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A B S T R A C T   

Materials such as modern armour steel, benefit from appreciably high elastic energy storage 
capacity prior to failure. Such a capacity contributes to absorption of the impulse generated 
during an extreme pulse pressure loading event such as a localised blast. As the plate deforms 
within the bounds of the elastic region without plastic dissipation, the probability of catastrophic 
failure is mitigated while large deformations compared to conventional metallic panels are 
encountered. No studies have proposed, to date, a closed-form solution for nonlinear elastic 
response of thin circular plates subject to localised pulse loads. 

The present work aims at deducing, from the minimization of the Föppl-von Kármán (FVK) 
energy functional, explicit solutions for the response of dynamically (pulse) loaded thin clamped 
circular plates undergoing large deformations. The solutions were derived from a presumed 
kinematically admissible displacement field together with an associated stress tensor potential as 
an infinite polynomial series, which was truncated into a multiplicative decomposition of tem
poral parts and spatial parts, representative of a Multiple Degrees-of-Freedom (MDOF’s) system. 

In the case of static loading, using the Frobenius method, an exact recursive solution to each 
mode of defamation was obtained. In the event of dynamic loading, useful expressions for stress 
tensor components were delineated, corresponding to a multimode multiplicative product, and a 
series of coupled Ordinary Differential Equations (ODE’s) were derived, using the Ritz-Galerkin 
variational method. The explicit solutions were sought using the Poincaré-Lindstedt (PL) 
perturbation method. The closed-form solutions obtained were corroborated with FE results 
including the Fluid-Structure Interaction (FSI) effects and showed convergence when the first few 
modes were considered. The influence of higher modes, however, on the peak deformation was 
negligible and the solution with 3 DOF’s conveniently estimated the blast response to a satis
factory level of precision. The influence of element type on the response was also examined and 
discussed in the context of the problem.   
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Notations 

A1− n Frobenius coefficients/displacement modes [Various]
C1− n Stress potential parameters [Various] 
D1 Flexural rigidity [ML2T− 2]

E Young’s modulus [ML− 1T− 2]

E1 − E4 Integration constant [Various]
F1 − F4 Integration constants [Various]
Gi Membrane Stiffness function of an MDOF system [ML4T− 2]

Ip Transmitted impulse [MLT− 1]

K Membrane stiffness coefficient (SDOF system) [L6T− 2]

Le Charge width [L]
Me Charge mass [M]

Nr Radial membrane force [MLT− 2]

Nθ Circumferential membrane force [MLT− 2]

Qr Shear force [MLT− 2]

R Plate radius [L]
W Dimensionless Mid-Point transverse displacement [1]
P0 Transmitted overpressure [ML− 1T− 2]

Z Scaled distance [LM− 1/3]

â0,as Speed of sound [LT− 1]

ck Amplitude of vibration of k/2 th mode [Various]
h Plate thickness [L]
l Slenderness parameter [1]
p2(t) Temporal part of pulse pressure [1]
p∗(r, t) Pressure function [ML− 1T− 2]

ps Overpressure [ML− 1T− 2]

q1,q2 Frobenius exponents [1]
r Generalised radius of the polar coordinate [L]
t∗0 Characteristic time of the FSI [T]
td Duration of the load; [T]
ur Radial displacement [L]
uθ Circumferential displacement [1]
w Transverse displacement [L]

W(i) Normalised transverse displacement of ith iteration [1]
S (a,b) FVK Operator [Various]
L (a,b) Differential operator [Various]
β0 Impulse reduction factor [1]
β1− 3 Integration constant parameters [1]
ε0 Perturbation parameter [1]
εθθ Circumferential strain [1]
εrr Radial strain [1]
εrθ Shear strains [1]
Φ(r, t) Stress potential function [MLT− 2]

ϕ̂k(t) Temporal part of the Stress potential function [Various]

ϕ(i) Dimensionless static Stress potential function [1]
μ Areal density (= ρh); [ML− 2]

ν Poisson’s ratio; [1]
σrr Radial stress tensor [ML− 1T− 2]

σθθ Circumferential stress tensor [ML− 1T− 2]

ρ Plate density [ML− 3]

ρ Undisturbed density of air [ML− 3]

ττ Normalised vibration time; [1]
τd Normalised duration of the pulse; [1]
θ Generalized rotation of the polar coordinate [1]
ω1 First vibration pseudo frequency [T− 1]

ω2 Second vibration pseudo frequency; [T− 1]

ω0k Modal vibration frequency [T− 1]
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1. Introduction 

Extensive pulse pressure loads generated by a high explosive detonation or a gas explosion (deflagration) are calamitous and 
detrimental to property and life, with potentially disastrous effects to structures as well as high human toll. Events such as the recent 
Beirut explosion (2020), Buncefield incident (2005), London bombing (2005), and Piper Alpha (1988) signify the importance of safe 
structural design against extensive shock and blast loads. One vein to mitigate the impact of such pressure loads is by the choice of high 
strength armour steel materials. This class of steel allows for large elastic deformations and energy dissipation in subsequent vibration 
in contradistinction to mild steel which allows for energy dissipation mechanisms through plastic deformation. 

The actual physics of the blast phenomenon is complex and to gain an understanding based on computational models entails the 
implementation of Fluid-Structure Interaction (FSI) as well as Computational Fluid Dynamics (CFD) algorithms on the top of those 
related to elastic, plastic, and fracture solid mechanics. The extensive load potentially leads to large deformation of the plate. In such 
circumstances, the evolved membrane (catenary) forces, brought about by finite displacements, find out-of-plane projections which 
help to resist the out-of-plane deformations, at the cost of a surge in the in-plane tensile stresses. 

Concerning free air blast effects on high strength materials, Zakrisson [1] performed experimental and numerical studies of close-in 
free air and ground blasts on WELDOX 700E steel plates, generated by cylindrical NSP71 plastic explosive (PE4) of 20.66mm height 
and the diameter-to-height ratio of 3. The numerical methods entailed 2D and 3D FSI techniques. Following a convergence study, the 
element size of the Eulerian domain was adjusted to 4mm for a target plate of 600mm length. Zakrisson [2] and Tyas et al [3, 4] 
investigated the soil-plate interaction deformation from buried explosives. In the case of buried explosives, the momentum transfer due 
to the combined pulse pressure and mass impact of soil grains generates more detrimental combined effects of momentum transfer 
from sand impact and the energetics output. The latter authors examined the temporal and spatial distributions of close-in blasts [5]. 
Comparing various numerical techniques, Børvik et al. [6] observed a significant difference in the transient deformation of the box 
containers subject to confined (internal) blast pressure, despite the same impulse as the free air counterpart. Aune et al. [7, 8] 
monitored and reported on the transient deformation of steel plates subjected to far-field pulse pressures examined experimentally. 

Rigby et al [9] examined the negative phase of the scenario considering small-scaled distances. The negative phase of the impulse 
and peak underpressure is negligible relative to the positive phase and overpressure. Wierschem et al. [10] examined the attenuation of 
blast waves on a base structure of 5.13m height consisting of 9 floors and equipped with six nonlinear vibration absorbers. They 
showed that when the vibration absorbers are unconstrained (free to move relative to the structure floor) a rapid decay in the vibration 
amplitude occurs due to the frequency scattering of the blast energy. 

In practical applications of extensive blast loads whereupon the response exceeds the bounds set for the elastic region, finding the 
plastic deformations is difficult since these are interspersed with the elastic deformations [11]. However, a considerable body of 
literature exists on the dynamic plastic response of plates and shells (beams as a special case) subjected to impact and blast loading, 
based on the limit analysis methods built up over the past decades [12–18]. Such methods assume the material behaviour as 
rigid-perfectly plastic or elastic-perfectly plastic with associated constitutive equations characterising individually, or in combination, 
the effects of bending moments, membrane and/or transverse shear forces. Under moderate pulse pressure loads, a considerable 
portion of the transferred energy into the structure made of these materials is stored as elastic energy and expended through heat in 
residue vibration rather than being dissipated plastically. Under such circumstances, the load-bearing capacity of the structure in the 
elastic zone shall not be ignored. 

The Föppl-von Kármán (FVK) expressions form a powerful tool to capture the pronounced transverse deformations of thin elastic 
plates and the corresponding membrane stresses, using minimal geometric nonlinearity. While the analyses of plates and shells using 
the FVK strains to address the blast resistance of plates have been extensively used in the literature [19-24], the use of FVK expressions 
spans to aerospace engineering [25], instability of the composites and isotropic plates to thermal loads [26-30], and bistability of 
morphing structures [31]. 

Early works to dispose of the FVK expressions to arrive at manageable solutions for a variety of geometrically nonlinear problems 
relied on the discrete approximation techniques as carried out by Mansfield [32] and later extended by researchers [28, 29]. This 
procedure assumes a uniform curvature field with sufficiently low degrees of freedom to reduce the FVK functional to a 
finite-dimensional subspace, hence deriving the solutions to membrane stresses. 

For high dimensional nonlinear systems, there exist different forms of nonlinear vibrations due to the existence of modal in
teractions. In the case of damped vibrations, internal resonant relationships between the modal linear frequencies may lead to large 
deformations [33]. Asymptotic perturbation techniques have also been extensively used in the studies of nonlinear vibrations [33-38], 
using Föppl Von Kármán nonlinear kinematics and Reddy’s third-order shear deformation theory. Teng et al [39] developed a 
theoretical solution for the transient vibrations of simply supported and clamped FVK rectangular plates, based on the first modes of 
Fourier half expansion series to describe the spatial component of the transverse displacement field. Lighthill’s extension of Poincaré’s 
perturbation technique was utilised to delineate estimates for the Airy stress function at each time step. 

Early works of Taylor [40] revealed that the impulse imparted to flexible structures is reduced by the Fluid-Structure Interaction 
effects, primarily in thin plates, due to the acquisition of the instantaneous velocity, thus relieving the plate off the applied pressure. 
This work was extended by Kambouchev et al [41, 42] to account for fluid compressibility. The transmitted impulse was derived based 
on acoustics to intense shock wave limits for light and intermediate plate weights. Assuming an exponential decay type for the incident 
wave overpressure ps, the pressure transmitted to the plate is expressed as: 

N. Mehreganian et al.                                                                                                                                                                                                 



Journal of Sound and Vibration 513 (2021) 116413

4

P0 =
2ps

β0 − 1
[β0e−

β0 t
td − e−

t
td ], (1)  

where the dimensionless factor β0 = ρ0 â0td/ρhmay be visualised as the relative inertia of the volume of the compressed gas and the 
plate, equivalent to the relative duration of the incident wave and that of the interaction (td/t∗0), with ρ0 being the undisturbed gas 
density, â0 the speed of sound in the gaseous medium, while t∗0 = μ/(ρ0 â0) is interpreted as the characteristic time of the FSI [41, 42]. 

The impulse transmitted to the plate was derived as Ip = 2pstdβ
β0

1− β0
0 . In the case of light plates, the limit ratio of the transmitted impulse 

to the incident impulse degenerates to 2/β0. 
Although the mass and stiffness of the plate have most of the influence on the transmitted impulse, boundary conditions also play a 

significant role in the portion of the total impulse imparted to the plate. Pressure recirculation occurs by the boundaries of monolithic 
rectangular plates subjected to localised blasts generated from a PE4 of charge diameter a third of the plate width and stand-off 
distance 13mm, hence the total transmitted impulse can be reduced by up to 35% [43]. 

In the experimental observations of Tyas et al [5], the close-in blast overpressure recorded with Hopkinson pressure bar did not 
comprise a transient decay as modelled by Friedlander equation but rather showed a more complex behaviour. As the impact-induced 
stress wave propagated along a cylindrical bar, each Fourier frequency component travelled with a different velocity, which gave rise 
to the well-known Pochammer-Chree dispersion. 

The present work employs the well-established Föppl Von Kármán model to examine the influence of finite displacements on the 
transient dynamic response of thin circular plates, in the light of the multi-mode coupling of bending and membrane stresses. 

This paper is organised into 6 sections. Following this introduction, the governing equations of motion are derived for the thin 
circular plate in Section 2 based on the nonlinear elastic model. Then the exact theoretical solution of such plates subject to static 
loading conditions are sought and the results are presented in Section 3. In Section 4 the analysis is extended to dynamic loads in two 
distinct phases of motion, namely forced- and free-vibrations. The theoretical solutions are then validated against the Finite Element 
(FE) models in Section 5, using the advanced Multi-Material Arbitrary Lagrangian-Eulerian (MMALE) technique. The objective of this 
technique is to investigate the validity of the models against the actual pulse pressures involving FSI phenomena. Finally, in Section 6 
the conclusions of this study are presented and discussed. 

2. Governing equations 

2.1. Pressure load 

Consider a monolithic circular plate of radius R and thickness h, which is made of isotropic material. The plate is initially flat and 
subjected to a transverse pulse pressure load, which is assumed to remain orthogonal to the plane of plate orientation during the 
loading. The loading is characterised as a single term of the multiplicative decomposition of its spatial (load shape) and temporal (pulse 
shape) parts, viz. p∗(r,t) = p1(r)p2(t), the former (spatial part) is assumed to maintain uniform pressure across the characteristic area of 
the plate, i.e. p1(r) = P0. While various functions may be prescribed for the latter (temporal part) of the loading, i.e. exponential, 
sinusoidal, linear, or rectangular [44-46], in this work, the latter has been assumed in the dynamic analyses here, which may be 
representative of an impulsive loading case. Thus, the piecewise function characterising the temporal part becomes p2(t) = 1 for a 
duration of the interval 0 ≤ t ≤ td and p2(t) = 0 beyond this interval. By further simplification, the negative phase of the pressure is 
disregarded and excluded from the analyses, which limits the work to the pulse pressures generated from moderate scaled distance 
sources. The influence of the negative phase may be examined by introducing a successive phase of motion using the prescribed 
functions of the load [8, 9] and applying the associated kinematic conditions to the derived solutions at such phase, which falls beyond 
the scope of this study. 

The general expressions for the strain tensor in terms of the displacement field u(r, θ) (with component ur(r, θ) and uθ(r,θ)) in Polar 
Coordinates are expressible as: 

εrr =
∂ur

∂r
+

1
2

[(
∂ur

∂r

)2

+

(
∂uθ

∂r

)2]

, (2)  

εθθ =
1
r

(
∂uθ

∂θ
+ ur

)

+
1

2r2

[(
∂ur

∂θ
− uθ

)2

+

(
∂uθ

∂θ
+ ur

)2]

, and (3)  

εrθ =
1
r

(
∂ur

∂θ
− uθ + r

∂uθ

∂r

)

+
1
2

[
1
r

∂ur

∂r

(
∂u
∂θ

− uθ

)

+
1
r

∂uθ

∂r

(
∂uθ

∂θ
+ ur

)]

. (4)  

The second-order terms in Eqs. (2)-(4) represent the membrane strains whose associated deformation gradients are the sole con
tributors to geometric nonlinearity. The compatibility condition of strains is given by: 

r
∂2γrθ

∂r∂θ
+

∂γrθ

∂θ
=

∂2εrr

∂θ2 + r2∂2εθθ

∂r2 − r
∂εrr

∂r
+ 2r

∂εθθ

∂r
. (5) 
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Now, using the transformation from Cartesian to Polar Coordinates, the FVK Equations giving the fundamental description of nonlinear 
elastic dynamics of the thin plate read [47] as follows: 

D1

h
∇2∇2w = S (w,ϕ) +

p∗(r, t) − μẇ
h

, and (6)  

1
E
∇2∇2ϕ = −

1
2
S (w,w), (7)  

where ∇2(ψ) and S (w,Φ) represent the Laplacian and differential operators, which are expressible, respectively, by Eqs. (8) and (9) 
as: 

∇2(w) =
∂2
(w)

∂r2 +
1
r

∂(w)
∂r

+
1
r2

∂2
(w)

∂θ2 , (8)  

S (w,Φ) =
∂2w
∂r2

(
1
r

∂Φ
∂θ

+
1
r2

∂2Φ
∂θ2

)

+
∂2Φ
∂r2

(
1
r

∂w
∂r

+
1
r2

∂2w
∂θ2

)

− 2
∂
∂r

(
1
r

∂Φ
∂θ

)
∂
∂r

(
1
r

∂w
∂r

)

. (9)  

Eq. (7) is essentially a compatibility equation, where Φ(r, t) represents the stress potential (Airy stress function), with D1 =

Eh3

12(1− ν2)
representing the plate flexural rigidity. As is customary, the overdot represents differentiation with respect to time. The 

generalised coordinates are measured from the centre of the plate in the reference configuration. As the loading is axisymmetric, the 
deformation of the plate is independent of the polar coordinate θ. Thus, with some algebraic manipulations, the FVK expressions boil 
down to the following coupled system of Partial Differential Equations (PDE’s): 

(
dw
dr

)2

= −
2
E

(
d
dr

(
rd2Φ
dr2

)

−
1
r

dΦ
dr

)

, and (10)  

dw
dr

dΦ
dr

+

∫
1
h
(P0r − μr..w..)dr =

D1

h

(
d
dr

(
rd2w
dr2

)

−
1
r

dw
dr

)

. (11)  

The following non-dimensional parameters are introduced to generalise the study: 

w =
w
h
, ϕ = ϕ/Eh2, p = P0/E, r = r/R, and l =

R
h
. (12a-e)  

Utilising Eqs. (12a-e) and substituting them into Eqs. (10)-(11), the FVK expressions are recast in the dimensionless form as: 
(

dw
dr

)2

= − 2L

(
ϕ, r
)
, (13)  

dw
dr

dϕ
dr

+

∫ (

p −
h2

a2
s
..w..

)

l4rdr =
1

12(1 − ν2)
L ( w, r), with (14)  

L (w, r) =
d
dr

(
rd2(w)

dr2

)

−
1
r

d(w)
dr

, (15)  

where as =
̅̅̅̅̅̅̅̅̅̅
E/ρ

√
is the speed of the sound wave propagating through the solid medium. 

3. Static Loading 

Since the FVK expressions of Eqs. (10) and (11) work in tandem, the undertaken approach herein resorts to an iterative procedure to 
simplify the Partial Differential Equation (PDE) form of the FVK expressions to a set of reduced, second-order Ordinary Differential 
Equations (ODE). However, in the case of static loading, where the inertia term from Eq. (14) vanishes; an exact solution to the 
displacement field of the plate may be sought using the mathematical approach outlined as follows:  

1 Assume an ansatz for Airy stress function.  
2 Evaluate the displacement field from Eq. (14).  
3 Update the expression of stress potential function using Eq. (13).  
4 Repeat the procedure from step 2 to step 4. 

The nonlinear displacement field is obtained through this iterative procedure, while expressed as a truncated infinite sum of its 
modes with a recursive expression. Applying the iterative procedure, the interdependence of Eqs. (10) from (11) (or vice versa) may be 
recast into: 
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Fig. 1. Variation of the principal stresses, (a) radial and (b) circumferential stresses in the plate, the contour plot of the first stress invariants I1 = σrr 

+σθθ and the second J2 = 1
2sijsij, where sij = σij −

1
3σkkδij represents the deviatoric stress tensor, are shown in (c) and (d), respectively. Figures (e) and 

(f) represent the von Mises σe =
̅̅̅̅̅̅̅̅
3J2

√
and Tresca σT = σθθ − σrr stress tensors, respectively. The units of the abscissa and ordinate axes are in [m] 

while the stress values are given in [Pa]. 
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(
dw(i+1)

dr

)2

= − 2L

(
ϕ(i)

, r
)
, and (16)  

dw(i+1)

dr
dϕ(i)

dr
+

pr2

2
=

1
12(1 − ν2)

L
(

w(i+1), r
)
, (17)  

where the superscript indices (i = 0, 1, 2, …) denote the iteration steps: The Dirichlet Boundary Conditions and force equilibrium 
expressions for the clamped plate along its periphery dictate that [47, 48]: 

w(1) = w’(1) = 0, Qr(0) = 0, ψ’(1) =
1 + ν

2
ψ(1), r

dNr

dr
+ Nr − Nθ = 0, and (18a-d)  

r
dNr

dr
|R + (1 − ν)Nr(r=R) = 0, (19)  

where ψ(r) = Eh2rdϕ
dr , and Nr and Nθ represent the radial and circumferential components of the membrane force, respectively. The 

radial and circumferential stresses are thus determined as 

σrr = El− 2 1
r

dϕ
dr

, σθθ = El− 2d2ϕ
dr2 , (20a-b)  

and the shear force Qr at the centre is given as: 

Qr = −
d
dr
∇2(w(r)). (21)  

The first iterative value of the transverse displacement is unequivocally sought by setting ϕ(0)
= 0 in Eq. (17) and solving the ODE, 

given as: 

w(1) =
3
16

pl4( 1 − ν2)( 1 − r2)2
. (22)  

Substituting this expression in Eq. (16) and solving the ODE yields the first non-zero estimate of ϕ as: 

ϕ(1)
= C1 +

C2r2

2
+ C3ln(r) + β1r8 + β2r6 + β3r4, (23)  

from which we immediately obtain C3 = 0, as the stresses remain finite at the plate centre. Note that there are no odd powers of the 
spatial variable r in the expression of the stress potential function, whose form turns out to be conducive to reduce the derived terms of 
the displacement field. The coefficient C2 may be determined from either BC’s in Eq. (18c) or (19) as: 

C2 =
16(6β1 + 3β2 + β3)

R(1 + ν) − 4
− 2(4β1 + 3β2 + 2β3). (24)  

where the coefficients β1 − β3 are expressed in (A. 1 a-c). The variations of the radial and circumferential stresses based on the above 
stress potential function are illustrated in Fig. 1. Substituting Eqs. (23)-(24) back into Eq. (16) gives: 

Rf1(r)
dw
dr

+ r
d3w
dr3 +

d2w
dr2 − 6l4pr2( 1 − ν2) = 0, (25)  

where f1(r) = 1
rR

(

f(r) − 1
4

)

depends on f(r) as defined in the sequel by Eq. (27). Using the transformation û(r) = l− 1 ̅̅̅̅̅
rR

√
dw /dr, derived 

from Polyanin’s method for ODE’s [49], a reduced form of Eq. (25) is attained. The resulting ODE is furnished into: 

f (r)û(r) + r2d2 û(r)
dr2 =

P0R7
2

2D1
r

7
2, (26)  

where f(r) is a polynomial function of degree 8 derived as: 

f (r) = −
3
4
+ a0R2r2 + b0R4

(

r4 −
2
3

r6 +
1
6
r8
)

, (27)  

where the coefficients a0 and b0 are expressed in (A. 3a-b). The ODE in Eq.(26) is not analytic at r = 0 due to singularity, a requisite 
condition to seek the solution by using the Frobenius method [36, 50]. Toward this end, the rotational function u(r) is assumed as a 
hypergeometric series: 
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û(r) =
∑∞

k=0
Ak(rR)k+q

. (28)  

Substituting Eq. (27)-(28) in (26) and using truncation yields: 

∑∞

k=0
a0Ak(rR)k+q+2

+ b0Ak(rR)k+q+4
+ −

2
3
b0R− 2Ak(rR)k+q+6

+
1
6
b0R− 4Ak(rR)k+q+8

+
∑∞

k=0

(

−
3
4
+(k+ q)(k+ q − 1)

)

Ak(rR)k+q
=

P0R7
2

2D1
r7

2,

(29)  

The indicial polynomial is recovered by satisfying the expression at the plate centre and using the conditions f(0) at k = 0, expressible 
as: 

I1(r) =
(

−
3
4
+ q(q − 1)

)

. (30)  

Giving two solutions for q as q1 = 3
2 and q2 = − 1

2. The higher number may be considered to yield the first solution and, since the roots 
are separated by an integer, the second solution may be expressed as [50]: 

û2(r) = Cln(r) +
∑∞

k=0
Bk(rR)k+q2 . (31)  

However, it turns out that the coefficient C = 0 and B0 = 0 must vanish in order to satisfy the finite displacement and rotational 
degrees of freedom at r = 0, which demonstrates the uniqueness of the final solution for the transverse displacement field (q = q1). Eq. 
(29) may be rewritten as the summation of a finite expansion of the polynomial terms as dictated by, and up to the highest degree of the 
function f(r), together with an infinite series in terms of Ak as (Note that the term R7/2 drops from the expression with k = 2): 

I1(r) +
∑∞

k=2
a0Ak− 2rk+q +

∑∞

k=4
b0Ak− 4rk+q −

2
3
R− 2

∑∞

k=6
b0Ak− 6rk+q +

1
6
R− 4

∑∞

k=8
b0Ak− 8rk+q +

∑∞

k=0

(

−
3
4
+ (k + q)(k + q − 1)

)

Akrk+q −
P0r7

2

2D1
= 0.

(32)  

As the coefficients of the combined similar terms must be zero to satisfy Eq. (32), it transpires from the truncation of the series that: (i) 
the coefficients with odd indices vanish, and (ii) those of the even indices fit a recursive expression as: 

Ak

(

−
3
4
+(k+ q)(k − 1+ q)

)

+ a0〈Ak− 2〉 + b0〈Ak− 4〉 −
2
3
b0R− 2〈Ak− 6〉 +

1
6

b0R− 4〈Ak− 8〉 −
P0

2D1
δ(

k+q− 7
2,0

) = 0, k = 2, 4, 6,⋯, (33)  

where the subscript 〈Ak− s〉 (whereby s = 2, 4, 6, 8 and 〈x〉 denotes Macaulay brackets) depicts a scaled Heaviside function (singu
larity function with order 1), expressed as: 

〈Ak− s〉 =

{
0, k − s < 0

Ak− s, k − s ≥ 0 , (34)  

while δ(
k+q− 7

2,0

) represents the Kronecker Delta symbol (substitution operator). 

The general solution can be written as a generalised recursive formula as: 

Ak = −

[

a0〈Ak− 2〉 + b0〈Ak− 4〉 −
2
3b0R− 2〈Ak− 6〉 +

1
6b0R− 4〈Ak− 8〉

]

(4n(n + 1))
+

P0

2D1(4n(n + 1))
δ(

k+q− 7
2,0

), (35)  

where n = k/2. The first three modes are expressed in (A. 2 a-c). Clearly, any mode of deformation is in tandem with its four prior 
modes. Although the procedure is initiated with iteration, as the expression (35) yields any mode of the transverse displacement field 
in its entirety, the final solution is exact and, in a similar fashion, the infinite form of the stress potential function is derived by 
substitution of Eq. (28) into Eq. (16) together with using Eq. (35), as exercised in §A.2. While it is also possible to, intuitively, derive a 
generic expression of an arbitrary mode of the transverse displacement in terms of the first component only (A0), which may be proven 
by induction, the mathematical procedure turns out inherently cumbersome and fraught with difficulty, given the infinite number of 
modes. However, the leading terms are derived as 
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Fig. 2. variation of the circumferential (a) and radial (b) stress fields throughout the plate based on the number of modes with even indices n, while (c) represents the convergence of the midpoint 
displacement. 

N
. M

ehreganian et al.                                                                                                                                                                                                 



Journal of Sound and Vibration 513 (2021) 116413

10

A2n =
( − 1)nan

0

4nn!(n + 1)!
A0 +

( − 1)n− 1a〈n− 1〉
0 P0

2 × 4nn!(n + 1)!D1
A0 +

( − 1)n− 1b0a〈n− 2〉
0

2n!(n + 1)!
A0 +

( − 1)n
∑∞

j=3
j(j − 1)b0a〈n− 3〉

0

2 × 4nn!(n + 1)!D1

P0

D1

−
2
3

( − 1)n
∑∞

j=1
j2(j + 1)(j − 1)b0R− 2 a〈n− 3〉

0

4n− 2n!(n + 1)!
A0 + ⋯,

(36)  

with n assuming natural numbers. The coefficient c〈n− j〉 obeys the condition of Eq. (34), i.e. for n ≤ j this term is disregarded. The first 
component of the displacement field, A0 is not arbitrary and is determined by applying the Dirichlet BC’s of the clamped plate at the 
periphery, written as in Eq. (37). 

A0 = −
∑∞

n=1
A2nR2n, thus (37)  

The rotational degree of freedom is therefore given as: 

dw(r)
dr

=
∑∞

n=1

Ak

h
R2n+2( r2n+1 − r

)
. (38)  

Integrating Eq. (38) and applying the Dirichlet’s BC yields: 

w(r) =
∑∞

n=1

A2nR2n+2

2h(n + 1)
(
r2n+2 − (n+ 1)r2 + n

)
. (39)  

Eq. (39) degenerates to Eq. (22) for n = 1 and a0 = 0. The convergence of the radial and circumferential stresses are compared in 
Fig. 2a-b. It can be observed from Fig. 2c that while the 6th and 7th terms contribute to an increase in the radial and circumferential 
stresses, convergence of midpoint displacement (W0) is satisfied considering only the first 6 terms (A0 − A10). The rotational DOF, 
however, converges at a faster rate. 

4. Dynamic Response 

4.1. First Phase of motion 

The mathematical treatment in the case of dynamic loading dealt with is in the same fashion as outlined in the four steps stated in 
the case of static loads, with the use of Eq. (14), or its derivative with respect to the generalised coordinate r, followed by applying the 
boundary and kinematic conditions. However, it is pragmatic to assume a displacement profile as derived in Eq. (39), which is 
truncated into a finite polynomial series. The components of each deformation mode (Aj) in Eq. (28), however, account for the 
temporal part of the displacement field. 

The stress potential function may be treated in a similar fashion, i.e. as an infinite series. It is rather straightforward to determine 
the power indices of the stress potential function using the Frobenius method, as argued in Appendix A.2. Clearly, the resulting 
expanded series as expressed in Eq. (40) has coefficients expressing the temporal part of the stress potential. 

Φ(t, r) =
∑∞

k=0
ϕ̂k (t)r2k. (40)  

Following the substitution of Eqs. (40) and (28) into Eq. (13) and some algebraic manipulation a polynomial of even indices is ob
tained. It turns out that the coefficients of the polynomial must be all zero to satisfy Eq.(16), wherefrom the components of the Airy 
Stress function are expressed as 

ϕ̂n =
E

16(n + 1)2n
[A0A〈2n− 2〉 +H(2n − 4)A2A〈2n− 4〉 +H(2n − 6)A4A〈2n− 6〉 +H(2n − 8)A6A〈2n− 8〉 +H(2n − 10)A8A〈2n− 10〉 +⋯], (41)  

with n taking cardinal numbers. The first component of the stress potential function is thus expressed as: 

ϕ̂0 = a1 A2 (t)2
+ b1A4(t)2

+ c1A6(t)2
+ 2d1A2(t)A4(t) + 2e1A2(t)A6(t) + 2f1A4(t)A6(t). (42)  

Substituting Eqs. (40)-(41) into Eq. (14) followed by the use of Eq. (12a-e) yields as many independent PDEs as the number of modes 
taken into account for the displacement profile. For convenience, however, only the first three modes are assumed in the dynamic 
analysis. This is because the first three modes prove to accurately estimate the transient displacement field of the plate [37]. To reduce 
the sets of PDEs into those of ODEs, we employ the Ritz-Galerkin-Variational method to eliminate the spatial dependence of the 
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expressions as 
∫

0

(
d
dr

(
dw
dr

dϕ
dr

)

+

(

p −
h2

a2
s
..w..

)

l4r −
1

12(1 − ν2)

dL ( w, r)
dr

)

δrdr = 0, (43)  

where the parameter δr is the weight function herein assumed as the spatial part of components corresponding to each mode of the 
displacement field. 

ODE0 : R10μ ..A2
..(t)

240
+ R12μ ..A4

..(t)
144

+ R14μ ..A6
..(t)

112
+

8D1R6A2(t)
3

+ 12D1R8A4(t) +
144D1R10

1 A6(t)
5

− hG0(t) = P0R6/6, (44)  

ODE2 : 47R12μ ..A2
..(t)

480
+ R14μ ..A4

..(t)
280

+ 3R16
1
..A6

..(t)
640

+ 2D1R8A2(t) +
48D1R10A4(t)

5
+ 24D1R12A6(t) − hG2(t) = P0R8/8, (45)  

ODE4 : R14
1 μ ..A2

..(t)
840

+ R16
1 μ ..A4

..(t)
480

+ R18
1 μ ..A6

..(t)
360

+
8
5
D1R10

1 A2(t) + 8D1R12
1 A4(t) +

144D1R14
1 A6(t)

7
− hG4(t) = P0R10

1 /10. (46)  

Now, the nonlinear function Gk represents the membrane stiffness of the MDOF system obtained, which consist of the multiplicative 
cubic terms of the modes of the transverse displacement, and is expressed in (A. 5)-(A. 7). Thus, Eqs. (44)-(46) are analogous to the 
undamped, forced vibrations of MDOF non-linear springs, representative of non-homogenous forms of the Duffing equation. The 
explicit solution of the ODEs is fraught with difficulty due to the presence of mode coupling which renders the mathematical treatment 
inherently complex. Therefore, approximate and numerical methods may be used to treat problems of this kind. It should nevertheless 
be noted that the exact solution to the expressions of this form, even for an SDOF system, entails a secular term, such as tsint, which 
renders the deformation non-periodic where the displacement field grows unboundedly over time. Hence, the Lindstedt-Poincaré 
perturbation technique is sought to eliminate the secular terms to obtain a bounded solution. To this end, each mode of the 
displacement field is expressed as follows: 

Ak(τ) = A(0)
k (τ) + ε0A(1)

k (τ) + ε2
0A(2)

k (τ) + O
(
ε3

0

)
, (47)  

τ =

(

ω02 +

∫

0
ω1 +

∫ 2

0
ω2 +O

(∫ 3

0

))

t, (48)  

where ε0 is a small perturbation parameter, herein related to the plate slenderness ratio defined as ε0 = (h/R)4.The frequency of 
vibration is scaled by the term ω1 and ω2 on the first and second perturbation scales, A(1)

k (τ) and A(2)
k (τ), respectively. These fre

quencies are hereafter referred to as the vibration pseudo frequencies (VPS). In what follows, the mathematical analysis, therefore, is 
treated in two circumstances, using the Lindstedt-Poincaré method on MDOF system as outlined in the ODEs (44)-(46) but ignoring the 
quadratic perturbation term (i.e. on ε2

0) and an SDOF model by ignoring the second and third modes (A2(t) and A4(t), respectively) 
while retaining the quadratic perturbation term. Clearly,Äk(t) = (ω02 + εω1)

2Äk(τ). Substituting these expressions in Eqs. (44)-(46), 
followed by the notion that each of the expressions compiled in terms of εi

0 should be zero, yields the resulting following Nonlinear 
ODEs: 

ODE0 :
μR10

240

(
2ω02ω1Ä(0)

2 (τ) + ω2
02Ä(1)

2 (τ)
)

+
μR12

144

(
2ω02ω1Ä(0)

4 (τ) + ω2
02Ä(1)

4 (τ)
)
+

μR14

112

(

2ω02ω1Ä(0)
6 (τ) + ω2

02Ä(1)
6 (τ)

)

+
8
3
D1R6A(1)

2 (τ) + 12D1R8A(1)
4 (τ) + 144

5
D1R10A(1)

6 (τ) − hG0(τ)∫

0

= 0,
(49)  

ODE2 :
μR12

480

(
2ω02ω1Ä(0)

2 (τ) + ω2
02Ä(1)

2 (τ)
)
+

μR14

280

(
2ω02ω1Ä(0)

4 (τ) + ω2
02Ä(1)

4 (τ)
)
+

3μR16

640

(

2ω02ω1Ä(0)
6 (τ) + ω2

02Ä(1)
6 (τ)

)

+2D1R8A(1)
2 (τ) + 48D1R10A(1)

4 (τ)
5

+ 24D1R12A(1)
6 (τ) − hG2(τ)∫

0

= 0,
(50)  

ODE4 :
μR14

840

(
2ω02ω1Ä(0)

2 (τ) + ω2
02Ä(1)

2 (τ)
)
+

μR16

480

(
2ω02ω1Ä(0)

4 (τ) + ω2
02Ä(1)

4 (τ)
)
+

μR18

360h

(

2ω02ω1Ä(0)
6 (τ) + ω2

02Ä(1)
6 (τ)

)

+
8D1R10A(1)

2 (τ)
5

+ 8D1R12A(1)
4 (τ) + 144D1R14A(1)

6 (τ)
7

−
hG4(τ)∫

0

= 0.
(51) 
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The mathematical solutions are sought in two phases of motion as follows. The first phase corresponding to a forced vibration while the 
loading is active, followed by phase 2 of motion whereby the loading is complete whilst the residual vibration continues. 

4.2. First Phase of motion (0 ≤ t ≤ td)

4.2.1. Single degree-of-freedom model 
For a single-degree-of-freedom system, either of the Eqs. (44)-(46) boils down to: 

d2A2(t)
dt2 + ω2

0A2(t) + ε0KA2(t)3
=

40P0

R4μ , (52)  

Ignoring the nonlinear term, the solution is cast as A(0)
2 = c2(1 − cos(ω02t)), where c2 = P0

16D1
, when the kinematic boundary conditions 

of the displacement and velocity at the onset of motion are applied; while the stiffness and frequency of vibration are expressed, 
respectively, as: 

K =
− 20Eh

(
R6 + 84f1

)

21R2με0
, (53)  

ω0 =
8
R2

̅̅̅̅̅̅̅̅̅̅̅
10D1

μ

√

, (54)  

where f1 is expressed in (A. 8f). It should nevertheless be noted that, since both R and ν are positive, the parameter K remains positive 
as long as R(ν+1 ) < 4 or R(ν + 1 ) > 9.6. For most practical applications on metal plates, ν ∼ 0.3 − 0.33 and thus R < 3m satisfies the 
condition. Thus, such a system undergoes elastic hardening. Conversely, in the case of K < 0 elastic softening is observed. Chaotic 
dynamic motion occurs when viscoelastic and/or temperature effects are taken into account [27, 33, 38, 51, 52]. 

By adjusting the displacement and time from the Lindstedt-Poincaré technique Eqs. (47)-((48)), the nonlinear ODEs in order of the 
perturbation parameter ε0 are expressed as 

ε0

(
ω2

0

(
A2(τ)(1) + Ä2(τ)(1)

)
+ 2ω0ω1Ä2(τ)(0) +K

(
A2(τ)(0)

)3
)
= 0 (55)  

ε2
0

(
ω2

0

(
Ä2(τ)(2) +A2(τ)(2)

)
+ 2ω0ω2Ä2(τ)(0) + 2ω0ω1Ä2(τ)(1) +ω2

1Ä2(τ)(0) + 3K
(
A2(τ)(0)

)2A2(τ)(1)
)
= 0, (56)  

where ω1 and ω2 represent the perturbation frequencies as defined earlier. Interestingly, considering now the second mode (replacing 
A2(t) by A4(t)) individually, the values above refurnish into ω =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1728D1

√
/R4μ and K = − (25ER10 + 1536d1)/(20R2ρε0), where d1 is 

expressed in (A. 8d), while the ODEs above still remain valid. The expression containing the first perturbation term A2(τ)(0) leads to the 
linearised solution as discussed earlier (with ε0 = 0). The solution to Eq. (55) is expressed as: 

A(1)
2 (τ) =

(

−
c2ω1

ω0
+

15c3
2K

8ω2
0

)

τsin(τ) − c2cos(τ)ω12

ω0
+ E1sin(τ) + E2cos(τ) + c3

2K( − cos3(τ) + 8cos2(τ) + 15cos(τ) − 24)
8ω2

0
. (57)  

With E1 = 0 and E2 = c2(c2
2K+4ω0ω1)/(4ω2

0). The value of ω12 = 15c2
2K/(8ω02) eliminates the secular terms. Hence, Eq. (57) is 

furnished into 

A(1)
2 (τ) = c3

2K((1 − cos(τ))(cos2(τ) − 7cos(τ) − 24))
8ω2

0
. (58)  

Similarly, the solution to Eq. (56) is given as 

A(2)
2 (τ) = −

c2

(
2565c4

2K2 + 256ω3
0ω1

)
τsin(τ)

256ω4
0

+ F1cos(τ) + F2sin(τ)

−
c5

2K2

256ω4
0

(

4cos5(τ) − 64cos4(τ) − 125cos3(τ)+ 2624cos2(τ)+ 2565cos(τ) − 5632+
256cos(τ)ω3

02ω2

c4
2K2

)

, (59)  

where F1 = (c2 (64ω3
0 ω2 − 157c4

2 K2))/(64ω4
0) and F2 = 0, derived from the kinematic condition of the displacement and velocity at 

the onset of loading, respectively, and further reduced by using the expression of first vibration pseudo frequency. The second one is 
derived as ω2 = − 2565c4

2K2/(256ω3
02). 

4.2.2. Multiple Degree-of-freedom model 
Neglecting the nonlinear terms of Eqs. (44)-(46), an ansatz for the displacement components Ai(t) in each of the linearised ODEs 
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may be either intuitively expressed as Ak(t) = aksin(ω0kt)+ bkcos(ω0kt)+ ck, or derived using the Laplace transform, which, by 
applying the same kinematic conditions at the onset of loading, boils down to 

Ak(t) = ck(1 − cos(ω0kt)) (60)  

Substituting Eq. (60) in the ODEs (44)-(46) and ignoring the nonlinear functions Gk yields three simultaneous expressions in terms of 
ck. It turns out that these ODEs and their time derivatives must be satisfied, at every instant of time, to ensure the energy equilibrium of 
the plate. Thus, at the onset of loading, it turns out from the solution of the three simultaneous ODEs that the amplitudes of the 
displacement function read: 

c2 = 4200
P0

R4μω2
02
, (61)  

c4 = − 6384
P0

R6μω2
04
, (62)  

c6 = 3024
P0

R8μω2
06
. (63)  

The frequencies ω0k are determined by substitution of Eqs. (60)-(63) into the ODEs (44)-(46) followed by a differentiation with respect 
to time twice. The equilibrium at the onset of loading yields: 

ω02 =
2596.29

5

̅̅̅̅̅̅̅̅̅
D1

R4μ,

√

(64)  

ω04 = 515.58

̅̅̅̅̅̅̅̅̅
D1

R4μ,

√

(65)  

ω06 = 512.37

̅̅̅̅̅̅̅̅̅̅̅
D1

R4μ.

√

(66)  

Alternatively, by applying Laplace transform on the ODEs (44)-(46) we arrive at identical expressions for the amplitude and fre
quencies of modal vibrations above. Eq. (60) and its second time derivative may be integrated into Eqs. (49)- (51) as A(0)

k , leading to 
coupled forced vibrations of the MDOF system. Due to the interdependence of these expressions, the mathematical treatment of the 
nonlinear ODEs (49)-(51) is sought numerically using ODE45. In the absence of the closed-form solution and by using the perturbation 
techniques, however, only approximate values for ω1 and hence the displacement fields can be sought to diminish the unbounded 
amplitude growth over time whereby harmonic vibration is attained. It should be however recognized that, considering the duration of 
the pulse pressure is infinitesimal, there is only marginal growth of the displacement field over time in the first phase while the load 
lasts, and the linear and nonlinear solutions are close at this stage [37]. The major influence of the pressure occurs due to the residual 
stresses accumulated in the plate in the next phase of motion. 

4.3. Second phase of motion (t ≥ td)

The loading is complete at time t = td; but at the moment of the pulse termination, the system possesses kinetic and strain energies 
thus retains its motion due to the initial inertia effects and the elastic energy stored in it. Thus, following the forced vibration from 
phase one of motion, a free vibration governs the response of the plate. At the offset of the loading duration, the kinematic continuity 
applies to ensure there are no displacement or velocity jumps throughout the motion. 

The analysis in this phase is carried out in the same spirit as the previous phase of motion- with the solution of linear and nonlinear 
parts of the displacement field determined, respectively. By disregarding the nonlinear terms, the first iteration of ODE is expressed, for 
SDOF and MDOF models as follows. 

4.3.1. SDOF Model 
Using the kinematic continuity of displacement and velocity fields, the solution to Eq. (52) is: 

A2(τ) = c2(cos(τ − τd) − cos(τ)), (67)  

where τd = ω02td is the dimensionless duration. Substituting Eq. (67) in Eqs. (55)-(56) and performing some algebraic manipulations, 
the solution to the next perturbed terms of displacement field are furnished as: 
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A(1)
2 (τ)=E3cos(τ)+E4sin(τ)

+

⎡

⎢
⎣

3τc2

4ω2
02
(sin(τ) − sin(τ − τd))

(

c2
2K(cos(τd) − 1) −

4
3
ω02ω1

)

+
(cos(τ − τd) − cos(τ))ω1

2ω1
+

c3
2K

32ω2
02

( − cos(3τ − 3τd)+3cos(3τ − 2τd) − 3cos(3τ − τd)+18cos(τ − τd) − 6cos(τ − 2τd)+6cos(τ+ τd)+ cos(3τ) − 18cos(τ))

⎤

⎥
⎦.

(68)  

The magnitude of the pseudo frequency is evaluated such as to eliminate the secular term in the first set of brackets (i.e. the terms 
involving sin(τ) − sin(τ − τd)): 

ω1 =
3c2

2K
4ω02

(1 − cos(τd)). (69) 

In a similar fashion to the linearised solution (with ε0 = 0), applying the kinematic continuity of the displacement field leads to the 
integration constants as: 

E3 =
− c3

2K
16ω2

02

(
10cos3(τd)+ 3cos2(τd)+ 24cos(τ) − 37

)
, (70)  

E4 =
− c3

2K
16ω2

02
sin(τd)

(
10cos2(τd)+ 3cos(τd)+ 47

)
. (71)  

Substituting Eqs. (67)-(69) in Eq. (56), the solution to A(2)
2 (τ) is determined as: 

A(2)
2 (τ) = f

(
ω2

)
+ F3cos( τ) − F4sin(τ) + c2ω22(cos(τ − τd) − cos(τ))

2ω02
−

3Kc3
2

32ω2
02
( − 12cos(τ) + 12cos(τ − τd) − 4cos(τ − 2τd)

− 3cos(3τ − τd) + 3cos(3τ − 2τd) − cos(3τ − 3τd) + 4cos(τ + τd) + cos(3τ))

−
K2c5

2

1024ω4
02

(

444cos(τ) + cos(5τ) − 165cos(3τ) − 444cos(τ − τd) + 222cos(τ − 2τd) + 267cos(3τ − τd) − 225cos(3τ − 2τd)

+81cos(3τ − 3τd) − 222cos(τ + τd) + 30cos(τ + 2τd) − 30cos(τ − 3τd) + 18cos(τ + 3τd) + 51cos(3τ + τd) − 18cos(τ − 4τd)

− 6cos(τ + 4τd) + 6cos(τ − 5τd) − 6cos(3τ + 2τd) − 5cos(5τ − τd) + 9cos(3τ − 4τd) + 10cos(5τ − 2τd) − 15cos(3τ − 5τd)

− 10cos(5τ − 3τd) + 3cos(3τ − 6τd) + 5cos(5τ − 4τd) − cos(5τ − 5τd)

)

,

(72)  

where 

Fig. 3. Influence of the load duration and magnitude on the variations of the pseudo frequencies.  
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F3=
1

256ω4
02

Kc3
2 (cos(τd)− 1)

(
48Kc2

2cos5(τd)− 308Kcos4(τd)c2
2 − 342c2

2Kcos3(τd)+2553c2
2Kcos2(τd)− 192cos3(τd)ω2

02+2627c2
2Kcos(τd)

+96cos3(τd)ω2
02+3252Kc2

2+240cos(τd)ω2
02 − 144ω2

02

)

,

(73)  

F4 =
1

256ω4
02

Kc3
2sin(τd)

(
48Kc2

2cos5(τd)− 356Kcos4(τd)c2
2+38c2

2Kcos3(τd)+2383c2
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and 
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(
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=
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02ω2
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2

⎞

⎟
⎟
⎟
⎟
⎠

τ(sin(τd − τ) + sin(τ))

(75)  

Through some algebraic manipulations, a closed-form solution for the parameter ω2 is determined as: 

. (76) 

A comparison between the first and second VPS is visualised in Fig. 3. Clearly, the thickness of the plate plays a significant role in 
determining the curvature of the ω2 function, with elevated number of local maxima as the quotient of the plate radius to its thickness 
increases beyond 0.13 (Fig. 4). The transient deformation of an SDOF model is plotted in Fig. 5 against the dimensionless time. 

4.3.2. MDOF Model 
The nonlinear ODEs in Eqs. (49)- (51) remain valid during the second phase. Using the mathematical treatment as outlined earlier, 

with P0 = 0, the linearised solution is derived as: 

Ak(τ) = ck(cos(nk(τ − τd)) − cos(nkτ)), (77)  

with nk = ω0k/ω02. Substituting Eq. (77) in Eqs. (49)- (51) and using Eqs. (61)- (66), the solution to the coupled ODEs is sought 
numerically using ODE45, while the kinematic continuities of the transverse displacement and velocity are imposed. The parameter ω1 
is increased iteratively to harmonise the final solution. 

4.4. Numerical simulations and validations 

A number of Finite Element models have been set up and run in ABAQUS® Explicit 2018 to validate the analytical models of the 
present work. Two types of FE analyses representative of free air blast have been developed, viz. a full 3D pure Lagrangian technique 
and a full 3D Coupled Eulerian-Lagrangian technique. The objectives of the pure Lagrangian technique-based analyses are two-fold, 
the former served as a convergence study with two goals: (i) to investigate the mesh sensitivity, and (ii) to determine the influence 
of element type on the captured stress path and maximum displacements as primary results of plate response. The latter technique was 
based on a parametric study to validate the analytical model without the incorporation of the FSI phenomenon, such as deterministic 
loading types. 

The second FE technique utilises the Multi-Material Arbitrary Lagrangian-Eulerian (MMALE) formulation to simulate the pressure- 

Fig. 4. Influence of the plate thickness, pressure P0[Pa] and loading duration td[s] on the variations of the second VPS for the plate of r = 150 mm.  
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induced from Fluid-Structure Interaction (FSI). Practical examples of such scenarios include blast phenomena and pressure vessel 
explosions. The MMALE methods offer more accurate predictions of the structural response than those of the pure Lagrangian one [53]. 

The plates in both techniques were made of 4mm thick, purely elastic, ultra-hard ARMOX 440T steel alloy, having a density of 7850 
kg.m− 3, radius of 150mm, Poisson’s ratio of 0.28 and Young’s modulus of 194GPa. 

4.4.1. Pure Lagrangian model 
This technique offers reduced computational time due to simplifications in the geometry and loading techniques. However, the 

numerical calculations of such technique should be couched in caveats due to the impulse reductions and pressure recirculation 
associated with the fluid-structure interactions in, say, physical blast phenomena. Often, the estimated pressure utilised in the pure 
Lagrangian model should be reduced on account of structural flexibility and the FSI effects [6, 41, 53, 54]. 

The convergence study was carried out on circular plates of a 200mm radius, clamped along the periphery. All models were 
subjected to a prescribed 20MPa uniform pressure for a duration of 50μ.s. The study entailed four different element types, continuum 
shell elements (SC8R), conventional shell elements (S4R), continuum (brick) elements (C3D8R) and membrane elements (M3D4R). 
Other element formulations using extended FE and super-elements to address the dynamic and shock response of beam and plate 
elements have been proposed [55, 56], including the novel FE super-element formulations to simulate the shock response of the 
heterogenuous perfoated 2D lattice systems- representative of hybrid joints [57]. The frequency analysis of such systems was per
formed using Floquet-Bloch’s principle for lattices and the conventional FE elements, however, here the study considers the blast 
response of monolithic plates. 

The S4R elements are general-purpose, doubly curved reduced integration shell elements with finite membrane strains and 
hourglass control to avoid spurious zero-energy modes. These elements allow for finite membrane strains and arbitrary large rotations. 
In the current study, 5 Simpson points of integrations through the plate thickness were used. On the other hand, the SC8R mesh 
entailed 8-noded hexahedral elements for general shell-like structures with continuum topology. Adaptable to thick and thin shells, 
these elements permit the analyses involving large strains with accuracy in contact pairs’ investigations. The C3D8R continuum el
ements are a class of solid elements with reduced integration, commonly referred to as ‘brick’ elements. These elements require 
refinement to capture stress components at boundaries, while a sufficient number of them through the thickness of the plate/shell are 
required to provide bending stiffness. Five elements per thickness in conjunction with hourglass control were utilised for these models. 
The membrane elements (M3D4R) are 4-noded quadrilateral elements with reduced integration and hourglass control, which conform 
to simplified shell theory in which internal bending moments are neglected. 

The spectrum of the mesh model was varied from the coarse-40mm element size to a fine mesh of 3mm element length, to provide 
element length-to-thickness ratio in descending order of 10, 5, 2.5, 1.25 and 0.6. 

The convergence of displacements was guaranteed with element length of the order less or equal to the thickness of the plate for all 
element types. However, the shell elements converged more rapidly with smooth variation in midpoint displacements, while the 
results with brick elements deviated significantly with coarse meshes when the element length/thickness ratio exceeded 2.5 (Fig. 6). It 
should be noted that while both continuum shell elements and conventional shell elements provide the most accurate results, the 
conventional shell elements were chosen in this study due to the less allocated time associated with the modelling and simulation. 
Furthermore, the model with the finer mesh discretisation of SC8R elements took longer to run than other models. The use of brick 
elements increased computational time for the same level of accuracy sought (Table 1). It thus turns out the S4R elements are the most 
consistent element types, which are ideal candidates for the Coupled Eulerian-Lagrangian analyses. 

The stress paths across the plate followed a similar trend for all element types except the membrane elements which exhibited 
uniform, high stress accumulation throughout the plate ascribed to its formulation as a membrane. The stress concentration at the 
boundaries of shell and brick elements are due to the boundary effects. 

Concerning the validation of the analytical model using pure Lagrangian analysis, a uniformly distributed load was prescribed with 
variable magnitudes of P0 = 1,2,5,10,15, 20 MPa with a rectangular pulse shape of duration td = 50μs, on the target plate which had 

Fig. 5. Transient deformation of the plate centre for SDOF model (a) linearised (b)-(c) nonlinear components.  
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various thicknesses of h = 1, 2,5, 10,20,40 mm and constant radius R = 150 mm. Although the approach yields a total of 36 models 
for investigation, any analysis which yielded the maximum peak deformation over ten-fold of the plate thickness was discounted as it 
violates the assumption of large deformation-moderate strains of the FVK model. Fig. 7 compares the analytical and numerical FE 
models. Clearly, the plate thickness has a significant influence on the predicted peak deformations of the plate (Fig. 7b). For the plate 
thickness-radius ratio of more than 0.13, the peak transverse displacement depreciates below half the plate thickness, a limit wherein 

Fig. 6. (a) Comparison of the peak normalised Midpoint displacement convergence for various element types with the abscissa term le representing 
element length, (b) the equivalent Mises stress σe paths across the plate radial distance at 105μs 

Table 1 
Comparison of the analysis duration for various element types. The analyses were performed on a 2.3GHz processor with a 2.9Ghz frequency.  

Element length/thickness 0.75 1.25 2.5 5 10 
Element type Analysis Duration 
M3D4R 00:04:39 00:02:25 00:00:54 00:00:37 00:00:36 
C3D8R 00:12:46 00:05:55 00:0149 00:00:43 00:00:14 
S4R 00:05:56 00:01:29 00:00:36 00:00:30 00:00:09 
SC8R 00:24:24 00:05:52 00:02:25 00:01:03 00:00:31  
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the classic analytical analysis of linear dynamics satisfy accurate estimates, and the influence of the finite displacements, or geometry 
changes, can be ignored. Below this limit, the variation of the peak displacement with the pressure and plate thickness is rather smooth. 
Conversely, the resulting transverse deformation of the plates of a radius exceeding the upper limit 100% of its thickness varies 
abruptly with the slight change in the pressure and/or plate thickness. 

4.4.2. MMALE technique 
In the MMALE analysis considering the free air blast, the multi-materials (air and the explosive) were embedded in an Eulerian 500 

mm high, square base cuboid with 150mm side length. To model the pulse pressure, a PE4 (of TNT equivalent yield of 1.15-1.4) 
explosive was placed at the bottom of the Eulerian model. The explosive was square-based cuboids of side lengths 50 and 75mm 
with heights varying from 5mm to 20mm, as reported in Table 2. Cubic geometry was preferred to the cylindrical one for the enhanced 
uniformity of mesh and the transfer of the state variables throughout the medium. 

The Eulerian medium is fixed in space. The medium was discretised with EC3D8R hexahedral elements, with a constant element 
length of 4mm throughout, providing a sufficient number of elements to account for the fraction of the Eulerian medium that the 
explosive occupies. Transmission boundaries at the top and back sides of the Eulerian medium were prescribed with flow-out boundary 
conditions, while the other faces were adjusted with symmetric boundary conditions. The inflow of pressure was through the bottom 
face where the PE4 charge was modelled. A non-reflecting boundary condition was applied to this face. The schematic of the CEL 
model is presented in Fig. 8. 

The density of PE4 and air materials were 1601kg.m− 3 and 1.293 kg.m− 3, respectively. The Jones Wilkins Lee (JWL) and Ideal gas 
equations of state (EoS) were prescribed to the PE4 and air materials, respectively. A value of 18.27μ.Pa.s was prescribed for the 
viscosity of air, while the ideal gas constant of R∗ = 287J/kgK was used. The reader is referred to Ref. [53] for full details of the EoS 
data and material properties. 

As the explosive product detonates instantaneously, the gaseous detonated products generated by the contact between the deto
nation front and the unreacted explosive material, flow through the mesh points of the reference Eulerian frame through a monotonic 
advection [58]. Upon contact with the plate mesh points, defined by the Lagrangian formulation, the FSI algorithms are invoked at the 
contact interface of the target and explosive products (which are assumed to interact in a frictionless manner) to characterise the 

Fig. 7. (a) Deviation of the analytical model results from the Numerical FE pure Lagrangian ones (without the FSI effects). The dashed red line has a 
slope m̂ = 1 and highlighted with ∓1 leader. (b) surface interaction of the influence of the plate thickness and load magnitude on the peak 
deformations 

Table 2 
Estimated pressure and charge properties of the designated models  

Charge height (he)  5 7.5 10 15 20 
Charge width Le (mm)  75 75 50,75 50 50 
Charge mass Me (g)  180.11, 270.17 125.74, 360.23 188.61 320.20 

Scaled distance Z(ft /
̅̅̅̅̅
lb3

√
) 1.67 1.46 1.73, 1.32 1.51 1.38 

Overpressure ps (MPa)  16.06 22.75 15.18, 31.03 20.68 26.20  
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motion of the target [18, 43, 53]. For light plates, an instantaneous gain in acceleration is followed due to the imbalance between the 
higher reflected pressure at the contact interface of the target front face and the fluid. 

The circular plates had a radius of 170mm, were made of 4mm thick ARMOX440 steel with E = 194GPa, ν = 0.28 and were 
discretised with S4R elements with element length to thickness ratio of unity. The plate was tied with two circular- cylindrical rigid 
clamps of length 20mm, bulging out of the two edges of the Eulerian medium, and height of 10mm (Fig. 8), leaving 150mm as the 
exposed radius of the plate. A penalty contact of 0.3 friction coefficient was prescribed for the contact surfaces between the plate and 
the clamps. The plate was fixed at a distance of 425mm from the inflow surface of the Eulerian medium. While the standoff distance 
(SOD)varies slightly due to the variation in charge’s height, given the ratio of the standoff to characteristic charge diameter(length) 
exceeds three, the pressure may be assumed to vary uniformly across the target (case of global blasts) [59, 60]. Due to the influence of 
the FSI, light plates such as the one assessed here equilibrates instantaneously thus reducing the transmitted impulse. To consider 
pressure recirculation and to account for the FSI effects on reducing the impulse imparted to the plate, Eq. (1) together with the results 
of [40, 42, 43] were employed. 

Using the UFC code on spherical TNT air blast with a priori knowledge of the Hopkinson-Cranz scaled distance, the reflected 
pressure and impulse may be estimated. A TNT equivalency of 1.37 was assumed [61]. It was further assumed that the geometry of the 
charge would not affect the impulse imparted given the equivalent mass of the PE4 charges and that of the spherical TNT are the same, 
although the distributions of pressure may vary [18, 62]. For comparison, two MMALE models with rigid target boundaries were 
investigated to determine the pressure distribution and the generated impulse. The charge of the model was cuboid of 50mm 
square-based length and charge height of 15mm, while the second one had charge dimensions of 75mm× 75mm× 7.5mm. The 
standoff distance was the same as the CEL counterparts. 

As shown in Fig. 9a, except for the accentuated difference in the pressure distribution near the periphery of the plate (r/R ≥ 0.8), 
the distribution of pressure across the plate remains moderately constant and therefore may be presumed as uniform. The pressure 
build-up occurring around the boundaries is due to the pressure accumulation from fluid advection transversely, combined with the 
reflected pressure near the centre of the target surface which travels horizontally across the contact interface. This effect leads to the 
clearing of the blast wave, which is driven by the diffraction of the pressure wave due to the imbalance between the reflected pressure 
and the incident pressure rendering the diffraction to set up flow around the target periphery [5]. Around target edges, the diffraction 
of the blast wave occurs due to the imbalance of the two pressure gradients, namely the higher reflected pressure on the target front 
face and the lower incident pressure around the target edge [9]. 

The impulse density (impulse per unit area) of the two models are compared in Fig. 9b. 

Fig. 8. Schematic of MMALE model with (a) a flexible target (CEL) and (b) rigid target.  
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The numerical FE results as well as a comparison of the analytical SDOF model with the numerical one is illustrated in Fig. 10. The 
midpoint transient deformation of the plate subjected to the loading from 180g charge (Le = 75mm, he = 5mm) is also compared 
against the MDOF model in Fig. 11, and due to loading from Le = 50mm and he = 10mm. With a value of ω12 = 2.66 × 105, the 
deformations become harmonic and the peaks of the transient displacement are normalised. 

As observed, the Numerical FE results compare favourably against the Analytical models with the MDOF system. Clearly, the major 
contribution to the midpoint displacement of the plate arises from the first (fundamental) mode while the higher modes A4(t) and A6(t)
have a less pronounced effect on the total displacement. Thus, the mathematical treatment with three degrees of freedom can accu
rately estimate the response of the plate. With the inclusion of higher modes, the average peaks of the deformation field reduce. The 
averages of the peaks in the midpoint displacement curves are compared in Fig. 10c and the plate profile at the second maximum peak 
is illustrated in Fig. 10d. With the increase in the charge height, a bulging occurs above the conical profile of the plate similar to the 
cases of localised blasts, while becoming more discernible with the increase of the charge height to 10mm. It is recognised that the 
generated pulses from the presumed charge configuration induce significant peaks in the displacement time history. It should however 
be emphasised that, by considering high strength armour steel materials, the material response is rendered purely elastic and plastic 
deformation would not occur. To examine the realistic elasto-plastic response, the results can be coupled with those of the rigid, 
perfectly plastic plates [63-67]. The reader is referred to the Ref.’s [68, 69] for the methods of combining the two. The reselastic 
load-deformation curves for a structure made of an elasto-plastic material may thus be idealised by separation of the two into an initial 
elastic response, followed by a perfectly plastic one. The validity of the mathematical model at such amplified deformations further 
demonstrates the capability of the FVK expressions and, in turn, the derived theoretical solutions, to predict a wide spectrum of the 

Fig. 9. (a) Distribution of the instantaneous pressure from the gauge points across the target plate, compared against the uniformly distributed 
pressure pulse, while (b) draws a comparison of the impulse density i∗ (impulse per unit area) induced by cuboid charges of 50mm and 75mm 
lengths. The first and second parameters of the legend in (a) represent the explosive height he and the length of the charge L, respectively. 
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transient deformations due to pulse pressure loading for practical applications. 
The differences between the peaks at some points, as well as the frequency of vibrations, may be due to the factors as follows. First, 

in the analytical model, a rectangular profile was prescribed to the pulse shape (representing impulsive loading), while the 

Fig. 10. (a) Transient deformation of FE models at the plate centre W, with Le = 75mm and 10mm he = 10mm (broken lines) against the model 
with Le = 50mm and he = 10mm (solid line), with FSI coefficient 0.73, (b) validations of the analytical SDOF model against FE model with 
22.75MPa unadjusted overpressure, (c) numerical FE results of average peaks of the midpoint displacement Wavg against the charge mass. The plate 
profiles of the models are presented in (d) 

Fig. 11. Comparison of the first three fundamental modes of the analytical MDOF model with the numerical FE one for (a) he = 7.5mm and (c) he =

10mm, as well as the transient deformation of the associated higher modes from analytical model shown in (b) and (d), respectively. 
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aforemonitored pulse shape from the FE models was exponential. It has been argued that [6, 53], in some circumstances of the distal 
blasts, the pressure load is deemed as dynamic, rather than impulsive, leading to the significant difference in the overall response due 
to the pulse shape effects. However, no explicit solutions exist on the mathematical treatment of the nonlinear elastic plate or effective 
correlation parameters such as to unify the pulse shape-dependent response curves virtually into a single one. Furthermore, evaluation 
of the blast nature requires investigations on pressure impulse diagrams which is beyond the scope of this study. Nevertheless, similar 
discrepancies exist when a comparison is made between vibration frequencies of plates examined experimentally and the FSI-FE 
models [53], with the measured actual frequency of vibration using the digital image correlation (DIC) being lower than the pre
dicted FE one. Discrepancies in the experimental, analytical and numerical techniques, however, are partly inherent in the modelling 
techniques [70]. 

Second, it should be recognised that the estimated values of pressure in Table 2 are estimates based on the empirical results of 
Kingery-Bulmash and based on the spherical TNT detonations, a plethora of values nevertheless exist on the TNT equivalence of 
charges. Given a certain charge mass and diameter, the axial impulse imparted to the plate is affected by the geometry of the charge, i. 
e., the truncated cone (TC) charge shapes yield lower impulses than the inverted truncated cone (ITC) or cylindrical charges [62]. 
However, even at lower impulses, the TC plates capped while the ITC of the same charge mass induced higher impulse with no capping. 

Finally, the FSI effects and pressure recirculation at the boundaries can affect the results. The reduction of the transmitted impulse 
to the target is brought about by the increased charge radius to plate length ratio [43]. 

5. Concluding Remarks 

This paper deals with explicit solutions for the nonlinear elastic vibration of isotropic circular plates subjected to pulse pressure 
loading, which was assumed as a single term of multiplicative decomposition of its temporal part and spatial part. The temporal part of 
the load was considered as a rectangular pulse. As for the spatial part, a uniformly distributed pressure was considered replicating a 
global blast scenario. 

Based on the Föppl-Von Kármán theory and ignoring the viscoelastic effects, analytical and numerical Finite Element models were 
proposed and analyses carried out in three folds. In the first, exact analytical solutions were derived for the case of pressures imparted 
statically, by using the Frobenius method, as an infinite hypergeometric series with the expression of each mode written recursively of 
its prior modes. The displacement field and hence the stresses are satisfied with only 6 number of terms. In the second fold, in the event 
of dynamically transmitted loads, by using the Variational Ritz-Galerkin method and the Lindstedt Poincaré technique, the form of 
PDEs were reduced to a set of coupled ODEs and solved numerically in the two phases of motion corresponding to forced and free 
vibrations. For an SDOF system, explicit solutions were derived. 

The third fold entailed numerical 3-dimensional FE models to simulate pulse pressure loading of distal blasts in three parts. In the 
first, the influence of the element type on the convergence was examined using the pure Lagrangian method, the convergence was 
satisfied for the shell elements with an element length/thickness ratio of 1.25. Secondly, for the circumstances where the FSI effects can 
be ignored, parametric stuies on the influence of the plate thickness and loading magniturde were performed using the pure Lagrangian 
analyses and the peak captured displacement was compared in each case against that of the analytical model. The final part constituted 
a basis for the determination of the transient displacements in practical applications involving the FSI phenomena, but for the 
impulsive type loadings, in which case, a number of coupled and uncoupled MMALE models were examined representing distal blasts 
generated from PE4 with various charge masses. The distribution of pressure and impulse across the plate were examined. 

A comparison of the analytical SDOF and MDOF models with the numerical ones revealed strong corroboration between the two, 
with a good degree of precision in peak transverse displacements when considering the MDOF system with three degrees of freedom. It 
was observed that the amplitudes of residual vibrations are less strongly correlated. It was found that while the higher modes 
contribute to residual vibrations, their influence is insignificant in the estimation of the maximum transverse displacements. It should 
also be appreciated that the frequencies of vibration obtained through FE methods and analytical formulations, although discordant at 
points, are in satisfactory synchrony. However, the vibration frequencies of various numerical modelling techniques are inherently 
distinguishable from those caprured by the DIC experimental ones. 

As a final remark, the assumptions made in this study on certain aspects of the model or loading such as disregarding the influence 
of the pulse shape or the negative phase of the blast load limit the dynamic study to the circumstances of moderate deformations, 
impulsive loads and moderate scaled distances. However, the mathematical treatment of blasts with negative phase and various pulse 
shapes may be examined using simplified models previously proposed [8, 9, 37], or using approximate numerical analyses. This is due 
to the fact that deriving explicit closed-form solutions for the nonlinear elastic response of plates subject to exponential pulses, 
whereupon the influence of the FSI for dynamic load types may be examined, is extremely cumbersome. 
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Appendix A 

A.1. The components β1 − β3 are written as 
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, (A. 1 a-c)  

The first three modes A2 − A4 of the static transverse displacement field are 
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Substituting Eq. (37) for A0 in (A. 2a) and then in (A. 2b-c) or using Eq. (35), the value of each mode is derived independently. While 
the coefficients of the function f(r) are expressible as 

a0 = −
12(1 − ν2)

R2 C2, b0 =
EhP2

0R4

4096D3
1
, (A. 3a-b) 

A2. Dynamic response 
In a similar spirit to the case of static loading, the components of the stress potential function may be derived by using the Frobenius 

series. We assume a hypergeometric series for stress potential multiplicative of the spatial and temporal parts as: 

ϕ(t, r) =
∑∞

k=0
ϕ̂k(t)r

k+q (A. 4)  

Substituting Eq. (A. 4) together with Eqs. (12a, d) into Eq. (13) with some algebraic manipulation, the left-hand side of Eq. (13) yields 
− 2/E[(k + q)2

(k+q − 2)ϕ̂k (t)rk+q− 2] while the right-hand side is furnished to 
∑(2n)

j=0
∑(2n)

i=0 AiAjri+j+2 . Since both indices i, j assume even 
numbers, it transpires that the index power of the stress potential function is even, leading to q = 4 from the indicial polynomial and k 
taking even numbers. The stress potential function is therefore recovered as in the expressions (41) and (42). 

The components of the nonlinear function arising from the influence of membrane stresses read: 
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(A.7)  

where the coefficients a1 − f1are 

a1 =
9R14(80 − 13R(ν + 1))

4480((ν + 1)R − 4)
, b1 =

(245 − 41R(ν + 1))R12

840((ν + 1)R − 4)
, c1 =

(108 − 19(ν + 1)R)R10

480((ν + 1)R − 4)
, d1 =

(64 − 11(ν + 1)R)R10

480((ν + 1)R − 4)
e1

=
(50 − 9R(ν + 1))R8

240((ν + 1)R − 4)
, f1 =

(16 − 3R(ν + 1))R6

192((ν + 1)R − 4)
, (A. 8a-f)  
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