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Abstract. Removing skull artifacts from functional magnetic images
(fMRI) is a well understood and frequently encountered problem. Be-
cause the fMRI field has grown mostly due to human studies, many new
tools were developed to handle human data. Nonetheless, these tools are
not equally useful to handle the data derived from animal studies, espe-
cially from rodents. This represents a major problem to the field because
rodent studies generate larger datasets from larger populations, which
implies that preprocessing these images manually to remove the skull
becomes a bottleneck in the data analysis pipeline. In this study, we
address this problem by implementing a neural network-based method
that uses a U-Net architecture to segment the brain area into a mask and
removing the skull and other tissues from the image. We demonstrate
several strategies to speed up the process of generating the ground-truth
of the dataset using watershedding, and several strategies for data aug-
mentation that allowed to train robustly the U-Net to perform the seg-
mentation. Finally, we deployed the trained network freely available.
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1 Introduction

Functional magnetic imaging (fMRI) has emerged as a powerful tool to investi-
gate functional networks in the brain. Because fMRI is a non-invasive technol-
ogy, the field has primarily been driven by its application to the study of the
human brain. Consequently, great advances in automating the analysis of fMRI
data through tools that improve its speed and efficiency have been achieved to
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process human data, saving both time and costs associated with fMRI studies.
However, efforts to either modify preexisting tools or develop similar tools for
use on rodent datasets are lagging.

Currently, one of the most time-consuming steps in the processing of rodent
fMRI data is the process of brain extraction or skull stripping. This step consists
of segmenting the whole brain, which is equivalent to removing all non-cerebral
tissue, including the skull, nose, mouth, ears, and muscles [7]. Accurate extrac-
tion of the brain is essential to ensure that fMRI data of all the subjects in the
study are anatomically aligned, which is necessary to allow for reliable statistical
comparison across large cohorts of animals [1, 4, 20, 21, 23]. Because skull strip-
ping is a well-understood problem [10] and a necessity in every fMRI analysis,
the development of tools to automatize and increase the speed and reliability of
results might have a great positive impact on fMRI research.

Rodent’s brain extraction poses additional challenges when compared to seg-
menting the human brains from fMRI data. Rodents have a smaller gap be-
tween the brain and the skull, resulting in a less clear edge demarcation than
in humans. Additionally, the rodent brain differs in shape, texture, size, and
proportion from the human brain. This means that the automated tools devel-
oped to handle human data such as Brain Extraction Toolkit (BET) [18] and
BrainSuite’s Brain Surface Extractor (BSE) [16] usually fail to process images of
rodent brains. Therefore, brain extraction of rodent anatomical and functional
data is predominantly carried out manually. This process involves researchers
going slice-by-slice through the acquired (anatomical and functional) images in
all three dimensions and manually drawing masks for the brain using a mouse
or a tablet.

A tool to efficiently extract the brain from rodent anatomical images was
recently published [3]. This tool takes as input one representative brain from the
study and its manually created brain mask, then it uses this information to carry
out the brain extraction of the remaining subjects in the study. While this is a
great tool for extracting the brains in the anatomical images, it is not intended
for use in functional datasets, and there is, to the best of our knowledge, no
equivalent tool available for extracting the brain from the functional dataset.
In order to observe the changing activity of the brain over time, the functional
datasets have to be acquired at a much greater speed than the anatomical im-
ages, resulting in a much lower spatial resolution than the anatomical images. To
preserve the sensitivity to blood-oxygenation-level-dependent (BOLD) contrast
the images are also frequently subject to severe susceptibility-induced distor-
tions, in particular, in the back of the brain near ear canals and sinuses. Due
to these confounds, skull extraction of functional rodent images commonly fails,
and the current state-of-the-art in the field of rodent imaging is to manually
draw the masks. This process is both time-consuming and often inaccurate, con-
tributing to a less-than-perfect alignment of the functional data to the template
brain.

To overcome this obstacle, we have developed a deep learning-based tool
in Python that quickly and successfully extracts the brain from the functional



Deep learning for brain extraction from fMRI of rodents 3

datasets, thus improving the speed and accuracy of the preprocessing pipeline.
The tool, furthermore, does not require any study-specific input from the re-
searcher to successfully separate brain from non-brain tissue. The tool is freely
available online5.

2 Related works

In the last three decades, many methods for skull stripping have been proposed
[5, 6, 19], ranging from simple luminance thresholding to 3D-convolutional deep
learning techniques [9]. Among them, the most promising are the water-shedding
based segmentation [7], the Brain Extraction Tool (BET) [18] and the most re-
cent 3D-U-Net [9]. Watershed based methods are image processing pipelines
originally described in [8] that are advantageous for being unsupervised, fast,
and easy to tune; they leverage luminance gradients to define regions of interest
that can be defined as either brain or non-brain. BET, on the other hand, uses a
malleable model, where a spherical mesh is initialized at the center of mass and
then expanded towards the surface of the brain; locally adaptive model forces
based on local intensity values guide this process, allowing BET to quickly seg-
ment the brain. The caveat is that BET has a spherical (human) brain assump-
tion, and has irregular performance with oblong elliptical-shaped brains, such as
rodent brains. Finally, 3D-U-Net is a promising robust methodology that uses
convolutional neural networks to perform semantic binary segmentation. This
method has the advantage of being able to learn from experts by mapping spa-
tial features of the raw fMRI image to ground-truth data generated by manual
segmentation. Because of the need for co-registration and alignment in the z-
axis, this method cannot benefit from several of the data augmentation methods
available, such as elastic transformations [14, 15], thus requiring much more data
than the standard U-Net [15]. All of these methods were developed to handle
human fMRI data, and regardless of the great levels of performance achieved by
the previously cited methods, a solution to reliably perform skull stripping in
rodent data is still missing.

The solutions to particularly handle rodent fMRI data use more modest
technologies. More often than not, skull stripping is still done by creating hand-
drawn masks and only occasionally helped by semi-automation tools such as
BrainSuite’s Brain Surface Extractor (BSE) [16] which produces an initial mask
that subsequently needs to be refined and corrected by hand. Beyond BSE other
two automation method categories are available, warping to brain atlas-based
methods, and surface template-based methods [3]. Both methods are built ex-
tending the NiftyReg software package [13]; and both dependent on the warping
of the image to a template coordinate map, or on warping a mask to the raw
image through a series of affine and non-linear transformations. These methods
produce excellent results on high-resolution anatomical images, but due to the
lower spatial resolution and image distortions in the functional datasets the au-
tomated skull stripping methods currently available fail to perform correctly on
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rodent functional images. Hence, the brain extraction problem in functional im-
ages from rodent data has yet to be solved satisfactorily in a generic and robust
way.

3 Methods

3.1 Image acquisition

62 fMRI datasets from 31 McGill-R-thy-App rats were acquired on a 7T Biospec
70/30 (Bruker BioSpin) preclinical scanner, equipped with an actively shielded
660 mT/m BGA12S HP gradient set (Bruker) in combination with a quadra-
ture surface coil (Bruker BioSpin). Aspin-echo EPI sequence was used with the
following parameters: 600 repetitions (total scan time of 30 min each) with 2
segments, TE = 20ms, repetition time (TR) = 1.5s for a full-volume acquisition
of 3s., field-of-view (FOV) of 20x20mm, matrix size 80x80, 55 dummy scans,
flip angle of 90 degrees. Seventeen slices were acquired in rostro-caudal direc-
tion for a final resolution of 250 x 250 x 1000um. All procedures were approved
by the Norwegian Food Safety Authority as well as the local Animal Welfare
Committee of the Norwegian University of Science and Technology (NTNU).
All animals were housed and handled according to the Norwegian laws and reg-
ulations concerning animal welfare and animal research. Experimental protocols
were approved by the Norwegian Animal Research Authority (FOTS application
number 11932) and were following the European Convention for the Protection
of Vertebrate Animals used for Experimental and Other Scientific Purposes.

3.2 Dataset production and Watershedding-based brain
segmentation

Due to the success of the watershedding algorithm to segment the brain in hu-
man fMRI dataset [12], we used it as a semi-automated approach to generate a
dataset of masks that were used to train and test the neural network to segment
the brain from the skull. Watershedding is a region-based approach that con-
siders the target structure as a homogeneous region which is determined by a
search process guided by appropriate criteria for homogeneity. We implemented
the watershedding segmentation by using functions in OpenCV [2] to preprocess
the images by gray-scaling, mean-shifting, and normalizing them. Once the im-
ages were considered suitable for segmentation, we thresholded the gray-scaled
image into masks, calculated their basin gradients, filtered these gradients, and
identified the segmented areas as connected components. As result, the water-
shed method provides for each image a series of masks for each structure in each
image. The gradient of an image function f is the vector constituted by the par-
tial derivatives in each image dimension. The gradient’s direction is the direction
of steepest descent and a magnitude (mag) is the length of the gradient vector.
For an image function in R2, f(x, y) the magnitude of the gradient is calculated
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as

mag(5f) =

√
(
δf

δx
)2 + (

δf

δy
)2. (1)

To choose the mask that represented the brain structure, we leveraged the
regularities in the data. Because in this dataset the brain was always very close to
the center, this meant that the average polar radial distance between each point
of the brain structure mask and the center of the image was shorter than any
other structure. Thus, we used this as the criterion to exclude other structures.
The parameters for this process were chosen manually and the results followed
by close supervised eye-inspection. Nonetheless, this semi-automated approach
proved to be substantially faster than the manual alternative, because the same
parameters could be used for different datasets acquired in similar conditions.

3.3 Deep learning-based segmentation

In this article, we use a standard U-Net [15] architecture to perform skull strip-
ping from fMRI images of rodents. U-Nets are most often used for semantic
segmentation tasks. Beyond performing well on the task, they allow for efficient
use of GPU memory, which is an asset for processing big image datasets with
many features. This is heavily dependent on the fully convolutional architecture
of the U-Net, which enables the extraction of image features at multiple image
scales. In the U-Net, different layers capture coarse feature-maps that reflect this
contextual information about the category and location of objects at multiple
scales. These feature-maps are later merged through skip connections to combine
coarse- and fine-level dense predictions [15].

The goal of the U-Net neural network architecture is to predict which pixels in
the image matrix are to be classified as brain and which ones are to be classified
otherwise. Thus, the output of the final decoder layer is a soft mask (see Fig. 1)
that when multiplied to the input image produces the final segmented brain
region.

3.4 Data Augmentation and Training

One major advantage of using the U-Net is that it is possible and simple to use
several methods for data augmentation such as resizing, flipping, rotating, and
minor translations. These data augmentation strategies increase the performance
of the model by increasing the size and variety of the dataset [17].

Additionally, fMRI images often do have distortions and movement artifacts.
To improve U-Net’s robustness in face of such artifacts, elastic affine transfor-
mations were applied equally to the input image and the target masks. In total,
the training and validation datasets were increased by 50% with these slightly
deformed images [17].

To speed up training we utilized a U-Net pre-trained to segment pathological
structures in human MRI images. Instead of stochastic gradient descent, we
modified the original optimizer of U-Net to Adam [11] with the learning rate of
0.001. Additionally, the training used batches of 25 images during 1,000 epochs.
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Fig. 1. Soft masks examples: The left column represents the input image. The right
column illustrates the mask prediction for three different coronal slices of a rodent’s.
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4 Results

This section presents the quantitative and qualitative results of the deep learning
neural network for our task of segmenting rodents’ brains. Table 1 contains
the quantitative results of binary cross-entropy (BCE) loss, accuracy, F1 score,
precision, and recall on the validation dataset of 49 images (5 % of our dataset).
All these values show that our model segments almost all pixels that contain
the brain (98.3 % recall) with precision of 98.5 %. The F1 score is a metric that
combines recall and precision. The accuracy represents the percentage of correct
answers for the pixels predicted as part of the brain or not. Such value is high
and it is 99.35 %. Those measurements suggest that the model performance is
excellent.

Table 1. Validation results of the best (lowest) loss.

Measurement Value

BCE loss 0.01562267541885376

Accuracy 0.9935703277587891

F1 Score 0.9843953251838684

Precision 0.9854521751403809

Recall 0.9833407998085022

The same model that obtained the best BCE loss on validation dataset has
6 out of its 49 results depicted in Fig. 2. In general, the model performs well to
segment the rodent’s brain in an fMRI. There is one validation result that has a
small mistake in the segmentation. That is depicted in Fig 2e and it has a small
predicted region on the right side of the image which means that the model
predicted a “second” tiny brain. Despite that, the qualitative and qualitative
results are impressive.

5 Discussion

Much of what is known in neuroscience is derived from studies using rodent
models, due to their versatility and the large selection of methods (e.g., invasive
methods) available to study them. On the other hand, much of what is known
about the human brain is derived from MRI and fMRI studies. Thus, fMRI holds
the promise of bridging the gap between what we know about the mammalian
brain. It may provide evidence to generalize results from rodent-derived stud-
ies using electrophysiology, optical, and pharmacological methods to the human
model. In this context, it is important to create powerful tools that can in-
crease the speed and the reliability of the analysis performed on data derived
from rodent models and can equally be applied to human data. In this article,
we made a step towards democratizing deep learning tools to the neuroscience
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Validation results. Green line represents the ground truth and red line is the
predicted region.

community by successfully applying a U-Net to perform skull stripping of low
resolution functional magnetic resonance images from rodents. The method was
quick to train, required little data due to the usage of data augmentation tech-
niques and pre-trained model, and qualitatively performed reasonably well. In
contrast to other approaches that depend on images with high-resolution images
or deformations of initial masks, U-Nets work well with low-resolution images
and can segment distorted images, even with motion artifacts. Additionally, by
using a network that operates on images as inputs instead of a 3D tensor with
all the image slices at once, we could use data augmentation strategies without
major problems concerning alignment issues. However, we recognize that U-Net
may not be the best nor the fastest architecture to perform semantic segmenta-
tion. Other topologies such as AlbuNet, or TernausNet [22] might deploy better
segmentation at higher speeds. Additionally, because fMRI has a temporal com-
ponent, recursive layers could be added to take the dynamic nature of the signal
in the brain as a feature to better segment and remove the skull, perhaps even
in a non-supervised manner. Consequently, a logical step is to explore how more
modern architectures could perform in this task. We hope this tool helps neuro-
scientists to reduce time in preprocessing steps of their analysis of fMRI data in
non-human models.
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Sagredo JM, Del Pozo F (1997) Applying watershed algorithms to the seg-
mentation of clustered nuclei. Cytometry: The Journal of the International
Society for Analytical Cytology 28(4):289–297

[13] Modat M, McClelland J, Ourselin S (2010) Lung registration using the
niftyreg package. Medical image analysis for the clinic-a grand Challenge
2010:33–42



Deep learning for brain extraction from fMRI of rodents 11

[14] Moshfeghi M (1991) Elastic matching of multimodality medical images.
CVGIP: Graphical Models and Image Processing 53(3):271–282

[15] Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks
for biomedical image segmentation. In: International Conference on Medical
image computing and computer-assisted intervention, Springer, pp 234–241

[16] Shattuck DW, Leahy RM (2002) Brainsuite: an automated cortical surface
identification tool. Medical image analysis 6(2):129–142

[17] Simard PY, Steinkraus D, Platt JC, et al (2003) Best practices for con-
volutional neural networks applied to visual document analysis. In: Icdar,
vol 3

[18] Smith SM (2002) Fast robust automated brain extraction. Human brain
mapping 17(3):143–155

[19] Speier W, Iglesias JE, El-Kara L, Tu Z, Arnold C (2011) Robust skull
stripping of clinical glioblastoma multiforme data. In: International Con-
ference on Medical Image Computing and Computer-Assisted Intervention,
Springer, pp 659–666

[20] Spring S, Lerch JP, Henkelman RM (2007) Sexual dimorphism revealed in
the structure of the mouse brain using three-dimensional magnetic reso-
nance imaging. Neuroimage 35(4):1424–1433

[21] Vousden DA, Epp J, Okuno H, Nieman BJ, van Eede M, Dazai J, Ragan
T, Bito H, Frankland PW, Lerch JP, et al (2015) Whole-brain mapping
of behaviourally induced neural activation in mice. Brain Structure and
Function 220(4):2043–2057

[22] Wang S, Hua Y, Cao Y, Song T, Xue Z, Gong X, Wang G, Ma R, Guan
H (2018) Deep learning based fetal middle cerebral artery segmentation in
large-scale ultrasound images. In: 2018 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), IEEE, pp 532–539

[23] Zhang X, Bearer EL, Boulat B, Hall FS, Uhl GR, Jacobs RE (2010) Altered
neurocircuitry in the dopamine transporter knockout mouse brain. PloS one
5(7):e11,506


