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Abstract: In this paper, we present initial results from our distributed edge systems research in
the domain of sustainable harvesting of common good resources in the Arctic Ocean. Specifically,
we are developing a digital platform for real-time privacy-preserving sustainability management
in the domain of commercial fishery surveillance operations. This is in response to potentially
privacy-infringing mandates from some governments to combat overfishing and other sustainability
challenges. Our approach is to deploy sensory devices and distributed artificial intelligence algo-
rithms on mobile, offshore fishing vessels and at mainland central control centers. To facilitate this,
we need a novel data plane supporting efficient, available, secure, tamper-proof, and compliant data
management in this weakly connected offshore environment. We have built our first prototype of
Dorvu, a novel distributed file system in this context. Our devised architecture, the design trade-offs
among conflicting properties, and our initial experiences are further detailed in this paper.

Keywords: edge computing; privacy preservation; artificial intelligence; file systems; machine
learning; digital forensics

1. Introduction

Numerous Internet of Things (IoT) devices are being deployed in geo-distributed
locations far outside traditional computing facilities [1,2]. Examples include video surveil-
lance cameras, home security devices, activity trackers, logistic tracking devices, and smart
factory equipment. High velocity, high volume, and heterogeneous data are continuously
produced by these devices at an unparalleled scale. A key challenge is to analyze and
obtain trusted, timely insight from these data streams.

Distributed system architects must carefully consider structuring alternatives to cen-
tralized on-premise or public cloud services for data analysis. Moving computations closer
to data sources is likely a better option than federating and centralizing all this data [3,4].
Hence, edge computing can supplement a two-tier centralized architecture by providing
an additional computing infrastructure closer to the data sources, residing between IoT
devices and centralized back-end services. Edge computed data can still be federated for
further analysis and storage at the central locations, but now pre-processed, filtered, and
transmitted in reduced volumes.

Edge devices can produce data that are too voluminous to transmit over edge net-
works, and too heterogeneous to adhere to a unified set of data management rules. For the
purpose of tackling this challenge, we introduce the Dorvu file system, a storage system
that can be extended with policies and fine-grained access control to solve problems of
bandwidth, privacy, and compliance.
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The Dorvu file system is part of the larger Dutkat [5] framework, comprising a
distributed Artificial Intelligence (AI) hybrid cloud and edge system. This system is
motivated by the need for sustainable harvesting of resources from the sea, including
commercial fisheries in the Arctic Ocean. The world’s global population depends on food
obtained from the sea, and this dependence is growing [6]. This can become problematic
because the global sea ecosystems have been and are currently under serious attacks by
human activities and might not be able to meet this growing demand. Challenges include
overfishing and depleted fish stocks, destroyed or polluted sea ecosystems, increased
water temperatures, and lack of management and control regimes for sustainable fisheries.
According to the United Nations Office on Drugs and Crime, fishery crimes are frequently
transnational and organized in nature, and include illegal fishing, document fraud, drug
trafficking, and money laundering [7]. As a result, several governments have proposed
surveillance systems to track the activity of workers on fishing vessels [8–10], which has
been met by some with criticism and claims of privacy intrusion and mass surveillance [11].
The Dutkat framework aims to provide some of the proposed sustainability benefits [12],
while preserving the privacy of a fishing vessel crew.

In this work, we are addressing and presenting some specific parts of the envisioned
Dutkat system. Specifically, the main contributions are (1) a system of how to perform
privacy-preserving analysis of continuously produced data are conceptualized, incorporat-
ing challenges such as potentially poorly connected fishing vessels moving about in the
Arctic Ocean, (2) we show how multi-sensory data are handled, and we showcase how to
use the Dorvu file system to alleviate decision-making around issues like what type of data
to store, in what format, and how to mandate access control and encryption on it. Overall,
we present an alternative approach to existing surveillance programs [9,10] by replacing
human inspection of video footage with a combination of automated processing of sensor
data, and access control policies enforced on the storage layer at the time of data creation.
We conjecture that incorporating Dorvu in this process better preserves the privacy of
people working in proximity to edge sensors, through flexible, fine-grained data access,
and storage policies that can retain sustainability-relevant data while discarding privacy
intrusive footage, resulting in a less invasive system.

The rest of this paper presents the motivation behind our edge analysis system, the
architecture of our cloud and edge hybrid storage system, and the implementation of a
prototype of the Dorvu file system. Particular focus is on edge nodes and our design choices
targeting a distributed file system that tolerates failures, survives adversarial attacks, and
meets compliance requirements.

2. A Mobile AI Edge System at Sea

The Dorvu storage system is intended to serve as a storage layer in the larger Dutkat [5]
project revolved around monitoring professional fishing activities in isolated, offshore
areas, while retaining the privacy of those working in close proximity to areas subject to
surveillance. Its design involves installing robust and safe monitoring devices and related
software on board commercial fishing vessels with licence to fish in Norwegian parts of
the Arctic Ocean. Each such vessel has been granted a specific quota from the government
detailing the amount of fish allowed to catch, the fish species, fish sizes, and similar.

Video surveillance of fishing vessels to combat sustainability issues and enforce fishing
quotas has been proposed by some governments [8,9] and explored by others [10]. The
Dutkat system is designed to provide some of the sustainability benefits claimed by the
proposed national surveillance systems, without infringing on the privacy of workers on
fishing vessels.

2.1. Geo-Distribution

The overall architecture of Dutkat reflects the widely distributed and mobile nature of
this application domain. We will first detail the horizontal dimension of the architecture,
which reflects physical distribution among three separate components: (1) one or several
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back-end control centres, (2) a collection of traditional computers on board each vessel,
and (3) IoT devices primarily located outside on ship decks. We consider each of the
participating large fishing vessels as individual edge nodes in a hybrid cloud computing
system, where each edge node has sufficient power facilities and indoor space for deploy-
ment of a collection of computers. These computers will for security and fault-tolerance
be configured to only run local Dutkat communication, storage, and analysis software
parsing locally produced data from the IoT devices outside. Consider such a configuration
as implementing certain features of a digital version of a local fishing inspector, which
will act as an algorithmic intermediary between the IoT devices on deck and the back-end
centralized control centres on mainland.

The Dutkat software must be safe-guarded and stable for 24/7 operability, while at the
same time ensuring compliance and non-invasion of the daily operations of the vessel crew.
Particularly, AI analysis performed at the edge must be able to detect local anomalies and
activities, and consequently persist the relevant ground truth data locally while sending
relevant insights to the mainland operational centres for further analysis. Data persistence
and analysis being performed locally aid in preserving the privacy of the vessel crew.

A hybrid architecture is needed, with edge nodes connected to centralized structures.
The problem at hand is complex and requires input by more than just insights from a
single fishing vessel. For instance, one algorithmic trigger that requires input from several
edge nodes is the comparison of reported catch from different fishing vessels in the same
offshore proximity. Anomalies can be detected through such comparisons, one example
being vessels reporting disproportionate amounts of fish caught relative to other vessels in
the same area and their allocated quota.

A main problem in this domain is connectivity, since digital communication between
these mobile vessels and mainland operational centres is primarily facilitated by satellites.
We conjecture that, by moving computations closer to the data sources, the amount of data
needed to transmit over satellite links can be reduced to a practical level. This is enabled
by edge computing where local data filtering, analysis, and storage can be carried out in
real-time.

Evaluating and filtering data streams close to their sources are well-known concepts
for scaling distributed systems producing large quantities of data [13]. By this upstream
evaluation structuring approach, algorithms can parse and analyze entire streams of data
on the vessels, without adhering to the limitations of low-bandwidth satellite links.

2.2. Vertical Distribution

The vertical dimension of the Dutkat architecture determines separation of concerns
at the individual horizontal components. The relationship between computers running
Dutkat software at back-end control centers and on the edge is illustrated in Figure 1.
Overall, (1) a persistent storage layer is in the bottom, (2) followed by a data transfer layer,
(3) a data consumption layer, and finally (4) a user interface layer. For edge deployments,
the interface layer can be omitted, and IoT devices can interface with the storage system as
data producers, as illustrated in Figure 1. The data storage layer will be further detailed in
Section 3.

2.3. Multimedia Data Pipeline

Figure 1 shows the generic distribution of data and its relation to the software compo-
nents in Dutkat. Specifically, the system is deployed to store and transmit multimedia data,
like video and images. Edge nodes generate heterogeneous multimedia data, which can
vary in content, type, and sensitivity level (i.e., the amount of private information contained
in the data). For example, a collection of recordings from an edge video surveillance system
may vary in sensitivity level if only a subset of the collection contains footage of people.
Similarly, users responsible for generating data may have consented to different data
sharing policies, while still contributing to the same dataset. At the same time, data con-
sumers may have varying rights to view this data. In the scenarios presented in Section 1,
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it may vary what data local law enforcement, fishing crew, and other interested parties
may consume. This results in a system of several edge nodes collaborating to produce a
multimedia dataset, consumed by several nodes, both in cloud and edge deployments that
differ in their rights to view various parts of the whole dataset. Privileges can be enforced
throughout the dataset by applying fine-grained access control mechanisms on individual
files in the set.

File storage

File synchronization

 Analysis

Graphical user
interface

Persistent storage layer

Data transfer layer

Data consumption layer

User interface layer

Raw data
Filtered data

Restricted data
Secret data

Meta-code

Cloud environment ("Control center")

File storage

File synchronization

Edge environment (fishing vessels)

Satellite broadband

Potentially
several
fleeting
connectionsData transformation

and classification

Data production

IoT devices

...

Figure 1. The horizontal and vertical distribution of data, software components, and devices in the
Dutkat architecture.

Our system facilitates real-time decision-making from land observers, based on data
generated from edge devices. This is a process that involves transmitting as much mean-
ingful data as possible from edge nodes to land nodes. This process is restricted by the low
bandwidth that is expected in edge environments, such as when using satellite communica-
tion. Dutkat and the Dorvu file system are designed to support a model of decision-making
in which the semantic meaning extracted from multimedia recordings is of highest priority
to expend bandwidth on transmitting, and the ground truth data, i.e., the full-sized media
files, is of less importance and may be retrieved eventually, when the network tolerates it.
An example of the extraction of meaningful data from a larger multimedia file is shown
in Figure 2. Here, the smallest significant data item extracted from a video file is the
acknowledgement of the existence of a file, representing an event. Extracted metadata
and still images from the video provide greater detail at the expense of more bandwidth.
Finally, the original video file gives an overview of the entire event but is not available to
all parties.



Information 2021, 12, 430 5 of 19

Video

Still image (frame)

Censored image

Metadata

Metadata row

Ack. of event

Edge
environment

User

Ack. of event

Metadata row

Censored image

Forensics
Ack. of event

Metadata row

Metadata

Still image (frame)

Video

Figure 2. Example of a multimedia data pipeline transmitting information extracted from a video
recording from an edge device, to two parties with differing privileges to view the data.

3. System Properties and Architecture

The overall architecture of our distributed file system is based on a central hub
structure with a cluster of file servers connected with multiple mobile edge nodes, each
with local file storage capacity. This resembles a client–server star network with clients on
the edge perimeter and servers in the centre. Another resemblance is with the distributed
file system Coda [14] with back-end server clusters supporting numerous light-weight
personal computers. Of particular interest is the support Coda has for disconnected
operations, a situation still plausible in an offshore environment.

The centralized server hub is resource-rich and can use existing public cloud file
systems supporting efficient, reliable, and centralized storage of multimedia data, sensor
data, and machine learning results from the edge nodes. The edge nodes are less resource
rich and are psychically located on active fishing vessels. When along the coast and near
the shore, communication options include cellular networks and radio networks, but when
more distant and offshore, satellite communication is the main option. Novelty in our work
is primarily related to the edge nodes, and how and what they communicate back to the
mainland-located servers.

3.1. System Requirements

There are special application-specific demands that need software tailoring and cus-
tomization. The file system is intended for use in an area with very limited computational
and communication resources since its mobile edge clients consist of fishing vessels moving
about in large ocean areas. Communication in such a widely geo-distributed mobile edge
computing environment is through partially disconnected, low-bandwidth polar orbit
satellite links. Since the fishing vessels in our system operate in the far north of the globe,
the geo-stationary satellite solutions we previously utilized are not adequate as they do
not cover the northernmost hemisphere [15]. Add to the complexity that this distributed
file system must be scalable, secure, fault-tolerant, and compliant with particularly the EU
General Data Protection Regulation (GDPR) privacy regulations [16].

Special properties of the select problem domain motivate the design of our system
as follows. First, we need to be able to continuously capture and store video and sensor
data for fish management, control, and forensics purposes. An example is a continuously
captured surveillance video of equipment stored on the deck of a fishing vessel. This is
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a resource demanding file storage challenge, and the file system should be used to store
video sequences when specific activities or events are detected, and apply access policies
based on the contents of the events. Video data are in any case high-volume data, which is
challenging to reliably transmit to mainland operational surveillance and control centers
from the offshore mobile fishing vessels. The bandwidth delivered by satellite-based
solutions is not adequate to support live video streaming, even more so for networks based
on the low-frequency L-band.

Next, we need to provide redundancy for fail-safe storage of vital data, through data
copies at multiple local disks. The replicas are physically distributed on board each vessel
to reduce the probability of data corruption, loss, or unavailability. Redundancy and
update techniques similar to the Google file system [17] are adopted, with a master control
node typically administering three replicas updated in a pipeline fashion. The master node
will raise a flag, i.e., transmit a signal to the mainland operational centre, if the replication
threshold is below a certain level. Additionally, since the master node might be a single
point of attack or failure, we provide primary-backup replication with a hot stand-by node
ready to take over. Hot stand-by implies that a sequence of the latest data written to disk is
kept in main memory. Consider this as a large ring buffer whose content will be streamed
to disk upon fail-detection and fail-over.

The Google file system and similar master-based distributed systems [18] do not
provide such a replication due to complexity with consistency, impact on cost, and per-
formance, the deployment in a trusted enterprise environment, and the observation that
master node failures seldom happen. In our case, executing on the edge in a less trusted
environment, we cannot tolerate a single node failure weakness in the critical data stor-
age path.

The hot stand-by keeps a large enough sliding window of data to be backed up in
case of failure so that a primary node failure will be transparently handled. Notice that
inconsistency problems among the data storage replicas or master replicas are to a large
extent avoided since data to be permanently stored on the edge nodes are tagged with its
timestamp and is immutable. This way no read-write conflict will appear.

3.2. Data Classification

Fail-safe storage implies that there are very strict access policies affiliated with some
of this data. We must therefore distinguish between and classify data according to different
compliance, safety, and liveness properties. That is, we provide different guarantees with
regard to data reliability, availability, privacy, and confidentiality based on how the data
are classified. Data must be classified as either RAW, FILTERED, RESTRICTED, or SECRET.
As will become apparent, this classification differs from traditional security classification
schemes, as it supports implementation of non-functional aspects other than security. This
classification and its various properties are explained in the following paragraphs.

Data tagged RAW contains the continuous stream of data produced by video cameras
and sensor devices. Select crew members on board the vessel where the data are produced
can gain access to this data in real-time. This can be through real-time streaming to
display monitors, or it might be made available as a configuration option if some of
these data are persisted on local disks. No encryption of the data is mandated, and only
privacy-preserving aspects must be handled. This might involve the fact that vessel crew
members grant consent to store and access this data, or that software applies masking of
any personally identifiable characteristics.

FILTERED data consist of processed select RAW data that can be persisted to disk and/or
used as input to local analysis applications. Such FILTERED data can for instance contain a
video sequence with human activities, or sequences of video captured upon other sensory
input. Depending on its content, it can be enforced that these data are modified before
persisting to disk, in order to be used in analysis applications.

Data tagged RESTRICTED is not accessible by any of the crew on board the vessel and
is intended for surveillance operations. These data contain specific results obtained from
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local edge analysis software processing either RAW or FILTERED data. This classification also
indicates that stricter access policies need to be applied, since data might be annotated with
additional information from analysis software and because it is expected to be transmitted
over network to a central control center at some point. Examples of this type of data include
output from edge located machine learning applications analyzing activities at the fishing
vessels, select I-frames from specific surveillance videos, and other sensor data detecting
for instance amount of fish caught, fish types, their average size, and relative distribution
among species.

The purpose of this data classification is to provide context for central control centres,
and extract semantic meaning from a larger data set generated at edge nodes. This serves
two purposes: (1) reduce the amount of data transmitted, to support lower bandwidths,
and (2) transmit as little data as required to provide meaning and perform forensics. This
is to apply a principle of minimal privilege of access to parts of a live surveillance feed, as
only the data deemed necessary to provide ground truth to some observation or detected
event will be transmitted from the edge node.

The goal of providing these data overlaps with a goal of the overarching Dutkat
system [5], which is to provide a probabilistic and evidence-based approach to inspection
of fishery activities, and to shield crew members from being subjected to continuously
transmitted surveillance.

SECRET data are a complete log of RAW data that is encrypted upon storage and
persisted in a highly fault-tolerant manner. These data must be stored locally on the edge
nodes due to its sheer volume, and access to it is mandated by very restricted access policies.
Notably, SECRET implies that nobody on board the fishing vessel might access it, and the
data are immutable and cannot be altered or deleted. These data can optionally be pre-
processed upon storage, blurring out personal identification characteristics. The data can
only be accessed and decrypted by a trusted third-party with legal, explicit authorization
to do so. This can be a fishery inspector or other forensic parties inspecting a vessel with
access permissions according to existing laws and regulations.

In general, we build this distributed file system adhering to the proportionality prin-
ciple in a legal context striking a balance between human privacy rights and the claimed
sustainability benefits of video and sensory surveillance of fishing waters [12]. Invading
surveillance on a physically limited area as a trawler deck impossible for the vessel crew
to avoid might violate privacy principles well grounded in constitutional, national, and
international laws. One example of this is that people in a video sequence can be personally
identified while working.

4. Implementation Details

The data plane described in Section 2.2 is implemented by the Dorvu filesystem,
to achieve support of heterogeneous data formats and pre-existing tools for analysis
and surveillance, through POSIX-compatibility. In this section, we detail some of the
implementation details of our prototype.

Customization and adaptability are core aspects of the architecture, where the software
aims to provide a basic layer of traditional data storage, with the possibility to interposition
and add extra functionality modules between applications and the file system storage. We
refer to the modules attached to a file as its meta-code, similar to the work done in [19]. This
provides a means for transparently adding custom software modules in the critical path of
data storage.

The version of Dorvu implemented for this paper includes (1) encryption as a mod-
ule between the user and disk, (2) file versioning based on user access rights, and (3)
an interface for a user to configure the encryption module and access control. Addition-
ally, we investigate the performance overhead of this functionality and the userspace file
system platform.

Interfacing with the Dorvu file system can be listed in three steps, beyond reading and
writing as if to a local and un-encrypted file system: (1) Users can define access rights for
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their own files, indicating identities with public key signatures; (2) When a user creates
a file, a corresponding configuration file is created by Dorvu. This defines the available
versions of a file to the members of listed access groups; (3) When writing to a file, its file
extension, referenced in its corresponding configuration file, decides what access control
and encryption the file system will apply to the newly written data.

4.1. FUSE

Dorvu is implemented as a File System in Userspace (FUSE) application [20]. FUSE is a
library and Linux kernel module that enables user-level programs to function as mountable
file systems, by calling the FUSE kernel module via the FUSE userspace library. In short,
a FUSE daemon can service Linux Virtual File System (VFS) calls despite running with
userspace privileges. Dorvu is implemented with the Rust programming language, using
the Fuser library (https://crates.io/crates/fuser, accessed on 12 October 2021) to interface
with the FUSE kernel module. Fuser provides a userspace library that is implemented
separately from the FUSE reference library libfuse.

Dorvu implements storage by mirroring the contents of a directory on a local file
system. By using Dorvu while it is mounted to a local folder, the mirrored folder will be
populated with internal files and encrypted data files. These files can only be read through
Dorvu, or by means of manual decryption.

4.2. File Definitions

Dorvu handles three different types of files internally. Interfacing with Dorvu as a
regular file system is done by creating, writing, and reading files. These files of arbitrary
content are referred to as data files in the context of this implementation. Creating a data
file automatically creates an auxiliary configuration file. A data file must always have a
configuration file in order to be visible in a Dorvu directory listing. This file contains a
JSON specification of the different available versions of a file (referred to as layers in the
file), in addition to a path to the access group definition to use for the corresponding data
file. The group definition file is the second type of auxiliary file used in Dorvu. Access group
definitions in these files are listed in JSON and require a name and a list of public key
SHA-256 signatures. Examples of these files are shown in Figure 3.

Filtered

"groups": 
 [{"name":"Filtered",
  "members":[3JeTNO1uzwc ...]},
 {"name":"Restricted",
  "members":[1k1uejySuAc ...]},
 {"name":"Secret",
  "members":[graUnljYk5b ...]}]

Group definition file my.groups

Restricted

Secret

Configuration file 01-07-21.config

Data file 
01-07-21.txt

"12"

Filtered SecretRestricted

Data file 
01-07-21.jpg

Data file 
01-07-21.jpg

{"layers": [{
    "id":0,
    "access_groups": ["Filtered"],
    "extension": "txt",
    "size": 2,
    "keys": [{"name": "3JeTNO1uzwc",
             "key":"675ksO.."} ..]
 
    }, {
    "id":1,
    "access_groups": ["Restricted"],
    "extension": "jpg",
    "size": 97, 
    "keys": [{"name": "1k1uejySuAc",
             "key":"fJ5Sd1.."} ..]
    }, {
    "id":2,
    "access_groups": ["Secret"],
    "extension": "jpg",
    "size": 110,
    "keys": [{"name": "graUnljYk5b",
             "key":"Op3Q11.."} ..]
    }]
"group_definition_path": "my.groups"}

Figure 3. Definition of a configuration file, which defines access rights for a single data file, with its
corresponding group definition file. The illustrated data file exists in three versions, one text file and
two image files.

https://crates.io/crates/fuser
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Data files are matched to their configuration files by their file stems (i.e., their file
names without any directories or extensions). Files are matched to a version defined in this
configuration by its extension, which is expected to be an integer matching the ID of a layer.
When listing the contents of a directory, every configuration file at the mirrored folder
corresponding to the working directory will be parsed in order to determine accessibility
and file extension. Every file version whose access group includes a given user’s identity
will be visible in the directory for this user. When multiple versions of the same file have
the same file extension, the version with the lowest identity is deemed redundant. If a user
has access to several versions of the same file with different file types, both will be listed, as
illustrated with a text file (.txt) and image file (.jpg) in Figure 4. File versions enforced by
access control and encryption are a generic implementation of the data classification scheme
overviewed in the system requirements in Section 3.2. With adequate meta-code modules
and appropriate access group management, the required data classification scheme for
Dutkat can be implemented in Dorvu.

myfile.txt
(size=10)

Public view User view

myfile.txt myfile.jpg
(size=10) (size=102)

Admin view

myfile.txt myfile.jpg
(size=10) (size=110)

Internal view

myfile.0 myfile.1
(size=10) (size=102)

myfile.2
(size=110)

myfile.config my.groups

Figure 4. Multiple views of the same directory based on several users’ differing access rights, with a
scheme similar to Figure 3.

As manually maintaining configurations for every newly created file can be time con-
suming and increase the chance of human error, Dorvu includes the concept of configuration
templates. A configuration template is a directory-wide configuration file that is applied
to every newly created file. This feature is introduced for ease-of-use; the expected usage
pattern of Dorvu is to set up file configurations before any automated data production
begins. In that case, the expected access control will be applied to newly created files
without the need for manual maintenance.

4.3. Encryption

With the encryption module implemented in Dorvu, files classified as SECRET are stored
encrypted by default, using the OpenSSL implementation (https://crates.io/crates/openssl,
accessed on 12 October 2021) of 128 bit AES-CBC. The AES key for a given file is encrypted
with RSA once for each user with access to that file, using their 2048 bit public key. A
base 64-encoded version of this encrypted AES key is stored in the file’s config, as shown
in Figure 3.

5. Experiments and Results
5.1. I/O Speed and Overhead Measurement

We want to gain insight into the potential overhead cost by adding Dorvu as an extra
layer of indirection in the critical data path for disk access. This experiment is performed by
measuring time taken for read and write operations on various storage back-ends. The test
environments are chosen to provide information about the expected sources of performance
overhead: the cost of encryption, the cost of file versioning and access control, and the cost
of utilizing a FUSE-based file system rather than a kernel-integrated file system.

https://crates.io/crates/openssl
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To observe the impact of encryption on read/write throughput, we deployed two
configurations of Dorvu, one with encryption enabled and one with all encryption fea-
tures disabled. To observe the costs associated with deploying a FUSE file system, we
implemented a simple FUSE application that forwards all operations to an ext4 file system,
labeled FUSE passthrough in our experiment. Our assumption is that the maximum possible
throughput of Dorvu will be that of the FUSE passthrough application, and that throughput
loss between the FUSE implementation and the ext4 storage back-ends will be outside of
the control and scope of our implementation. The difference between the throughput of
the encrypted and decrypted Dorvu configurations will indicate the cost of encryption,
and the difference between the decrypted Dorvu configuration and the FUSE passthrough
application will indicate the cost of file versioning and other metadata operations.

5.1.1. Experimental Setup

This experiment was performed on a desktop workstation with an AMD Ryzen 5 3600
6-Core processor running at 3.60 GHz, and a Kingston UV400 solid state drive storage
device, running Ubuntu 18.04. 8 randomly generated files of varying sizes were read and
written 10 times per storage environment. These file sizes are chosen due to our use-case
of storing media files suited for low-bandwidth network transfer, while we acknowledge
that system overhead and inefficiencies are more easily observed during longer operations
with larger files. Because of this, later experiments described in Sections 5.2 and 5.3 utilize
smaller files.

5.1.2. Results

The results from this experiment are shown in Figure 5. Results show that, for reading
our largest files of 64 MB and 128 MB, encryption was the biggest source of overhead. For
every other test case, however, the difference between the FUSE passthrough performance
and unencrypted Dorvu performance indicate that file versioning and metadata opera-
tions are the biggest software bottlenecks in Dorvu. We theorize that this is particularly
prevalent during file writes because these operations are split into smaller operations of
individual page sizes of 4096 bytes on our test system, resulting in worse performance
during writes than reads, relative to the baseline ext4 environment. We further hypothesize
that, while performance penalties associated with encryption are expected, file versioning
and metadata overhead observed in both read and write operations can be investigated
through software profiling, and reduced by further optimization of the file system.

We observe that costs associated with utilizing a FUSE implementation are negligible
in many of our observations, particularly during reads because the majority of overhead
relative to the ext4 environment is visible in the Dorvu environment, and not in the FUSE
passthrough application. It is worth noting that the measurements for both the FUSE and
ext4 storage deviate by up to 30% between minimum and maximum observations, but their
averages are within each other’s standard deviation for every file size in the experiment.

The FUSE passthrough comparison measurement was also performed in [19], but was
re-implemented for this experiment due to our adoption of the Rust programming language
and its Fuser library. A more thorough examination of the performance implications of
utilizing user-space file systems is given by Vangoor et al. [21]. They show that the
throughput penalty of using FUSE over ext4 can be as low as 5%, but that certain workload
characteristics can severely negatively impact this performance.

We conjecture that, for our use-case of optimizing for low-bandwidth transfer, utilizing
a FUSE implementation does not significantly negatively impact the performance of Dorvu,
while recognizing that a future use-case involving larger file sizes or different workload
characteristics may change this outlook.

5.2. Satellite Latency and Bandwidth

Network communication between edge components in Dorvu and the Dutkat system
will be provided by satellite broadband. Observations of the capabilities of the available



Information 2021, 12, 430 11 of 19

satellite network are key to designing communication models and delegating tasks to
edge and land components in the system. In addition to measuring the sustained average
bandwidth provided by the network, we measure the transfer speed of individual files
of specific sizes. This is both to emulate file system usage on the network, and to give an
indication of the impact of network latency when transferring small amounts of data.
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Figure 5. Time measured for read and write operations on varying file sizes and file system con-
figurations. The top graph indicates measurements of the write operation, while the bottom graph
indicates the read operation. The y-axis represents time spent on an operation, measured in seconds,
plotted on a logarithmic scale. The various files used for this experiment are listed on the x-axis,
represented by their file sizes. Plots include error bars, indicating standard deviation on the y-axis.

5.2.1. Experimental Setup

The experiment was performed by using the Linux curl command to download files
from a test GitHub repository with files generated for the purpose of this experiment. The
experiment is performed on the Iridium Certus 200 broadband satellite service, an L-band
non-geostationary satellite network claiming global satellite coverage and download and
upload speeds of up to 176 kilobits per second [22].

We connect to this network through a Thales Avionics VesseLink 200 broadband
terminal, consisting of an antenna and router for maritime use [23]. The experiment was
ran on an HP EliteDesk 800G6 workstation with the VesseLink providing its only connected
network. The equipment is stationed at the University of Tromsø, Norway and was tested
during cloudy weather conditions with drizzle, and each download was repeated five times.
This number of downloads was chosen to adhere to restrictions on network resources.

5.2.2. Results

The purpose of this experiment is to observe the capabilities and limitations of the
hardware and network available to our system when deployed in the targeted environment
and weather conditions. The experiment is not intended as an exhaustive evaluation of



Information 2021, 12, 430 12 of 19

the feasibility of satellite broadband, or the performance of this particular satellite service
in broadly defined use-cases, but to explore various network conditions that our system
must handle gracefully. These results will also be applied in the experiment described in
Section 5.3.

The resulting measurements from this experiment are shown in Figures 6 and 7. Note
that, in both of these figures, the y-axis follows a logarithmic scale, while the x-axis follows
no particular scale, rather representing a set of files. The standard deviation on the y-axis is
plotted as error bars.
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Figure 6. Observed time to download files at various sizes over a satellite broadband connection.
Time is represented in a logarithmic scale on the y-axis, to show average download times of the
various files, represented on the x-axis by their sizes. The average connection latency observed
throughout every established connection during this experiment is also shown.
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Figure 7. Observed download speed when downloading files of various sizes over a satellite
broadband connection. The y-axis represents download speed, measured in kilobits per second, of
the files represented on the x-axis. Additionally, the theoretical maximum network bandwidth as
defined by the system provider [22,23] is shown.



Information 2021, 12, 430 13 of 19

Results shown in both Figures 6 and 7 indicate the same expected observation that the
average download speed throughout the download process is lower when transmitting
smaller files. We assume this is a result of the time of initiating the file transfer connection
and cost of transferring metadata are proportionally more significant the smaller the
payload. Some storage systems are designed to handle and distribute large amounts of
small files specifically, to alleviate weaknesses of existing protocols in this use-case [24,25].

It is observed in Figure 7 that the achieved download speed is considerably lower
than the network maximum, which can be influenced by several factors, such as weather
conditions, relative satellite location, and network traffic [26].

5.3. Machine Learning Workloads on the Edge vs. a Centralized Hub

We argue that analysis should be performed on the edge to preserve privacy. Addi-
tionally, based on our end-to-end satellite communication experiments in Section 5.2, we
conjecture that transferring raw video data from the edge nodes to a centralized mainland
hub has its performance limitations. We would therefore like to evaluate such a centralized
system to see if it is feasible. The typical workload in our fishery use-case is activity recogni-
tion based on video data to determine whether e.g., discard of fish has occurred. Therefore,
we will test if a centralized system could work based on an activity recognition workload.

In order to evaluate the throughput of a centralized system, we focus on the bitrate
required to run inference on videos in real time and compare against the average bandwidth
measured for the satellite connection. We send different levels of compressed video data
over our satellite connection and identify the top-1 video-level accuracy of models trained
on this data. We compress the video by reducing the resolution and/or reducing the frame
rate. We aim to see how the compression affects the accuracy of the machine learning
model chosen. If the accuracy decreases significantly from the base case (112 × 112, 30 fps),
then it is not feasible to send data over the satellite connection and the inference should be
performed locally.

If we use the best average results for bandwidth from Figure 7, we get an average
bandwidth of ≈35 kbps over the satellite connection. Given that the video files, on average,
are much smaller than 1 MB, this is a conservative estimate. The optimal bandwidth is taken
from documentation sheets for the satellite router [22,23]. The bandwidth required to send
data over the satellite connection should be lower than the average bandwidth measured.

5.3.1. Experimental Setup

In our experiments, we utilize a 18-layer R(2+1)D network, introduced by Tran et al. [27],
to perform action recognition. The network was pretrained on the Kinetics-400 dataset [28]
and then fine-tuned on the HMDB51 dataset [29]. The video data’s resolution and frame
rate are reduced to various degrees, while measuring required bandwidth. The network is
fine-tuned over 50 epochs and the weights from the epoch which gave the best validation
accuracy are kept. This network is then run on a test set giving the final accuracy in Figure 8.

We train on 16-frame clips, as was done during pre-training on the Kinetics-400 dataset.
If the frame rate is too low, we repeat the last frame until we fill the tensor. The frames
are consecutive and we apply temporal jittering while training. The video-level accuracy
is calculated by taking the average prediction of 20 different clips from the same video,
and then we choose the top-1 result. The bandwidth required for the different levels of
compressed video data was calculated by taking the average bitrate of all compressed
videos in the HMDB51 dataset.

We implemented the experiment using PyTorch [30], and the model was trained on
an Nvidia RTX 2080 Ti. The model was imported from the torchvision module. The
frames are extracted from the videos and are resized and combined into a tensor in the
batch generator. The frames are augmented randomly using horizontal flips and affine
translations before they are normalized according to the means and standard deviations of
the Kinetics-400 dataset [31].
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5.3.2. Results

We hypothesized that compressing data, in order to adhere to bandwidth restrictions,
would lead to lower accuracy for the action recognition model. As we can observe in
Figure 8, reducing the resolution results in a dramatic decrease in model performance.
Reducing the frame rate also decreases the accuracy, but not to the same degree. The
highest possible accuracy we achieve that requires a bandwidth lower than the average
bandwidth is at 43.81%, which is much lower than our highest accuracy at 69.3%. Assuming
we want a high-performing model, with results as close to state-of-the-art as possible (see
Figure 8), we conclude that performing inference on a centralized hub is infeasible. The
reason for the discrepancy in our highest accuracy and the accuracy documented in [27]
might be due to numerous factors, such as training time, different augmentation schemes,
learning rate scheduling, etc.
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Figure 8. Plot over top-1 video-level accuracy (y-axis) vs. bitrate required to perform real-time
inference (x-axis), including vertical lines indicating average and optimal bandwidth possible on our
satellite connection. The different colors represent different resolutions of the video data used in
fine-tuning the machine learning model, and the shapes are different frame rates. The horizontal line
represents the top-1 video-level accuracy achieved by fine-tuning on HMDB51 in [27].

Based on our experiments, upstream evaluation is a more realizable design option
for our application scenario [13]. As our system should support real-time monitoring,
we will choose the evaluation scheme and inference location based on the capabilities
of transferring results from edge nodes in real time. Hence, data should be analyzed
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close to its source with inference on video data performed on the edge, on board the
fishing vessel where the video camera is located. This design choice also complies with
the privacy-preserving design of the system, with the edge nodes performing privacy-
critical operations.

6. Related Work
6.1. Privacy-Preserving Surveillance

A surveillance system with built-in video processing and access control based on
video analysis was presented in IBM’s PrivacyCam [32]. This surveillance system provides
cameras with the capability to re-render an input video stream with features such as
persons or objects removed. Unedited output streams can be provided for authorized users.
Various techniques were applied in similar surveillance systems, for instance by removing
distinctive facial features [33], encrypting faces [34], or obscuring people based on specific
visual markers [35].

6.2. File Systems

Numerous systems provide encryption as a transparent file system feature or as
software on top of a traditional file system. Cryptfs [36] and its successor eCryptfs [37] are
cryptographic file systems included in the Linux kernel that provide encryption to files
located in local or remote file systems, by storing cryptographic metadata in headers of
individual files. Similarly, software like TrueCrypt [38], VeraCrypt [38] and Apple FileVault
provide a decrypted view of an encrypted directory mounted elsewhere in the file system.

Several projects provide cryptographic file systems implemented in FUSE. EncFS [39]
runs in userspace and mounts to a directory in a local file system and encrypts all data
written, storing encrypted versions of these files in a separate location. Gocryptfs [40]
is a similar project implemented in the Go programming language with the Go-FUSE
kernel bindings library. SecureFS [41] is a C++ FUSE project that aims to provide similar
features as EncFs and Gocryptfs to multiple operating systems. Common for these FUSE
file systems and Dorvu is that they are implemented as an overlay file system, providing a
layer of indirection before writing to a separate local or remote file system. The design of
generalized layered file systems and the technology that enables them on various platforms
are reviewed and discussed by Zadok et al. [42].

6.3. Extensibility

Architecting extensible software in the offshore domain resembles how we structured
our StormCast system [15,43], which further motivated the early mobile agent system
TACOMA [44] built for shipping code and state around in a network for remote installation.
Our current work utilizes the meta-code concept [19] for extending and customizing remote
nodes where remote software can be configured with mobile code.

Our previous Balava file system [45] was built with FUSE and meta-code for managing
computations that coupled multiple public clouds together transparently, and involved
data with confidentiality constraints. Meta-code as a structuring toolkit is used as in
Dorvu, but not in a weakly connected, mobile edge environment. Meta-code is used in
Balava for transparently gluing together a hybrid cloud system that interconnects private
environments with public clouds such as Microsoft Azure and Amazon Web Services.

6.4. Data Transmission

To avoid transmitting irrelevant and redundant data over the bandwidth-limited links
from the remote edge devices to the central cloud-based servers, we aim to apply several
data reduction mechanisms. By performing most of the analysis locally, transmission
of large amounts of data can be reduced. This is especially important for bandwidth-
hungry data types like images and videos. Multiple approaches have been explored for
reducing the amount of data generated and for reducing data transmission. For instance,
Gurrin et al. [46] propose a system that detects action in images and keeps only images
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where action is detected. Ji et al. [47] extract features from both the spatial and the temporal
dimensions by performing 3D convolutions, thereby capturing the motion information
encoded in multiple adjacent frames. Such approaches are used to reduce data, both for
storage, transmission, and later analysis. Further reductions can be achieved reducing
image or frame dimensions and sizes without losing important information [48], and
analyzing the trade-offs between better quantization and reducing the frame rate [49].

Compression of video data using machine learning is also something we investigated
and compared against in Section 5.3. Related approaches include Nvidia Maxine [50,51],
a recently developed tool for massive compression of video data for video conferences.
This application domain involves videos of faces with typically static backgrounds. It is
challenging to apply this approach to our application domain, with video data depicting
general activities because it requires large amounts of data to train an equivalent generative
adversarial network. Similar video analysis must be performed for privacy, e.g., avoiding to
show faces or objects that should for some reason be protected. For example, Fitwi et al. [52]
describe a system for masking private information in video frames from surveillance
cameras by doing detection and filtering on the edge. Moreover, D’souza et al. [53] describe
a similar system that uses object detection for surveillance camera video streams, and
whitelists classes of objects that should not be censored. Thus, such approaches will both
reduce bandwidth, but also provide support for privacy preservation. Neto et al. [54]
describe an edge-based system for smart city applications. They describe a system for
real-time processing of data that preserves privacy that also utilizes a workload balancer
to balance tasks across multiple edge nodes. However, this workload distribution is not
applicable for our application, since edge nodes are expected to be physically distant from
each other.

6.5. Centralized Data Analysis

We have proposed that the desired rate of data production in our system is larger
than the targeted satellite communication link can transfer in real time. Despite bandwidth
restrictions, it can still be advantageous to analyze data from multiple nodes and sensors,
and potentially in combination with additional data collected from third-parties, such as
sales notes and weather data.

Multimodal analysis of data are usually leading to better and more accurate results as
recent work shows but comes with additional costs regarding the hardware needed [55,56].
Especially, ensembles of experts models work well with multimodal data streams and
complex task analysis [57,58] which makes them a good alternative for the presented use
case. For future work, we can use pre-analyzed streams of data that will act as input to an
expert ensemble model in which each of the expert sub-networks will focus on learning
the specific patterns of that particular data stream.

7. Conclusions

We are developing a geo-distributed, loosely coupled AI system for surveillance of
fishing activities in the Arctic Ocean. The development and deployment of this system
come with several challenges, due to the nature of the data produced and the targeted
edge environment. For example, continuous production of multimedia data requires
privacy compliance and fault-tolerance, while the bandwidth of edge networks hinders
data transmission and real-time monitoring from non-edge components in the system.
We observe that our available satellite broadband networks are not suitable for real-time
video transmission for activity recognition, and we propose a system for analysis and data
storage on the edge to facilitate this.

We have presented details of a prototype of Dorvu, a geo-distributed file system with
support for fine-grained access control policies and software modules. Our prototype
demonstrates an implementation of encryption and file versioning based on access rights,
and we outline the expected I/O overhead of encryption and metadata operations associ-
ated with these capabilities. The deployed version of this system will be spanning edge
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nodes on fishing vessels out at sea connected with mainland centralized file servers, in
order to utilize a combination of data filtering, analysis, and access control, to serve as a
privacy-preserving alternative to manual video surveillance.
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