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Abstract

Bus scheduling plays a significant role in public transportation and supports the sustainable
development of transportation systems. Challenges are beginning to appear with the newly
emerging electric buses (EBs), as scheduling changes due to fleet composition make tradi-
tional fixed timetables no longer able to satisfy operational needs. Moreover, the fixed-trip
time hypothesis has been inappropriate for large cities due to the variety of urban traffic
statuses. This paper proposes an optimal framework for reforming the mixed operation
schedule for electric buses and traditional fuel buses under stochastic trip times. Based on
the primary grouping genetic algorithm (GGA), a straightforward framework with a Monte
Carlo simulation is presented to optimize the scheduling scheme. Case studies based on the
operating environment and service trips of real bus lines in Beijing are conducted to ver-
ify the effectiveness of the proposed model by considering both the composition of fleet
types and time stochasticity. Additionally, the impacts of stochasticity, fleet composition,
government subsidies and cost factors on operational costs are investigated. Considering
stochastic trip times, the achieved scheduling strategies can provide the optimal proportion
of electric and traditional fuel buses and make a crucial impact on operational costs.

1 INTRODUCTION

Recently, considering climate change and health impacts, air
quality has attracted more attention worldwide [1]. Therefore,
reducing the use of fossil fuel is a commonly consentaneous
measure [2, 3]. In public transportation, most conventional bus
types (such as heavy fuel diesel buses) make significant con-
tributions to air pollution and greenhouse gases due to high
daily mileages [4, 5]. The introduction of electrified transporta-
tion solutions is part of a wide range of policy options world-
wide [6, 7]. Compared with traditional fuel buses (CBs), electric
buses (EBs) have considerable inherent advantages such as zero
exhaust pipe emissions, lower energy costs, high comfortability,
and low noise emissions [8, 9]. Therefore, the transformation of
the public transport fleet from conventional fuel buses to elec-
tric or alternative energy buses can significantly reduce exhaust
pipe emissions and improve air quality.

At present, EBs have been introduced into the market and
operated in many countries (e.g. China, Norway, Sweden, and
Germany). However, high ownership costs and limitations on
driving range and charging speed make it hard for EBs to com-
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pletely replace CBs [10]. Considering the trade-off between
economic and environmental benefits, there will be a period
of mixed operation modes composed of EBs and CBs. How
to reasonably arrange the operation scheme of mixed fleets
and reduce the operational costs during this period are crucial
for the sustainable development of urban public transportation
systems.

Compared with the CBs, EBs have their own propulsion
technology and characteristics. Operating a full or partial electric
bus fleet presents additional challenges to the bus planning pro-
cess, especially bus scheduling [6]. First, CBs can usually operate
for one day without refuelling, which means that on the premise
of satisfying the timetable constraints, it can be assumed that
all buses carry out their service trips at any time. In contrast,
when considering electric buses, one night of charging is not
enough to complete a one-day operation (even high-capacity
batteries with 200+kWh), which means recharging in the daily
operation becomes an important part of the planning process
[11]. Therefore, the scheduling of the mixed bus fleet will have a
great impact on the entire fleet operation. Second, environmen-
tal and economic benefits should be considered. To achieve the
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optimal scheduling strategy for a mixed bus fleet, the techno-
logical advantages of CBs and EBs must be comprehensively
assessed. On the one hand, we should exploit the low energy
cost per kilometre of electric buses and consider the conflicts
between the execution of service trips, recharging and the lim-
itation on driving distance. On the other hand, restricting the
number of CBs is considered due to the serious emissions costs
of fuel. From the environmental benefit and operational costs
aspects, comprehensively formulating a dispatching strategy
is necessary for evaluating the impact of the electrification pro-
cess on the bus operating company.

Another problem that should be settled is the fixed-trip time
hypothesis, especially for large cities. In bus scheduling, a pre-
determined timetable is usually given to cover all service trips
within a fixed time for the starting and ending locations. How-
ever, due to the variability of road traffic and driving conditions,
buses cannot generally be operated according to an established
schedule and fixed-trip time (i.e. the time duration of a service
trip), which may lead to starting delays for some service trips
and poor punctuality rates [12]. When there is interference in
the actual operation of buses, it will not only lead to the degra-
dation of system performance but also bring additional opera-
tional scheduling costs [13]. However, to date, little research has
been conducted on the environmental effects, operations costs
and passenger service levels with mixed fleets.

To fill the research gap, this study comprehensively considers
the environmental effects, cost benefits and passenger service
levels, as well as setting the bus purchase costs, energy con-
sumption costs, recharging costs, emission costs, and expected
waiting time and delay time costs as objective values to establish
a mixed fleet scheduling model under stochastic road condi-
tions. For the problems related to bus operation optimization,
many scholars have built a multi-objective optimization model.
Considering costs related to passengers and operating agency,
the transit network was optimized [14]. To produce a robust
schedule, an MIP model was constructed incorporating the
travel time and passenger demand uncertainty [15]. For meeting
unbalanced demand patterns, some operating strategies were
proposed which also reduced the required number of vehicles
[16]. A two-objective optimization model is established consid-
ering the minimum waiting time of passengers and departure
time of bus company [17]. In our study, all costs are monetized
and then converted into a single-objective optimization model.
This model is explicitly formulated to consider mixed bus
operations under stochastic service trip times and can be solved
efficiently using the grouping genetic algorithm (GGA) with a
crossover and mutation strategy suitable for a mixed fleet. For
the stochastic variable of the model, a Monte Carlo simulation
method is used to solve the problem. Finally, based on a real
bus line operating environment and service trips in Beijing,
several case studies are conducted to verify the effectiveness of
the model. Additionally, the influence of design variables such
as randomness, fleet size and composition are evaluated.

The remainder of this paper is organized as follows. Sec-
tion 2 provides relevant literature reviews. Section 3 presents
the description of the studied scheduling problem. Section 4
proposes the mathematical formulation and Section 5 proposes

the solved approach framework based on the GGA with Monte
Carlo simulation. Section 6 conducts a case study to schedule
the mixed bus fleet and conducts a sensitivity analysis of the
stochasticity of trip time, fleet composition, Government sub-
sidy and cost factors. Finally, some conclusions are provided in
Section 7.

2 LITERATURE REVIEW

Many studies have examined stochastic trip times, and good
bus route and scheduling strategies can be designed. For
example, Tang et al. [12] proposed robust scheduling strategies
for electric buses, developed static and dynamic models, and
showed that considering the stochastic trip times in a scheduling
model effectively avoids en route breakdowns. Liang et al. [18]
developed a stochastic linear programming model for bus line
frequency and passenger path flow under demand and bus
travel time uncertainty; its case study shows that this method
could significantly benefit public transportation systems. In the
joint optimization of school bus routing and scheduling, Babaei
et al. [19] considered stochastic time-dependent travel times to
guarantee that buses arrived on-time at a school with a required
reliability level, and proved that the time-dependent character
of travel times has a remarkable influence. He et al. [20] for-
mulated the dynamic vehicle scheduling problem to tackle trip
time stochasticity. Assuming that trip time follows a probability
distribution, Shen et al. [21] designed a probabilistic model to
minimize total costs and maximize on-time performance. By
comparing and analysing the on-time performance of buses in
the case of different trip times, they also found out that it was
more intuitive and realistic for schedulers to design variable trip
times than fixed-trip times [22].

While these studies provide valuable insights into bus route
planning and operations scheduling, they usually research
single-fleet operating environments and ignore the mixed oper-
ating conditions of CBs and EBs. To the best of the authors’
knowledge, there has been no study on scheduling mixed fleets
with stochastic trip times, although stochastic time in other
fields has been studied by many.

Mixed fleets include the mix of different capacity vehicle
types, as well as the mix of different energy consumption vehi-
cle types. Several studies have been conducted that consider the
mixed fleet in vehicle scheduling can significantly reduce oper-
ating costs [23–25]. In vehicle routing problems, many studies
on mixed fleets have been studied. Murakami [8] focused on
electric and diesel-powered vehicle routing. Hiermann et al. [26]
studied the electric vehicle routing problem combining conven-
tional, plug-in hybrid, and electric vehicles. Considering a mixed
fleet with electric and conventional vehicles, Macrina et al. [27,
28] studied a specific version of the green vehicle routing prob-
lem. Goeke and Schneider [29] optimized the routing problem
of a mixed fleet of electric and conventional vehicles with time
windows.

In bus operations, the management and scheduling prob-
lems of mixed fleets have also been studied. Li et al. [24] pro-
posed a new life additional benefit-cost approach to solve a
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mixed bus fleet management problem. The results showed that
mixed fleet optimization is an important consideration in bus
fleets, reducing their considerable operational costs. To investi-
gate the extent to which electrification occurs, Rinaldi et al. [6]
constructed a mixed-integer linear programming model (MILP).
Zhou et al. [30] jointly optimized the vehicle scheduling and
charging arrangements of mixed fleets and developed a multi-
objective bi-level programming model. Yao et al. [31] estab-
lished a model for the electric vehicle scheduling problem with
multiple vehicle types. However, because electric buses have not
fully penetrated the market in many cities, this model cannot be
applied in practice at this stage. Rogge et al. [25] addressed prob-
lems associated with electric bus fleet size, mix and charging
infrastructure optimization. Li et al. [23] constructed a mixed
bus fleet scheduling optimization model under range and refu-
elling constraints and developed time-space networks for bus
flow and passenger flow. However, the study described the
energy consumption by discretizing the continuous variables,
and the trip times of service trips were regarded as fixed con-
stants. The above studies have fully studied the scheduling opti-
mization problem of mixed fleets, but this problem has not been
studied based on stochastic trip times.

In this work, our contributions can be summarized as
follows.

a. Our problem covers the scheduling of bus fleets, fleet com-
position and stochastic trip times. We use the optimal frame-
work to reform the mixed operation schedule for electric
buses and traditional fuel buses on the basis of stochas-
tic road conditions and explicitly consider the impact of
stochastic trip time.

b. We used the GGA with a crossover and mutation strategy to
solve the problem effectively. For the stochastic variables in
the model, the expected values of all possible scenarios are
optimized and simulated by the Monte Carlo method.

c. Taking the operating environment and service trips of real
bus lines in Beijing as an example, the influences of design
variables such as the stochasticity, fleet composition and cost
factors are evaluated.

3 PROBLEM DESCRIPTION

In this section, we first give a general overview of the bus
scheduling problem. This study considers the mixed operation
of EBs and CBs under stochastic trip time. We refer to this
bus operation system as ECM-OS (i.e. EBs and CBs mixed
operations system). For the convenience of discussion, a CBs
only-operation system is referred to as C-OS (i.e. CBs opera-
tion system), and EBs-only operating system is referred to as
E-OS (i.e. EBs operation system). Compared to previous stud-
ies on bus operations, this study considers the mixed fleets with
EBs and CBs and the effects of the stochastic service time.
In addition, more practical energy inputs are adopted for the
energy consumption of EBs. Table 1 lists the parameters and
variables used in this study. General notations describe the arcs
and nodes contained in the directed graph of the scheduling

FIGURE 1 Illustrative example of a scheduling problem

problem. Parameters are required to describe the operations
system evolution (i.e. scheduled departure time, stochastic trip
time, and energy consumption). Decision variables show the
arrangement of bus types, current energy capacity and arrival
time.

3.1 The general overview of the problem

We defined a directed graph G = (N ,A) to model the prob-
lem as shown in Figure 1, where N ∶= o∪ d ∪ S ∪ R ∪V is
the set of nodes and A ∶= Ao ∪ Ad ∪ AS ∪ AR ∪ AV is the set
of feasible arcs. The set of nodes N contains the depot node
represented by origin-depot node o and destination-depot node
d , the set of service trip nodes S , the set of recharging nodes R

and the set of virtual depot nodes V . The origin-depot node o

and the destination-depot node d are where the bus begins and
finishes its daily operations, respectively. The service trip node
i ∈ S corresponding to a departure time ai , a stochastic trip time
ti , the start station s pi and the arrival station api is operated once
by one bus. The recharging node r ∈ R is where the electric
bus recharges the battery between trips to avoid running out of
energy. The virtual depot node v ∈ V is distinguished from the
depot node, and it is where the bus will rest at the depot if the
idle time between service trips is too long.

The set of feasible arcs A contains the pull-out arcs
Ao ∶= {(o, j )| j ∈ S }, pull-in arcs Ad ∶= {( j , d )| j ∈ S },
service-trip arc AS ∶= {(i, j )|i, j ∈ S }, recharging arcs
AR ∶= {(i, j )|(i, r ) → (r , j ), i, j ∈ S , r ∈ R} and depot-return
arcs AV ∶= {(i, j )|(i, v) → (v, j ), i, j ∈ S , v ∈ V }. The pull-
out arcs are the trips in which the bus departs from the origin
depot to the start station of the service trip. The pull-in arcs
are the trips that the bus travels from the arrival station of the
service trip to the destination depot. The service-trip arcs are
the trips in which the bus departs from the arrival station of
the service trip to the start station of another service trip. The
recharging arcs are the trips that the bus takes, first travelling
from the arrival station of the service trip to the charging station
for recharging and then continuing to the start station for the
next service trip. Moreover, the depot-return arcs are the trips
in which the bus travels from the arrival station of one service
trip to the virtual depot for resting and then continues on to
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TABLE 1 Notations

General notations

G = (N ,A) The directed graph V Set of virtual depot nodes

A = Ao ∪ Ad ∪ AS ∪ AR ∪ AV Set of arcs Ao Set of pull-arcs

N = o∪ d ∪ S ∪ R ∪V Set of nodes Ad Set of pull-out arcs

o Origin-depot node AS Set of service trip arcs

d Destination-depot node AR Set of recharging arcs

S Set of service trip nodes AV Set of depot-return arcs

R Set of recharging nodes

Parameters

E [⋅] Expected value of stochastic variable cr Fixed charging cost

fi (t ) Probability distribution function of stochastic trip time 𝜏1
w Waiting time cost of the bus out of the depot

ti j Travel time between arcs (i, j ) ∈ A 𝜏2
w Waiting time cost of the bus in the depot

ai Scheduled departure time 𝛽 Use ratio of different bus types

t̄i Expected trip time of service trip i 𝜏E
e Energy cost per unit

bear
i Earliest arrival time of service trip i 𝜏IC

e Fuel cost per unit

blat
i

Latest arrival time of service trip i ce Cost per unit emission

𝜑 Maximum waiting time of bus out of the depot cE
b

Fixed electric bus cost

w1
i j

Waiting time out of the depot cIC
b

Fixed conventional bus cost

w2
i j Waiting time in the depot gIC Fuel consumption per unit distance

li j Delay time zi Length of service trip i

𝜃 Fixed charging time cIC
i j

Cost of arc (i, j ) ∈ A performed by a conventional bus

cE
i j

Cost of arc (i, j ) ∈ A performed by an electric bus 𝜆1, 𝜆2 Percentage of minimum and maximum battery usage

𝜏t Emission per unit oil

Decision variables

ti Stochastic trip time eE
i j

Battery consumption of arc (i, j ) ∈ A

xIC
i j

1, if arc (i, j ) is traveled by a conventional bus; 0,
otherwise

xE
i j

1, if arc (i, j ) is traveled by an electric bus; 0, otherwise

barr
i Arrival time of service trip i yE

i Current battery capacity after the tripi

the start station for the next service trip. Another set of arcs
(i, j ) ∶= {(i, j )|(i, v) → (v, r ) → (r , j ), i, j ∈ S , v ∈ V , r ∈ R},

denoting the bus’s return to the virtual depots for rest and
recharging, is also feasible. However, virtual depots and
recharging nodes are all in the depot, and the distance between
them in our study is defined as zero. Therefore, the set of arcs
is essentially the same as the recharging arcs.

Figure 1 shows an illustrative example of a scheduling prob-
lem. The blue squares with symbols o and d denote the origin-
depot node and destination-depot node, respectively. The blue
circles with S1 − S8 denote the service trip nodes. Additionally,
the grey squares with the symbol v denote the virtual depot
nodes, while the grey triangles with the symbol r denote the
recharging nodes. Each service trip has a fixed departure time.
Taking the path o− S1 − S4 − v − S8 − d as an example, the bus
leaves the origin-depot o for daily operations and goes through
service trips S1 and S4. Due to the long wait between two adja-
cent trips, the bus returns to the virtual depot for rest and
then leaves to complete the remaining service trips without
recharging.

3.2 Stochastic trip time for ECM-OS

Under stochastic traffic conditions, the trip times ti of ser-
vice trips i ∈ S are assumed to follow a normal distribution
fi (t ), with an expected trip time t̄i . The range of trip times is
[t min

i , t max
i ]. The arrival time of service trip barr

i is constrained by
Equation (1).

barr
i = ai + ti , b

ear
i = ai + t min

i ,

blat
i = ai + t max

i , bear
i ≤ barr

i ≤ blat
i , ∀i ∈ S (1)

where ai is the scheduled departure time of service trip i, bear
i

is the earliest arrival time related to the minimized trip time
t min
i , and blat

i is the latest arrival time related to the maximized
trip time t max

i . For each service trip i ∈ S , the trip time ti is a
stochastic variable; therefore, barr

i , associated with the trip time,
is also a stochastic variable. The travel time ti j between two
trips is stochastic in actual operations. However, compared with
the service trip time ti , the stochastic influence of roads on the
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travel time ti j can be ignored, and ti j is regarded as constant
[12, 21].

The feasibility of services arcs AS is constrained by Equation
(2).

barr
i + ti j ≤ a j , (i, j ) ∈ AS (2)

The constraint in Equation (2) indicates that the sum of the
arrival time of service trip i and the travel time ti j between two
trips is less than or equal to the departure time of the next
service trip j . Therefore, constraint in Equation (2) guarantees
feasible service-trip arcs. The stochastic variable barr

i makes it
difficult to establish feasible arcs, and the expected trip time is
used as substitute for the stochastic trip time [12]. Therefore,
barr

i = ai + t̄i .
The virtual depot and the origin/destination depot refer to

the same place, but their meanings are different. Due to the
long idle time between two service trips, if the bus stays outside
the depot for a long time, it will occupy social resources and
result in high operating costs. Therefore, the bus must return
to the depot. Moreover, when the buses leave the depot, the
state of charge (SOC) is the same as the SOC when the buses
arrived. The recharging node is where the bus recharges the bat-
tery with a fixed charging time. In this study, we assume that
the bus will leave the depot and that it is fully charged. The
recharging arc ensures that the bus will not experience range
anxiety during the operation period. The depot-return arcs and
the recharging arcs are constrained by Equations (3) and (4),
respectively.

a j − barr
i −

(
tiv + tv j

)
≥ 𝜑, (i, j ) ∈ AV ,AV

∶= {(i, j ) | (i, v) → (v, j ) , i, j ∈ S , v ∈ V (3)

a j − barr
i −

(
tir + tr j

)
≥ 𝜃, (i, j ) ∈ AR,AR

∶= {(i, j ) | (i, r ) → (r , j ) , i, j ∈ S , r ∈ R} (4)

where a j is the scheduled departure time of service trip j , barr
i

is the arrival time of service trip i, tiv and tv j are the travel times
between service trips and the virtual depot, tir and tr j are the
travel times between services trips and the charging station, 𝜑
is the minimum waiting time at the depot, and 𝜃 is the fixed
recharging time. For each depot-return arc(i, j ) ∈ AV , if the
idle time between the two trips is equal to or greater than𝜑, the
bus is forced to return to the depot for rest. For each recharging
arc(i, j ) ∈ AR, if the idle time in between the two trips is equal
to or greater than 𝜃, the bus can be recharged at the station.

3.3 Energy consumption for ECM-OS

The energy consumption depends on the type of bus, road char-
acteristics, and route length [32]. For EBs, uncertain factors such
as traffic status and passenger load have a serious impact on bat-
tery consumption, affecting the subsequent trips [33]. There-
fore, we use the energy consumption in the actual operations

FIGURE 2 The change tendency of SOC and the mileage travelled

process as the direct input. The energy consumption of each
trip is obtained through the historical data of electrical buses. By
calculating the average energy consumption, we get the curve
about the change tendency of SOC and the mileage travelled,
shown in Figure 2. The energy consumption in the model is an
input parameter. Giving the current SOC of the bus and the
mileage to be travelled, the remaining SOC is outputted and
then we can get the bus’s energy consumption.

CBs can complete a full day’s journey with a full tank.
Although the uncertainty will affect energy consumption, it will
basically have no impact on the subsequent journey. There-
fore, fuel consumption per distance is regarded as a fixed
value.

To simplify the formulations, we have made the following
assumptions.

1. In this study, a single route with one depot is considered in
the mixed bus operation system. The basic information of
the bus route is known, such as the length of the line, the
type of bus, the deadhead distance and travel time. The ser-
vice trip time of each schedule is unknown. However, the
departure time and the distribution of trip time are provided.

2. All chargers are placed in the depot and they have the
same charging rate. In addition, we always have available
chargers.

3. The relationship between the fuel consumption of buses and
the trip distance is assumed to be linear.

4 FORMULATIONS

This section presents the scheduling model based on the
stochastic trip time to optimize the total costs and generate an
optimized fleet scheme. The objective function and constraints
are presented in the following subsections. Figure 3 shows a dia-
grammatic sketch of the scheduling model, including the inputs,
objective function, constraints and outputs.
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FIGURE 3 A diagrammatic sketch of the scheduling model

4.1 Objective function

In previous studies on conventional buses, the objective func-
tion was mainly to minimize the number of buses. Recently, with
the emergence of alternative fuel vehicles, more realistic fea-
tures such as energy consumption, infrastructure construction,
operation time and emission costs have been increasingly
emphasized. Li [34] minimized the operating costs. A model to
optimize the distribution of charging stations for electric buses
has been developed [35]. Tang et al. [12] considered the wait-
time and delay-time costs in a dynamic scheduling model. This
paper makes the scheduling arrangement from the perspective
of the operating company. To better negotiate operations with
a mixed fleet, the objective function considers the operational
costs of EBs and CBs and the time costs, which reflecting the
punctuality of bus services. The operational costs include the
fixed-purchase bus cost, energy consumption costs, recharg-
ing costs of EBs and emission costs of CBs. The time costs
include the expected waiting costs and delay costs. We describe
this problem as a maximum flow and calculate the cost of all
types of feasible arcs. The objective function is expressed as
Equation (5).

min Z =
∑

(i, j )∈A

(
cE
i j xE

i j + cIC
i j xIC

i j

)
(5)

Pull-out arc: The cost of the pull-out arc (i, j ) ∈ Ao is formu-
lated as Equations (6) and (7).

cE
i j = cE

b
+ eE

i j 𝜏
E
e (6)

cIC
i j = cIC

b
+ eIC

i j 𝜏
IC
e + eIC

i j 𝜏t ce = cIC
b
+ eIC

i j

(
𝜏IC

e + 𝜏t ce
)

= cIC
b
+ gIC ⋅

(
di j + z j

)
⋅
(
𝜏IC

e + 𝜏t ce
)

(7)

where cE
b

and cIC
b

are the electric bus and conventional bus pur-
chasing costs; eE

i j and eIC
i j denote the battery and fuel consump-

tion for service trip j ∈ Sn+1 after trip i ∈ S0, respectively, pro-
portional to the distance travelled; gIC is the fuel consumption
per kilometre; di j is the deadhead distance of trips i and j ; z j

is the distance of a service trip; 𝜏E
e and 𝜏IC

e are the unit prices
for batteries and oil; 𝜏t is the emissions per unit of fuel; and ce
is the price per unit emission. Pull-out arc costs consist of the
bus purchasing cost and the energy consumption costs. If the
arc is operated by a CB, it also includes the cost of emissions
generated by the CB.

Pull-in arc: The cost of the pull-in arc (i, j ) ∈ Ad is formu-
lated as Equations (8) and (9). Compared to the cost of pull-
out arcs, the cost of pull-in arcs does not include the bus pur-
chase. Since the bus departs from the depot and finally returns
to the same place, the purchasing cost of the outgoing bus is
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only counted once. Consistent with most existing studies [22,
23, 36], the bus purchasing cost is included in the cost of a pull-
out arc. For a pull-in arc, j is the destination depot; thus, the
energy consumption is just the energy consumed by the distance
from trip i to j .

cE
i j = eE

i j 𝜏
E
e (8)

cIC
i j = eIC

i j 𝜏IC
e + eIC

i j 𝜏t ce = gIC ⋅ di j ⋅
(
𝜏IC

e + 𝜏t ce
)

(9)

Service-trip arc: The cost of the service-trip arc (i, j ) ∈ AS is
expressed in Equations (10) and (11). The cost of the service-
trip arc includes the cost of energy consumption, the expected
cost of the out-of-the-depot waiting time, and the cost of delay
time. If the arc is operated by a CB, it also includes fuel con-
sumption and emissions costs.

cE
i j = eE

i j 𝜏
E
e + 𝜏1

wE
(
w1

i j

)
+ 𝜏l E

(
(li j )

2) (10)

cIC
i j = eIC

i j 𝜏IC
e + eIC

i j 𝜏t ce + 𝜏1
wE

(
w1

i j

)
+ 𝜏l E

(
(li j )

2)
= gIC ⋅

(
di j + z j

)
⋅
(
𝜏IC

e + 𝜏t ce
)

+ 𝜏1
wE

(
w1

i j

)
+ 𝜏l E

(
li j

2
)

(11)

w1
i j = max{a j − ai − ti − ti j , 0}, ∀i, j ∈ S (12)

li j = max{ai + ti + ti j − a j , 0}, ∀i, j ∈ S (13)

where 𝜏1
w and 𝜏l are the wait-time cost out of the depot per unit

and the delay-time cost per unit, respectively; E (⋅) denotes the
expected value of the stochastic variable; w1

i j is the wait-time out
of the depot before service trip i after trip j ; and li j is the delay
time before service trip j . Similar to the study [37], a quadratic
function is adopted to calculate the penalty cost for late arrival,
reflecting the significant adverse effects caused by huge delays,
where w1

i j
and li j are all stochastic variables because they are

related to the stochastic service trip time ti .
Depot-return arc: The cost of the depot-return arc (i, j ) ∈

AV is formulated in Equations (14) and (15).

cE
i j = eE

i j 𝜏
E
e + 𝜏2

wE
(

w2
i j

)
(14)

cIC
i j
= eIC

i j
𝜏IC

e + eIC
i j
𝜏t ce + 𝜏2

wE
(

w2
i j

)
= gIC ⋅

(
dik + dk j + z j

)
⋅
(
𝜏IC

e + 𝜏t ce
)
+ 𝜏2

wE
(

w2
i j

)
(15)

w2
i j = a j − ai − ti − tiv − tv j , ∀i, j ∈ S , k ∈ V (16)

where the cost of the depot-return arc includes the cost of
energy consumption and the expected wait time. If the arc is
operated by a CB, it also includes the cost of fuel consump-
tion and emissions. The differences with the service-trip arcs
are that there is no delay-time cost, and the wait-time cost is
calculated by the bus waiting at the depot, where w2

i j is the wait
time of the bus waiting at the depot, which generally needs to be
greater than 3 h. The difference between w1

i j and w2
i j is the wait

location.

Recharging arc: Finally, the cost of the recharging arc, (i, j ) ∈
AR is formulated as Equation (17).

cE
i j = cr + eE

i j 𝜏
E
e + 𝜏2

wE
(
w2

i j

)
+ 𝜏l E (

(
li j )

2
)

(17)

where cr is the fixed cost of recharging at the charge station and
is equivalent to the depreciation cost of the charging station.
The cost of the recharging arc includes the fixed recharging cost,
the energy consumption cost, the wait-time cost in the depot
and the delay-time cost. We assume that if the time has not yet
reached the scheduled departure time of service trip j after a
full recharge, the bus is required to wait at the depot.

4.2 Constraints

The constraints of bus scheduling, energy consumption, and
investment ratio of different bus types are introduced in this
subsection.

4.2.1 Bus scheduling constraints∑
(i, j )∈A

(
xE

i j + xIC
i j

)
= 1, ∀ j ∈ S (18)

∑
(o, j )∈Ao

xE
o j −

∑
(i,d )∈Ad

xE
id
= 0, ∀i, j ∈ S (19)

∑
(o, j )∈Ao

xIC
o j −

∑
(i,d )∈Ad

xIC
id
= 0, ∀i, j ∈ S (20)

∑
(i, j )∈A

xE
i j
−

∑
( j ,k)∈A

xE
jk
= 0, ∀ j ∈ N (21)

∑
(i, j )∈A∖AR

xIC
i j
−

∑
( j ,k)∈A∖AR

xIC
jk
= 0, ∀ j ∈ N∕R (22)

xE
i j , x

IC
i j ∈ {0, 1} , (i, j ) ∈ A (23)

Constraint in Equation (18) ensures that each service trip
needs to be fulfilled exactly once by one bus, whether it is an EB
or a CB. Constraints in Equations (19) and (20) guarantee that
for each bus type, the bus starts from and eventually returns to
the same depot. Constraints in Equations (21) and (22) are the
flow conservation constraints for each bus type, indicating that
the numbers of incoming arcs and outgoing arcs are equal at
each node. Constraint in Equation (23) defines the binary deci-
sion variables for each bus type, representing a bus visit trip i

after trip j .

4.2.2 Energy consumption constraints

Different from conventional buses, electric buses usually need
to recharge the battery to finish daily service. The recharge
schedule and duration depend on the time gap between adjacent
trips. Since the CB refuel time can be ignored, only the energy
consumption constraints are considered in this study. Energy
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consumption constraints are described by Equations (24)–(26).

xE
i j = 1 ⇒ yE

j = yE
i − eE

i j , ∀ (i, j ) ∈ Ao ∪ AS ∪ Ad (24)

xE
i j = 1 ⇒ xE

ir = xE
r j = 1 ⇒

yE
r = yE

i − eE
ir

yE
j = E − eE

r j

,

∀ (i, j ) ∈ AR, r ∈ R (25)

xE
i j = 1 ⇒ xE

iv = xE
v j = 1 ⇒

yE
v = yE

i − eE
iv

yE
j = yE

v − eE
v j

,

∀ (i, j ) ∈ AV , v ∈ V (26)

where yE
i is the remaining energy of the EB after trip i. Con-

straint in Equation (24) restricts the energy consumption of
the pull-out arcs, pull-in arcs and service-trip arcs. Constraint
in Equation (25) ensures the energy consumption of the
recharging arcs, and it consists of two parts. The first part is
the remaining energy before the bus visits the charging station,
and the second part is the remaining energy after the electric
bus completes the service trip j . Once the bus has visited
the charging station, it will be fully recharged. Constraint in
Equation (26) ensures the energy consumption of depot-return
arcs, and it also consists of two parts. The first is the remaining
energy before arriving at the virtual depot, and the second is
the remaining energy after the bus visits the service trip j .

yE
o = E (27)

𝜆1E ≤ yE
i ≤ 𝜆2E , ∀i ∈ S (28)

yE
i − eE

ir ≥ 0, ∀i ∈ S ∪V ∪ {d } , ∀r ∈ R (29)

where E is the maximum battery capacity and 𝜆1 and 𝜆2
are the parameters for the minimum and maximum energy
consumption ratios, respectively. Constraint in Equation (27)
indicates that the electric buses have been fully charged when
they depart from the origin-depot. Considering battery life
and recharging speed, an EB usually maintains the SOC of the
battery. Constraint in Equation (28) defines the battery available
after the bus visits node (𝜆1 = 0.3 and 𝜆2 = 0.8). However,
even if the available battery of the bus cannot support the
next service trip, the bus can be driven to the charging station
after visiting the service trip or virtual depot by the remaining
battery, which can be required in constraint in Equation (29).

4.2.3 Ratio constraints

∑
j∈S

xE
0 j
∕

(∑
j∈S

xE
0 j
+
∑
j∈S

xIC
0 j

)
≥ 𝛽 (30)

where 𝛽 is the use ratio of different bus types; constraint in
Equation (30) guarantees the proportion of electric and con-
ventional buses used in public transportation systems. When 𝛽
is 0, it means the primary operation plan with the conventional
buses; when 𝛽 is 1, it means that the bus operation is purely elec-

trified. As the investment ratio increases, it reflects the market
penetration of electric buses.

5 METHOD FRAMEWORK

To date, many heuristic algorithms have been proposed to solve
bus scheduling problems, including genetic algorithms, iterative
neighbourhood search algorithms and simulated annealing algo-
rithms. Regarding solution algorithms for such problems, the
group genetic algorithm (GGA) has been justified for obtaining
a good operation scheme in the bus scheduling problem [25]. It
mainly emphasizes the grouping aspects of the scheduling prob-
lem, and the schedule plan is uniquely defined by the service
trips. Considering the specific characteristics of a mixed fleet,
we design specific crossover and mutation strategies to apply to
the GGA. To prevent falling into the local optimum, simulated
annealing (SA) is used for cooling. For the expected term in the
objective function, which makes the model difficult to solve, we
use a Monte Carlo simulation to solve this term.

The input operating data consist of the information for ser-
vice trips, route characteristics, and other scenario parameters.
It is used to pre-process the deadhead distances and the energy
consumption between trips. Each service trip i ∈ S is described
by scheduled starting time ai , expected trip time t̄i , and the
start and arrival stations. The route characteristics include the
line length, the distance and travel time between the depot and
start/end stations, and the distance and travel time between any
feasible service-trip arcs. According to the input data, the dead-
head distance and travel time of any two trips can be acquired.
The energy consumption of each trip, assumed to be linear to
the distance, can be calculated.

Group Genetic Algorithm

Step 1: According to the service trip information, route characteristics and
scenario parameters, relevant data are extracted (such as the departure time,
the departure and arrival station of trips, and unused buses). Arrange the
service trips in ascending order in terms of departure time;

Step 2: Generate a number of initial solutions, which form the initial
populations S ;

Step 3: Sampling the probability distribution of stochastic trip time by the
Monte Carlo method and calculate the total costs C (s) of each initial
solution according to Equation (5), then evaluate the fitness f (s). Let
s∗ = s, C ∗ = C (s), f ∗ = f (s);

Step 4: Let the number of iterations iter = 0, with the solution after each
optimization defined as st ;

Step 5: The strategies of selection, crossover and mutation are applied to
optimize the scheduling process and calculate the C (st ) and f (st );

Step 6: If f (st ) < f ∗, s∗ = st , go to Step 7; otherwise, go to Step 8;

Step 7: Let the number of iterations iter = iter + 1;

Step 8: A random number p0 = N (0, 1) is generated. If
p0 < p = exp{( f (st ) − f ∗ )∕Tn}, s∗ = st , where Tn = 𝛼 ∗ Tn−1 is the
temperature at the iter iteration, T0 is the initial temperature and 𝛼 is the
cooling rate;

Step 9: If the termination condition iter > N0 is satisfied, output the bus
schedule and recharging plan; otherwise, proceed to Step 5. N0 is the
number of iterations.



DUAN ET AL. 1295

FIGURE 4 Genetic problem representation: an
individual consists of some blocks and the number
of blocks is the number of buses required

5.1 Generation of initial solutions

The initial solution consists of some blocks, and the number of
blocks is the number of buses required. As shown in Figure 4,
each row represents a block assigned to an EB or a CB, and
the number of trips contained in the block is variable. A block
represents a trip sequence in which a bus starts and ends at the
depot. The starting time of the service trip is uniquely defined
as the order of the block. The advantage of this representation
method is that the number of various bus types used can be
intuitively counted.

Random initialization is used to obtain an initial feasible solu-
tion satisfying time constraints. A series of processing steps
is required to ensure that the trip sequences that make the
recharging time and energy consumption constraints infeasible
are removed from the initial solution.

Generating Initial Solutions

Step 1: Arrange the departure time of service trips in ascending order; select
the first service trip as the initial trip of the first block, check the
subsequent trips successively until the next trip that meets the time
constraint, and take it as the second service trip of the first block until all
the trips are checked; then construct the next block in the same way until all
the trips are in the blocks; then the initial solution satisfying the time
constraints is generated, as shown in Figure 4(a);

Step 2: According to the idle time between two adjacent service trips, check
whether the virtual depot can be inserted;

Step 3: Check whether the block meets the energy consumption constraints; if
not, whether the idle time is enough for the bus to replenish its electricity;

Step 4: For the block, if it satisfies the energy consumption constraints or it
has enough time for the bus to replenish its electricity, the block can be
performed by an EB; otherwise, it is performed by a CB;

Step 5: For all blocks of the initial solution, check whether the ratio between
used EBs and CBs satisfy the ratio constraint; then, the initial solution is
generated, as shown in Figure 4(b).

In step 3, check whether the bus has enough time to visit
the charger between two service trips; if not, a strategy is con-

FIGURE 5 A remediation strategy for non-feasible solution

ducted to remedy a non-feasible solution. The time to visit the
charger can be advanced before performing the previous ser-
vice trip. As shown in Figure 5, if the bus has not enough time
to recharge between service trips 8 and 11, it can be checked
whether the idle time between the trips 6 and 8 is enough to
recharge.

5.1.1 Strategy of selection, crossover
and mutation

For the next generation, r to inherit optimized individuals, the
selection criterion is applied to the population. The selection
is a fitness-based process. Due to our minimization problem,
we adopt the following selection criterion: each individual in
the population is ranked in descending order according to
their objective function. The square of the rank is taken as
the fitness value, and then several individuals are randomly
selected to form a new population according to the roulette
selection method. The expected term of the objective func-
tion is simulated by Monte Carlo simulation. By sampling
the probability distribution of the stochastic trip time, a dis-
crete distribution with a sample size K randomly generated
by the distribution function can be approximately replaced.
Therefore, the expected term in the objective function is
expressed as the mean of the sum of K sample objective
values.

In the process of crossover and mutation, the solution is
destroyed. If the destroyed solution is feasible, the fitness eval-
uation will be continued; if not, the destroyed solution needs to
be repaired. The generation of a new individual is a combination
of selected parents. The visual representation of the crossover
is shown in Figure 6. The crossover strategy of is as follows:
(1) randomly select a sequence from a block of parent 1 to
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FIGURE 6 Illustration of crossover process

combine with one block of parent 2. As shown in Figure 6-I,
the two yellow lines in parent 1 are the defined crossover points.
The sequence between the two points is copied into the block
indicated by the yellow arrow in parent 2, and a new block is
generated. Then, sort the new blocks in ascending order of their
scheduled departure times. (2) Repair the new block and other
affected blocks. As shown in Figure 6-I, the insertion from par-
ent 1 caused the same service trip to appear twice in the new
individual.

To repair the infeasible solution, the following steps are uti-
lized. First, delete the same service trips in the new block as in
the cross sequence. Then, check whether the arcs in the new
block are all feasible and rearrange the virtual depot visits. The
restoration of the affected blocks is similar to the new block. (3)
Decide if the new block is operated by an EB or a CB. As shown
in Figure 6-III, the final new individual is an S1 or S2. An S1 is a
scheduling plan involving one electric bus and two conventional
buses, while an S2 is a scheduling plan by involving two electric
buses and one conventional bus.

For each block, the priority principle for EBs is given, and
CBs performed when the energy consumption constraint is not
satisfied. If there is no block whose energy consumption con-
straint is not satisfied, under the condition that the number of
CBs is not exceeded and the ratio constraint is satisfied, the
conversion principle of CBs shall be carried out following the
cost-minimal conversation rule. The cost-minimal principle is
as follows. Compare the changes in the total costs of operat-
ing a block from an EB to a CB. If the total costs decrease, put
the cost differences in descending order and select the first m

for conversion; otherwise, put the cost differences in ascending
order and select the same way. The variable m is the number of
blocks that can be converted.

6 CASE STUDY

In this section, GGA and Tabu Search (TS) algorithms are
applied to two scenarios that differ in their mode of operation.
The following introduces the particularities of both scenarios
and subsequently discusses the computed results. All experi-
ments are implemented on the machine with an Intel(R) Core
(TM) i5-8250U CPU @1.60G HZ, 8 GB of RAM, and the codes
for all algorithms are written in Python.

6.1 Scenario definition

The scenarios analysed below represent two different bus lines
with different operational modes. As shown in Figure 7, Line A
starts at terminal A and travels to terminal B, with a total of 22
stations. The depot is close to terminal A, and the route length
is 17.83 km. Its operation time is between 5:00 to 23:00. The
schedule of service trips is a total of 191 trips throughout the
day, among which 96 trips start from terminal A and end at ter-
minal B, and 95 trips start from terminal B and end at terminal
A. We set the expected, minimum and maximum service times
as 52, 49 and 55 min, respectively. Line B is a circle line with
25 stations. The route length is 22 km, and its operation time
is between 5:30 and 24:00. The schedule of service trips is a
total of 163 trips. The expected, minimum and maximum ser-
vice times are set as 57, 52 and 62 min, respectively. The dead-
head distance and time between the depot and the terminals are
shown in Table 2.

The two bus lines are run entirely by traditional fuel buses.
Thus, several mixed operation experiments are designed to val-
idate our model. Assume that the charging station is located
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FIGURE 7 Bus lines A and B in Beijing

TABLE 2 Information of the deadhead distance and time

Terminal A Terminal B Terminal C

Depot A 0.5 km/1 min 15 km/30 min ∖

Depot B ∖ ∖ 0.5 km/1 min

inside the depot. The deadhead distance from the depot to the
charging station is ignored. The maximum waiting time out of
depot 𝜑 is set as 3 h [21]. To truthfully reflect reality, we use the
electricity consumed in the actual operation process as the input
for EBs, and the recharging time is 20 min. For the CBs, we
refer to the previous literature and consider a consumption rate
of 0.63 L/km. To balance the purchase cost of electric buses,
the emission cost of CBs is also considered, and a 40% subsidy
is provided for the EBs. The impact of different subsidies on
the overall operational plan will be investigated in the following
sections.

To monetize these values, we considered the energy cost to be
0.16 $/kWh [38], the fuel cost to be 1.27 $/L and the exhaust
cost to be 0.15 $/L [39]. For the cost per recharge, we think
like this. A fast charger costs $120,000 and the charger life is
10 years [40]. The quick recharging time is 10 minutes, assum-
ing that the charger works 8 h a day. So the times of a charger
visited one day is 8× 60 / 10= 48 and the cost visiting a charger
is 120,000 / (360 × 48) = 7 $. There are also the land use costs
and the maintenance costs, so the cost per recharge is set as $10.

The time cost for waiting in the depot is 0.01 $/min, out of the
depot is 1 $/min, and the delay time cost for a service trip is 1
$/min. The battery capacity of the electric bus is 230 kWh, and
the minimum remaining energy is set as 30% of the maximum
battery capacity, i.e. 69 kWh. Because the route adjustments and
service trips are not always the same, the objective function con-
siders the daily operational costs, and the purchase cost of the
bus is converted into a daily basis. The lifespan of an EB is
12-years, and that of a CB is 17 years; the purchase cost for an
EB is $790,000 [41], and that for a CB is $321,143.

In addition, through the experimental analysis, the parame-
ters of GGA are set as follows: the number of iterations is 1500,
the mutation probability is 0.05, and the number of individuals
per generation is 50. The TS parameters are set as follows: the
tabu list length is 50, and the iterative step is 1000. To reduce
the impact of the randomness of the heuristic algorithm on the
results, we first conduct a robustness test of GGA by recording
the objective values 20 times. As shown in Figure 8, the values
at 20 times are not significantly different from each other. To
test the stability of 20 values, we performed a two-sample t-test.
The 20 values were divided into two groups of equal numbers of
samples. The analysis results are t = 0.11, and p = 0.9 > 0.05,
which shows that the mean of the two samples is the same and
that the GGA proposed in the paper is robust. The trip time
distribution is assumed to follow a normal distribution. To con-
veniently perform the Monte Carlo simulation, we take 10 s as a
unit; that is, the expected value is 312. The 95% confidence level
is always used, and the variance is set as 9. After analysing the
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FIGURE 8 Results of robustness tests

TABLE 3 Results comparison of GGA and TS algorithms

Line A GGA Line B TS GGA TS

Number of buses 18 21 17 23

Total costs ($) 4442.32 6985.76 3713.586 4717.8

Operation time (h) 5.8 6.69 3.9 5.34

convergence of the Monte Carlo simulation, the sampling size
K is set as 1000.

6.2 Solutions obtained by GGA and TS

In this section, we discuss the results obtained by GGA and TS
in two bus lines. Table 3 shows that GGA’s calculation results
are superior to TS’s. At the same time, GGA also shows obvious
advantages in calculation time consumption. Therefore, GGA
significantly improves the solution quality and efficiency. The
optimal bus schedule is shown in Table 4, where numbers 1–
191 are the service trips; o and d are the origin-depot and
destination-depot, respectively; r is the charging station; and v

is the virtual depot. The first column represents the bus types,
and the second column denotes the bus schedule (blocks). The
results show that 13 electric buses and 5 conventional buses are
needed to complete all service trips.

6.3 Model comparison

To verify the effectiveness of the proposed model by consid-
ering both the composition of fleet types and stochastic trip
time, we conduct a series of experiments taking Line A as an
example. The bus scheduling model with mixed fleets based on
the stochastic trip time is taken as the standard model (denoted
by M0), which is compared with the mixed fleets model under
fixed-trip time (denoted by M1) and the single type fleets model

under stochastic trip time (denoted by M2). Figure 9 shows that
the number of buses required by the four models is equal. In
terms of cost, the total costs of M0 are lower than those of M1,
which indicates that stochastic time is considered to make the
schedule plan more robust and reduce the expected time costs.
Compared with M2-CBs, the total costs of M2-EBs are lower,
which shows that the government’s subsidies for electric buses
can balance the high purchase cost. Even if the purchase cost
does not give the advantage to electric buses, the lower energy
consumption costs make the total costs relatively low. Com-
pared with M2-EBS, there is no significant difference in total
costs between partial electric buses and full-electric buses, but
this is also due to government subsidies for electric buses. M2-
CBs have the highest total costs among the four models, mainly
due to high energy consumption costs and expected time costs.
The introduction of electric buses can reduce not only fuel con-
sumption but also protect the environment. Simultaneously, due
to the limit of driving distance, the schedule implemented by
electric buses can be arranged more compactly.

6.4 Sensitivity analysis

In this section, we investigate the impacts of stochasticity, fleet
composition, government subsidies and cost factors on opera-
tional costs. The following analysis of experiments is conducted
on route line A.

6.4.1 Impacts of stochasticity

In this section, we study the impact of varying road traffic
stochasticity on operational costs. Take the operational data and
results in Section 6.1 as the standard-variance scheme. To syn-
thesize scenarios with different stochasticity, the method in the
literature was adopted [12]. For scenarios with low-variance,
the trip time generated by a Monte Carlo simulation was used
and we reduced the difference between any time point and
the expected time by 75%. Similarly, we increase the difference
by 75% to synthesize a high variance. Based on the stochastic
trip time of low-, standard- and high-variance, we further simu-
lated the operations of the buses and compared their total costs
and the other cost components. The larger the variance is, the
greater the stochasticity will be. Figure 10 shows the cost com-
ponents under different trip time variations. It can be observed
that as the stochasticity of trip time increases, the total costs
increase. Compared with the scenario of standard var, the effect
of stochasticity on total costs is 2%. This indicates that the
stochasticity of road traffic conditions will have an important
impact on the operation of bus companies.

6.4.2 Sensitivity analyses of fleet composition

This subsection assesses the benefits of mixed fleets. The use
of ratio 𝛽 between electric and conventional buses is related to
the initial investment. We set ten different scenarios to simulate
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TABLE 4 Optimal bus scheduling scheme

Bus

type

Scheduling

scheme

EBs 1 o → 2 → 12 → 26 → r → 44 → 55 → 73 → 88 → r → 102 → 119 → 133 → r → 150 → 166 → 176 → d

2 o → 3 → 13 → 34 → r → 50 → 66 → r → 91 → 100 → 115 → r → 147 → 160 → 175 → 183 → d

3 o → 4 → 15 → 31 → 43 → 61 → r → 89 → 99 → 114 → 125 → r → 154 → 167 → 177 → 186 → d

4 o → 5 → 14 → r → 46 → 57 → 68 → v → 112 → r → 136 → 156 → 171 → 180 → d

5 0 → 6 → 24 → r → 58 → 71 → 81 → 96 → 107 → r → 127 → 145 → 161 → d

6 o → 7 → 22 → 35 → 48 → 59 → r → 82 → 95 → 106 → 116 → 138 → r → 162 → 173 → 182 → 190 → d

7 o → 8 → 21 → 33 → v → 80 → r → 98 → 110 → 129 → 143 → 155 → r → 172 → 187 → 191 → d

8 o → 9 → 28 → r → 52 → 63 → 78 → 93 → r → 130 → 144 → 163 → 174 → 184 → d

9 o → 10 → 23 → 45 → r → 67 → 83 → 92 → 105 → r → 128 → 140 → 157 → 168 → 178 → d

10 o → 17 → 37 → r → 56 → 72 → r → 90 → 101 → 111 → 124 → 139 → 151 → r → 170 → 181 → 189 → d

11 o → 20 → 40 → 51 → 64 → r → 87 → 97 → 108 → 120 → r → 141 → 153 → 164 → d

12 o → 25 → 38 → 49 → 62 → 77 → r → 103 → 121 → 135 → 148 → 159 → d

13 o → 29 → 41 → 54 → 65 → 76 → 86 → r → 109 → 122 → 142 → v → 185 → d

CBs 1 o → 1 → 11 → 32 → 53 → 69 → 79 → 94 → 104 → 117 → 132 → 152 → 165 → 179 → 188 → d

2 o → 16 → 36 → 47 → 60 → 75 → v → 118 → 131 → 149 → d

3 o → 18 → v → 74 → 84 → v → 134 → d

4 o → 19 → 30 → 42 → r → 70 → 85 → r → 113 → 126 → 146 → 158 → 169 → d

5 o → 27 → 39 → v → 123 → 137 → d

Notes: o and d represent the depot; 1 − 191 represent the service trip, v is the virtual depot and r is the recharging station.

FIGURE 9 Costs comparison with M2-CBs, M0, M2-EBs and M1: based on the stochastic trip time, M0 is the scheduling model with mixed fleets, M2-CBs is
the scheduling model with the conventional buses, and M2-EBs is the scheduling model with electric buses; based on the mixed fleets, M1 is the scheduling model
with fixed trip time
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FIGURE 10 Cost components under different
trip time variation

FIGURE 11 Cost component with the change of the ratio between the number of EBs and CBs

the penetration process of the electric buses and 𝛽 is 0, 33%,
41%, 50%, 56%, 59%, 65%, 72%, 100%, respectively. Figure 11
shows the cost component with the change in the ratio between
electric buses and conventional buses. By analysing the cases of
ten different ratios between the number of CBs and EBs, we
study their influence on the bus fleet structure and cost com-
ponents. The X-axis represents the ratio between the number
of CBs and EBs used. The Y-axis represents the total costs and
other cost components, including the daily cost allocation for
purchasing, energy consumption costs, fuel consumption costs,
recharging costs, emission costs and the expected wait-time and
delay-time costs. One special case is that where only CBs are
used (the total costs are the highest). As the number of con-
ventional buses decreases, the number of used electric buses
increases and the total costs decrease. Compared with the sce-
nario of full-CBs, the total costs of the basic scenario (Number
of CBs:Number of EBs = 5:13, 𝛽 = 65%) and the full-EB sce-
nario decrease by 18% and 21%, respectively. This shows that
with the electrification of the public transport system in the
market, the total costs are gradually reduced, which is on the
premise of government subsidies.

6.4.3 Subsidy for purchasing EBs

This subsection is devoted to modelling the different govern-
ment subsidies and studying the influence on the bus fleet
composition and total costs. As shown in Figure 12, the left

FIGURE 12 Total costs and the number of EBs with the change of
subsidy
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FIGURE 13 Change in the fleet composition and total costs for different cost values

Y-axis is the total cost, and the right Y-axis is the number
of electric buses. As government subsidies increase, the total
cost decreases, and the number of EBs increases. This can be
explained by the fact that when the subsidy for electric buses is
increased, operators are more inclined to use electric buses, and
the total costs are relatively low.

6.4.4 Sensitivity analyses of cost factors

This subsection studies the impact of different scenarios com-
bined with battery and fuel costs on the fleet composition
and total operational costs. From Figure 13, we can see that
when the fuel cost is fixed, as the energy cost increases, the
total operating cost increases rapidly. An anomalous example
is that in scenario (𝜏IC

e = 1.40), when the energy cost increases
from 0.05 to 0.10, the total cost decreases instead. This may
be due to the rearrangement of the operational schedule when
the energy cost is increased. Service trips operated by electric
buses are arranged more closely, reducing the number of electric
buses used. Another finding is that as the energy cost increases,
the number of electric buses generally decreases. Although the
number of electric buses fluctuates up and down, it eventually
shows a downward trend. Trend fluctuations can be explained
by the fact that when the optimal schedule plan is generated, it is
not only aimed at the minimum purchasing costs but also tends
to choose the schedule plan with the minimum total operating
costs.

7 CONCLUSIONS

In this paper, we propose a methodology for solving the bus
scheduling problem of mixed fleets with electric buses and con-
ventional buses under stochastic trip time. The operational costs
of EBs and CBs and the time costs that reflect the punctual-
ity of bus services are included in the objective function. Based
on the primary GGA, a straightforward framework is presented
to optimize the scheduling scheme. The stochastic trip time is
assumed to follow a certain distribution and is simulated by the
Monte Carlo method. Case studies of two bus lines in Beijing
are conducted to verify the effectiveness of the proposed model
by considering both the composition of fleet types and stochas-
tic trip time. Finally, we investigate the impacts of stochastic-
ity, fleet composition, government subsidies and cost factors.
The achieved scheduling strategies can provide the optimal pro-
portion of electric and conventional buses while considering
stochastic extent of the trip time, which has a crucial impact
on the operational costs.

The results of these examples show that the stochasticity
extent of trip time has a crucial impact on operational costs.
Under the condition of an electrification market that has not
been fully popularized at the present stage, reasonably arrang-
ing the proportion of electric and conventional buses can greatly
reduce the total costs in the operation scheme. For certain ser-
vice tasks, with the introduction of electric buses, traditional
buses are gradually replaced. In particular, we considered a dif-
ferent ratio of electric and conventional buses that simulated the
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gradual penetration of electric buses into the market to observe
their impact on total costs.

This mixed fleet formulation model only considers the sin-
gle depot case. It is necessary to consider multiple depot mixed
fleet scheduling problems, which will have more challenges to
solve, especially for stochastic scheduling problems. Then, in
this study, we failed to consider the time cost totally from the
side of passengers. A thorough investigation on the value of
time of varied passengers is needed. We will consider this fac-
tor in the future studies and try to build a multi-objective opti-
mization model from both the company and passenger sides.
Additionally, we only consider the stochastic trip time of the
whole service trip and do not consider the trip time of each
trip between two stations. In future studies, more road traffic
stochasticity will be considered. Finally, most bus operations
companies have bus types with different passenger capacities,
increasing the model complexity and bringing computing chal-
lenges. Future research will focus on these problems.
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