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Abstract 

Background and Purpose: Mild cognitive impairment (MCI) is a prodromal stage of Alzheimer’s 

Disease (AD), where neurodegeneration is not as considerable, thereby potentially increasing the 

effect of treatments. Therefore, highly sensitive and specific classification of subjects with MCI is 

necessary, where various MRI modalities have displayed promise. 

Methods: Structural, diffusion and resting state (RS) functional MRI analysis were performed on the 

AD (n=26), MCI (n=5) and healthy control (HC) (n=14) group. Structural analysis was performed 

via voxel-based morphometry (VBM) and volumetric subcortical segmentation analysis. Fractional 

anisotropy and mean diffusivity were estimated during the diffusion analysis. RS analysis 

investigated seed-based functional connectivity. Classification via support vector machine was 

performed to evaluate which MRI modality most accurately differentiated the groups. Multiple linear 

regression was conducted to evaluate the MRI modalities correlation with clinical assessment scores. 

Results: Classification of MCI and N displayed highest accuracy based on diffusion MRI, which 

besides demonstrated high correlation with clinical scores. Classification was equally accurate in 

AD, when using VBM or diffusion tensor imaging measures. Yet, more variance was explained by 

VBM measures in the clinical assessment scores of the AD group. 

Conclusions: This study highlights the potential of diffusion MRI in differentiating MCI from HC 

and AD. However, the results need to be interpreted with caution as sample size and artifacts in the 

MRI data probably influenced the results. 
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Introduction 

The increased lifespan of modern society, amplifies the risk of age-related diseases such as 

dementia.1 In 2015 alone around 47 million people worldwide have been affected by those.  It is 

expected to affect 132 million in 2050.2 The most common form of dementia is Alzheimer’s disease 

(AD) with 60-70% of all dementia cases.3 AD has a destructive impact on cognitive abilities, 

especially affecting memory function.4 The precise neurobiological mechanisms for the brain 

damage remain to be elucidated,5 but implicates amyloid-beta (Aβ) deposition and 

hyperphosphorylated tau-containing neurofibrillary tangles (NFT), that initiate synapse and neuronal 

damage and loss.4,5 Molecular imaging as positron emission tomography (PET) have contributed 

greatly to the understanding and diagnosis of AD. Where associations between AD severity and Aβ 

deposition,6 NFT quantity,7 and glucose hypometabolism.8 However, the invasive nature and 

comparatively high cost of PET, has increased the popularity of MRI as a imaging tool for exploring 

biomarkers.9 Structural MRI (sMRI) is exploited for assessment of grey matter volume (GMV) 

difference,10 which have identified atrophy of the medial temporal lobe (MTL) as a hallmark in AD 

patients.11 MTL atrophy is not as extensive in MCI patients, but advances with disease 

severity.11 Diffusion MRI (dMRI) involves the Brownian motion of water molecules,12 that 

enables the white matter integrity (WMI) to be evaluated, which is influenced by axon 

density, directional homogeneity of axons, axon membrane integrity, myelination, and inflammation 

as gliosis.12 Both MCI and AD patients display decreased WMI,13,14 with further extensive WMI 

decrease exhibited later in the AD continuum.13,14 Functional MRI (fMRI), which exploits Blood-

Oxygen-Level-Dependent signal,15 can be applied to investigate the temporal correlation of brain 

activity, referred to as functional connectivity (FC).16 MCI patients exhibits abnormal FC within 

default mode network (DMN) structures, such as the posterior cingulate cortex (PCC), angular gyrus, 

parahippocampal gyrus, fusiform gyrus and middle temporal gyri.16 These tendencies are similarly 

displayed in AD patients, but with severe abnormalities.17 Therefore, comparisons of multi-modal 
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MRI data, using sMRI, dMRI and fMRI, from healthy controls (HC), MCI and AD patients, could 

elicit group differences and thereby propose potential biomarkers for the differentiation and 

diagnosis of MCI patients. The study was designed to perform a multi-modal MRI investigation, to 

breed biomarkers and examine their relationship with cognitive assessments and their usefulness in 

classification using support vector machine (SVM). We hypothesized that GMV, WMI and FC 

would decrease with progression in the AD continuum. 

Methods 

Participants. In total we studied 45 right-handed subjects, who were diagnosed by neurologists at the 

Tiantan Hospital in Beijing. The group was comprised of 26 AD and 5 MCI patients and 14 healthy 

subjects. There were no significant differences in mean age among the groups, i.e., mean ± standard 

deviation for AD (64.5 ± 6.51 years), MCI (63.4 ± 6.89 years), HC (62.7 ± 3.54 years). 

MRI acquisition. All MRI data were acquired using a 3.0 T Phillips T Ingenia CX scanner (Philips, 

Eindhoven, Netherlands) at Tiantan Hospital in Beijing, China. The sagittal T1-weighted (T1W) MR 

images were performed by a three-dimensional turbo fast echo acquisition at subsequent parameters; 

Repetition time (TR) = 6.6 ms, echo time (TE) = 3 ms, flip angle = 8◦, field of view (FOV) = 256 x 

256 mm, matrix = 256 x 256, number of slices = 196, slice thickness = 1mm, scan time = 3.53 min. 

The diffusion tensor images were performed by a spin echo diffusion-weighted echo planar imaging 

sequence with the following parameters: 6 diffusion directions at b = 1000 s/mm2 for each direction, 

TR = 4 s, TE = 86 ms, flip angle = 90◦, matrix size = 85 x 85, FOV 193 x 193 mm, slice thickness = 

2.5 mm, scan time = 6.2 min. The functional data were performed via an echo planar imaging 

sequence with the following parameters: TR = 2 s, TE=30 ms, flip angle = 78◦, matrix size: 62 x 62, 

FOV:186 x 186 mm, slice thickness = 4 mm, scan time = 5.97 min. All MRI modalities were initially 

in Digital Imaging and Communication in Medicine format, which were transformed into 

Neuroimaging Informatic Technology Initiative format, via the dcm2niix command.18 
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Structural MRI preprocessing. The T1W images were preprocessed via FSL_anat,19 where the 

images were reoriented to the Montreal Neurological Institute (MNI) standard image MNI-152, the 

neck was removed, and bias-field correction was performed, to correct for intensity 

inhomogeneities.20 

Structural MRI analysis via Voxel-based morphometry. VBM was utilized as part of the structural 

analysis.19 To optimize registration, a study-specific template was generated, based on 15 subjects, 5 

from each group.21 For inference, non-parametric testing using 5000 permutations was performed.22 

For test-statistic threshold-free cluster enhancement (TFCE) was selected.23 Furthermore, multiple 

comparison correction (MCC) via family-wise error (FWE), was performed, as part of the statistical 

analysis via randomise and TFCE. Age and gender were used as covariates, to remove their impact 

on volumetric characteristics.24 Regions-of-interests (ROIs) were extracted from the overlap, 

minimum 60% overlap, between the significant statistical maps and the Harvard-Oxford Subcortical 

Structural Atlas and Harvard-Oxford Cortical Structural Atlas.25 

Subcortical segmentation analysis. Subcortical segmentation was performed via FMRIB ́s Integrated 

Registration and Segmentation Tool (FIRST).26 Seven structures were selected (left and right 

amygdala, hippocampus, putamen, left and right thalamus), selected based on indication of atrophy 

in the VBM analysis. The subcortical volumes in native space, were corrected for head size via the 

V-scaling factor (1.44 ± 0.13) produced by Structural Image Evaluation, using Normalization, of 

Atrophy.27 To test for significant group differences on the head size corrected subcortical volumes, 

analysis of covariance (ANCOVA) was executed in SPSS (SPSS, Version 25). ANCOVA enabled 

removal of age and gender effects impact on volumetric characteristics.24 Subsequently, post-hoc 

tests with Bonferroni MCC (0.05/18) were applied on the significant ANCOVA (p<0.05) results. 
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Diffusion MRI preprocessing. The images were corrected for eddy currents and motion artifacts via 

FSLs Eddy_correct.27 DTIFIT were used together with the diffusion images, mask, bvec and bval file 

to fit a diffusion tensor model at each voxel, thereby generating images with a diffusion measure as 

contrast.28 Fractional anisotropy (FA) and mean diffusivity (MD) were selected as diffusion 

contrasts. 

Diffusion MRI analysis. Tract-Based Spatial Statistics (TBSS) were used for the diffusion analysis. 

Where the most typical image, i.e., the image that demands the least warping to align with the other 

images was selected, to improve registration. The TBSS procedure generated an FA image, while the 

MD image was generated via tbss_non_FA.27 Subsequently, the FA and MD images were used in 

statistical testing using permutation based non-parametric testing with MCC, FWE and TFCE with 

2-dimensional optimization.27 Age and gender were used as covariates, as these influence diffusion 

measures.29 ROIs were selected based on the overlap, minimum 60% overlap, between the MCC 

statistical map and the International Consortium for Brain Mapping-DTI-81 white-matter labels 

atlas30 as well as the Johns Hopkins University White Matter Tractography Atlas.31 

fMRI preprocessing. The images were preprocessed via FEAT.32 The first five volumes were 

removed, increasing probability of obtained magnetic equilibrium.33 Furthermore, MCFLIRT  was 

selected for registration and motion correction together with spatial smoothing of 6 mm.19 These 

selections were based on best practice for the following preprocessing via Independent Component 

Analysis - Automatic Removal of Motion Artifacts (ICA-AROMA).34 Initially the data was 

decomposed into independent components (ICs) by FSLs Multivariate Exploratory Linear Optimized 

Decomposition into Independent Components.35 Next ICA-AROMA classified these ICs into 

motion/noise or neuronal signals, based on the ICs inherent high-frequency content, correlation with 
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realignments parameters, edge fraction and CSF fraction. ICs classified as movement associated 

were regressed of the of data.34 Afterwards, WM and CSF segmentations were utilized to remove 

WM and CSF signal from the image. Lastly the denoised images were high-passed filtered (<0.01 

Hz), to increase sensitivity and transformed to MNI space.34

Seed-based fMRI analysis. The PCC, Precuneus Cortex (PC) and the Hippocampus were selected as 

seeds and a mask of these structures in MNI space were created. The selected structures were 

selected as they displayed atrophy in the VBM analysis and part of the DMN. Next the timeseries 

was extracted from the structure masks and first-level FEAT analysis was performed and 

subsequently higher-level analysis were executed.19 Conclusively, permutation based non-parametric 

testing was performed to test for group differences. The MNI152_T1_2mm template was applied as 

a mask and TFCE were utilized as test statistic via FSLs randomise with FWE MCC.19 Gender and 

age were use as covariate, since these influences FC.36 

Support vector machine. To investigate which MRI modalities were advantageous in classification 

purposes, support vector machine was implemented. The SVM analysis was conducted in R (R Core 

Team, 2014) utilizing the caret package.37 Initially, features were demeaned and divided by the 

standard deviation, to avoid large-valued features to dominate.38 Feature selection was performed via 

Least Absolute Shrinkage and Selection Operator regression where the optimal tuning parameter λ 

was found via cross validation.39 The data were split into training and test set, 80% and 20% 

respectively, and cross-validation was performed to estimate the optimal tuning parameters. The 

SVM model were trained to classify the groups (AD, MCI, or HC). This was done with a polynomial 

kernel and receiver operating characteristic curve was selected as the metric for estimating the best 

tuning parameters for the SVM. Subsequently, the SVM model was tested on the test data set. This 
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was performed on two groups at a time, using different combinations of MRI modality, to explore 

which would classify the groups most accurately. 

Multiple linear regression. Multiple linear regression (MLR) was performed to investigate the 

groups correlation and variance between Mini-Mental State Examination/Montreal Cognitive 

Assessment (MMSE/MoCA) score, based on the correlation coefficient and adjusted R2. Adjusted 

R2 was selected instead of R2, as R2 increases as a function of included variables, while adjusted R2 

only increases with model improvement, giving a less biased outcome.40 The procedure was 

performed in SPSS. 

Results 

VBM analysis. The VBM analysis revealed significant GMV differences in the precuneus cortex 

(PC) between MCI and AD, thereby implying higher GMV in MCI compared to AD, see table 1 and 

figure 1. Furthermore, widespread GMV differences were displayed between HC and AD, indicating 

higher GMV in HCs. see table 1 and figure 1. 

Figure 1: The statistically significant results from the voxel-based morphometry analysis, highlighted 

in blue on top of the Montreal Neurological Institute-152 1mm template. The top image 

demonstrates the significant results of t-test Mild cognitive impairment>Alzheimer’s disease. The 

bottom image depicts the significant results from the t-test Healthy control>Alzheimer’s 

disease. 

FIRST analysis. The subcortical volumetric analysis demonstrated significant difference in AD 

compared to HC in the left and right hippocampus and putamen, the right thalamus, and the left 
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amygdala, after Bonferroni correction, see table 2. However, no significant differences were found 

when comparing MCI and AD after Bonferroni correction. 

DTI analysis. The DTI analysis displayed significantly higher FA in HC compared to AD, which 

involved a variety of WM tracts, that are illustrated in table 3 (HC>AD) and figure 2. No differences 

were found when comparing MCI and AD nor MCI and HC. However, using MD as diffusion 

measure, significantly higher MD was found in MCI compared to HC, see table 2 and figure 2. 

Additionally, more widespread significant MD difference was found between AD and HC, as 

illustrated in table 3 and figure 2. Nonetheless, no significant differences were apparent between 

MCI and AD. 

Figure 2: Significant group differences in fractional anisotropy (FA) and mean diffusivity (MD) are 

highlighted in blue, on top of the FSL_HCP1065_FA_1mm template. The top image 

illustrates FA difference between healthy controls>Alzheimer’s disease, while the middle 

image exemplifies the difference in MD between mild cognitive impaired>healthy controls.  

The bottom image demonstrates the MD difference between healthy controls<Alzheimer’s disease. 

Furthermore, the WM tracts overlapping with the statistical map is reported. Corpus Callosum body 

(CCB). Corpus Callosum genu (CCG). Corpus Callosum splenium (CCS). Anterior Corona Radiata 

(ACR). Superior Corona Radiata (SCR). External Capsule (EC). Cingulum Hippocampus (CH). 

Forceps Minor (FM). Inferior Fronto-Occipital Fasciculus (IFOF). Inferior Longitudinal Fasciculus 

(ILF). Anterior Thalamic Radiation (ATR). Posterior Corona Radiata (PCR).

Resting state analysis. The RS fMRI analysis yielded one minor significant result, which occurred 

between the PCC and Anterior Cingulate Cortex (ACC). This reflects a lower degree of coactivation 

between the PCC and part of the ACC in AD compared to HC. The cluster located in the ACC 
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contained 126 voxels, with the peak voxel value located in the MNI coordinate x 10, y 32, z -8. No 

significant difference was found between the groups PCO.

Support vector machine classification. The classification results from the SVM are illustrated in 

table 4. The results illustrate a that DTI features were advantageous in classifying MCI from HC, 

compared to VBM and RS features. Further highlighted by the multi-modal model being primary 

consisting of DTI measures. In classification of AD and MCI, the multi-modal, DTI and VBM model 

performed equivalent. However, no model was capable of classifying MCI from AD, illustrated by 

the specificity being zero. Classification of AD vs HC displayed 100% accuracy when based on 

multi-modal or DTI, while VBM exhibited an accuracy of 86%. Summarized, DTI measures 

performed with higher accuracy, than any other single modality. 

Multiple linear regression. The MLR results illustrated in table 5, indicates that MMSE/MoCA 

scores in the AD group, are correlated to a higher degree with DTI than VBM variables. Oppositely, 

VBM variables explains more variance than DTI variables, as illustrated in the top two rows of table 

5. In the MCI group the DTI variables are correlated to a higher degree and explains more variance 

than VBM variables. In the HC group DTI appears more correlated and explains more variance than 

the VBM results. Additionally, it appears that VBM explains substantially more variance in MMSE 

than in MoCA scores, respectively 80% and 46% as seen in row six of table 5. No significant 

difference was apparent between correlations. 

Discussion 

Structural data. The VBM results showed significant GM atrophy in AD compared to HC, with 

atrophy manifested in MTL structures, as hippocampus and the PHA, which supports existing 

evidence.11,41 Presumably because this region is the first affected by NFTs and Aβ plaques in the AD 

continuum.4 The VBM results were supported by the FIRST results, which likewise indicated 

atrophy of hippocampus in AD patients. Significant differences were displayed in the PC between 
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MCI and AD in the VBM analysis, while no significant differences were evident in the FIRST 

analysis after MCC. Positive correlations with MMSE/MoCA score were present in the AD group, 

which follows existing literature.41 Illustrating a relationship between decreasing GMV and cognitive 

function. In summary, the structural analysis of GMV is sensitive between AD and HC, while 

difference between MCI and AD/HC was less apparent, indicating less sensitivity to GMV 

differences.

DTI data. FA displayed positives correlation with MMSE/MoCA scores in MCI and AD. 

Specifically, high correlation was found in the right Inferior Fronto-Occipital Fasciculus (IFOF), 

bilateral Superior Longitudinal Fasciculus (SLF) and Anterior Corona Radiata, which are associated 

with decreased memory function.42 The negative correlations between MD and MMSE/MoCA score 

in AD and MCI, illustrate the relationship between WMI and cognition.13 Interestingly, the MD 

differences between MCI and HC were primarily located in the left hemisphere (seven vs. three). 

This characteristic indicates inefficient communication of the left hemisphere.43 The MD differences 

between AD and HC were widespread and included tracts as anterior thalamic radiation, forceps 

minor, forceps major, cingulum hippocampus, IFOF, SLF, inferior longitudinal fasciculus and 

Corpus Callosum, which are associated with early affected GM in the AD continuum, such as the 

Hippocampus, middle temporal gyrus and PCC.42 These results thereby display an association with 

known AD pathology.44 MD appeared more sensitive than FA, as it differentiated MCI and HC, 

which has been advocated previously.45 As FA and MD are influenced by numerous factors, the 

interpretation of whether this is caused by demyelination, axonal density loss, membrane 

dysfunction, intracellular organelles or inflammation is enigmatic.12 WMI reduction has been 

presumed to be instigated because of GM atrophy through Wallerian degeneration,44 yet some WM 

damages may occur independently.46,47 No significant differences were found between MCI and HC 

in the structural analysis, while differences were apparent in the DTI analysis. This might insinuate 

that WM damage could have occurred independently of GM atrophy, as supported previously,48 or 
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perchance that DTI measures are more sensitive in MCI.48,49 However, this must be interpreted 

carefully, due to low sample size. Regardless of the underlying cause, in summary MD evidenced 

more sensitive than FA, and WMI appeared to worsen as patients were located later in the AD 

continuum.

Resting state data. The RS analysis only displayed significantly lower FC between the PCC and 

ACC in AD compared to HC, simulating previous findings,17,50 and which is linked to memory 

performance.51 Generally, decreased FC has been reported in both MCI and AD within the DMN, 

especially in the nodes of the DMN as PC, PCC and prefrontal cortex.17 The PCC and ACC are 

involved in episodic memory processes, with decreased FC being linked to early episodic memory 

deficits in MCI and AD.52 

Support vector machine classification. The SVM classified subjects from the MCI and HC group 

more accurately, when based on DTI features, compared to VBM features. Thereby indicating DTI 

as a sensitive measure for differentiating MCI and HC.49 However, when classifying MCI and AD 

the SVM performed equally accurate, based upon DTI or VBM features. This result coincides with 

the consensus that both VBM and DTI features are sensitive in differentiating MCI and AD.53 

Surprisingly, DTI features displayed higher accuracy when classifying AD from HC, than VBM. 

Generally, VBM features are considered very sensitive in this manner,41,53 and has been considered 

slightly more accurate than DTI.53 However, evidently 11% of AD patients do not display GM 

atrophy,54 which could explain the advantages of DTI. The multi-modality SVM did not display 

higher accuracies, although it is usually advantageous compared to single modality SVM.53  

However, due to the low power, these classification measures and sensitivity should be interpreted 

with caution, and further examinations should be performed, to assess whether DTI features truly are 

superior in classification purposes. 
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Multiple linear regression. The MLR showed high correlation between DTI and VBM measures and 

MMSE/MoCA scores, resembling the existing literature.49 VBM explained more variance than DTI 

in AD, supporting the perception that GM atrophy drives the cognitive decline in AD.4,44 DTI 

displayed stronger correlation and variance explained in MCI than VBM, potentially indicating 

decreased WMI as primus motor in cognitive impairment. Coinciding with evidence of Aβ affecting 

WM earlier, causing decreased WMI before GM atrophy.47 The VBM measures explained more of 

the variance of MMSE scores in the HC group, while DTI explained more of the variance in MoCA 

scores of the N group. This confusing result could be instigated by the different nature of the MMSE 

and MoCA tests, as MoCA is aimed specifically for MCI subjects.

Sample size. The low sample size due to the pandemic, especially in the MCI group, triggers a high 

risk of false negatives, false positives and that results are caused by sampling variability.55 The 

sample size is inadequate, which further influences the SVM analysis, as the group sizes should be of 

equal size, and feature quantity should not be of higher magnitude than subjects.56 Therefore, the 

models including the MCI group were either optimally trained or tested. Additionally, the numerous 

variables and low sample size, included in the linear regression probably inflated the correlation 

coefficient and to a lower degree the adjusted-R2.40 In summary, the results of the study, especially 

involving the MCI group, should be interpreted with caution and doesn’t allow for generalization.  

Distortion correction of DTI and fMRI data. The spin-echo-planar imaging sequence used in 

diffusion imaging is cursed by hypersensitivity to off-resonance induced distortions, caused by low 

bandwidth of the phase-encoding direction.57 Similar inherent distortions occur in fMRI data. 

Acquiring a fieldmap or an image with two different phase encoding directions,57 would have 

enabled distortion correction. This would have improved registration, reduced between-subject 

variability in distortions and increased robustness and sensitivity.57
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Conclusion. The results reveal higher sensitivity of DTI in differentiating MCI from HC and AD, 

which displayed stronger correlation with the clinical assessment scores. DTI and VBM seemed 

comparably sensitive in AD, as both measures were substantially progressed in AD compared to 

MCI and HC, although VBM explained more of the variance in clinical assessment scores in the AD 

group compared to DTI. Considering the limitations of this study, it must be interpreted cautiously. 

Increasing sample size and distortion correction of DTI and fMRI would increase reliability and 

validity. Therefore, a sharp conclusion cannot be made, and further investigation of DTI as an MCI 

diagnosis method needs to be performed. The study could however present that DTI appeared 

favorable in differentiating MCI, while DTI and VBM both seem suitable for differentiation of AD.
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Voxel-based morphometry results 

Table 1: The significant VBM results. The ROIs overlapping with the statistical map are reported, 

with their peak voxel in MNI coordinates and size of the overlap in voxels. Left (L). Right (R). 

Inferior Temporal Gyrus posterior (ITGP). Lateral Occipital Cortex superior (LOCs). Middle 

Temporal Gyrus Posterior (MTGP). Parahippocampal Gyrus Anterior (PHA). Region of interest 

(ROI). Montreal Neurosciences Institute (MNI). Precuneus cortex (PC). Posterior cingulate cortex 

(PCC). Alzheimer’s disease (AD). Mild cognitive impairment (MCI). Healthy controls (HC). 

Amygdala (Amyg). Hippocampus (Hip). Thalamus (Thala). Putamen (Puta).

PC

ITGP

Amyg

Amyg

Hip

Hip

Puta

Puta 

Thala

LOCs 

MTGP

PHA

PCC

PC

L/R

L/R 

L

R

L

R

L

R

R  

L/R 

L/R 

L/R

L/R 

L/R 

-2 -64 35                     

19 42 25

115 116 62

35 61 30

117 100 61

30 53 27

110 132 63

35 69 31

38 47 39

34 29 66

17 50 31

71 124 48

46 39 53

46 32 52

299

4565

723 

812

1467

1623

749

857

1657

4677

3521

2854

3816

4897

T-test MCI>AD

T-test HC>AD

ROI Hemisphere VoxelsMNI peak x/y/z
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Subcortical segmentation result.  

Table 2: The subcortical analysis results. The table depicts the results from the one-way analysis of 

covariance (ANCOVA), age and gender corrected, performed on subcortical structure volumes 

between the three groups. One asterisk signifies significant difference before, while two asterisks 

imply significant difference after Bonferroni multiple comparison correction (p<0.00278). Left (L). 

Right (R). Alzheimer’s disease (AD). Mild cognitive impairment (MCI). Healthy controls (HC).

L Amygdala

R Amygdala

L Hippocampus

R Hippocampus

L Putamen

R Putamen

R Thalamus

P<0.05*

P>0.05

P<0.05*

P<0.05*

P<0.05*

P<0.05*

P<0.05*

P>0.05

-

P>0.05

P>0.05

P>0.05

P>0.05

P>0.05

0.0016*

-

0.0009*

0.0012*

0.0021*

0.0018*

0.0022*

P>0.05

- 

P>0.05

P>0.05

P>0.05

P>0.05

P>0.05

Subcortical 
volumen (mm3)

ANCOVA Post hoc 
(AD & MCI)

Post hoc 
(AD & HC)

Post hoc 
(MCI & HC)
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Diffusion tensor imaging results 

 

ACR

ACR

CCB

CCG 

CCS

EC

FM

IFOF

IFOF

SLF 

SLF

L

R

L/R

L/R

L/R

L 

L/R 

L

R

L 

R

-22 27 14

26 25 14

-10 -22 30

14 25 16

15 -37 30

-30 1 10

-17 37 19

-32 -72 -1

31 -71 6

-42 -50 6 

35 -36 32

1184

1273

2585

1575

1855

839

5520

5912

6004

7823

6816

345

883

2101

1397

752

1112

517

405

354

972

6510

5688

3699

-9 26 16

-19 -48 22

-17 35 21

-21 27 4

18 36 7

-22 -5 35

28 3 26

-26 -30 27

26 29 21

-29 4 10

-47 -7 21

-38 -48 -7

-38 -48 -7

L/R

L/R

L/R

L

R

L

R

L

R

L

L

L

L

T-test MCI>HC (MD)
CCG

CCS

FM 

ACR

ACR

SCR 

SCR

PCR 

PCR

EC

SLF

IFOF

ILF

T-test HC>AD (FA)

ROI Hemisphere MNI peak x/y/z Voxels
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L/R

L/R

L/R

L 

R

L

R

L

R

L 

R

L

R

L

R

L

R

L/R

L

R

L

R

-9 6 26

-7 32 6

-16 -47 19

-23 24 19

25 24 15

-19 -5 40

24 -3 33

-25 -33 30

24 -37 31

-22 18 -7

28 14 -4

-20 -34 -11

22 -30 -12

-54 -33 -10

35 -38 30

-21 27 5

24 29 16

-17 40 6 

-22 23 12

25 25 16

-30 -55 17

31 57 4

2547

1665

2134

1763

1702

1316

1344

814

873

1334

1168

302

355

13731

11743

9527

8458

8007

11571

11589

8594

8096

CCB

CCG

CCS 

ACR

ACR

SCR 

SCR

PCR 

PCR

EC

EC

CH

CH

SLF

SLF

ATR 

ATR

FM

IFOF

IFOF

ILF

ILF

T-test AD>HC (MD)

ROI Hemisphere MNI peak x/y/z Voxels
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Table 3: The significant diffusion tensor imaging results. Including both fractional anisotropy (FA) 

measures and mean diffusivity (MD) measures. Additionally, the white matter structures the 

statistical map overlaps with are displayed, including cluster size (voxels) and peak coordinate (MNI 

peak x/y/z). Left (L). Right (R). Corpus Callosum body (CCB). Corpus Callosum genu (CCG). 

Corpus Callosum splenium (CCS). Anterior Corona Radiata (ACR). Superior Corona Radiata 

(SCR). Posterior Corona Radiata (PCR). External Capsule (EC). Cingulum Hippocampus (CH). 

Superior Longitudinal Fasciculus (SLF). Anterior Longitudinal Fasciculus 

(ALF). Anterior Thalamic Radidation (ATR). Forceps Minor (FM). Inferior Fronto-Occipital 

Fasciculus (IFOF). Inferior Longitudinal Fasciculus (ILF). Region of interest (ROI). Montreal 

Neurosciences Institute (MNI).
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Support vector machine classification

Groups

MCI vs HC

MCI vs HC

MCI vs HC

 AD vs MCI

AD vs MCI 

AD vs MCI

AD vs HC

AD vs HC

AD vs HC

Measures

VBM+DTI+RS

DTI

VBM

VBM+DTI+RS

DTI

VBM

VBM+DTI+RS

DTI

VBM

 Variables

37

22

14

37

22

14

37

22

14

Final variables

14

13

14

37

22

14

34

22

13

Accuracy

0.67 

0.67

0.33

0.83

0.83

0.83

1

1

0.86

Sensitivity

1

 1

0.5

1

1

1

1

1

1

Specificity

0.5

0.5

0

0

0

0

1

1

0.5

VBM/DTI/RS

 3/11/0

0/13/0

14/0/0

14/22/1

0/22/0

14/0/0

13/21/0

0/22/0

13/0/0

Subjects

19

19

19

31

31

31

40

40

40
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Table 4: Pairwise classification of the groups. These classifications included single MRI modality 

and multiple MRI modalities. Voxel-based morphometry (VBM). Diffusion tensor imaging (DTI). 

Resting state (RS). Alzheimer’s disease (AD). Mild cognitive impairment (MCI). Healthy controls 

(HC). 

Multiple linear regression results

Group

AD

AD

MCI

MCI

HC

HC

Measures

DTI

VBM

DTI

VBM

DTI

VBM

 R

0.946

0.913

0.895

0.876

0.990

0.992

Adjusted R2

0.471

0.654

0.203

0.071

0.754

0.798

A MMSE
subjects

26

26

5

5

14

14
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Table 5: The multiple linear regression results, based on DTI and VBM variables. The table displays 

the correlation (R) and adjusted R2 value based on Mini mental state examination (MMSE) (panel 

A) and Montreal cognitive assessment (MoCA)  (panel B) score. Voxel-based morphometry (VBM). 

Diffusion tensor imaging (DTI). Alzheimer’s disease (AD). Mild cognitive impairment (MCI). 

Healthy controls (HC). 

Group

AD

AD

MCI

MCI

HC

HC

Measures

DTI

VBM

DTI

VBM

DTI

VBM

 R

0.946

0.907

0.905

0.855

0.935

0.714

Adjusted R2

0.473

0.631

0.195

0.087

0.632

0.457

B MoCA
subjects

26

26

5

5

14

14
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Figure 1: The statistically significant results from the voxel-based morphometry analysis, highlighted in blue 
on top of the Montreal Neurological Institute-152 1mm template. The top image demonstrates the 

significant results of t-test Mild cognitive impairment>Alzheimer’s disease. The bottom image depicts the 
significant results from the t-test Healthy control>Alzheimer’s disease. 
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Figure 2: Significant group differences in fractional anisotropy (FA) and mean diffusivity (MD) are 
highlighted in blue, on top of the FSL_HCP1065_FA_1mm template. The top image illustrates FA difference 

between healthy controls>Alzheimer’s disease, while the middle image exemplifies the difference in MD 
between mild cognitive impaired>healthy controls. The bottom image demonstrates the MD difference 

between healthy controls<Alzheimer’s disease. Furthermore, the WM tracts overlapping with the statistical 
map is reported. Corpus Callosum body (CCB). Corpus Callosum genu (CCG). Corpus Callosum splenium 
(CCS). Anterior Corona Radiata (ACR). Superior Corona Radiata (SCR). External Capsule (EC). Cingulum 
Hippocampus (CH). Forceps Minor (FM). Inferior Fronto-Occipital Fasciculus (IFOF). Inferior Longitudinal 

Fasciculus (ILF). Anterior Thalamic Radiation (ATR). Posterior Corona Radiata (PCR). 
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