
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=zela20

Tellus A: Dynamic Meteorology and Oceanography

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/zela20

Coastal ocean forecasting on the GPU using a two-
dimensional finite-volume scheme

André R. Brodtkorb & HÅvard Heitlo Holm

To cite this article: André R. Brodtkorb & HÅvard Heitlo Holm (2021) Coastal ocean forecasting
on the GPU using a two-dimensional finite-volume scheme, Tellus A: Dynamic Meteorology and
Oceanography, 73:1, 1-22, DOI: 10.1080/16000870.2021.1876341

To link to this article: https://doi.org/10.1080/16000870.2021.1876341

Tellus A: 2021. © 2021 The Author(s).
Published by Informa UK Limited, trading as
Taylor & Francis Group.

Published online: 17 May 2021.

Submit your article to this journal

Article views: 3994

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=zela20
https://www.tandfonline.com/loi/zela20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/16000870.2021.1876341
https://doi.org/10.1080/16000870.2021.1876341
https://www.tandfonline.com/action/authorSubmission?journalCode=zela20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=zela20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/16000870.2021.1876341
https://www.tandfonline.com/doi/mlt/10.1080/16000870.2021.1876341
http://crossmark.crossref.org/dialog/?doi=10.1080/16000870.2021.1876341&domain=pdf&date_stamp=2021-05-17
http://crossmark.crossref.org/dialog/?doi=10.1080/16000870.2021.1876341&domain=pdf&date_stamp=2021-05-17

Coastal ocean forecasting on the GPU using a
two-dimensional finite-volume scheme

By ANDRÉ R. BRODTKORB1�, and HÅVARD HEITLO HOLM2, 1Oslo Metropolitan University,
Oslo, Norway; 2SINTEF Digital, Oslo, Norway

(Manuscript Received 7 April 2020; in final form 2 January 2021)

ABSTRACT
In this work, we take a modern high-resolution finite-volume scheme for solving the rotational shallow-
water equations and extend it with features required to run real-world ocean simulations. Our
contributions include a spatially varying north vector and Coriolis term required for large scale domains,
moving wet-dry fronts, a static land mask, bottom shear stress, wind forcing, boundary conditions for
nesting in a global model, and an efficient model reformulation that makes it well-suited for massively
parallel implementations. Our model order is verified using a grid convergence test, and we show
numerical experiments using three different sections along the coast of Norway based on data originating
from operational forecasts run at the Norwegian Meteorological Institute. Our simulation framework
shows perfect weak scaling on a modern P100 GPU, and is capable of providing tidal wave forecasts that
are very close to the operational model at a fraction of the cost. All source code and data used in this
work are publicly available under open licenses.

Keywords: shallow-water equations, oceanography, GPU computing, realistic use cases, high-resolution finite-
volume methods

1. Introduction

The aim of this paper is to simulate realistic oceanographic
scenarios using a modern finite-volume scheme on GPUs.
Modern operational ocean models, such as the Regional
Ocean Modeling System (ROMS) (Shchepetkin and
McWilliams, 2005) and the Nucleus for European Modelling
of the Ocean (NEMO) (the NEMO team, 2008), are based
on solving the primitive equations that describe conservation
of mass, momentum, temperature, and salinity. Even though
these ocean models are heavily optimised, their complex
physical and mathematical properties make them very com-
putationally demanding. The NorKyst-800 model system
(Albretsen et al., 2011), for example, is based on the ocean
model ROMS (using the Rutgers-ROMS 3.7 dynamic kernel)
and covers the Norwegian coast with 800m horizontal reso-
lution. It is run operationally by the Norwegian
Meteorological Institute on a daily basis. The complete model
consists of 42 vertical layers with 2600� 900 grid cells each,
and a 24hour forecast takes 45minutes when using 512 CPU
cores (Christensen, 2020). It is unfeasible to use such models
for flexible on-demand simulations during search-and-rescue
operations, oil spills, heavy lifting at sea, storm surges, etc. In

these cases, fast on-demand simulations based on the shal-
low-water equations can have a significant value for decision
makers. Furthermore, such fast simulations enables running
ensembles with thousands of members required for fully non-
linear data assimilation (Holm et al., 2020).

We simulate the shallow-water equations in a rotating
frame of reference, targeting efficient simulation of ocean
currents based on the operational NorKyst-800 data. Our
model equations are essentially vertical integrations of the
primitive equations and assume constant density and a verti-
cally integrated momentum (see more detailed derivations
in, e.g. Røed (2019)). Our work starts with the recent high-
resolution finite-volume scheme by Chertock et al. (2018),
and extends this scheme to support bottom shear stress,
wind forcing, projection-free spatial variations in the north
vector, spatially varying Coriolis parameter, land mask, and
a moving wet-dry boundary. We present how to reconstruct
a piecewise bilinear bathymetry from the piecewise constant
bathymetry in the NorKyst-800 data, nesting of the model
into the NorKyst-800 data using linearly interpolated
boundary conditions, and generation of both higher and
lower spatial resolution of the initial conditions.

We simulate increasingly challenging scenarios along the
Norwegian coast, and compare with reference results from�Corresponding author. Email: Andre.Brodtkorb@oslomet.no

Tellus A: 2021. # 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Citation: Tellus A: 2021, 73, 1876341, https://doi.org/10.1080/16000870.2021.1876341

1

Tellus
SERIES A
DYANAMIC
METEOROLOGY
AND OCEANOGRAPHY

PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM

https://doi.org/10.1080/16000870.2021.1876341

the operational model. As the shallow-water equations are
particularly well suited for tidal and storm-surge predictions,
we also compare our tidal-wave predictions at several loca-
tions with the reference dataset and observations. All data-
sets and source code used in this work are publicly available
under open licenses (Kluyver et al., 2016).1

The rest of the paper is organised as follows: Section 2
gives a high-level description of the shallow-water equations
and how they can be solved numerically. In Section 3, we
present all the extensions that are required to tackle relevant
oceanographic problems. The performance and numerical
accuracy of our scheme are assessed in Section 4, where we
show perfect weak scaling of the GPU implementation and
run a grid convergence test with the new terms introduced
in the scheme. We present operational-grade simulations in
Section 5, and finally summarise the work in Section 6.

1.1. Related work

The aim of this work is to develop a coastal ocean forecast-
ing system that is useful for short-term predictions of real-
world ocean currents and sea-surface level in coastal waters.
To this end, we use a shallow-water model in a rotating
frame of reference. Such models are used operationally for
forecasting of storm surges (Flowerdew et al., 2010; Guide
to storm surge forecasting, 2011; Bertin, 2016) and tsunamis
(Rakowsky et al., 2013; Castro et al., 2015).

Shallow-water models can be discretised and solved in dif-
ferent ways. They are often discretised using classical finite-
difference methods on staggered C-grids within operational
meteorology and oceanography (see, e.g. Shchepetkin and
McWilliams, 2005; the NEMO team, 2008; Røed, 2019) as
they are especially well suited for consistent specifications of
boundary conditions and nested models. Finite-volume meth-
ods have also been used, but require more care when imple-
menting boundary conditions (Natvig, 2006).

Finite-volume schemes have traditionally required com-
putationally expensive Riemann solvers that resolve the
Riemann problem at the interface between two cells, but
many modern schemes use solvers that replace the
Riemann solver by an efficient approximation. One
example is the family of schemes based on the work of
Kurganov and Tadmor (2000) who proposed a numerical
scheme that was well balanced for lake at rest steady-
state solutions. This scheme was further developed to
handle dry states (Kurganov and Levy, 2002; Kurganov
and Petrova, 2007), and recently Chertock et al. (2018)
adapted the scheme to rotating shallow-water flow in
which steady-states in geostrophic balance are represented
correctly. We have previously demonstrated that this
scheme captures important properties required for
oceanographic applications and compared it against clas-
sical finite-difference approaches (Holm et al., 2020).

Hyperbolic conservation laws, such as the shallow-water
equations, are often solved using explicit discretizations in
time. Such schemes can be represented using stencil computa-
tions to compute the numerical fluxes, which is an embarrass-
ingly parallel algorithmic primitive (Asanovic et al., 2006).
Stencil computations are perfectly suited for implementation
on massively parallel accelerator hardware, such as GPUs
(see, e.g. Hagen et al., 2007; de la Asunci�on et al., 2011;
Brodtkorb et al., 2012; Parna et al., 2018), and when imple-
mented correctly, the use of GPUs not only increases the
computational efficiency (Brodtkorb et al., May 2010), but
also typically the energy efficiency (see, e.g. Huang et al.,
2009; Qi et al., 2014; Dong et al., 2014; Holm et al., 2020).
The use of GPUs for shallow water and oceanographic simu-
lations is currently also included in large commercial and aca-
demic software packages such as ClawPack (Qin et al., 2019),
Telemac (Grasset et al., 2019), TUFLOW (Huxley and Syme,
2016) and MIKE (MIKE Powered by DHI, 2019).

In an operational setting, it is important to have a
sound treatment of boundary conditions and source
terms. In this work, we apply the flow relaxation scheme
(Martinsen and Engedahl, 1987) for boundary conditions,
but a more thorough discussion on the state-of-the-art on
the topic can be found in Klingbeil et al. (2018).

2. Mathematical formulation

We use the shallow-water equations with source terms to
simulate ocean dynamics. Since the equations are purely
barotropic, they are not expected to generate or preserve
features such as mesoscale eddies in the long term. These
features arise from baroclinic instabilities, typically caused
by variations in temperature and salinity that are not
included in the present mathematical model, but the equa-
tions are nevertheless capable of capturing the most import-
ant physics required to simulate short-term ocean dynamics.
We can write the equations with source terms as

h

hu

hv

2
64

3
75
t

þ
hu

hu2 þ 1
2
gh2

huv

2
664

3
775
x

þ
hv

huv

hv2 þ 1
2
gh2

2
6664

3
7775
y

¼
0

ghHx

ghHy

2
64

3
75þ

0

�ru
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
=h

�rv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
=h

2
64

3
75

þ
0

fhv

�fhu

2
64

3
75þ

0

sx
sy

2
64

3
75:

(1)

Here, h is water depth, hu momentum along the x-axis,
and hv momentum along the y-axis (see also Fig. 1).
Furthermore, g is the gravitational acceleration, H is the

2 A. R. BRODTKORB AND H. H. HOLM

equilibrium ocean depth measured from a reference sea-
surface level, r is the bottom drag coefficient, f is the
Coriolis parameter, and sx and sy are the wind stress
along the x- and y-axis, respectively. In vector form, we
can write the equations as

Qt þ FðQÞx þ GðQÞy ¼ BðQÞ þ SðQÞ þ CðQÞ þWðQÞ:
(2)

Here, Q ¼ ½h, hu, hv�T is the vector of conserved variables
and B, S, C, and W are source terms representing varying
bathymetry, bed shear stress, Coriolis force, and wind
drag, respectively. Note that this model does not include
the atmospheric pressure gradient, which is important in,
e.g., storm surge modelling.

By using a finite-volume discretisation on a Cartesian
grid to solve (2), we get the following semi-discrete
formulation

@Q
@t

¼ � 1
Dx

Fiþ1=2, j � Fi�1=2, j
� �� 1

Dy
Gi, jþ1=2 � Gi, j�1=2
� �

þ Bi, j þ Si, j þ Ci, j þWi, j:

(3)

To evolve the solution in time, we use a second-order
strong stability-preserving Runge-Kutta scheme (Gottlieb
et al., 2001),

Q�
i, j ¼ Qn

i, j þ DtMðQnÞi, j
Qnþ1

i, j ¼ 1
2
ðQn

i, j þ Q�
i, j þ DtMðQ�Þi, j

� �Þ, (4)

in which M represents the right hand side of (3). The
time step is restricted by the CFL condition given by

Dt � 1
4
min

Dx

max u6
ffiffiffiffiffi
gh

p�� �� , Dy

max v6
ffiffiffiffiffi
gh

p�� ��
()

, (5)

if we assume no Coriolis, bottom drag, and wind drag.2

The dominant term for oceanographic applications is typ-

ically the speed of gravity waves
ffiffiffiffiffi
gh

p
, and we scale Dt

by a factor CCFL 2 ð0, 1� in our simulations to account
for Coriolis and wind drag.

2.1. Spatial discretisation

The starting point for our simulator is the scheme pro-
posed by Chertock et al. (2018), from now on referred to
as CDKLM. It is a modern central-upwind scheme that
uses a reconstruction of the physical variables to be able
to capture steady-state solutions important for physical
oceanography, and includes source terms for varying
bathymetry and Coriolis. The original paper includes sev-
eral idealised test cases and examples demonstrating that
the steady states in geostrophic balance are well captured.
However, there are several shortcomings that need to be
addressed before the scheme can be used for real-world
simulations.

The CDKLM scheme is based on the same principles
as the MUSCL scheme (van Leer, 1979) to obtain a high-
order, total variation diminishing discretisation. For each
cell in the domain, we first reconstruct a piecewise (linear)
function for our physical variables (see Fig. 1). At the
interface between two cells, we evaluate the slope limited
function from the right and left cell, and use these two
values to compute the flux across the interface. The

Fig. 1. a) The relationship between the physical variables h, H, g, and hu used in the shallow-water equations, here shown in one
dimension. b) The ocean state is discretised in terms of cell average values, whereas the bathymetry is defined at the cell intersections. c)
We find the slopes of the ocean state within each cell. d) The flux between the cells is found from two one-sided point values at each
interface, as seen from the two adjacent cells.

COASTAL OCEAN FORECASTING ON THE GPU 3

scheme uses the Riemann-solver-free central-upwind flux
function,

Fiþ1=2 ¼
aþFðQl

iþ1=2Þ � a�FðQr
iþ1=2Þ

aþ � a�

þ aþa�

aþ � a�
Qr

iþ1=2 �Ql
iþ1=2

h i
, (6)

to evaluate the numerical flux (Kurganov et al., 2001).
Here, aþ and a– are the largest positive and negative
wave speeds at the interface, respectively.

When adding source terms, it becomes challenging to
preserve steady states such as ‘lake at rest’, i.e.

@Q
@t

¼ 0 if
@g
@x

¼ @g
@y

¼ hu ¼ hv ¼ 0, (7)

in which g is the sea-surface deviation from a mean equi-
librium level, given by

g ¼ h�H: (8)

Kurganov and Levy (2002) presented a discretisation
of the bottom slope source term B(Q) and a matching
reconstruction based on water elevation to capture such
steady states. For oceanographic simulation, an import-
ant steady state is the so-called geostrophic balance, in
which the angular momentum caused by the rotational
reference frame is balanced by the pressure gradient:

fhv� gh
@g
@x

¼ 0, � fhu� gh
@g
@y

¼ 0: (9)

The novel idea in the CDKLM scheme is to recon-

struct the face values Ql
iþ1=2 and Qr

iþ1=2 based on this geo-

strophic balance so that the resulting flux Fiþ1=2 also

balances the Coriolis force for steady-state solutions. This
makes the scheme suitable for simulating ocean currents
in a rotating frame of reference.

3. Efficient simulation of real-world
ocean currents

Our simulator is implemented using CUDA (NVIDIA,
2019) coupled with PyCUDA (Kl€ockner et al., 2012) to
access the GPU from Python, and we have previously
shown that using Python instead of Cþþ has a negligible
performance impact when used like this (Holm et al.,
2020). Using the Python ecosystem for tasks such as pre-
processing input data and post-processing results has
significantly increased our productivity, while still main-
taining high performance.

A simulation starts by reading initial conditions, forc-
ing terms, and other grid data from NetCDF files hosted
by thredds servers at the Norwegian Meteorological
Institute. We continue by initialising the simulator, which
internally allocates memory and uploads initial conditions

on the GPU. Finally, the main loop steps the simulator
forward in time, and occasionally (e.g., every simulated
hour) downloads and writes results to NetCDF files
on disc.

The rest of this section covers additions and improve-
ments to the CDKLM scheme required for simulating
real-world scenarios.

3.1. Efficient parallel formulation of CDKLM

The original CDKLM scheme uses a recursive formula-
tion of the potential energies used for the well-balanced
flux reconstruction. This turns the reconstruction proced-
ure into a global operation with a data-dependency span-
ning the whole domain, making the scheme prohibitively
expensive on parallel architectures. The recursive expres-
sion can be calculated somewhat efficiently using a prefix
sum, as suggested by the authors themselves, but by care-
fully reformulating the recursive terms it can also be
rephrased as a local operation.

The scheme reconstructs h, hu, and hv on each side of
a face to calculate the fluxes in (6). However, to capture
the rotating steady-state solutions in geostrophic balance,
the reconstruction is based on the potential energies,

K ¼ gðg� VÞ, L ¼ gðgþUÞ, (10)

instead of physical variables. Note that K is the potential
energy due to the Coriolis force along the abscissa and
that L is the potential along the ordinate. U and V are
the primitives of the Coriolis force, given by

Uy ¼ f
g
u, Vx ¼ f

g
v: (11)

Note that setting Kx ¼ 0 and Ly ¼ 0 is equivalent to
the geostrophic balance from (9). In the following, we
detail the reconstruction along the abscissa, but the same
derivations apply in the ordinate. The recursive terms
appear from the discretisation of U and V, which are
defined on the cell faces as

Viþ1=2, j ¼ Vi�1=2, j þ Dx
g

fi, jvi, j, V�1=2, j ¼ 0: (12)

The Coriolis parameter fk, j is allowed to change both
along the x- and y-axis, even though f only varies with
latitude (for example, the NorKyst-800 grid is rotated
to follow the Norwegian coastline.) This is because we
will use a spatially varying latitude, as described in
more detail in Section 3.7. Values of V in the cell
centres are obtained by taking the mean of the face
values, so that the cell-average value of K from (10)
becomes

4 A. R. BRODTKORB AND H. H. HOLM

Ki, j ¼ g gi, j �
1
2

Viþ1=2, j þ Vi�1=2, j
� �� 	

: (13)

By reconstructing the (limited) slopes of K within each
cell, the face values of h are found by combining (13) and
(8), so that

hEi, j ¼
1
g

Ki, j þ Dx
2

ðKxÞi, j
� 	

þ Viþ1=2, j þHiþ1=2, j, (14)

and

hWi, j ¼
1
g

Ki, j � Dx
2

ðKxÞi, j
� 	

þ Vi�1=2, j þHi�1=2, j: (15)

The reconstructed values (14) and (15) of h at the cell
faces quickly become a performance bottleneck as long as
they depend on calculating the recursive relation in (12). As
it turns out, however, we never need to explicitly compute
the recursive terms. First of all, notice that (14) and (15)
only depend on derivatives of K and not on L. Similarly,

the reconstructions of hNi, j and hSi, j depend on L and Ly.

This means that we are only interested in derivatives of K
(and L) in the same direction as the recursive terms for V
(and U). The derivatives are limited using the generalised
minmod function using the backward, central, and forward
differences. The backward difference is given by

Ki, j � Ki�1, j

Dx
¼ g

Dx
gi, j �

1
2

Viþ1=2, j þ Vi�1=2, j
� ��

�gi�1, j þ
1
2

Vi�1=2, j þ Vi�3=2, j
� �	

:

(16)

We see that Vi�1=2, j cancels, and focus on the remain-

ing V values. By applying the recursive expression in (12)
twice on Viþ1=2, j we get

1
2

�Viþ1=2, j þ Vi�3=2, j
� �

¼ 1
2

�Vi�1=2, j � Dx
g

fi, jvi, j þ Vi�3=2, j

� 	

¼ 1
2

�Vi�3=2, j � Dx
g

fi�1, jvi�1, j � Dx
g

fi, jvi, j þ Vi�3=2, j

� 	

¼� Dx
2g

ðfi�1, jvi�1, j þ fi, jvi, jÞ:
(17)

Inserted back into (16), the backward difference
needed to evaluate ðKxÞi, j can be written as

Ki, j � Ki�1, j

Dx
¼ g

Dx
gi, j � gi�1, j �

Dx
2g

ðfi�1, jvi�1, j þ fi, jvi, jÞ
� 	

,

(18)

which no longer contains any recursive terms. Similar
derivations can be used for the forward and central dif-
ferences, and equivalently to obtain ðLyÞi, j:

After obtaining ðKxÞi, j we look at the reconstruction of

hEi, j from (14). We start by inserting the expression for K

from (13) into (14) and gather all V-terms,

hEi, j ¼ gi, j �
1
2

Viþ1=2, j þ Vi�1=2, j
� �þ Dx

2g
ðKxÞi, j

þ Viþ1=2, j þHiþ1=2, j

¼ gi, j þHiþ1=2, j þ Dx
2g

ðKxÞi, j þ
1
2

Viþ1=2, j � Vi�1=2, j
� �

:

(19)

Here, the values for gi, j,Hi, j and ðKxÞi, j are known,

and by using the recursive expression in (12) we get that

1
2

Viþ1=2, j � Vi�1=2, j
� � ¼ 1

2
Vi�1=2, j þ Dx

g
vi, jfi, j � Vi�1=2, j

� 	

¼ Dx
2g

fi, jvi, j:

(20)

Inserting (20) back into (19) we see that we get

hEi, j ¼ gi, j þHiþ1=2, j þ Dx
2g

ðKxÞi, j þ fi, jvi, j
� �

, (21)

Again, the same derivation can be applied on the other
three face values as well. This enables us to express the
reconstruction step in terms of only local variables, which
unlocks an embarrassingly parallel numerical algorithm.

3.2. Accuracy, precision and GPUs

Today’s GPUs can be categorised in two major classes:
GPUs meant for the consumer market, and GPUs meant
for supercomputers and other professional users. For the
most part, these GPUs are close to identical, but there
are some key differences. One is price: professional GPUs
can cost over ten times more than equivalent consumer
market GPUs, making the latter tractable from a finan-
cial stand point. Another difference is in the feature set.
Professional GPUs offer more memory, error-correcting
code (ECC) memory, and significantly higher perform-
ance for features such as double precision.

Double precision is not an important feature on con-
sumer market GPUs, and typically offer less than 5% of the
performance of single-precision arithmetics. On professional
GPUs, on the other hand, the performance is 50% of single
precision, which is the same ratio as on CPUs.3 If we are
able to utilise single-precision calculations, we should there-
fore be able to get the highest performance at minimum
monetary cost. We have previously shown that using single
precision is sufficiently accurate for most simulation scen-
arios for the shallow-water equations (Brodtkorb et al.,
2010), and recent studies have shown a 40% increase in per-
formance for complex forecasting models when using single
precision (V�a�na et al., 2017).

COASTAL OCEAN FORECASTING ON THE GPU 5

It is well known that floating-point numbers have a
round-off error that increases for larger numbers. A sin-
gle-precision floating-point number is represented as

ð�1Þs � 2e�127 � ð1:0þ f Þ, (22)

in which s is the sign bit, e is represented using 8 bits, and
f is the fractional part, represented by 23 bits. This formu-
lation means that the distance between two floating-point
numbers is smallest close to zero, and increases as e
increases. This is important to note in oceanographic sim-
ulations, as the water depth, h, can often be thousands of
metres, whereas the relevant tidal wave height is perhaps
0.5 metres. The loss in precision due to the water depth
makes floating point prohibitively inaccurate if we imple-
ment the shallow-water equations as formulated in (1).
To counter this loss in precision, we can possibly use
double precision (at twice the computational and memory
cost), but a better alternative is to reformulate the prob-
lem to represent the relevant physical quantities. This can
be done by basing our simulation on g from (8) instead

of h and use ½g, hu, hv�T as our vector of conserved varia-
bles. By combining this approach with single-precision
floating-point numbers, we get more than sufficient
accuracy for the relevant oceanographic simulations.

When the water depth becomes close to zero, the cal-
culation of the particle velocity, u ¼ hu=h can become
severely ill conditioned as the expression is prone to large
round-off errors. To counter this, Kurganov (2018) and
Kurganov and Petrova (2007) have proposed to desingu-
larize the term using expressions such as

u�1 ¼
ffiffiffi
2

p
hðhuÞffi

h4 þmaxðh4,j4Þ
p , (23)

u�2 ¼
h � hu
h2 þ j2

, or (24)

u�3 ¼
2h � hu

h2 þmaxðh2,j2Þ : (25)

The suggestion of using j ¼ maxðDx4,Dy4Þ has some
obvious problems for real-world simulations with
Dx > 1, as pointed out in (Brodtkorb et al., 2012).
Furthermore, the desingularization of u here is not very
well-behaved. Instead, we propose to use the following
formulation

h� ¼ signðhÞmaxðjhj, minðh2=ð2jÞ þ j=2, jÞÞ
u� ¼ hu=h�:

(26)

The advantages of this formulation is that (i) j now
controls directly what magnitudes of h to desingularize,
(ii) it improves the numerical stability as it avoids the
square root and the problematic h4 term, (iii) it yields a
smooth transition between normal and desingularized val-
ues, and (iv) the effective magnitude of h� is controlled.
Figure 2 shows the three desingularization strategies and
clearly indicates that the desingularized quantity h is bet-
ter behaved with our proposed approach.

3.3. Global wall boundary conditions

We have implemented wall and periodic boundary condi-
tions to be able to run test cases to assess the numerical cor-
rectness of our simulator. For reflective von Neumann-type
wall boundary conditions, we use so-called ghost cells that
mirror the ocean state across the boundary to enforce a
zero flux out of the domain. In the absence of Coriolis
forces, wall boundary conditions at x¼ 0 are constructed by
setting the ghost cell values according to

gð�x, yÞ ¼ gðx, yÞ, huð�x, yÞ ¼ �huðx, yÞ,
hvð�x, yÞ ¼ hvðx, yÞ:

(27)

Naïve implementation of these conditions with the
CDKLM scheme leads to gravitational waves along the
boundary. Special care is therefore required to balance
the Coriolis potential energies in the reconstruction of h,

Fig. 2. Desingularization of the quantity u ¼ h=hu using existing and our proposed method with j ¼ 1:0 � 10�11 for all cases. We
compute the value of hu / h using the different approaches for u¼ 1 and different values of h. Notice how the single precision floating-
point errors are clearly visible for u�1, that u�

2 has a distinct kink, and that u�
3 significantly underestimates the true magnitude of u.

6 A. R. BRODTKORB AND H. H. HOLM

so that

0 ¼ hW0, j � hE�1, j

¼ g0, j þH�1=2, j � Dx
2g

ðKxÞ0, j þ f0, jv0, j
� �� 	

� g�1, j þH�1=2, j þ Dx
2g

ðKxÞ�1, j þ f�1, jv�1, j
� �� 	

,

(28)

using (21). Here, we see that H cancels immediately,
whereas g cancels by the use of (27). To make the last
terms cancel, we need to set f�1, jv�1, j ¼ �f0, jv0, j, which
means that in addition to (27), we need to enforce

f ð�x, yÞ ¼ �f ðx, yÞ: (29)

Note also that this results in ðKxÞ ¼ 0 across the
boundary from (18).

3.4. Moving wet-dry boundary and land mask

The original CDKLM scheme breaks down on land as

the gravitational wave speed
ffiffiffiffiffi
gh

p
becomes imaginary

with negative depths. To support a moving wet-dry
boundary, we use a similar approach as Kurganov and
Petrova (2007) by adjusting the slope of h so that all the
reconstructed point values become non-negative. For

example, if we get hEi, j < 0 from (21), we adjust the slope

to become

ðKxÞi, j ¼ �fi, jvi, j � 2g
Dx

gi, j þHiþ1=2, j
� �

, (30)

and thus forcing hEi, j ¼ 0 instead.

The moving wet-dry boundary is required for simulat-
ing, e.g. tsunamis and other phenomena in which the
run-up is important. The approach nonetheless violates
the steady-state reconstruction, causing non-physical
waves and often also small time step sizes. For static wet-
dry boundaries, we have therefore also implemented wall
boundaries following a static land mask, i.e. ensuring a
zero flux for the shore-line. In our approach, we explicitly
set the flux between two neighbouring cells to zero if any
one of them is masked. The mask is represented by a
unique no-data value in the bathymetry, thereby having
no increase in the memory footprint. It should be noted
that both of these approaches reduce the reconstruction
to first order along the wet-dry boundary.

3.5. Wind forcing and bed friction source terms

The original formulation of CDKLM includes the bed
slope source term, B(Q), and Coriolis force, C(Q), and we
extend the scheme to also include the bed shear stress,
S(Q), and wind forcing, W(Q). Bed shear stress is

discretised using a semi-implicit formulation in the strong
stability preserving Runge-Kutta scheme,

Q�
i, j ¼ Qn

i, j þ DtMðQnÞi, j
� �

= 1þ DtSðQn
i, jÞ

� �
Qnþ1

i, j ¼ 1
2
ðQn

i, j þ Q�
i, j þ DtMðQ�Þi, j

� �Þ=ð1þ 1
2
DtSðQ�

i, jÞÞ,
(31)

instead of (4). This essentially means that we apply half
of the bed friction using Qn, and half of the friction using
the predictive step Q�:

The wind stress comes from the atmospheric wind
transferring momentum to the water column. We take
the approach of Large and Pond (1981) and use

~s ¼ qa
qw

CD jW10j W10, (32)

in which qa ¼ 1:225 kg=m3 is the specific density of air,
qw ¼ 1025 kg=m3 is the specific density of sea water, W10

is the wind speed at 10 metres, and CD is the drag coeffi-
cient computed as

CD ¼ 10�3 1:2 if jW10j < 11 m=s,

0:49þ 0:065 jW10j if jW10j � 11 m=s:

(

(33)

The NorKyst-800 model stores its output, including
the wind forcing, every hour. Because the time step of
our simulator is significantly smaller than one hour, we
use linear interpolation in time to get the most accurate
wind stress source term for each time step. Given the

wind stresses Wa
10 at time ta and Wb

10 at time tb, we com-
pute the wind stress at time t 2 ½ta, tb� as a convex com-
bination of the two

Wn
10 ¼ ð1� sÞWa

10 þ sWb
10, s ¼ ðt� taÞ=ðtb � taÞ:

(34)

In space, we use specialised GPU texture hardware for
bilinear interpolation (see e.g. Brodtkorb et al., May
2010), resulting in a trilinearly interpolated wind stress.
This is highly efficient, as the GPU has dedicated hard-
ware for bilinear spatial interpolation that also includes
caching. An added benefit is that the grid size of the
wind stress data does not need to match up with the
underlying simulation grid. This further provides us with
a choice to reduce the accuracy and memory footprint of
the forcing fields, and thus trade better performance
against accuracy.

3.6. Nesting the model into NorKyst-800

A common technique in operational oceanography is to
nest high-resolution local models within lower-resolution
models that cover a larger domain. For instance, the
NorKyst-800 model is nested within TOPAZ, which is a

COASTAL OCEAN FORECASTING ON THE GPU 7

12-16 km resolution HYCOM-based coupled ocean and
sea ice model with data assimilation (Xie et al., 2017). In
this work, we nest our simulations into the NorKyst-800
model by setting initial ocean state and boundary condi-
tions appropriately. We use the so-called flow relaxation
scheme (Davies, 1976), in which we have a relaxation
zone,4 between the internal computational domain and
the external boundary conditions. In this region, we solve
the shallow-water equations as normal to obtain an

internal solution Qint
i, j , and then gradually nudge it

towards an external solution Qext using

Qi, j ¼ ð1� aÞQint
i, j þ aQext, a ¼ 1� tanhðdi, j=d0Þ:

(35)

Here, di, j is distance in number of cells to the external
boundary, and the parameter d0 is typically set to 2 or 3
to control the fall-off of the tanh relaxation function.

The implementation of the boundary conditions fol-
lows the same ideas as for the wind stress, using textures
for linear interpolation in time and space. We use float45

textures to hold our physical variables, g, hu, hv, because
float3 is not supported as a texture format. We further-
more only use two textures, as we pack the north and
south boundaries into one texture, and similarly for the
east and west.

3.7. Coriolis force

The original CDKLM scheme requires that the grid is
aligned with the cardinal directions, which significantly
restricts the use of the scheme. For higher latitudes this
becomes especially pronounced, as both the latitude
and direction towards north will vary across the
domain. We have therefore extended the scheme to sup-
port both a spatially varying north-vector and a spa-
tially varying latitude, which is required to be able to
run realistic simulations for the areas covered by the
NorKyst-800. To account for the varying north vector,

we project the momentum onto the local north and east
vectors,

hue ¼~e � hu, hv½ �T , ~e ¼ cos ðhÞ, � sin ðhÞ½ �,
hvn ¼~n � hu, hv½ �T , ~n ¼ sin ðhÞ, cos ðhÞ½ �,

(36)

and use these vectors when computing the source term
C(Q) so that

CðQÞ ¼ f �
0

~x � hvn , � hue½ �T
~y � hvn, � hue½ �T

2
64

3
75: (37)

in which the vectors ~x ¼ ½cos ðhÞ, sin ðhÞ� and ~y ¼
½� sin ðhÞ, cos ðhÞ� project the result back into the (x, y)-
coordinate system. Note that we also need to use the
same approach in the reconstruction of h as discussed in
Section 3.1 to maintain the rotational steady states.

Our spatially varying Coriolis parameter is computed
from the latitude, li, j, of a cell

fi, j ¼ 2x sin ðli, jÞ, x ¼ 7:2921 � 10�5rad=s, (38)

or using a beta-plane model,

fi, j ¼ fref þ b � ð~n � ðxi � xref Þ, ðyj � yref Þ
� �TÞ: (39)

Here, f is linearised around a reference point, ðxref , yref Þ,
with a slope b in the direction of ~n: Setting b to zero yields
a constant Coriolis parameter throughout the domain.

Figure 3 demonstrates how the angle to north plays an
important role in the generation of planetary Rossby
waves, caused by variations in the Coriolis force using
(39). The figure shows the resulting g after long simula-
tions initialised with a rotating Gaussian bump in geo-
strophic balance in the middle of the domain, similar to
the case presented in Holm et al. (2020). Here, we have
used a domain consisting of 350� 350 cells with Dx ¼
Dy ¼ 20km, a depth of H ¼ 50m, and the centre of the

domain corresponding to approximately 33
	
north, with

f ¼ 8 � 10�4 and b ¼ 2 � 10�11: The simulation ends after
approximately 35 days. The figure clearly shows the effect

Fig. 3. Planetary Rossby waves generated by a beta plane model for the Coriolis force and with different directions for north. The
simulations are initialised by a rotating bump in the middle of the domain, which develops into Rossby waves that propagates
westwards with wave energy slowly propagating eastwards. The different figures show that we get the same Rossby waves for arbitrary
orientation of our domain. Axes are given in 1000km, and the colormap shows g in m.

8 A. R. BRODTKORB AND H. H. HOLM

of varying the north vector and hence the Coriolis
source term.

3.8. Bathymetry

The bathymetry in the NorKyst-800 model is given as
cell midpoint values, and can not be used directly in our
framework as CDKLM requires the bathymetry to be
defined as a piecewise bilinear surface specified by point
values at the cell intersections. It is still desirable that the
averages of the resulting four intersection values end up
to be equal to the NorKyst-800 cell average values, as
large deviations can disturb the balanced relations in the
provided ocean state. Constructing such a piecewise bilin-
ear surface from the cell averages is an ill-posed problem,
and a simple averaging of cell values excessively smears
important features such as deep fjords and straits.

We have therefore devised a pragmatic iterative algo-
rithm, which is based on reconstruction of slopes for each
cell, similar to the reconstruction procedure in our
numerical shallow-water scheme. Our initial guess is com-
puted as follows:

1. Compute the local gradient in each cell so that

Hx
i, j,H

y
i, j

h i
¼ rHi, j: (40)

2. Evaluate the piecewise planar function at the four
corners of each cell,

Hi, j
i�1=2, j�1=2 ¼ Hi, j � 1

2
Hx

i, j �
1
2
Hy

i, j,

Hi, j
iþ1=2, j�1=2 ¼ Hi, j þ 1

2
Hx

i, j �
1
2
Hy

i, j,

Hi, j
i�1=2, jþ1=2 ¼ Hi, j � 1

2
Hx

i, j þ
1
2
Hy

i, j,

Hi, j
iþ1=2, jþ1=2 ¼ Hi, j þ 1

2
Hx

i, j þ
1
2
Hy

i, j:

(41)

3. Average the estimate from the four cells meeting at
one intersection point so that

H�
iþ1=2, jþ1=2 ¼

1
4

Hi, j
iþ1=2, jþ1=2 þHiþ1, j

i�1=2, jþ1=2

þHiþ1, jþ1

i�1=2, j�1=2 þHi, jþ1
iþ1=2, j�1=2

�
:

(42)

After obtaining the initial guess, we start an iterative
procedure consisting of two stages. The first stage mini-
mises the difference between computed and true midpoint

Fig. 4. Reconstruction of the bathymetry at intersection points. Starting with the initial bathymetry Hm defined at cell midpoints
(upper left), we compute the Hi values at intersections (upper right). The lower-left figure shows the convergence of our reconstruction
algorithm, and the reconstructed bathymetry is plotted together with the original in the lower-right figure. The top two figures have axes
units in number of cells, and the x-axis in the bottom right is similarly in number of cells. The y-axis in the bottom right figure shows
the depth. Notice that small features such as islands can disappear in the top right figure, but that the bathymetry does not appear to
suffer from smoothing caused by the interpolation procedure.

COASTAL OCEAN FORECASTING ON THE GPU 9

values, and the second dampens oscillations created by
the first stage. We start by computing the difference
between our estimate and the target bathymetry as

DHi, j ¼ Hi, j �H�ði, jÞ, (43)

in which H�ði, jÞ means that we evaluate the piecewise
bilinear estimate at midpoints. We then apply (40)–(42)
to compute an estimate of the difference at intersections,
DH�

iþ1=2, jþ1=2, and subtract this difference from our initial

guess,

H�
iþ1=2, jþ1=2 :¼ H�

iþ1=2, jþ1=2 þ DH�
iþ1=2, jþ1=2: (44)

This brings our updated midpoints of H�ði, jÞ closer to
the target Hi, j, but it also results in unwanted oscilla-
tions, as there is nothing that limits the slopes of this
piecewise bilinear surface. We therefore smooth H�, and
repeat the procedure until the update between two subse-
quent iterations is sufficiently small. Around ten itera-
tions is typically sufficient to create a piecewise bilinear
surface that lies close to the target. Figure 4 shows the
result of our approach applied to the bathymetry from
NorKyst-800 in the innermost parts of Vestfjorden (see
also Section 5.2).

CDKLM is a full two-dimensional scheme, yet it
exhibits a grid orientation bias close to the land mask.
For example, we have experienced that the scheme has
difficulties in propagating the momentum through narrow
straits and canals that are only one or two cells wide. To
ameliorate this, we can use binary erosion on the land
mask to erode one row of cells at a time as shown in Fig.
5. We extrapolate g into these areas using grey dilation,6

and set the water depth equal the land value, which in
the NorKyst-800 model is 5 metres. The process can be
repeated to erode the land mask even more, and is
required for tidal waves to properly propagate in features
such as narrow fjords and straits. We have found that
using single iteration is sufficient to propagate tides in
and out of the fjords in the NorKyst-800 model.

3.9. Refinement and coarsening of grid

The possibility to run simulations at different resolutions
is attractive to quickly obtain low-resolution preliminary
results, and also to resolve more of the dynamics for
more detailed and accurate results with higher resolution.
We have included functionality in our simulation frame-
work to increase and decrease the grid resolution with
factors of two to support both of these scenarios. We use
a static grid refinement/coarsening performed on the ini-
tial conditions themselves, but the same approach can be
used for efficient adaptive mesh refinement following the
same approach as Saetra, Brodtkorb and Lie (Sætra
et al., 2015).

The physical variables are represented by cell average
values, and refinement is based on a slope-limited recon-
struction within each cell, which we evaluate at the
refined grid cell centres. As the bathymetry is specified by
a piecewise bilinear surface, the high-resolution represen-
tation of the bathymetry evaluates the surface on the
refined cell intersections. Low-resolution representation
of the physical variables on a coarsened grid is simply the
average of the original cell values, and intersection values
for the bathymetry are sampled from the corresponding
original intersection values. With a factor two coarsening,
both these operations are well-defined.

Note that the boundary conditions and wind forcing
terms are independent of the mesh resolution due to our
use of GPU textures.

4. Performance and accuracy of GPU
implementation

We have previously evaluated the standard CDKLM
scheme on several test cases which target oceanographic
dynamics relevant for the shallow-water equations when
implemented on a Cartesian grid (Holm et al., 2020). In
this work, however, we have reformulated the scheme in
terms of g instead of h, added several new source terms,
and enabled varying latitude and north vector. It is

Fig. 5. Widening of narrow straits, in which the land mask is eroded using binary erosion. The left figure shows particle velocities in
the Tjeldsund strait in Lofoten/Vesterålen between the main land and Hinnøya (the bathymetry is shown in Fig. 4). Left shows the
NorKyst-800 reference, centre shows original (reconstructed) bathymetry, and the right figure shows the result with one grid cell land
erosion. The strait width and geometry limits the amount of water passing through it in the original bathymetry, but by eroding one cell
of the land mask the amount of water is much closer to the reference. The axis units are in number of grid cells.

10 A. R. BRODTKORB AND H. H. HOLM

therefore important to revisit the grid convergence test.
We also measure computational performance of our
simulation framework through assessing its weak scaling.

4.1. Convergence of the numerical scheme

To evaluate numerical convergence, we define a bench-
mark case covering 500 km� 500 km: We model the
bathymetry after the Matlab peaks function,

peaksðs, tÞ ¼ 3ð1� sÞ2e�s2�ðtþ1Þ2 � 10ðs=5� s3 � t5Þe�s2�t2

� 1=3e�ðsþ1Þ2�t2 , s, t 2 �3, 3½ �
(45)

which yields a non-symmetric smooth surface. We then
define the equilibrium ocean depth as

Hðx, yÞ ¼ 100þ 10 � peaks 6x
500

� 3,
6y
500

� 3

� 	
, (46)

with x and y given in km, so that the depth varies
between 34 and 181 metres (see Fig. 6). We initialise the
sea-surface level with a bump centred in the domain,

gðrÞ ¼
1
2

1þ cos
r
c
p

� 	� 	
, if r � c,

0, if r > c,

8><
>: (47)

in which r ¼
ffi
ðx� 250Þ2 þ ðy� 250Þ2

q
is the distance

from the centre of the domain, and c controls the size of
the bump, set to 300 km in our case. We assume that the
North pole is located at ð3000 km, 3000 kmÞ, which
means that the angle between the y-axis and the north

vector varies from 33:7
	
to 56:3

	
across the domain and

that the latitude varies from 56:0
	
to 67:4

	
north. These

parameters roughly correspond to the North Sea.
Including land inevitably yield only first-order accurate
fluxes, and we have thus deliberately not included such
areas in our grid convergence test.

The simulation is run for 800 seconds, after which we
compute the difference for the whole domain between the
solution and a reference computed on a 1024� 1024 grid.
Figure 6 and Table 1 show that we achieve second-order
accuracy in both the L1 and the L2 norm, whilst the con-
vergence in Linf is somewhat slower.

4.2. Computational performance

To assess the computational performance, we continue to
use the same benchmark, but run the simulation twice as
long. We also measure the cost of downloading the
results from the GPU to the CPU. Figure 7 shows the

Fig. 6. Convergence plot of our numerical scheme. The numerical case has a water disturbance consisting of a cosine bump at the
centre of the domain, and the bathymetry consists of the smooth Matlab peaks function. The Coriolis force varies spatially across the
domain according to variations in latitude and direction towards north. The left figure shows the self convergence of the numerical error
compared to the reference solution with 10242 cells. To the right we show the bathymetry with the sea-surface level initially (top) and at
the end of the simulation (bottom). The horizontal axis are in kilometres, and the vertical axis is in metres. Notice that the height of the
bump is slightly reduced in the lower figure (smaller white area).

COASTAL OCEAN FORECASTING ON THE GPU 11

results for domains with 162 to 163842 cells, running on a
Tesla P100 GPU. We see that for the larger domain sizes,
we obtain perfect weak scaling, as a factor two grid
refinement leads to a factor eight increase in computa-
tional complexity (the time step size is cut in half due to
the CFL condition, and we have four times the number

of cells). Cases with less than 5122 cells are dominated by
overheads and hence, the cost of a single time step is
close to constant. The problem size required to make
overheads negligible and obtain perfect weak scaling
varies between different GPUs and their configurations.
Time for downloading data scales linearly with the prob-
lem size, as is expected. Again, we see the same behaviour
for small domains as for the computational performance
(Table 2).

Our current implementation is designed for running
massive ensembles (Holm et al., 2020), and therefore does
not utilise multiple GPUs for a single simulation.
However, we have previously shown that finite-volume
schemes such as the one discussed here are very well
suited for multi-GPU simulations (Sætra and
Brodtkorb, 2010).

5. Real-world simulations

Using the NorKyst-800 model system, the Norwegian
Meteorological Institute issues daily ocean forecasts for
the complete Norwegian coast and makes them publicly
available through thredds servers and various web pages,
as well as transferring to other authorities. In addition to
the 3D velocities of the ocean currents, these forecasts
also provide the 2D depth-averaged currents, which we
use as initial conditions along with the sea-surface level.
The forecasts also contain wind forcing, bathymetry, land
masks, longitudes, latitudes, and angle towards north for
each cell. This means that it is simply a matter of access-
ing the file and cutting out the correct sections to be able
to initialise our simulator. To start a simulation within
our framework, we simply need the full url to the specific
forecast we want to nest our simulation within, and spe-
cify a desirable sub-domain.

We run our simulations on the three different sub-
domains shown in Fig. 8. The simulation cases run inde-
pendently, but use the same global data set for initialisa-
tion and forcing. Our first simulation is in the Norwegian
Sea with no land values within the domain, and is there-
fore a fairly simple test for using real initial and bound-
ary conditions. The second case is centred on the Lofoten

Table 1. Error of computed solutions at different resolutions and numerical reduction order for each refinement. The time step is fixed
throughout these simulations.

Resolution Dt L1 Order L2 Order Linf Order

162 1600/16 0.002898 – 0.006072 – 0.037367 –

322 1600/32 0.000923 1.65 0.001877 1.69 0.012651 1.56
642 1600/64 0.000256 1.85 0.000502 1.90 0.002621 2.27
1282 1600/128 0.000058 2.14 0.000122 2.04 0.000741 1.82
2562 1600/256 0.000015 1.96 0.000033 1.87 0.000322 1.20
5122 1600/512 0.000005 1.58 0.000009 1.89 0.000136 1.25

Fig. 7. Weak scaling of our simulator. For small domain sizes,
the runtime is dominated by overheads, but for domain sizes
larger than approximately 512� 512, we see that the
computational time scales with the number of cells. For each
doubling of our domain, we perform approximately eight times
as many operations (four times as many cells, and twice the
number of time steps).

Table 2. Performance for our simulator. The simulation time is
approximately eight times larger when we double the resolution.
This is because we have four times as many cells and twice as
many timesteps to reach the same end time. The download
increases by a factor four, which is to be expected as we transfer
four times as many data elements.

Resolution
Simulation

time Factor
Download

time Factor

5122 0.169710 – 0.000929 –

10242 1.170814 6.9 0.002773 3.0
20482 9.133564 7.8 0.019642 7.1
40962 72.832028 8.0 0.077541 3.9
81922 582.599290 8.0 0.305405 3.9
163842 4695.904546 8.0 1.218880 4.0

12 A. R. BRODTKORB AND H. H. HOLM

archipelago in Northern Norway, which is dominated by
a complex coastline consisting of narrow fjords and a
large number of islands, and serves as a challenging test
for our reconstruction of the bathymetry and land mask.
Finally, we run almost the complete domain, leaving only
25 cells in each direction to serve as boundary conditions.
With the entire Norwegian coastline, it becomes import-
ant to account for the difference in the north vector
throughout the domain (see the longitudinal lines and
north arrows in Fig. 8), and we should see the tides fol-
lowing the coast as Kelvin waves. The last case is also
used to make sea-level predictions at five different loca-
tions, indicated as stars in Fig. 8.

All three cases are run with three different resolutions; a
high resolution with a grid refined to 400m cells, the ori-
ginal 800m resolution of NorKyst-800, and a low resolution
grid consisting of 1600m cells. We use an adaptive time
step, and update the time step every 20minutes according to
the CFL condition in (5) scaled by CCFL ¼ 0:8: Each data-
set provided from the NorKyst-800 forecasts covers
23hours, which means that we only have boundary condi-
tions to run simulations for the same time range.

5.1. Case 1: Norwegian sea

The first case runs an open water domain in the Norwegian
Sea and tests our ability to use the NorKyst data as initial
and boundary conditions. The sea-surface level changes sig-
nificantly during the simulation time range as the tidal waves
enter and exit the domain, and this dynamic is largely
dependent on the boundary conditions. The velocity field on

the other hand, is dominated by already present features of
slowly rotating dynamics, and will not change much during
the simulation time range. This enables us to test both that
the initial conditions are correctly captured, and how well our
simulator maintains complex rotating structures over time.

Figure 9 shows simulation results of the Norwegian
Sea for all three different grid resolutions after 23 hours,
compared to the reference solution from NorKyst-800.
First, we see that the contour lines for the sea-surface
level in the left column show the same values at similar
places for all simulations. This shows that the boundary
conditions allow tidal waves to propagate correctly in
and out of the domain as intended. The right column
shows the corresponding particle velocities. Note that the
initial state for both the high-resolution and original runs
are visually inseparable from the NorKyst-800 model
state, whereas the low-resolution initial conditions slightly
smear out the sharper features for the velocity. At
23 hours, we see that the high-resolution model to a large
degree maintains the sharp features from NorKyst-800.
This shows that even though we run a barotropic model,
we are able to maintain some of the baroclinic signals
present in the reference model. We suggest that this is
due to a combination of initialisation of the baroclinic
motion and a well-balanced numerical scheme for geo-
strophic flow. With the original resolution, however, the
particle velocities resemble a slightly blurred image of the
reference solution, and in the low-resolution simulation,
the features are blurred even more. Also, we are starting
to see clear signs of grid effects both internally and from
the boundary.

Fig. 8. The domain covered by the NorKyst-800 model showing the equilibrium depth off shore. The location of Case 1 in the
Norwegian Sea (yellow rectangle), Case 2 around the Lofoten archipelago (red rectangle), and Case 3 (beige rectangle) within the
NorKyst-800 model domain, with red stars marking the locations for sea-level predictions. The values on the x- and y-axes are given in
km, and the latitude-longitude grid shows how the direction towards north changes throughout the domain.

COASTAL OCEAN FORECASTING ON THE GPU 13

5.2. Case 2: Lofoten

The second case is centred around the Lofoten archipel-
ago in Northern Norway. This region has a complex

coast line consisting of a large number of fjords, straits
and islands. In addition to the aspects tested in the first
case, this case tests the reconstruction of the bathymetry
at intersections and the handling of dry zones through

Fig. 9. Case 1 of the Norwegian Sea after 23 hours, comparing the reference solution from NorKyst-800 with our simulations using
three different grid resolutions. All simulations obtain sea-surface level (left) similar to the reference solution, meaning that the boundary
conditions allow the tides to correctly enter and exit our domain. From the particle velocities (right), we see that only the high-
resolution model is able to maintain sharp features, whereas the low-resolution simulation has strong signs of grid effects. The values on
the x- and y-axes are in km relative to the location in the complete domain.

14 A. R. BRODTKORB AND H. H. HOLM

Fig. 10. Case 2 around the Lofoten archipelago after 23 hours, comparing the reference solution from NorKyst-800 with our
simulations using three different grid resolutions. The values on the x- and y-axes are in km relative to the location in the complete
domain. Our sea-surface levels (left column) are similar but slightly higher within Vestfjorden compared to the reference solution. From
the particle velocities (right), we see that we get stronger currents than the reference. The level of details in our simulations are stronger
with higher grid resolution, whereas the low-resolution simulation blurs the structures and are influenced by grid effects.

COASTAL OCEAN FORECASTING ON THE GPU 15

the complex land mask. We expect to see a Kelvin wave
following the coast, but because the Lofoten archipelago
protrudes into the Atlantic, some of the wave will be par-
tially trapped and amplified in Vestfjorden between
Lofoten and the main land. Furthermore, as can be seen
from the depth map in Fig. 8, the edge of the continental
shelf crosses through the upper right corner of the sub-
domain, and we can here see a line of eddies driven by
baroclinic instabilities.

We again run simulations with the three different grid
resolutions, and Fig. 10 shows the final simulation state
after 23 hours, with a high tide in Vestfjorden. All three
simulations show that the contour lines for the sea-

surface level are slightly off compared to the reference
solution, with marginally more water into the fjord.
Similarly as in Case 1, the low-resolution simulation is
unable to preserve the fine structures in the currents and
shows grid effects. The original and high grid resolutions
are also unable to preserve the exact eddy structure as
found in the reference solution, but we can instead more
clearly see a consistent coastal current with natural irreg-
ularities. This is consistent with what we can expect using
a barotropic model. These results also show a larger area
with high particle velocity around the smallest islands in
our simulations, possibly due to the reconstructed

Fig. 11. Simulation result for Case 3 containing almost the complete domain used by NorKyst-800 after 23 hours. The top row shows
the reference solution from NorKyst-800, followed by our simulation results using three different grid resolutions below. The values on
the x- and y-axes are in km relative to the location in the complete domain. The sea-surface levels (left) show how the tide varies along
the coast, with low tide in the Oslofjord (lower left corner), high tide in the middle of the domain, and low tide again towards the
border with Russia (lower right corner). Our results are consistent with the reference solution for all grid resolutions. The particle
velocities (right column) are qualitatively similar for the reference solution (NorKyst-800), and our simulations with high and original
resolution. Even at this scale, it is apparent that the low resolution grid smears the features in the ocean currents.

16 A. R. BRODTKORB AND H. H. HOLM

bathymetry, which widens some straits by the land-
mask erosion.

5.3. Case 3: Norway

Our third case consists of almost the complete domain
covered by the NorKyst-800 model. We leave out the 25
outermost cells and use these as boundary conditions.
With the complete domain, we cover a large enough area
to see the Kelvin waves entering in the southwestern part
of the domain and travelling north.

Figure 11 shows the simulation results after 23 hours in
the same manner as the earlier figures. We now see from
the sea-surface level (left column) that there is a low tide
in the middle of the domain, whereas there are high tides
both in the north at the Russian border and in the Oslo
fjord in the lower left corner. The contour lines are simi-
lar for all three grid-resolutions, and the particle veloc-
ities (right column) are in general consistent with the
reference solution from NorKyst-800. Due to the scale of
the domain, it is harder to compare the fine details in
Fig. 11, but the large scale features from NorKyst-800
are found in both the high and original grid resolutions.
As we have seen in the other cases, the low-resolution
simulation maintains less details. It should be noted that
by zooming into the same areas simulated in Case 1 and
2, we have seen that the results from running the com-
plete domain are similar within each resolution as to the
results shown in Figs. 9 and 10.

Table 3 reports the run time for simulating this case on
a laptop, a desktop, and a server GPU. The laptop contains

a dedicated GeForce 840M GPU, which is powerful for a
laptop but on the low end of the GPU performance spec-
trum. It completes the simulation in slightly less than
54minutes for the original grid resolution of NorKyst-800,
which is comparable to the time required for 512 CPU cores
to run the NorKyst-800 simulation (Christensen, 2020).7 On
a desktop with a slightly old GeForce 780GTX gaming
GPU, the same simulation is carried out in approximately
10minutes. Tesla P100 is a GPU often found in supercom-
puters, thus belonging to the very high-end of the perform-
ance (and price) spectrum, and runs the 23-hour forecast in
approximately 3minutes. Note that for the high-resolution
scheme, the time step is on average just 0.46 seconds, mean-
ing that the results shown in Figs. 9–11 are obtained after
180 000 time steps, using only single-precision floating-
point operations.

Table 4 takes a closer look at the simulation time of
Case 3 by comparing the time for spent initialising, run-
ning the actual simulation for one hour, and writing the
result to disc for one time step. The initialisation time is
measured under the assumption that the NetCDF file
from NorKyst-800 is available on disc locally, as down-
loading from the thredds server depends on your internet
connection and therefore of less interest. First of all, we
see that initialising the original resolution costs approxi-
mately the same as half an hour of simulation. With
higher or lower resolution, initialisation is slightly more
expensive as the initial currents, sea-surface level and
bathymetry need to undergo pre-processing. Furthermore,
we see that initialisation constitutes a considerable
amount of total run time when using a low grid

Table 3. Timing results different resolutions of running the complete Norwegian coast (Case 3), excluding initialisation, with the
original, high and low resolution on different computer types.

Resolution Num cells Average Dt

Laptop
GeForce 840M
Maxwell (2014)

Desktop
GeForce GTX780
Kepler (2013)

Server
Tesla P100
Pascal (2016)

Low 541 875 1.85 s 9m 22 s 1m 29 s 47 s
Original 2 167 500 0.92 s 53m 49 s 10m 42 s 3m 13 s
High 8 670 000 0.46 s 6h 10m 09 s 1 h 23m 22 s 23m 21 s

Table 4. Breakdown of run time for simulating 23 hours of the complete Norwegian coast (Case 3) on the desktop with a GeForce
GTX780 GPU. The column with time spent writing to disc includes downloading from the GPU and all over overhead required for
this operation.

Resolution Initialisation Simulation 1 hour
Write one time step to disc
(fraction of simulation time)

Low 15.6 s 3.4 s (85.3%) 0.5 s (14.7%)
Original 11.8 s 25.9 s (92.3%) 2.0 s (7.7%)
High 18.3 s 209.5 s (96.2%) 8.0 s (3.8%)

COASTAL OCEAN FORECASTING ON THE GPU 17

Fig. 12. Tidal predictions, reference NorKyst-800 results, and official gauge measurements every five minutes at selected locations
generated by the simulations discussed in Case 3. All grid resolutions capture the tide as predicted by NorKyst-800 with only minor
discrepancies at coastal locations, such as Bergen, Bodø and Honningsvåg. The grid resolution comes much more into play deep inside
the fjords, such as at Oslo and Narvik. Here, the low-resolutions grid no longer manages to represent the bathymetry well enough for
the tide to enter the fjord correctly (especially in the very narrow Oslo fjord), but we still get fair results with the high-resolution grid.
The weakly dotted line is actual observed sea-surface level at the respective locations in the time range of the forecast. It should be
noted that official tidal forecasts have additional physical terms, which is the main reason why the NorKyst-800 is off.

18 A. R. BRODTKORB AND H. H. HOLM

resolution, but less so with high resolution. The table also
shows us that simulation dominates over writing results
to disc for all resolutions. Note that the cost of writing to
file scales with the number of cells, meaning that the frac-
tion of total run time spent in writing the results to file is
reduced by the square root of the number of cells. This
matches the measurements presented in 4.2.

5.4. Tidal forecast verification and validation

The oceanographic phenomena best captured and main-
tained by the shallow-water equations are arguably tides
and storm surges. We therefore use Case 3 to generate
tidal forecasts for five locations along the Norwegian
coast (see Fig. 8) and compare these with the hourly val-
ues from the NorKyst-800 dataset. The locations have
been chosen based on the availability of actual sea-level
observation stations, which record data every 5minutes,
and we use these to show the realism in the forecasts gen-
erated by both NorKyst-800 and the current model. It
should be noted that the sea level variation depends on
more physical processes than those modelled by both
NorKyst-800 and our code, such as atmospheric pressure
and other friction terms (see also e.g. (D€o€os et al.,
2004),). We therefore expect a discrepancy between the
forecasts and the observations. For us, it is therefore
most relevant to use the NorKyst-800 result as a refer-
ence solution. The five locations (see Fig. 8) are Bergen
and Honningsvåg close to the open sea; Oslo and Narvik
located in the innermost parts of long fjords; and Bodø,
which is affected by how the Lofoten archipelago catches
the tidal waves.

Figure 12 shows the tidal forecasts generated from
Case 3 for each of the five locations, sorted from south
to north. First of all, we see that our forecasts at
Honningsvåg are very well in accordance with NorKyst-
800. The same is the case in Bergen, even though our
simulations here consistently give slightly too low values
for g. At Bodø, we see that NorKyst-800 gives a delay in
the transition from high to low tide between hours 14
and 16, and we can see weak indications of this in our
high-resolution simulation as well. All these locations are
at the coast, which makes the tides here relatively easy to
capture, but it should still be noted that they are all pro-
tected by islands. The tides in Oslo and Narvik are seen
to be harder to capture, as these two cities are located at
the innermost parts of two long fjords, and we get larger
differences between the different grid resolutions. In
Narvik, we get a large improvement by using the high-
resolution grid over the original and low resolutions, but
overall, our results are fairly close to the reference solu-
tion. Oslo is a particularly hard case, as it is positioned
within a very narrow and shallow fjord. This leads to

larger relative discrepancies here, even though the abso-
lute difference is roughly the same as in Narvik. We see
that the shape of our high-resolution result is a bit differ-
ent than for the reference solution. The tidal signal pre-
dicted by the low-resolution grid in Oslo is very weak, as
the fjord almost becomes closed off at this resolution.
Finally, note that our solutions are well behaved already
from the start, meaning that we manage to initialise our
simulations in a balanced state.

6. Summary

We have presented a GPU simulation framework suitable
for real-world oceanographic applications. The frame-
work is based on a modern high-resolution finite-volume
method for the shallow-water equations (Chertock et al.,
2018) with new adaptations and extensions to handle
moving wet-dry fronts, land mask, bottom friction, wind
forcing, varying north vector, varying latitude, and exter-
nal boundary conditions. The numerical algorithm is also
improved to facilitate for efficient implementation on
GPUs using single-precision floating-point operations and
includes an efficient reformulation of a problematic recur-
sive term. The framework is designed to be initialised
from operational ocean forecasts issued by the
Norwegian Meteorological Institute from a three-dimen-
sional ocean model.

We have presented second-order grid convergence for
a synthetic but challenging benchmark containing com-
plex topography and varying north vector. We have also
shown that the computational performance follows the
expected weak scaling.

Finally, we have validated the simulation framework
through three different real-world cases along the
Norwegian coastline, initialised from ocean forecasts pro-
duced by the NorKyst-800 operational model with an
800 m� 800 m horizontal resolution. Our results demon-
strate that the framework manages to maintain fine rota-
tional structures, especially when increasing the grid
resolution to 400 m� 400 m: On a coarse grid (1600m
grid cells), however, the features are lost and the simula-
tions get dominated by grid effects. The tidal forecasts
show that we are able to predict the observed tides rela-
tively well at coastal locations on any of the three grid
resolutions used, when compared to the NorKyst-800 ref-
erence data. We see, however, that within long fjords, our
results are improved when increasing the grid resolution,
compared to using the original horizontal resolution of
the NorKyst-800 model.

COASTAL OCEAN FORECASTING ON THE GPU 19

CRediT author statement

A. R. Brodtkorb: Conceptualization, Methodology,
Software, Investigation, Writing - Original Draft, Writing
- Review & Editing, Visualization, Project administration,
Supervision, H. H. Holm: Conceptualization,
Methodology, Software, Investigation, Writing - Original
Draft, Writing - Review & Editing, Visualization.

Notes

1. The source code presented in this paper, along
with Jupyter Notebooks (Kluyver et al. 2016)
used to create the plots and results, is available
as open source under GPL version 3, and has
been published on Zenodo under DOI: 10.5281/
zenodo.4056327. We have used the NorKyst-
800 forecast for 2019-07-16 from the
Norwegian Meteorological Institute in this
work, available on https://thredds.met.no/
thredds/dodsC/fou-hi/norkyst800m-1h/NorKyst-
800m_ZDEPTHS_his.an.2019071600.nc. The
observed sea-surface levels are obtained from
Se Havnivå, https://www.kartverket.no/
sehavniva/, provided by the Norwegian
Mapping Authority, Hydrographic Service. The
data sets are available under the Creative
Commons 4.0 BY International license as
described on https://www.met.no/en/free-
meteorological-data/Licensing-and-crediting and
https://www.kartverket.no/en/data/Terms-of-use/.

2. The spatial discretization of the numerical
fluxes in (Chertock et al., 2018) reduces to the
fluxes presented in (Kurganov and Levy, 2002)
when friction terms and the Coriolis parameter
is set to zero.

3. The Nvidia GeForce GTX780, used as an
example of a consumer GPU in this study, has a
performance of 4.1 teraFLOPS in single
precision, and 0.17 teraFLOPS in double
precision. The recent Nvidia TITAN RTX has a
performance of 16.3 teraFLOPS in single
precision, and 0.51 teraFLOPS in double
precision. The professional GPU used in this
study, the Nvidia Tesla P100, has a performance
of 9.5 teraFLOP in single precision, and 4.8
teraFLOPS in double precision. Other consumer
grade and professional grade GPUs follow the
same trend.

4. Also known as a sponge layer.
5. Textures on GPUs are originally designed to hold

the colour of one pixel as the colour channels
red, green, blue, and alpha, hence float4.

6. Grey dilation computes the maximum value of
a small neighbourhood (typically 3� 3 cells) for
each location.

7. Please note that the ROMS model is far more
complex and can properly represent the ocean
state. Our simplified model is only capable of
capturing the barotropic dynamics and, e.g., not
capable of creating long-term forecasts or capture
salinity and temperature driven dynamics.

Acknowledgements

This research has mainly been funded by the Research
Council of Norway under grant number 250935 (GPU
Ocean), and partly by grant number 310515 (Havvarsel).
The GPU Ocean core project team consists of G€oran
Brostr€om, Kai Christensen, Knut-Andreas Lie, and
Martin Lilleeng Sætra, and the authors are sincerely
grateful for their collaboration and discussions, which
have influenced and enabled this work. The authors also
thank Øyvind Sætra and Jon Albretsen for feedback on
drafts of the manuscript in addition to the thorough
comments from the reviewers. The GPU Ocean project
has received support in form of compute time on
UNINETT Sigma2 - the National Infrastructure for High
Performance Computing and Data Storage in Norway
under project number nn9550k. The authors declare that
we have no competing interests related to this work.

References

Albretsen, J., Sperrevik, A., Staalstrøm, A., Sandvik, A. and

Vikebø, F. 2011. NorKyst-800 report no. 1: User manual and

technical descriptions. Technical Report 2, Fisken og Havet,

Institute of Marine Research
Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J. et al.

2006. Parry Husbands, Kurt Keutzer, David a Patterson,

William Lester Plishker, John Shalf, Samuel Webb Williams.

The landscape of parallel computing research: A view from

berkeley. New York, NY: Association for Computing

Machinery.
Bertin, X. 2016. Storm surges and coastal flooding: status and

challenges. La Houille Blanche 2, 64–70. doi:10.1051/lhb/

2016020
Brodtkorb, A., Dyken, C., Hagen, T., Hjelmervik, J. and

Storaasli, O. May 2010. State-of-the-art in heterogeneous

computing. J. Sci. Program. 18, 1–33.
Brodtkorb, A., Hagen, T., Lie, K.-A. and Natvig, J. 2010.

Simulation and visualization of the Saint-Venant system using

GPUs. Comput. Visual. Sci. 13, 341–353. doi:10.1007/s00791-
010-0149-x

Brodtkorb, A., Sætra, M. and Altinakar, M. 2012. Efficient

shallow water simulations on GPUs: Implementation,

20 A. R. BRODTKORB AND H. H. HOLM

https://thredds.met.no/thredds/dodsC/fou-hi/norkyst800m-1h/NorKyst-800m_ZDEPTHS_his.an.2019071600.nc
https://thredds.met.no/thredds/dodsC/fou-hi/norkyst800m-1h/NorKyst-800m_ZDEPTHS_his.an.2019071600.nc
https://thredds.met.no/thredds/dodsC/fou-hi/norkyst800m-1h/NorKyst-800m_ZDEPTHS_his.an.2019071600.nc
https://www.kartverket.no/sehavniva/
https://www.kartverket.no/sehavniva/
https://www.met.no/en/free-meteorological-data/Licensing-and-crediting
https://www.met.no/en/free-meteorological-data/Licensing-and-crediting
https://www.kartverket.no/en/data/Terms-of-use/
https://doi.org/10.1051/lhb/2016020
https://doi.org/10.1051/lhb/2016020
https://doi.org/10.1007/s00791-010-0149-x
https://doi.org/10.1007/s00791-010-0149-x

visualization, verification, and validation. Comput. Fluids 55,
1–12. doi:10.1016/j.compfluid.2011.10.012

Castro, M., Gonz�alez-Vida, J., Mac�ıas, J. and Ortega, S. 2015. and
M de la Asunci�on. Tsunami-hysea: a gpu-based model for
tsunami early warning systems. In Proc XXIV Congress on

Differential Equations and Applications, June, C�adiz, Spain, 8–12.
Chertock, A., Dudzinski, M., Kurganov, A. and Luk�acov�a-

Medvidov�a, M. 2018. Well-balanced schemes for the shallow
water equations with Coriolis forces. Numer. Math. 138,
939–973. Dec doi:10.1007/s00211-017-0928-0

Christensen, K. 2020. Head of Division for Ocean and Ice,
Norwegian Meteorological Institute. [personal email
communication].

Davies, H. 1976. A lateral boundary formulation for multi-level
prediction models. Q. J. R. Meteorol. Soc. 102, 405–418.

de la Asunci�on, M., Mantas, J. and Castro, M. 2011. Simulation
of one-layer shallow water systems on multicore and CUDA
architectures. J. Supercomput. 58, 206–214. Nov doi:10.1007/
s11227-010-0406-2

Dong, T., Dobrev, V., Kolev, T., Rieben, R., Tomov, S. and co-
authors. 2014. A step towards energy efficient computing:
Redesigning a hydrodynamic application on CPU-GPU. In
2014 IEEE 28th International Parallel and Distributed

Processing Symposium, IEEE, pp. 972–981.
D€o€os, K., Nycander, J. and Sigray, P. 2004. Slope-dependent

friction in a barotropic model. J. Geophys. Res 109,
Flowerdew, J., Horsburgh, K., Wilson, C. and Mylne, K. 2010.

Development and evaluation of an ensemble forecasting
system for coastal storm surges. Q. J. R. Meteorol. Soc. 136,
1444–1456. doi:10.1002/qj.648

Gottlieb, S., Shu, C.-W. and Tadmor, E. 2001. Strong stability-
preserving high-order time discretization methods. SIAM Rev.

43, 89–112. doi:10.1137/S003614450036757X
Grasset, J., Audouin, Y., Longshaw, S., Moulinec, C. and

Emerson, D. R. 2019. Porting and optimising telemac-
mascaret for the openpower ecosystem. In Proceedings of the

2019 Emerging Technology Conference, Editors: MK Bane and

V. Holmes.
Guide to storm surge forecasting. 2011. Technical Report

WMO-No 2011. 1076, World Meteorological Organisation.
Hagen, T., Henriksen, M., Hjelmervik, J., and Lie, K.-A. 2007.

How to Solve Systems of Conservation Laws Numerically Using

the Graphics Processor as a High-Performance Computational

Engine. Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
211–264.

Holm, H., Brodtkorb, A. and Sætra, M. 2020. GPU computing
with Python: Performance, energy efficiency and usability.
Computation 8, 4. doi:10.3390/computation8010004

Holm, H., Brodtkorb, A., Brostr€om, G., Christensen, K. and
Sætra, M. 2020. Evaluation of selected finite-difference and
finite-volume approaches to rotational shallow-water flow.
CiCP 27, 1234–1274. doi:10.4208/cicp.OA-2019-0033

Holm, H., Sætra, M. and Brodtkorb, A. 2020. Data assimilation
for ocean drift trajectories using massive ensembles and
GPUs. In International Conference on Finite Volumes for

Complex Applications, Springer, pp. 715–723.

Huang, S., Xiao, S., and Feng, W.-C. 2009. On the energy
efficiency of graphics processing units for scientific
computing. In 2009 IEEE International Symposium on Parallel

& Distributed Processing IEEE. pp. 1–8.
Huxley, C. and Syme, B. 2016. TUFLOW GPU-best practice advice

for hydrologic and hydraulic model simulations. In 37th Hydrology

& Water Resources Symposium 2016: Water, Infrastructure and the

Environment, Engineers Australia, pp. 195–203.
Klingbeil, K., Lemari�e, F., Debreu, L. and Burchard, H. 2018.

The numerics of hydrostatic structured-grid coastal ocean
models: State of the art and future perspectives. Ocean

Modell. 125, 80–105. doi:10.1016/j.ocemod.2018.01.007
Kl€ockner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P. and

co-authors. 2012. PyCUDA and PyOpenCL: A scripting-
based approach to GPU run-time code generation. Parallel

Comput. 38, 157–174. doi:10.1016/j.parco.2011.09.001
Kluyver, T., Ragan-Kelley, B., P�erez, F., Granger, B.,

Bussonnier, M. and co-authors. 2016. Jupyter notebooks - a
publishing format for reproducible computational workflows.
In Positioning and Power in Academic Publishing: Players,

Agents and Agendas (eds. F. Loizides and B. Schmidt),
Netherlands: IOS Press, pp. 87–90.

Kurganov, A. 2018. Finite-volume schemes for shallow-water
equations. Acta Numer. 27, 289–351. doi:10.1017/
S0962492918000028

Kurganov, A. and Levy, D. 2002. Central-upwind schemes for
the Saint-Venant system. Esaim: M2an. 36, 397–425. doi:10.
1051/m2an:2002019

Kurganov, A. and Petrova, G. 2007. A second-order well-
balanced positivity preserving central-upwind scheme for the
Saint-Venant system. Communications in Mathematical

Sciences 5, 133–160. 03 doi:10.4310/CMS.2007.v5.n1.a6
Kurganov, A. and Tadmor, E. 2000. New high-resolution central

schemes for nonlinear conservation laws and
convection–diffusion equations. Comput. Phys. 160, 241–282.
doi:10.1006/jcph.2000.6459

Kurganov, A., Noelle, S. and Petrova, G. 2001. Semidiscrete
central-upwind schemes for hyperbolic conservation laws and
Hamilton–Jacobi equations. SIAM J. Sci. Comput. 23,
707–740. doi:10.1137/S1064827500373413

Large, W. and Pond, S. 1981. Open ocean momentum flux
measurements in moderate to strong winds. J. Phys. Oceanogr. 11,
324–336. doi:10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.
CO;2

Madec, G. and the NEMO team. 2008. NEMO ocean engine.
Note du Pôle de mod�elisation, Institut Pierre-Simon Laplace
(IPSL), France, No 27, ISSN No 1288–1619.

Martinsen, E. A. and Engedahl, H. 1987. Implementation and
testing of a lateral boundary scheme as an open boundary
condition in a barotropic ocean model. Coastal Eng. 11,
603–627. doi:10.1016/0378-3839(87)90028-7

MIKE Powered by DHI. 2019. MIKE 21 graphical processing
units (GPU) benchmarking report 2019. Technical report,
DHI.

Natvig, J. 2006. High-resolution methods for conservation laws in

the geosciences. PhD thesis, University of Oslo.

COASTAL OCEAN FORECASTING ON THE GPU 21

https://doi.org/10.1016/j.compfluid.2011.10.012
https://doi.org/10.1007/s00211-017-0928-0
https://doi.org/10.1007/s11227-010-0406-2
https://doi.org/10.1007/s11227-010-0406-2
https://doi.org/10.1002/qj.648
https://doi.org/10.1137/S003614450036757X
https://doi.org/10.3390/computation8010004
https://doi.org/10.4208/cicp.OA-2019-0033
https://doi.org/10.1016/j.ocemod.2018.01.007
https://doi.org/10.1016/j.parco.2011.09.001
https://doi.org/10.1017/S0962492918000028
https://doi.org/10.1017/S0962492918000028
https://doi.org/10.1051/m2an:2002019
https://doi.org/10.1051/m2an:2002019
https://doi.org/10.4310/CMS.2007.v5.n1.a6
https://doi.org/10.1006/jcph.2000.6459
https://doi.org/10.1137/S1064827500373413
https://doi.org/10.1175/1520-0485(1981)0110324:OOMFMI2.0.CO;2
https://doi.org/10.1175/1520-0485(1981)0110324:OOMFMI2.0.CO;2
https://doi.org/10.1016/0378-3839(87)90028-7

NVIDIA. 2019. NVIDIA CUDA C programming guide version

10.1, 2019.
Parna, P., Meyer, K. and Falconer, R. 2018. GPU driven finite

difference WENO scheme for real time solution of the

shallow water equations. Comput. Fluids 161, 107–120. doi:10.
1016/j.compfluid.2017.11.012

Qi, Z., Wen, W., Meng, W., Zhang, Y. and Shi, L. 2014. An

energy efficient OpenCL implementation of a fingerprint

verification system on heterogeneous mobile device. In 2014

IEEE 20th International Conference on Embedded and Real-

Time Computing Systems and Applications, IEEE, pp. 1–8.
Qin, X., LeVeque, R. and Motley, M. 2019. Accelerating an

adaptive mesh refinement code for depth-averaged flows using

GPUs. J. Adv. Model. Earth Syst. 11, 2606–2628. doi:10.1029/
2019MS001635

Rakowsky, N., Androsov, A., Fuchs, A., Harig, S., Immerz, A.

and co-authors. 2013. Operational tsunami modelling with

TsunAWI – recent developments and applications. Nat. Hazards

Earth Syst. Sci. 13, 1629–1642. doi:10.5194/nhess-13-1629-2013
Røed, L. 2019. Atmospheres and Oceans on Computers.

Switzerland: Springer International Publishing.

Sætra, M. and Brodtkorb, A. 2010. Shallow water simulations
on multiple GPUs. In International Workshop on Applied
Parallel Computing. Springer, pp. 56–66.

Sætra, M., Brodtkorb, A. and Lie, K.-A. 2015. Efficient GPU-
implementation of adaptive mesh refinement for the shallow-
water equations. J. Sci. Comput. 63, 23–48. doi:10.1007/
s10915-014-9883-4

Shchepetkin, A. and McWilliams, J. 2005. The regional oceanic
modeling system (ROMS): a split-explicit, free-surface,
topography-following-coordinate oceanic model. Ocean
Modell. 9, 347–404. doi:10.1016/j.ocemod.2004.08.002

van Leer, B. 1979. Towards the ultimate conservative difference
scheme. V. A second-order sequel to Godunov’s method. J.
Comput. Phys. 32, 101–136. doi:10.1016/0021-9991(79)90145-1

V�a�na, F., D€uben, P., Lang, S., Palmer, T., Leutbecher, M. and
co-authors. 2017. Single precision in weather forecasting
models: An evaluation with the IFS. Mon. Wea. Rev. 145,
495–502. doi:10.1175/MWR-D-16-0228.1

Xie, J., Bertino, L., Counillon, F., Lisaeter, K. and Sakov, P.
2017. Quality assessment of the TOPAZ4 reanalysis in the
Arctic over the period 1991–2013. Ocean Sci. 13, 123–144.
doi:10.5194/os-13-123-2017

22 A. R. BRODTKORB AND H. H. HOLM

https://doi.org/10.1016/j.compfluid.2017.11.012
https://doi.org/10.1016/j.compfluid.2017.11.012
https://doi.org/10.1029/2019MS001635
https://doi.org/10.1029/2019MS001635
https://doi.org/10.5194/nhess-13-1629-2013
https://doi.org/10.1007/s10915-014-9883-4
https://doi.org/10.1007/s10915-014-9883-4
https://doi.org/10.1016/j.ocemod.2004.08.002
https://doi.org/10.1016/0021-9991(79)90145-1
https://doi.org/10.1175/MWR-D-16-0228.1
https://doi.org/10.5194/os-13-123-2017

	Abstract
	Introduction
	Related work

	Mathematical formulation
	Spatial discretisation

	Efficient simulation of real-world ocean currents
	Efficient parallel formulation of CDKLM
	Accuracy, precision and GPUs
	Global wall boundary conditions
	Moving wet-dry boundary and land mask
	Wind forcing and bed friction source terms
	Nesting the model into NorKyst-800
	Coriolis force
	Bathymetry
	Refinement and coarsening of grid

	Performance and accuracy of GPU implementation
	Convergence of the numerical scheme
	Computational performance

	Real-world simulations
	Case 1: Norwegian sea
	Case 2: Lofoten
	Case 3: Norway
	Tidal forecast verification and validation

	Summary
	CRediT author statement
	Acknowledgements
	References

