical spread, and the risk of having devices compromised
through physical interference is much higher than in a cloud-only setup.

2.3. Software Containers and Big Data

Software containers are standardised, isolated units of software that package every-
thing required to run an application (https://www.docker.com/resources/what-container,
accessed on 8 November 2021). They provide a lightweight and faster virtualisation alternative
to hypervisor virtualisation [15,16]. Software containers exhibit a series of characteristics that
make them applicable to a wide range of domains:

• Containers ensure the packaged software runs in complete isolation from other appli-
cations on the same operating system. Packaging all dependencies in a container can
avoid challenging issues such as conflicting dependencies and complex prerequisite
configurations.

• The low overhead introduced by containers allows many containers to be run effi-
ciently on a single node, making them a good fit for resource-constrained environments.

https://www.docker.com/resources/what-container

Sensors 2021, 21, 8212 5 of 27

• Software that can run in a container is not limited to a particular technology or pro-
gramming language, allowing solutions leveraging software containers to orchestrate
cooperation of components developed using different technologies easily.

• Containers are a widely adopted standard for software packaging, which translates
into two major benefits. First, containerised software is easier to share and reuse
across different environments. Second, containers can be used to move the execution
of logic onto a distributed system’s nodes (“function shipping”).

Container orchestration solutions, such as Kubernetes (https://kubernetes.io/, ac-
cessed on 8 November 2021), simplify the deployment and management of highly dis-
tributed systems by creating abstractions for the underlying infrastructure and facilitating
the interaction between the components of an application. Software containers are exten-
sively leveraged in cloud environments [17] and, in some cases, containerised applications
are referred to as cloud-native applications [18]. Several works also identify software
containers as a feasible technology for resource-constrained edge environments [19–21].
In the context of big data, containers have been used to simplify the deployment and
management of entire big data solutions or individual components. Leveraging containers
in big data solutions can also lead to performance improvements when compared to the
hypervisor-based virtualisation alternatives [22].

There is a distinction between the two strategies of using containers in big data so-
lutions at a high level. First, software containers are leveraged to deploy and manage
the components of a big data processing platform. Although this approach simplifies the
deployment process, it does not influence the run-time aspects of the platform. Second,
software containers are used as an integral part of the architecture and as a mechanism
through which custom behaviour can be injected into the platform (e.g., data processing
logic). Software containers have gained much traction in the field of microservices as they
greatly simplify the management of highly distributed systems [23,24]. Such an archi-
tecture can provide some benefits, including modularity, loose coupling, and technology
independence, which align with the needs of big data workflow systems.

3. Problem Analysis

The high velocity of the data, combined with the large volume, mandates the process-
ing to happen efficiently and cost-effectively to produce value that outweighs the costs.
Therefore, execution time and bandwidth usage are two indicators that are often measured
in big data systems and determine the feasibility of a given system. In the following, we in-
troduce the essential concepts and techniques to reduce the execution time and bandwidth
usage in big data workflows.

3.1. Data Locality

Data locality [25] refers to moving computation closer to the data, which is typically
cheaper and faster than moving data closer to the computation. The nature of working with
big data mandates the resources (e.g., network, memory, CPU, disk) of multiple machines
to be pooled together in a distributed system. A desirable characteristic of distributed
systems is to hide the complexities of the distributed resources behind a single interface,
such that the entire system appears as a single entity (e.g., cloud storage systems such
as Amazon S3). However, this makes it more challenging to leverage individual hosts
comprising the distributed systems. For example, a fundamental invariant of current
computer architectures is that a CPU can only work with data present in the memory of
the same machine.

Consequently, the movement of data across machines becomes an integral part of
any big data system. With traditional communication protocols that rely on the operating
system network stack (e.g., TCP/IP-based protocols), latency becomes critical for many use
cases. To this end, more efficient protocols have emerged. For example, RDMA (Remote
Direct Memory Access) [26] is a protocol that allows the transfer of data stored in the
memory of one machine to another without involving the CPU or the operating system

https://kubernetes.io/

Sensors 2021, 21, 8212 6 of 27

kernel through specialised network cards. As the volume of data is significant in the context
of big data, the network traffic and the associated latency of transferring data between
machines can influence the overall cost and performance. Even for solutions targeted
at centralised deployment (such as cloud deployments), data locality has proven to be
effective in reducing the cost and execution times [27,28]. For example, Apache Spark [29]
leverages the information provided by the Hadoop File System (HDFS) and knowledge
about outputs of previous executions of jobs to minimise the data transfer.

One of the core motivations of the edge computing paradigm is reducing the amount
of data transferred from the edge of the network to the cloud and supporting lower
latency scenarios, making data locality a primary concern for any edge computing solution.
However, data locality is only one aspect that can be considered when scheduling data
processing tasks. Other aspects such as load distribution and heterogeneity of the available
resources on different nodes need to be balanced together with data locality to perform the
tasks effectively [30]. Studies exist that propose advanced scheduling strategies to balance
the reduction in data transfer with load distribution (e.g., [31,32]).

3.2. Inter-Component Communication Optimisation

Separation of concerns and delegating responsibilities to different components have
numerous benefits; however, the communication between components may introduce other
performance and efficiency overhead due to message serialisation and transfer through
potentially slow mediums. For example, a simple method invocation in a monolithic
solution can be turned into a REST API call for a solution where components are separated.
The choice of communication protocols directly impacts the performance and bandwidth
utilisation, as different protocols provide different guarantees related to data transmission
(e.g., TCP ensures an ordered and lossless transmission but requires multiple round trips
to establish connections and exchange data, while UDP is faster but less reliable).

Different protocols introduce additional overhead by injecting more data in transmis-
sion packets (e.g., HTTP headers). Techniques, such as compression and binary serialisation,
help reduce the size of the payload. Furthermore, there exist studies exploring the use of
RDMA-backed memory channels to support fast and efficient inter-container communica-
tion (e.g., [33]). Apart from the bandwidth utilisation and speed of a particular protocol,
the contract defining the communication between two entities (message format, content,
and semantics) plays a significant role in facilitating the integration between components.
Defining and enforcing a communication contract between components allows decoupling
them from one another.

3.3. Lifecycle Management of Containers

Software containers are a lightweight virtualisation alternative to traditional hypervisor-
based virtualisation; however, there is still a cost associated with starting up and shutting
down containers on demand. Life-cycle management has a high impact on workflow
execution time, and reusing containers to process multiple units of data (i.e., long-lived
containers) is a way to improve it [34]. For many use cases, the execution time of the
work delegated to a particular container is high, thus making the overhead of instantiating
containers negligible.

In edge computing environments, the available resources are limited, and less data
can be processed on a single host at a given point in time. Furthermore, with data being
constantly processed in small batches (or even streamed), there is a need for this processing
to happen as quickly as possible to achieve the desired throughput. In such cases, the
overhead of setting up and tearing down containers can quickly add up and become a
significant bottleneck for the solution’s performance.

3.4. Integration with Data Management Solutions

One of the pillars of big data processing is to reason over and process heterogeneous
data sets together in a unified manner. These data sets can be stored using different

Sensors 2021, 21, 8212 7 of 27

technologies, and the interaction with these technology requires complex logic in itself.
Thus, big data workflow systems should facilitate easy integration with different data
management solutions, such as databases, file systems, cloud storage, and Web services.

4. Related Work

In this section, we first present and discuss the related work in terms of existing
published literature and then in terms of existing tools.

Regarding the published literature, Valerie et al. [35] discuss the effect of in-memory
processing and data locality on neuroimaging data sets and show the importance and
benefits of data locality. However, they do not propose any new system or orchestrator
tool and only evaluate the performance of existing systems. Ching et al. [36] propose
new techniques for implementing locality-aware virtual machines. They mainly focus
on improving the performance of MapReduce programs in heterogeneous and hybrid
cloud environments and propose a technique to enhance data locality using a virtual
machine mapping technique. Thereby, the locality-aware technique balances workloads
and reduces communication overheads at run-time, but it is only restricted to MapReduce
applications. Therefore, it cannot be employed with the more general-purpose software
containers. August and Christoph [37] present a method of extending smart containers
for data locality-aware skeleton programming. They extend the existing SkePU skeleton
programming framework to enhance the performance of sequences of transformations on
smart containers. However, the framework does not provide support for orchestrating
workflows or container lifecycle management.

Bu et al. [38] describe a task scheduling technique for MapReduce applications
that minimizes interference while keeping task-data localization. The study, however,
disregards network effects, assuming that data flow between co-hosted virtual machines is
equally efficient as local data access. Choi et al. [39] present a mechanism for locality-aware
resource management in High-Performance Computing (HPC) cloud environments, called
Data-Locality Aware Workflow Scheduling (D-LAWS). Their solution condenses virtual
machines and includes task parallelism through data flow into the task execution planning
of a data-intensive scientific process. However, they do not take into account the role of
software containers in scientific workflows.

Ahlehagh et al. [40] present a video-aware scheduling strategy that includes storing
video data in a macro-base station to boost video throughput and lessens the likelihood
of movies freezing. A heuristic approach to the storage allotment issue in macro-base
stations is presented by Gu et al. [41]. Small base stations may deliver better data rates
than macro-base stations since they are located closer to users. Finally, Vengadeswaran
and Balasundaram [42] propose an approach that also considers the data locality factor,
but it is limited to Hadoop. The default data placement strategy of Hadoop creates and
allocates blocks randomly across the cluster. To overcome this issue, they propose an
optimal data placement strategy to improve the performance of big data applications.
These methods focus on optimising data placement strategies rather than the real-time
migration of computing steps closer to the data.

In the following, we review existing orchestration tools selected according to the
following criteria: (i) ability to incorporate data locality in the orchestration process,
(ii) support for container lifecycle management, and (iii) the ease of integration with data
management solutions.

• Snakemake [43] is a workflow orchestration tool that supports wrapping individual
steps in containers, and different data solutions can be integrated into workflows by
extending the Snakemake codebase. However, there is no support for controlling
where the computation happens (data locality).

• Kubeflow (https://www.kubeflow.org, accessed on 8 November 2021) is a workflow
orchestration tool for machine learning-related workflows. The only storage supported
is Minio (a cloud-native, open-source storage solution implementing Amazon S3 cloud
storage protocol). It offers no support for data locality.

https://www.kubeflow.org

Sensors 2021, 21, 8212 8 of 27

• Makeflow [44] is a workflow orchestration tool that can orchestrate workflows on a
wide variety of infrastructures. However, it does not have any built-in support for
different data management systems or data locality features.

• Pachyderm (https://github.com/pachyderm/pachyderm, accessed on 8 November
2021) is another machine learning workflow orchestration solution, but the only
storage system it supports is the Pachyderm file system, a distributed file system built
to provide supporting features to Pachyderm.

• Pegasus (https://pegasus.isi.edu, accessed on 8 November 2021) is a workflow or-
chestration solution that supports containerised steps and leverages the location of the
processed files to schedule the steps on the same host. However, its data management
is limited to using only file systems.

• Airflow (https://airflow.apache.org, accessed on 8 November 2021) is one of the most
popular data workflow orchestrators that supports the execution of the workflows
on a Kubernetes cluster. It also controls where instances of steps are created, but
it should be set manually when the workflow is defined, making it inefficient in
dynamically-changing environments. It is possible to integrate different data manage-
ment solutions by extending the Airflow code with providers, limiting it to Python
implementations only.

• Argo Workflows (https://argoproj.github.io/projects/argo, accessed on 8 November
2021) is a workflow orchestration solution natively built on Kubernetes and supports
data locality through a set of mechanisms. Similar to the Airflow solution, differ-
ent data management solutions can be integrated but require ad-hoc changes and
integration with the Argo code libraries.

All of the considered solutions leverage short-lived containers as part of the
orchestration—a container is created to execute work and is destroyed as soon as the
processing completes because these solutions target primarily batch processing scenarios.
In terms of data locality specification, Argo offers the most expressive features as it lever-
ages the complete functional offering of Kubernetes. However, by default, the limitation
of having to specify data locality at workflow definition time (introduced with Airflow
analysis) applies to Argo. Argo offers a mechanism through which respective outputs of
processing steps can be used to modify the parameters (for data locality in this case) of
subsequent steps in the workflow, allowing for dynamic data locality configurations at
run-time. However, such an approach would require additional logic to be injected into the
processing step. Although limited in terms of data locality features, Pegasus does handle
data locality implicitly, without modifying the workflow definition. In contrast, for both
Argo and Airflow, while offering more expressive data locality features, the workflow
definition has to capture these details, thus breaking the separation of concerns principle.

5. Proposed Solution

We propose an approach based on a workflow system architecture covering the run-
time considerations of big data workflows that take into account the separation of concerns
principle. The proposed architecture has three main layers:

1. Control layer: It is responsible for the execution of workflows concerning their defi-
nitions (e.g., correct step sequencing and data being processed). The main component
of the control layer is the orchestrator.

2. Data layer: It collectively refers to all the components involved in data handling (i.e.,
storage and retrieval of data, and moving data between hosts to make it available to
compute steps that require it). The layer includes the data store component, referring
to the technology used to store data (e.g., distributed file system and cloud storage)
and the data adapter component, serving as an interface between the data store and
the other components in the workflow.

3. Compute layer: It refers to the processing logic contained in the steps used in the
workflow. The compute layer is composed of multiple compute steps, and, in a

https://github.com/pachyderm/pachyderm
https://pegasus.isi.edu
https://airflow.apache.org
https://argoproj.github.io/projects/argo

Sensors 2021, 21, 8212 9 of 27

sequence, they form a workflow. Additionally, the approach allows that multiple
instances of the same compute step type run in parallel.

The components of the different layers can be spread across multiple hosts, and the
orchestrator serves as the coordinator of the centralised architecture. Using a centralised
architecture is motivated by leveraging data locality when the execution of big data work-
flows requires knowledge about the entire system (e.g., component physical placement)
and the data that flows through it (the physical location where data are stored). The
centralised architecture greatly simplifies the acquisition, management, and usage of this
information. Data are organised into discrete, indivisible, and independent units when
passing through the system. These represent the units of work at both the orchestration
level and individual step level. Each unit is processed independently, and multiple units
can be processed in parallel across different steps. Handling the execution of the workflow
at the data unit level can improve the performance significantly compared to the models
that execute steps synchronously (all outputs of the previous step have to be available to
start the next one) [12,45].

Whenever a new unit of data is available in the system, the orchestrator is notified,
and it passes on the notification to a “compute step” for processing. The compute step may
produce one or more outputs from the input, each being a new data unit that continues to
flow through the system independently of the others. Organising the work in independent
units enables tasks to be distributed across all the available resources, allowing the proposed
solution to scale horizontally (increase the processing power by adding more hosts in the
distributed system). Figure 2a depicts a high-level overview of the three layers and their
interactions. The following sections present each layer in detail.

Figure 2. (a) Detailed view of a compute step, and (b) data locality as a multi-objective optimisation problem.

Sensors 2021, 21, 8212 10 of 27

5.1. Control Layer

Upon receiving a notification indicating that new data are available to be processed,
the orchestrator needs to determine what type of compute step needs to invoke for the
current data unit, according to the workflow specification. For example, in a workflow
consisting of three sequential steps, the data units outputted by the second step need to
be passed to an instance of the third step. Throughout the system, there can be multiple
instances of the same compute step type. The orchestrator is responsible for choosing one
of the instances to process the data.

Instead of relying on traditional load balancing algorithms (such as round-robin,
random, and least connections), the orchestrator needs to employ a custom routing decision
algorithm that takes the number of variables as input. The orchestrator decides about
the routing based on available information, such as data locality, current load, varying
resource availability, cost, and existing policies (see Figure 2b). This list is not exhaustive
and presents only a subset of potential aspects considered when making a routing decision.
Optimising cost and performance while ensuring all the explicit requirements of the
workflow are met makes the routing a complex, multivariate optimisation problem, with
no clear best decision where trade-off in one or more areas is necessary.

To provide data locality, the orchestrator needs to know the physical location of both
the data to be processed and the possible target step instances and also a model to calculate
the distance between two locations. Moreover, the orchestrator needs to continue operating
when presented with unexpected, partial, or missing locality data, as some data adapters
may not provide granular data locality information. The inputs to the routing decision need
to be acquired and made available by the module responsible for the decision. Depending
on the volume and velocity of the units of data flowing through the orchestrator, the
calculation of the routing decision needs to be efficient to avoid spending a significant
amount of time routing each unit. This means that some of the inputs may have to be
pre-calculated or estimated asynchronously, as acquiring information about all the possible
targets synchronously may incur a significant performance cost.

5.2. Data Layer

The ability to share data between the nodes hosting the compute step instances is a
fundamental requirement of the proposed solution. This allows the steps to pass data from
one another as part of the workflow execution. All the interactions with the data storage
happen through the data adapter in the proposed architecture, serving as an intermediary
between the data storage technology and the orchestration components. The data adapter
model hides the complexities and particularities of interacting with the data storage by
separating the logic into a dedicated component that exposes a simplified interface for
external communications. Separating data handling concerns from the compute step creates
a modular architecture that facilitates and encourages the reusability of both components
in multiple workflows. For example, a compute step processing images can be used to
process images from multiple data sources, and the same data solution can be reused with
different compute steps.

In addition to reusability, separating the compute steps from the data adapter allows
for more flexibility in terms of technologies chosen to implement either of them. For
example, a compute step can be implemented in Python while the data adapter in Java and
the two components can still communicate. Apart from interacting with the underlying
storage, the data adapter is also responsible for providing the other components in the
system with information about the physical localisation of the data to support locality-
aware work scheduling. The data locality model employed to communicate the localisation
information needs to have the following characteristics:

1. It needs to apply to both the data units flowing through the system and the compute
step instances, as the information it captures is used to route data units to be processed
on compute step instances in proximity.

Sensors 2021, 21, 8212 11 of 27

2. The localisation information needs to apply to resources throughout the Computing
Continuum, and a distance measure needs to be determinable for any two localisations.

3. The data locality model needs to be granular enough to capture host-level information.
4. Different data storage solutions have different capabilities of exposing information

about where data are stored; thus, the data locality model should support reserved
values to indicate that parts of the information are missing.

5.3. Compute Layer

The compute steps follow a simple execution model since both the orchestration and
data handling logic are handled by external components:

1. A compute step is provided with a unit of data as input (provided by the data adapter).
2. The processing logic is applied in the compute step.
3. The processing logic can produce one or more outputs, picked up by a data adapter,

resulting in notifications for the orchestrator.

This architecture gives complete freedom to execute any logic that can be run in
containers as the implementation of the compute step has no restrictions over what the
processing logic can do with the input data. Neither the input nor the output data are typed.

5.4. Extension Model

A widely used model for building upon and extending a framework is integrating a
software development kit (a set of language-specific libraries) that handles the interaction
between the features provided by the framework and the code extending or building
upon it (user logic). The communication between the two components then happens via
language-specific constructs, such as method invocations, and is backed by the memory of
the hosting process. With container technologies easing the management and deployment
of microservices, the framework functionality can be completely separated from the user
logic by being placed in a dedicated container. This container can communicate with the
user logic (presumably in another container) through an external communication medium.

This approach provides better isolation of the two components and allows for integra-
tion between different programming languages or frameworks, as the communication is
agnostic to the used programming language. Even though the communication medium
(e.g., network calls, files, sockets) can be accessed by both components, a crucial aspect is
to ensure the communication protocol (e.g., HTTP, gRPC) is supported by both ends. The
current architecture opts for the container-based extension model as it aligns better with
the architecture requirements. The container-based extension model becomes apparent
when diving deeper into the architecture of a compute step (Figure 3). A compute step
is logically composed of a framework agent and processing logic, running in a separate
container. The framework agent container is responsible for coordinating the execution
in the context of a single step (retrieving the input data, triggering the processing logic,
handling the output data). It effectively hides the complexities related to the orchestration
and acts as the intermediary between the data and compute components. Thus it allows
them to have simplified interfaces they need to adhere to dedicated only to their function
(handling data or processing it), as follows:

1. The framework agent needs to accept requests from the orchestrator to process a unit
of data.

2. Based on the instructions received from the orchestrator, it reaches out to the data
adapter to retrieve the input data.

3. Once the input data is accessible to the container hosting the processing logic, the
agent must send a request to trigger the computation.

4. The output data are passed to the data adapter and the orchestrator is notified that
new data have become available.

Sensors 2021, 21, 8212 12 of 27

Figure 3. A detailed view of a compute step.

By leveraging the container-based extension model, the microservice-inspired archi-
tecture combines the code contributed by the user (i.e., data adapter, business logic, and
data store) and the framework provided components (i.e., orchestrator and framework
agent) to define and execute workflows. By injecting two components implementing simple
interfaces (one for data handling and one for processing logic), the framework can orches-
trate the execution workflows composed of steps implemented in different programming
languages or technologies and leverage different data storage solutions. The data handling
and processing logic are completely separated, allowing them to be created and to evolve
independently, thus helping with the separation of concerns between the stakeholders
involved in creating workflows. The proposed architecture allows the framework users to
inject data and processing logic into a workflow definition, combining the two elements.

6. Implementation

We implemented our proposed solution as a proof of concept using Docker and
Kubernetes [15]. The code of our proposed solution, along with the associated Dockerfiles,
and Kubernetes YAML files to deploy the model to Kubernetes clusters, are publicly
available under the MIT license (https://github.com/alin-corodescu/MSc-workflows,
accessed on 8 November 2021).

Docker is used for building the container images for both the framework components
(orchestrator and framework agent) and the examples of pluggable components (compute
steps and data storage). The container images contain all the information needed by
a container run-time to run the components. At run-time, the container orchestration
solution uses the images to instantiate the different components as needed. Kubernetes
was used to manage and orchestrate the deployment and communication between the
components. Kubernetes is the industry standard for container orchestration and exposes
abstractions over the hardware resources it manages. Additionally, it is tailored to work
well in resource-constrained environments, such as edge environments.

The following is a brief introduction to the main Kubernetes abstractions and features
referenced in the remainder article:

1. Nodes: These are the abstraction Kubernetes uses for the hosts making up a cluster.
These can either be physical or virtual machines.

2. Pods: These are the smallest units that Kubernetes manages and deploys. A pod is a
group of one or more containers, logically belonging together to perform a particular
task.

3. Services: These are a type of Kubernetes resource that helps connecting pods or
expose functionalities outside the cluster. A selection criterion is used to identify the
pods hosting the application the service exposes. The communication with the service
is done through a designated IP address and port, with the request routing and load
balancing between the pods being handled by Kubernetes.

https://github.com/alin-corodescu/MSc-workflows

Sensors 2021, 21, 8212 13 of 27

4. DaemonSets: These enable Kubernetes users to deploy an instance of a pod to every
node in the cluster.

5. Labels: All Kubernetes resources can be associated with labels to help identify and dis-
tinguish resources serving different purposes (e.g., pods hosting different applications).

6. Volumes: These are abstractions that allow the storage used by a container to be
managed independently of the container. Volumes are made accessible by mounting
them in a container.

6.1. Fundamentals

The current implementation opts for a point-to-point communication model (cf. con-
trol flow communication medium). It allows for more straightforward and explicit commu-
nication between two parties, making it more suitable for the deliberate routing decisions
that consider data locality. The gRPC framework is chosen to support the communication
between different components. The containers used to perform the steps, inspired from
the microservice-oriented architecture, are long-lived, and each can process multiple units
of data. This reduces the overhead in performance incurred by creating and deleting
containers constantly throughout the execution of a workflow. A clear distinction between
different aspects of the communication between components is made:

1. The components communicating with each other adhere to a particular contract or
interface.

2. The actual execution is handled by the logic implementing the contract/interface.
3. The communicating parties have to employ compatible serialisation/deserialisation

protocols to exchange messages.
4. The transport aspect encompasses both fundamental mediums (memory, disk, net-

work) and abstractions on top of those (such as the HTTP protocol).

By leveraging the long-lived nature of the containers, the proposed implementation
also attempts to reuse established connections to remote machines (connection pooling).
The TCP protocol requires three network round-trips to perform the three-way handshake.
If the protocol on top of TCP uses SSL to secure the connections (e.g., HTTPS), more network
round-trips are required to negotiate and establish a secure connection. If the connection
pooling is not enabled, the time to establish connections increases with the number of
connections. For example, if many small data units flow through the system, the time
for establishing connections can represent a significant percentage of the total execution
time of the workflow. With geographically distributed resources, the performance cost of
network round-trips becomes more significant with the increase in the physical distance
between hosts, thus making connection pooling even more critical.

6.2. Orchestrator

A single instance of the orchestrator (Figure 4) is deployed, and it is for all the com-
ponents in the cluster through a Kubernetes service. The single-replica strategy is needed
because the central orchestrator is a stateful service that keeps the state in memory. Setting
up a multi-replica orchestrator is beneficial for performance, scalability, and resilience.
However, it also requires external solutions to store, share, and synchronise the state among
the replicas. A workflow consists of a sequence of processing steps. Each step specifies a
name that uniquely identifies the processing logic of the step. The orchestrator uses the
names of steps to find pods hosting the specified processing logic through Kubernetes
labels. In addition to the name, data source and data sink identifiers are also part of step
specification. The data source and sink identify the data storage solutions where the input
and output data should be retrieved and stored, respectively. A single workflow can utilise
multiple storage solutions, such as cloud, edge, and shared storage (cf. data communication
medium).

Registering and retrieving workflows is done through a service, workflow definition
service, using workflow definition store and exposed by the central orchestrator. The
orchestrator exposes another service, orchestration service, responsible for orchestrating

Sensors 2021, 21, 8212 14 of 27

the execution of the workflow registered through the workflow definition service. The
execution of the workflow is driven by the availability of data in the system, as opposed
to a task-driven execution approach [46]. The orchestrator is responsible for notifying
the pods hosting the logic necessary to process the new unit of data according to the
workflow definition. The communication between the orchestrator and pods hosting steps
is asynchronous with respect to the actual execution of the step. The step pod does not
wait for the step execution to finish before returning to the orchestrator. The work tracker
component stores a mapping between a request and the step executing the request. The
orchestrator reads this mapping to determine what is the next step to invoke. In parallel,
the work tracker also keeps a counter of active computation requests for each pod. When
a request arrives, it is put in a queue. This allows a response to be sent back to the caller
without waiting for the finishing of the processing of the data, which can potentially be a
long-running operation. The executor component retrieves requests from the queue and
starts a background thread to process the request, allowing it to process multiple requests
in parallel quickly. The cluster state provider component, using Kubernetes API Server,
provides a list of all the pods in the cluster that can perform the desired processing logic.
Finally, the agent extends the central orchestrator and handles the orchestration at a local
and individual step level. It handles the communication with other components on behalf
of the compute step.

Figure 4. An overview of the orchestrator component.

Sensors 2021, 21, 8212 15 of 27

6.3. Request Routing

Request routing discussed earlier is a multi-objective problem. For the proposed
implementation, request routing uses the distance and current load as inputs. Data localisa-
tion captures information about the host (either storing the data or running a pod) and the
zone. The zone is a general term meant to capture groups of hosts near one another. When
routing a request through the orchestrator, a unit of data with a specified data localisation
must be paired with a pod that can process it, with a potentially different data localisation.

One input to the routing decision algorithm is the distance between the localisation
of the data to be processed and the localisation of each pod. A large number indicates
the data transfer to the pod is likely to take longer. The distance between the same hosts
is considered to be zero. For all other cases, the orchestrator constructs a N × N matrix
hosting the distances between each of the N zones (assuming there are N zones in total
in the system). We presume that the distance between hosts within the same zone is
higher than zero but lower than the distance between two different zones. The orchestrator
uses the distance calculator to calculate the distance (see Figure 4) and the work tracker
component to get the number of concurrent requests on each pod.

We propose two flavors of the selection algorithm. The first one is the greedy approach:
(i) the pods with several active connections higher than a configurable number (three by
default) are eliminated, to avoid overloading a particular pod due to the uneven load
balancing introduced by the data locality preferences, (ii) from the remaining pods, the
one with the shortest calculated distance is selected (greedy selection), and (iii) if no pod
remains, the request is added back into the queue to be processed at a later time. The
second approach is slightly modified and focuses more on spreading the load among the
available resources. Instead of always choosing the closest pod, this variant spreads the
load evenly at a zone level and falls back to a different zone when the load on the pods
passes a configurable threshold (three by default). The zone with available resources closest
to where data are stored is chosen. Given seven requests to route, the order in which each
strategy leverages the available resources is presented in Figure 5. Both algorithms exhibit
the valuable characteristic of leveraging the full set of resources available in the continuum
in a prioritised order to reduce the cost and latency introduced by data transfer while at
the same time avoiding overloading a particular set of pods.

Sensors 2021, 21, 8212 16 of 27

Figure 5. Routing priority for the greedy and load spreading algorithms.

6.4. Framework Agent

Since the framework agent is logically coupled with a compute step, the two are always
deployed together by leveraging the sidecar deployment pattern [47]. The agent and the
compute step are separated in different containers, and they can communicate efficiently
via local network calls within the host. With pods being the atomic unit Kubernetes can
manage, this deployment model guarantees that each pod hosting a compute step container
also contains an agent container.

The agents implement a service to expose a communication endpoint for the orchestra-
tor. The request from the orchestrator contains the metadata needed by the data source to
find the data the step should process, a unique identifier for the request, and the identifier
of the data adapter to be used as a data sink. Upon receiving the request, the agent will
perform the following operations:

1. Forward the metadata to the data adapter specified in the request from the orchestrator.
2. Once the data adapter ensures that the data are available at a path the compute step

container can access, the compute step is invoked with the path to the file containing
the data it needs to process.

3. For each output emitted by the compute step, the framework agent will instruct the
sink data adapter to register the output.

4. Once the sink data adapter returns the metadata necessary to identify the newly
added data, it is sent, together with the initial request, back to the orchestrator to
notify that new data are available.

The agent keeps track of the number of concurrent requests being executed, allowing
only a configurable number of requests to be executed in parallel.

Sensors 2021, 21, 8212 17 of 27

6.5. Data Adapter

In the current implementation, data adapters only work with files (i.e., data retrieved
from the storage solution is stored in a file, and only uploading data from a file to the
storage solution is supported). Data adapters are deployed using the DaemonSet concept
in Kubernetes. One pod for each type of storage adapter is deployed to every node of
the Kubernetes cluster. The DaemonSet choice assumes the number of (possibly different)
types of storage adapters is limited, and, thus, the overhead of running one pod of each
type is negligible. Different storage solutions can be integrated, and the associated adapters
can be added to extend the solution’s capabilities.

The distributed storage system leverages the local storage of every node in the cluster
to store the data processed by the workflow. Besides reading and writing data, the interface
also captures the localisation information about the data as part of the communication.
Hard linking is used to leverage further the advantage provided by data locality. Hard
linking is a faster operation than copying, and thus it further reduces the time spent on
moving data between directories. The volumes are based on directories in the underlying
node file system. Even though different directories are mounted as different volumes in
pods, the resolution of hard links is delegated to the node file system. This allows the
hard links to cross volumes mounted in different pods. By contrast, symbolic links operate
by attempting to resolve a particular path, so they cannot cross different volumes unless
all pods mount the same volume under the same path. A data master was added as a
standalone component to separate data handling from the orchestration components. The
data master is responsible for keeping track of the location of files stored in the proposed
implementation for the distributed storage. The data master component could potentially
be extended to offer more functionalities (e.g., data lineage, sharing the same data across
multiple workflows, and others). The data master runs in a single pod in the cluster, made
available through a service. The state of the data master is stored in memory.

The proposed solution for the distributed storage system only offers basic functionali-
ties and lacks most of the features other alternative solutions provide (for example, data
replication and redundancy, security, and resilience to failures). However, in some cases, it
is possible that results from the processing steps only need to serve as input for the next
step and do not have strict requirements for how the data should be stored. For such cases,
the presented solution can be used as the data transfer medium, thus benefiting from an
efficient means to fully leverage the data locality functionality. Within a single workflow, it
is possible to use multiple storage solutions.

6.6. Example Flow

An example request flow is depicted in Figure 6. When a request is placed in the
queue, the orchestrator is notified about available new data (1). The executor then retrieves
the request (2) and starts a background thread to process the request. The first step in the
processing is to determine which step should be invoked for the current notification (3),
based on the request and the workflow definition. Once the step is determined, the cluster
state provider provides all the available pods to perform the required step (4). Based on
the current load and distance to the data to be processed, one of the available options is
chosen (5), and the request is sent to the appropriate agent (6).

Sensors 2021, 21, 8212 18 of 27

Figure 6. An example request flow in detail.

Once the agent receives the notification, it sends a request to the correct data adapter,
based on the received data (7). If the file is not available locally, the local storage adapter
will send a request to the data master (8) to determine where the file that needs to be
processed is stored and will then send a request to download the data from the respective
peer (9). After (8–9), or if the file is available locally, the local storage data adapter places the
data in the volume the compute step can access (10) and responds to request (7). The agent
then notifies the compute step that data are available (11), and the compute step reads the
data (12), performs the processing logic (13), writes the output to the corresponding volume
(14), and responds to the agent with the path to the output data (15). The agent sends a
request to the local storage adapter to register the newly available data (16). The local
storage adapter moves the new data into the permanent storage folder (17) and notifies the
data master about the new data (18). The agent notifies the orchestrator that new data are
available (19), and the process is repeated for all units of data flowing through the system.

Sensors 2021, 21, 8212 19 of 27

7. Evaluation

Through a series of experiments, we compare: (i) our approach with Argo Workflows
in order to analyse the run-time performances, and (ii) different configurations for the
proposed solution with one another, for analysing individual aspects in isolation. The test
environment is set up on the Microsoft Azure cloud using only Infrastructure-as-a-Service
offerings (virtual machines and networking capabilities). The test environment is Standard
D2s v3 (two vCPUs, 8GB memory) virtual machines, provisioned in three different Azure
regions (EastUS, WestEurope, and NorthEurope) to mimic the geographical distribution of
resources in a real cloud and edge topology. One virtual machine serves as the Kubernetes
master node (and did not run additional pods). In addition to the master node, two virtual
machines are configured as Kubernetes worker nodes in each region. The lightweight
K3s (https://k3s.io, accessed on 8 November 2021) distribution of Kubernetes is manually
installed on each virtual machine. All machines are part of the same cluster.

We use an example workflow to evaluate the architecture and implementation of the
systems, which contains four sequential steps, each accepting a file as input, randomly
shuffling the bytes, and writing the shuffled result as output. The motivation for choosing
an artificial workflow is the ability to capture and describe the behaviour of the solution in
terms of universally applicable measures (e.g., bytes for data size). In contrast, a workflow
processing particular data types (such as images) captures the specific behaviour better.
However, the conclusions are harder to generalise because the data type in specific cases
is more restrictive in terms of size and data characteristics. For the first three steps, every
machine in the cluster runs one instance of each step type. The final step is run only on
machines in the EastUS region, simulating a step that can only run on cloud instances in a
real scenario. Both the central orchestrator and the data master components are deployed
on machines in the WestEurope region. Two additional supporting components are used
when running the experiments. The load generator is responsible for injecting data into
the cluster and notifying the orchestrator when data are available. The load generator
creates files containing random bytes and triggers workflows for these files. The size and
number of files to be injected into the cluster are configurable. The load generator also
supports injecting data into two regions in parallel. The telemetry reader is responsible for
gathering data on the execution of the workflow (e.g., time spent in different components,
the quantity of data transferred between regions, and load spreading). The data are
retrieved using the Jaeger API and is exported to CSV files, which are later analysed
through Python/Jupyter notebooks.

The choice of the testing environment is motivated by the main focus of the paper
that is the impact of data locality on a geographically distributed computing setting.
The proposed cloud setup is capable of creating a geographically distributed system by
provisioning virtual machines in different regions and integrating them into a single system.
There are key differences from using a real IoT/Edge/Cloud setup, such as hardware
heterogeneity (different CPU capabilities and even architectures, I/O throughput, network
characteristics). However, to better isolate the benefit of data locality from other factors,
the cloud setup is sufficient, as it reduces the entropy introduced by a real world setup.
Changing the experimental setup either at hardware level or any upper level may result in
different results, to be demonstrated and discussed further in the following subsections;
however, we consider that the conditions simulated in the test setup are sufficiently generic
to be applicable to a wide-range of real world scenarios. We address the primary parameters
(data size and contention rates) that could influence the benefits introduced by the data
locality and leave out the parameters that could play a secondary role.

7.1. Comparison with Argo Workflows

The example workflow presented earlier is run with four different file sizes/counts,
both on Argo Workflows and the proposed solution, for comparing run-time performance.
We implement the workflow using the Argo workflow definition language. The data
communication medium between the steps is cloud storage (Azure BlobStorage), with one

https://k3s.io

Sensors 2021, 21, 8212 20 of 27

instance provisioned per region. The steps can read input data from any region but write
output data to the region they are running in (e.g., a step in WestEurope can retrieve data
from NorthEurope, but it always writes the output to WestEurope). Argo orchestration
components (e.g., Argo Server) are deployed to worker nodes in the WestEurope region,
similar to the proposed implementation.

Files of different sizes are uploaded manually to the cloud storage in WestEurope
and NorthEurope region, and workflows are triggered from a client running outside the
cluster, with these files as inputs. In terms of data locality, we evaluate two different
approaches. First, no data locality is captured in the workflow definition, allowing the
steps to be assigned to nodes anywhere in the cluster. Second, using the node selectors to
limit where step pods are instantiated, the processing is kept within the same region (e.g.,
files originating from WestEurope were to be processed in WestEurope as much as possible).
By default, the orchestration component of Argo reacts to changes in step states (e.g., a step
has finished) once every 10 s. This default value is unsuitable for workflows processing
small amounts of data quickly, and for these experiments, we change it to one second,
which is the minimum recommended value. The exact configuration used to deploy Argo
Workflows for the experiment is available in the GitHub repository of the solution.

Figure 7 presents the average running time of a workflow, given different data sizes
and numbers of files processed in parallel. The X-axis denotes the number of files used in
each of the two edge regions, WestEurope and NorthEurope, along with their size. For
example, “3 files, 1 MB” indicates that three files of 1 MB each are passed through the
workflow from both WestEurope and NorthEurope in parallel (six files in total). The Y-axis
is the time spent on the execution of the workflow, measured in milliseconds. The numbers
on the Y-axis are averaged from several iterations. The results show a low variance between
different iterations. The chart compares the numbers from four runs of the same workflow:
(i) in Argo, both with region-level data locality and without data locality, and (ii) in our
solution, with the two flavors of the routing algorithm, greedy and load spreading.

From experiments, we can observe the following:

1. In the case of processing small data chunks that take little time to process, the proposed
solution outperformed Argo workflows by a factor of five.

2. As the data size grows, the time spent on executing the logic of the step increases, and
the benefit of data locality reduces.

3. Data from the second case (three files, 10 MB) show that using data locality does
not affect the case of Argo workflows. Furthermore, in the fourth case (three files,
100 MB), using data locality in the workflow has a detrimental effect on performance.

4. The solutions that leverage data locality attempt to perform the work close to the data,
while the other solutions spread the load evenly across the available machines. The
gathered telemetry indicates that the steps of the example workflow are significantly
slower when multiple instances are scheduled on the same host, as they are competing
for resources.

5. Considering that there are two worker nodes available in each region, processing
three files in parallel results in at least two of the files to be processed on the same
node when data locality is enabled. This load distribution significantly offsets the
reduction in data transfer time.

6. When processing only two files of data sizes of 10 MB and 100 MB, the load can be
better spread on the testbed topology (two files can be processed in parallel on the
two host machines available in each region), and the benefit of data locality can be
observed.

7. On all cases, however, our proposed solution with the load spreading algorithm
proves faster to execute the example workflow. However, the benefits vary, depending
on the data size, from 500% (for the three files, 1 MB) to roughly 20% (for the two files,
100 MB case).

Sensors 2021, 21, 8212 21 of 27

Figure 7. Performance comparison between the proposed solution and Argo Workflows.

7.2. Evaluation under Different Configurations

A series of experiments are run with different configurations of the proposed solution
to better understand the effect and behaviour of particular aspects in isolation. The time
spent during the execution of the workflows is split into three categories:

(i) Data is referring to the time spent handling the necessary data movement (down-
loading the input data for a step, uploading the outputs, and moving data between
directories on the node file system).

(ii) Compute is referring to the time spent executing the logic of the processing step.
(iii) Control is referring to the time spent in the orchestration component and calcu-

lated as a difference between the total execution time of a step measured by the
orchestrator and the time spent on the other two categories.

Optimising individual areas does not always translate into significant improvements
in end-to-end performance. In some cases, optimisations in one area may degrade per-
formance for the other areas. In the example workflow, most of the time is spent on the
compute category, especially on larger data sizes. A different step implementation, which
only reads the input and writes it to the output directly (echo functionality), is used for
the following experiments. Under the same conditions, the two implementations cause
a significant difference in the distribution of time. Figure 8 presents the distribution of
where time is spent on average for a single-step processing 10 MB of data and showcases
the significant difference between the two-step implementations.

Sensors 2021, 21, 8212 22 of 27

Figure 8. Time distribution for same workflow, but different steps: echo (left) and byte shuffle (right).

Regarding data handling, we analyse locality-aware routing, hard linking, and load
spreading across the Computing Continuum. To study the effect of the locality-aware
scheduling in isolation, a configuration allowing the orchestrator to skip the locality-aware
routing and rely instead on reaching individual step instances through a Kubernetes
service is used. By default, Kubernetes services use a round-robin routing algorithm,
thus spreading the requests between all available instances, regardless of their physical
localisation. Figure 9 shows a significant difference in average time spent for transferring
data between machines, with data locality significantly reducing the time spent. The X-axis
represents three different experiments. We pass files of 1 MB, 10 MB, 100 MB through the
workflow, respectively. These sizes are reasonable when taking into account the scale of
IoT/Edge setups. For example, given 1000 devices generating 100 MB per minute each,
it suddenly becomes 100 Gb per minute in the entire system. The Y-axis represents the
average time spent on moving data (in milliseconds). We observe that the more routing
decisions in data are transferred over more considerable distances (e.g., from WestEurope
to EastUS), the higher the step’s overall execution time. This implies that data locality is
more beneficial for systems spread over more expansive areas.

An experiment comparing the performance of hard linking against the copying data
indicated that hard linking executes in constant time. In contrast, time spent copying
data increases with the size of the data. However, the performance benefit is negligible at
the end, especially under the assumption that the size of the data directly influences the
execution time of the processing step. For load spreading across a Computing Continuum,
tuning the example workflow with configurations where data is produced in a single zone
at increasing rates showed that the proposed solution spreads the load across the available
resources. Prioritising step instances, in the order of host storing the data, host in the same
zone as the host storing the data, host in the next closest zone, and host in the EastUS
zone, results in bandwidth utilisation savings, especially for cases when the data locality
information captures the exact host storing the data. The greedy solution is more likely
to perform better when it comes to bandwidth savings, as it weighs data locality higher
than the load spreading. However, it may perform poorly in terms of execution time for
resource-intensive cases, as presented in experiments with Argo workflows.

Sensors 2021, 21, 8212 23 of 27

Figure 9. Average time spent on transferring data with and without data locality.

Regarding the control time, we focus on long-lived containers and connection re-use.
The significant difference between Argo and the proposed solution in the cases where small
and frequent data units need to be processed is due to the overhead introduced by Argo
using ephemeral containers. Apart from the cost of instantiating the container, observations
made during the experimentation indicate that a significant portion of the time is spent
starting up the application after the container is created. This observation is made because
the first run of a workflow after deploying the Kubernetes cluster was significantly slower
than any subsequent run. For the example workflow, with three files of 1 MB each as input,
the first run took roughly 18 s while the subsequent runs took around 5 s.

We compare two configurations of the agent to measure the effect of connection re-use
in the agent component: (i) in the first configuration, the connection re-use is not enabled;
thus, a new connection for each message to be transmitted should be created, and (ii) in the
second configuration, a single connection is re-used for all the messages. The observations
indicate that while there is a performance gain in isolation (on average, 30 milliseconds per
message for the first case and 10 milliseconds per message on the second case), the impact
is not noticeable on the end to end latencies for the considered data sizes. However, more
frequent events and lower data sizes could potentially make connection pooling a relevant
optimisation.

The observations made throughout the experiments indicate that there are several
variables on which the benefit of the proposed approach depends:

1. The nature of the processing steps: The resource contention caused by multiple
steps running on the same machine can influence the routing algorithm’s optimal
configuration controlling the balance between load spreading and data locality.

2. Distance and connection speed between the resources: A topology spreading over a
wider area benefits more for the data locality-aware routing.

3. Frequency and processing duration of events: The biggest improvement is obtained
by leveraging long-lived containers for frequent and small events.

8. Conclusions

This article proposed a novel architecture and a proof-of-concept implementation
for container-centric big data workflow orchestration systems. Our proposed solution
enables the orchestration components to consider data locality, quantified using a flexible

Sensors 2021, 21, 8212 24 of 27

model that accounts for the physical distance between hosts spread across the Computing
Continuum. Our solution is better suited for processing small and frequent data units
by leveraging long-lived containers re-used to process multiple units. Furthermore, it
extends the ideas behind isolating processing steps in separate containers to address the
data management aspect of big data workflows. As such, the logic needed to interact
with data management systems is encapsulated in containers, providing the same benefits
as for processing logic (technology agnostic solution, isolation, and lightweight). The
communication between components is enabled by an efficient and contract-based remote
procedure call framework. Finally, a set of experiments are executed to compare the
proposed solution against Argo workflows and to study individual aspects in isolation.

Overall, the proposed solution improved the performance and reduced bandwidth
usage for container-centric big data workflows while maintaining a good separation of
concerns and reducing complexity for the framework’s users. The optimisations proved
the solution better suited for environments where cloud and edge resources are leveraged
together. Separating the interaction with data in a dedicated component, thus advancing
toward a better separation of concerns, also facilitated the implementation of data locality
as a built-in feature of the framework. This further proves the usefulness of creating
small and isolated components in a distributed system. The proposed solution is far from
feature-parity with the other existing solutions. However, it highlights potential areas
of improvement that do not deviate significantly from the fundamentals of the existing
architectures, making it possible to integrate the presented ideas and findings into them.
While limited in scope, the conducted experiments are representative of the challenges the
solution attempts to address. The experiments also highlighted that the benefit provided
by the solution could vary significantly based on different factors. The instrumentation
provided with the software solution can facilitate the same kind of performance analysis
under the conditions relevant for each use case.

Future work includes extending the solution in multiple directions: (i) Simple work-
flow definitions were supported in the current approach to investigate potential perfor-
mance improvements, but most real use cases require complex constructs. In this context, a
few examples include supporting direct acyclic graph-structured workflows, processing
steps to receive input from more than one data source, and supporting aggregation over
multiple data units. (ii) Both data and processing logic are isolated in different components,
and the workflow definition language uses these components as building blocks. A po-
tential direction is creating a marketplace-like ecosystem where data and processing logic
are exchanged between parties in the form of such components. (iii) A central piece of the
proposed solution is the routing algorithm that considers load and data locality. Further
improving the heuristic and adding more dimensions (such as matching node capabilities)
can lead to better results. (iv) The solution could be extended to support stream processing;
in addition, avoiding using a disk to transfer the data to be processed is also desirable in
such cases. (v) Finally, there are two possible scaling bottlenecks in the proposal. First,
the platform could benefit from creating and deleting processing steps dynamically to
meet the current demands. Second, the orchestrator and the data master components
are single instance applications, becoming a bottleneck under a high load and needing
horizontal scaling.

Author Contributions: Funding acquisition, D.R., N.N., M.M.; supervision, D.R., N.N., A.S, M.M.,
A.H.P.; conceptualisation, A.-A.C., N.N., A.Q.K., A.S., M.M., D.R.; Methodology, all; Software, A.-
A.C.; investigation, A.-A.C., N.N., A.Q.K.; Writing—original draft, all; Writing—review & editing, all.
All authors have read and agreed to the published version of the manuscript.

Funding: The work in this paper was partly funded by the EC H2020 project “DataCloud ” (grant
number 101016835) and the NFR project “BigDataMine” (grant number 309691).

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 8212 25 of 27

Abbreviations
The following abbreviations are used in this manuscript:

DAG Directed acyclic graph
HDFS Hadoop file system
IoT Internet of things
RDMA Remote direct memory access

References
1. Ashabi, A.; Sahibuddin, S.B.; Haghighi, M.S. Big Data: Current Challenges and Future Scope. In Proceedings of the IEEE 10th

Symposium on Computer Applications & Industrial Electronics (ISCAIE 2020), Penang, Malaysia, 18–19 April 2020; pp. 131–134.
[CrossRef]

2. Ranjan, R.; Garg, S.; Khoskbar, A.; Solaiman, E.; James, P.; Georgakopoulos, D. Orchestrating BigData Analysis Workflows. IEEE
Cloud Comput. 2017, 4, 20–28. [CrossRef]

3. Barika, M.; Garg, S.; Zomaya, A.Y.; Wang, L.; Moorsel, A.V.; Ranjan, R. Orchestrating Big Data Analysis Workflows in the Cloud:
Research Challenges, Survey, and Future Directions. ACM Comput. Surv. 2019, 52, 95:1–95:41. [CrossRef]

4. Zhou, B.; Svetashova, Y.; Pychynski, T.; Baimuratov, I.; Soylu, A.; Kharlamov, E. SemFE: Facilitating ML Pipeline Development
with Semantics. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management (CIKM
2020), Online, 19–23 October 2020; pp. 3489–3492. [CrossRef]

5. Baker, T.; Ugljanin, E.; Faci, N.; Sellami, M.; Maamar, Z.; Kajan, E. Everything as a resource: Foundations and illustration through
Internet-of-things. Comput. Ind. 2018, 94, 62–74. [CrossRef]

6. Maamar, Z.; Cheikhrouhou, S.; Asim, M.; Qamar, A.; Baker, T.; Ugljanin, E. Towards a Resource-aware Thing Composition
Approach. In Proceedings of the 17th International Conference on High Performance Computing & Simulation (HPCS 2019),
Dublin, Ireland, 15–19 July 2019; pp. 803–809. [CrossRef]

7. Kimovski, D.; Matha, R.; Hammer, J.; Mehran, N.; Hellwagner, H.; Prodan, R. Cloud, Fog or Edge: Where to Compute? IEEE
Internet Comput. 2021, 25, 30–36. [CrossRef]

8. Khan, W.Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge computing: A survey. Future Gener. Comput. Syst. 2019,
97, 219–235. [CrossRef]

9. Corodescu, A.A.; Nikolov, N.; Khan, A.Q.; Soylu, A.; Matskin, M.; Payberah, A.H.; Roman, D. Locality-Aware Workflow
Orchestration for Big Data. In Proceedings of the 13th International Conference on Management of Digital EcoSystems
(MEDES’21), Hammamet, Tunisia, 1–3 November 2021; pp. 62–70. [CrossRef]

10. Roman, D.; Alexiev, V.; Paniagua, J.; Elvesæter, B.; von Zernichow, B.M.; Soylu, A.; Simeonov, B.; Taggart, C. The euBusinessGraph
ontology: A lightweight ontology for harmonizing basic company information. Semant. Web 2021, 1–28. in press.
[CrossRef]

11. Soylu, A.; Corcho, O.; Elvesæter, B.; Badenes-Olmedo, C.; Blount, T.; Yedro Martínez, F.; Kovacic, M.; Posinkovic, M.; Makgill, I.;
Taggart, C.; et al. TheyBuyForYou platform and knowledge graph: Expanding horizons in public procurement with open linked
data. Semant. Web 2021, 1–27. in press. [CrossRef]

12. Nikolov, N.; Dessalk, Y.D.; Khan, A.Q.; Soylu, A.; Matskin, M.; Payberah, A.H.; Roman, D. Conceptualization and scalable
execution of big data workflows using domain-specific languages and software containers. Internet Things 2021, 100440, in press.
[CrossRef]

13. Balouek-Thomert, D.; Renart, E.G.; Zamani, A.R.; Simonet, A.; Parashar, M. Towards a computing continuum: Enabling
edge-to-cloud integration for data-driven workflows. Int. J. High Perform. Comput. Appl. 2019, 33, 1159–1174. [CrossRef]

14. Hao, Z.; Novak, E.; Yi, S.; Li, Q. Challenges and Software Architecture for Fog Computing. IEEE Internet Comput. 2017, 21, 44–53.
[CrossRef]

15. Bernstein, D. Containers and Cloud: From LXC to Docker to Kubernetes. IEEE Cloud Comput. 2014, 1, 81–84. [CrossRef]
16. Felter, W.; Ferreira, A.; Rajamony, R.; Rubio, J. An updated performance comparison of virtual machines and Linux containers. In

Proceedings of the IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS 2015), Philadelphia,
PA, USA, 29–31 March 2015; pp. 171–172. [CrossRef]

17. Pahl, C.; Brogi, A.; Soldani, J.; Jamshidi, P. Cloud Container Technologies: A State-of-the-Art Review. IEEE Trans. Cloud Comput.
2017, 7, 677–692. [CrossRef]

18. Kratzke, N.; Quint, P.C. Understanding cloud-native applications after 10 years of cloud computing—A systematic mapping
study. J. Syst. Softw. 2017, 126, 1–16. [CrossRef]

19. Celesti, A.; Mulfari, D.; Fazio, M.; Villari, M.; Puliafito, A. Exploring Container Virtualization in IoT Clouds. In Proceedings of
the IEEE International Conference on Smart Computing (SMARTCOMP 2016), St. Louis, MO, USA, 18–20 May 2016. [CrossRef]

20. Bellavista, P.; Zanni, A. Feasibility of Fog Computing Deployment based on Docker Containerization over RaspberryPi. In
Proceedings of the 18th International Conference on Distributed Computing and Networking (ICDCN 2017), Hyderabad, India,
5–7 January 2017; pp. 1–10. [CrossRef]

http://doi.org/10.1109/ISCAIE47305.2020.9108826
http://dx.doi.org/10.1109/MCC.2017.55
http://dx.doi.org/10.1145/3332301
http://dx.doi.org/10.1145/3340531.3417436
http://dx.doi.org/10.1016/j.compind.2017.10.001
http://dx.doi.org/10.1109/HPCS48598.2019.9188186
http://dx.doi.org/10.1109/MIC.2021.3050613
http://dx.doi.org/10.1016/j.future.2019.02.050
http://dx.doi.org/10.1145/3444757.3485106
http://dx.doi.org/10.3233/SW-210424.
http://dx.doi.org/10.3233/SW-210442
http://dx.doi.org/10.1016/j.iot.2021.100440
http://dx.doi.org/10.1177/1094342019877383
http://dx.doi.org/10.1109/MIC.2017.26
http://dx.doi.org/10.1109/MCC.2014.51
http://dx.doi.org/10.1109/ISPASS.2015.7095802
http://dx.doi.org/10.1109/TCC.2017.2702586
http://dx.doi.org/10.1016/j.jss.2017.01.001
http://dx.doi.org/10.1109/SMARTCOMP.2016.7501691
http://dx.doi.org/10.1145/3007748.3007777

Sensors 2021, 21, 8212 26 of 27

21. Ismail, B.I.; Goortani, E.M.; Karim, M.B.A.; Tat, W.M.; Setapa, S.; Luke, J.Y.; Hoe, O.H. Evaluation of Docker as Edge computing
platform. In Proceedings of the IEEE Conference on Open Systems (ICOS 2015), Melaka, Malaysia, 24–26 August 2015;
pp. 130–135. [CrossRef]

22. Bhimani, J.; Yang, Z.; Leeser, M.; Mi, N. Accelerating big data applications using lightweight virtualization framework on
enterprise cloud. In Proceedings of the IEEE High Performance Extreme Computing Conference (HPEC 2017), Waltham, MA,
USA, 12–14 September 2017; pp. 1–7. [CrossRef]

23. Sill, A. The Design and Architecture of Microservices. IEEE Cloud Comput. 2016, 3, 76–80. [CrossRef]
24. Linthicum, D.S. Practical Use of Microservices in Moving Workloads to the Cloud. IEEE Cloud Comput. 2016, 3, 6–9. [CrossRef]
25. Wang, J.; Han, D.; Yin, J.; Zhou, X.; Jiang, C. ODDS: Optimizing Data-Locality Access for Scientific Data Analysis. IEEE Trans.

Cloud Comput. 2020, 8, 220–231. [CrossRef]
26. Youmin, C.; Youyou, L.; Shengmei, L.; Jiwu, S. Survey on RDMA-Based Distributed Storage Systems. J. Comput. Res. Dev. 2019,

56, 227. [CrossRef]
27. Elshater, Y.; Martin, P.; Rope, D.; McRoberts, M.; Statchuk, C. A Study of Data Locality in YARN. In Proceedings of the IEEE

International Conference on Big Data (Big Data 2015), New York, NY, USA, 27 June–2 July 2015; pp. 174–181. [CrossRef]
28. Renner, T.; Thamsen, L.; Kao, O. CoLoc: Distributed data and container colocation for data-intensive applications. In Proceedings

of the IEEE International Conference on Big Data (Big Data 2016), Washington, DC, USA, 5–8 December 2016; pp. 3008–3015.
[CrossRef]

29. Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster Computing with Working Sets. In Proceedings
of the 2nd USENIX conference on Hot topics in cloud computing (HotCloud 2010) USENIX, Boston, MA, USA, 22–25 June 2010;
pp. 1–7.

30. Naik, N.S.; Negi, A.; BR, T.B.; Anitha, R. A data locality based scheduler to enhance MapReduce performance in heterogeneous
environments. Future Gener. Comput. Syst. 2019, 90, 423–434. [CrossRef]

31. Zhao, D.; Mohamed, M.; Ludwig, H. Locality-Aware Scheduling for Containers in Cloud Computing. IEEE Trans. Cloud Comput.
2020, 8, 635–646. [CrossRef]

32. Bourhim, E.H.; Elbiaze, H.; Dieye, M. Inter-container Communication Aware Container Placement in Fog Computing. In
Proceedings of the 15th International Conference on Network and Service Management (CNSM 2019), Halifax, NS, Canada,
21–25 October 2019; pp. 1–6. [CrossRef]

33. Abranches, M.; Goodarzy, S.; Nazari, M.; Mishra, S.; Keller, E. Shimmy: Shared Memory Channels for High Performance
Inter-Container Communication. In Proceedings of the Workshop on Hot Topics in Edge Computing (HotEdge 2019) USENIX,
Renton, WA, USA, 9 July 2019; pp. 1–7.

34. Zheng, C.; Thain, D. Integrating Containers into Workflows: A Case Study Using Makeflow, Work Queue, and Docker. In
Proceedings of the 8th International Workshop on Virtualization Technologies in Distributed Computing (VTDC 2015), Portland,
OR, USA, 15 June 2015; pp. 31–38. [CrossRef]

35. Hayot-Sasson, V.; Brown, S.T.; Glatard, T. Performance Evaluation of Big Data Processing Strategies for Neuroimaging. In
Proceedings of the 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2019), Larnaca,
Cyprus, 14–17 May 2019; pp. 449–458. [CrossRef]

36. Hsu, C.H.; Slagter, K.D.; Chung, Y.C. Locality and loading aware virtual machine mapping techniques for optimizing communi-
cations in MapReduce applications. Future Gener. Comput. Syst. 2015, 53, 43–54. [CrossRef]

37. Ernstsson, A.; Kessler, C. Extending smart containers for data locality-aware skeleton programming. Concurr. Comput. Pract. Exp.
2019, 31, e5003. [CrossRef]

38. Bu, X.; Rao, J.; Xu, C.Z. Interference and locality-aware task scheduling for MapReduce applications in virtual clusters. In
Proceedings of the 22nd International Symposium on High-performance Parallel and Distributed Computing (HPDC 2013),
New York, NY, USA, 17–21 June 2013; pp. 227–238. [CrossRef]

39. Choi, J.; Adufu, T.; Kim, Y. Data-locality aware scientific workflow scheduling methods in HPC cloud environments. Int. J.
Parallel Program. 2017, 45, 1128–1141. [CrossRef]

40. Ahlehagh, H.; Dey, S. Video-aware scheduling and caching in the radio access network. IEEE/ACM Trans. Netw. 2014,
22, 1444–1462. [CrossRef]

41. Gu, J.; Wang, W.; Huang, A.; Shan, H. Proactive storage at caching-enable base stations in cellular networks. In Proceedings of
the 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC 2013), London, UK,
8–11 September 2013; pp. 1543–1547. [CrossRef]

42. Vengadeswaran, S.; Balasundaram, S. An optimal data placement strategy for improving system performance of massive data
applications using graph clustering. Int. J. Ambient Comput. Intell. (IJACI) 2018, 9, 15–30. [CrossRef]

43. Mölder, F.; Jablonski, K.P.; Letcher, B.; Hall, M.B.; Tomkins-Tinch, C.H.; Sochat, V.; Forster, J.; Lee, S.; Twardziok, S.O.; Kanitz, A.;
et al. Sustainable data analysis with Snakemake. F1000Research 2021, 10, 33. [CrossRef]

44. Albrecht, M.; Donnelly, P.; Bui, P.; Thain, D. Makeflow: A portable abstraction for data intensive computing on clusters, clouds,
and grids. In Proceedings of the 1st ACM SIGMOD Workshop on Scalable Workflow Execution Engines and Technologies
(SWEET 2012), Scottsdale, AZ, USA, 20 May 2012; pp. 1–13. [CrossRef]

http://dx.doi.org/10.1109/ICOS.2015.7377291
http://dx.doi.org/10.1109/HPEC.2017.8091086
http://dx.doi.org/10.1109/MCC.2016.111
http://dx.doi.org/10.1109/MCC.2016.114
http://dx.doi.org/10.1109/TCC.2017.2754484
http://dx.doi.org/10.7544/issn1000-1239.2019.20170849
http://dx.doi.org/10.1109/BigDataCongress.2015.33
http://dx.doi.org/10.1109/BigData.2016.7840954
http://dx.doi.org/10.1016/j.future.2018.07.043
http://dx.doi.org/10.1109/TCC.2018.2794344
http://dx.doi.org/10.23919/CNSM46954.2019.9012671
http://dx.doi.org/10.1145/2755979.2755984
http://dx.doi.org/10.1109/CCGRID.2019.00059
http://dx.doi.org/10.1016/j.future.2015.04.006
http://dx.doi.org/10.1002/cpe.5003
http://dx.doi.org/10.1145/2462902.2462904
http://dx.doi.org/10.1007/s10766-016-0463-0
http://dx.doi.org/10.1109/TNET.2013.2294111
http://dx.doi.org/10.1109/PIMRC.2013.6666387
http://dx.doi.org/10.4018/IJACI.2018070102
http://dx.doi.org/10.12688/f1000research.29032.2
http://dx.doi.org/10.1145/2443416.2443417

Sensors 2021, 21, 8212 27 of 27

45. Dessalk, Y.D.; Nikolov, N.; Matskin, M.; Soylu, A.; Roman, D. Scalable Execution of Big Data Workflows using Software
Containers. In Proceedings of the 12th International Conference on Management of Digital EcoSystems (MEDES 2020), Online,
2–4 November 2020; pp. 76–83. [CrossRef]

46. Mitchell, R.; Pottier, L.; Jacobs, S.; Silva, R.F.d.; Rynge, M.; Vahi, K.; Deelman, E. Exploration of Workflow Management Systems
Emerging Features from Users Perspectives. In Proceedings of the IEEE International Conference on Big Data (Big Data 2019),
Los Angeles, CA, USA, 9–12 December 2019; pp. 4537–4544. [CrossRef]

47. Martin, P. Multi-container Pod Design Patterns. In Kubernetes: Preparing for the CKA and CKAD Certifications; Apress: Berkeley,
CA, USA, 2021; pp. 169–173. [CrossRef]

http://dx.doi.org/10.1145/3415958.3433082
http://dx.doi.org/10.1109/BigData47090.2019.9005494
http://dx.doi.org/10.1007/978-1-4842-6494-2_13

	Introduction
	Background
	Big Data Workflows
	Cloud and Edge Computing
	Software Containers and Big Data

	Problem Analysis
	Data Locality
	Inter-Component Communication Optimisation
	Lifecycle Management of Containers
	Integration with Data Management Solutions

	Related Work
	Proposed Solution
	Control Layer
	Data Layer
	Compute Layer
	Extension Model

	Implementation
	Fundamentals
	Orchestrator
	Request Routing
	Framework Agent
	Data Adapter
	Example Flow

	Evaluation
	Comparison with Argo Workflows
	Evaluation under Different Configurations

	Conclusions
	References

