
ACIT5900

MASTER THESIS

in

Applied Computer and Information
Technology (ACIT)

August 2021

 Cloud-based Services and Operations

Investigate AI-based learning for cloud
services for adaptive autonomous behavior

Eman Moustafa Azab

Department of Computer Science

Faculty of Technology, Art and Design

Investigate AI-based learning
for cloud services for adaptive

autonomous behavior

Eman Moustafa Azab

© 2021 Eman Moustafa Azab

Investigate AI-based learning for cloud services for adaptive autonomous
behavior

http://www.oslomet.no/

Printed: Oslo Metropolitan University

http://www.oslomet.no/

Abstract

Cloud computing provides more reliable web services due to its flexibility
for accessing resources on-demand and self-managed services. However,
cloud computing faces new challenges when managing a massive amount
of services in an environment full of uncertainties. Moreover, the
customer´s variations of services requirements make them more complex.
All of these factors increase the difficulty of managing the services on the
cloud.

The two keys for providing a reliable web service are service perform-
ance and resources utilization. Service performance grantees providing
reliable service in terms of response time, but that should be achieved
without wasting the limited amount of available resources. Therefore,
providing an optimized service without under- or over-provisioning is a
requirement. There is a need to develop an autonomous service to adapt
itself based on the surrounding environment.

This thesis explores introducing a learning automaton algorithm for
developing an autonomous web service. The result is aSpace machine
that has been built and developed through a set of phases and shows
a progression from an autonomous scalable service towards the aSapce
machine. The aSapce machine optimizes the service performance in terms
of self-provision.

The results indicate the ability of the aSapce machine to manage the
different workloads effectively by providing an elastic web service. Further
exploration for this can pave the way towards handling more complex
situations.

i

ii

Acknowledgments

I want to thank my supervisor Kyrre Begnum for invaluable advice, help,
and motivation during the work with this thesis. This year has been a
challenge with the online studying and with kids at home, but continuous
support from my supervisor helped me keep my motivation throughout
the semester. His support did not limit the technical advice and ideas, but it
expanded to encouraging words that kept me motivated while working on
the thesis. Moreover, I would like to thank Stefano Nichele for his guidance
through the process to understand the learning automata algorithm.

My appreciation would be extended to OsloMet, for providing me with
the necessary skills to undergo this work and facilitating learning and
academic progress during this challenging last year of the Covid pandemic.

Last but not least, I thank my family, my loving mother, and my father
for everything they have done for me because I would not do that without
their encouragement. Also, I would like to thank my husband, who
encouraged me to study and support me in my difficult moments. Also,
my two lovely kids were always my inspiration during this journey.

iii

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 2
1.3 Outline . 3

2 Background 5
2.1 The need for rental computing services 5
2.2 Web services in cloud computing 6

2.2.1 Automation from API perspective 7
2.2.2 The birth of automation of service behavior 7
2.2.3 Autonomic computing in a nutshell 9
2.2.4 Software engineering efforts towards autonomic

computing . 10
2.3 AI as panacea for autonomic computing? 10

2.3.1 Learning Automata algorithm 11
2.4 Alternative approaches for achieving autonomic resource

management . 16

3 Approach 19
3.1 Desired outcomes . 19
3.2 Objectives . 20
3.3 Design . 21
3.4 Implementation and Simulation 22
3.5 Analysis plan . 23

4 Phase I: Autonomous web service algorithm based on A Single
Learning Automaton 25
4.1 Introduction . 25

v

4.2 Web service-based learning automaton 26
4.3 Simulating the behavior of a single automaton 28

4.3.1 Scenario . 28
4.3.2 Simulation . 29

4.4 Implementation . 30
4.5 Results . 33

4.5.1 Explore the automaton behavior by changing the pro-
portion of (a) to (b) using the learning automaton’s
schemas . 34

4.5.2 Explore the effects of changing the values of (a) and
(b) on the automaton’s behavior 39

4.6 Observation . 41

5 Phase II: Autonomous web service using multiple learning auto-
mata 43
5.1 Introduction . 43
5.2 The aSpace machine . 44

5.2.1 Environment . 44
5.2.2 The aSpace3D machine 45
5.2.3 Scenario . 45

5.3 Implementation . 46
5.4 Results . 51
5.5 Observations . 55

6 Phase III: Introducing an elastic autonomous self-provisioning
web-service 57
6.1 Introduction . 57
6.2 Proposed method for efficient resource provisioning 58
6.3 Implementation . 62
6.4 Results . 63
6.5 Observations . 71

7 Discussion 73
7.1 Answering the problem statements 73
7.2 Planning the exploration process 74
7.3 The road towards achieving results 75
7.4 Proposing aSpace machine and related work 77

7.4.1 aSpace machine and related work 79
7.5 Future work . 79

8 Conclusion 81

vi

9 Appendix 83
9.1 Automaton.py . 83
9.2 plot_results_phase1.py . 85
9.3 run_experiment_phase1.py 86
9.4 aSpace3D . 87
9.5 aSpace-3D-simulation . 91
9.6 plot_traffic_data . 92
9.7 LAs.py . 98
9.8 environment_response . 101

vii

viii

List of Figures

2.1 Environment Narendra and Thathachar, 1974 13
2.2 Feedback connection of automaton and environment Narendra

and Thathachar, 2012 . 14

4.1 The web service agent architecture has its learning unit. The agent
interacts with the environment and receives feedback. Based on
feedback, it updates its learning unit. 27

4.2 Virtual machine runs web server with custom plug-in that
implements a learning automaton. There are a number of “VM
sizes” the service can scale up or down. 28

4.3 depicts the behavior of linear reward in action schema (LR-I) with
a = 0.1 and b = 0. 34

4.4 depicts the behavior of linear reward penalty schema (LR-P) with a
= 0.1 and b =0.1. 36

4.5 depicts the behavior of Linear Reward-E -Penalty schema (LR-EP)
with a = 0.05 and b =0.1. 38

4.6 depicts the behavior of Linear Reward-E -Penalty schema (LR-EP)
with a = 0.05 and b =0.1. 39

4.7 shows comparison between the behavior of Learning Automata
using different learning schema 42

5.1 The conceptual model of aSpace3D machine. 46
5.2 The traffic intensity of an online game website for 288-time

intervals per day over 173 days with the mean and median values
of the players of each time interval 51

6.1 Elasticity concept Al-Dhuraibi et al., 2017 58
6.2 The mechanism of the proposed rewarded model where F4 is

optimal choice for the case . 60
6.3 Proposed punishment model . 61
6.4 The number of actions occurrence of each automaton 65
6.5 Accuracy of aSpace machine using P-model 68

ix

6.6 Accuracy of aSpace machine using S-model 69

x

List of Tables

4.1 All of the actions have initial equal probabilities and the selection
between these actions will be random. 27

4.2 presents the available flavors that the web service will spin up
based-on. 29

4.3 Values of a & b . 40

5.1 The available flavors with the number of HTTP requests it can
handle. 47

5.2 Statistical results of aSpace3D machine using P-model 52
5.3 Automaton usage at different time intervals with different

traffic intensity. 53
5.4 The relationship between the amount of usage and the

chances of convergence. 54

6.1 Statistical results of aSpace3D machine using S-model 63
6.2 Automaton usage at different time intervals with different

traffic intensity using S-model. 65
6.3 The probability distribution of Automatons after 173 days 66
6.4 . 67
6.5 The behavior of automaton <1-1-2 >through the its learning

process . 67
6.6 The usage and the chances of choosing the optimal action

using S-model . 67
6.7 The amount of usage and the chances of convergence using

S-model. 70
6.8 The behavior of automaton <288-2-2 >through the its learn-

ing process using P-model. 70

xi

xii

Chapter 1

Introduction

During the last decades, the internet has become unavoidable in our daily
life. It makes our life easy, fast, and straightforward. Thus, it has become
the preferred medium for daily communications. The continuous growth
of internet services has led to expanding the number of resources.

For responding to these growing demands on internet services, serv-
ers, networks, storage, development tools, and data centers have been de-
veloped and provided. Furthermore, the companies had to hire many IT
professionals to run, develop, and maintain these resources. Consequently,
the cost and the complexity of running and maintaining these resources
have been increased.

As a result, the term “cloud computing” was created. Cloud computing
comes as the answer to the question: ”why do I need to purchase, set up,
and maintain infrastructure if I can work with a shared resource pool?”.
Cloud computing technologies have become a way to provide on-demand
services for whatever the customer needs and whenever he/she demands
it. Therefore, cloud computing leads to a new paradigm for modern
computing.

The embrace of cloud-based services not only guarantees to get reliable
services but also promises them to be cost-effective. Consequently, the
adoption of cloud-based services has not been limited to companies but
has been attracted governments, individuals, and different sectors.

With the continuous rise of cloud computing and its services, managing
the tasks associated with managing these environments increases and
becomes more complex. Manually deploying and operating functions
such as provisioning, setting up virtual machines, configuring resources,
scaling, and monitoring is repetitive, inefficient, and often prone to
errors—consequently, the need for automation appeared.

Cloud automation is essential to successfully managing and optimizing

1

system performance, and reduce resources consumption. Further, it
improves efficiency by reducing repetitive tasks such as deployment and
configuration.

However, automating the repetitive manual work was not enough to
manage the challenges brought by the increased complexity and scale.
Therefore, there was a need for more sophisticated solutions.

After the advent of autonomic computing, cloud computing has used
it to develop self-manageable systems. The self-managed ability of
autonomic systems makes the system administrators free to focus on high-
level goals and reduces the complexity of managing provided services.

Developing a strategy that deals with the dynamic nature of services
in a cloud that is adaptive to real-life cases and local context is a research
area that has attracted the attention of many different research disciplines.
However, the complex nature of these models, combined with their
resilience on training data, has prevented any more breakthroughs.

Reinforcement learning is a sub-field of AI that does not rely on training
data and promises to be adaptive to changing conditions. However, this
approach is still evolving, and more research is therefore needed.

1.1 Motivation

This thesis approaches the topic of web service optimization from service
perspective. Our goal is to let an intelligent web service acts as an
autonomous agent. This agent should be able to understand and
interact with the surrounded environment. Introducing such a perspective
represents an essential step moving towards emerging concepts such as fog
computing, edge computing, mobile cloud computing, and IoT. In such
a world, the services should have the ability to make many decisions on
their own. For example: the web service can decide to grow or shrink
(i.e., change its size by increasing local resources) based on the number
of current requests. Moreover, it can determine the optimal place for the
execution based on the customer’s geographical location.

1.2 Problem Statement

The goal of the thesis is to apply exploratory research on investigating
introducing Learning Automata (LA) with cloud operations to achieve
autonomous web service.

The problem statements that this project is focused on are as follow:

2

1. P1: Explore the introduction of AI to service management by
designing a learning automata-based model.

2. P2: Develop and implement a prototype based on the designed
model.

The proposed design of learning automata aims to develop autonomous
web service in a stochastic environment with high uncertainty and a lack
of information, then exploring the automaton´s ability to learn and adapt
to the surrounded environment. Different models and different learning
schemas will be used to design and develop the prototype based on it.

1.3 Outline

The rest of the thesis is organized as follows:

• Chapter 2 explains background and related works to this project.

• Chapter 3 illustrates the methodology of the research

• Chapter 4 explore a learning automata-based algorithm for develop-
ing an autonomous web service running on a stochastic environment.

• Chapter 5 and 6 present the proposed system architecture and
implementation of the prototype.

• Chapter 7 describes the result, analysis and evaluation of the system.

• Chapter 7 contains discussion and future works.

• Chapter 8 concludes the thesis.

3

4

Chapter 2

Background

This chapter provides the reader with an in-depth view of cloud computing
technologies and how they positively reduce the complexity of managing
and delivering web services through different service models. Further,
we introduce and discuss how the adoption of autonomic computing into
cloud computing opens the door to shift the concentration from control
service to self-management service. Next, we introduce reinforcement
learning and its power on autonomic computing to develop self-adaptive
services. Finally, we review some research efforts of achieving autonomic
computing in terms of resource management.

2.1 The need for rental computing services

The increased demands on internet services over the years is remarkable.
Due to the high demand, many companies have to invest more in IT
facilities by building data centers, purchasing equipment, and hiring IT
staff to run and maintain it. However, the increased demands and customer
satisfaction were the main reasons to increase the complexity of running
and maintaining, consequently increasing the service cost. Meanwhile,
the great revolution in virtualization technology and the improvements
in Internet bandwidth created on the economic argument for "rental"
computing (Voas et al., 2013).

The concept of having service providers that rent out computing
resources based on customer demands was considered a lifeline for IT
enterprises and businesses organizations, governments, and people. It
offered a solution for decades-long challenges represented in raising IT
costs and investments for IT enterprises. In addition, it also helped
to face the problems of increasing the system complexity and hiring

5

talented specialists for maintenance and support, expanding demands
for business-process simplification, and fluctuating resources-usage. The
cloud computing model was build based on the idea of rental computing.

National Institute of Standards and Technology (NIST) defined the
cloud-computing as "a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort
or service provider interaction" (Mell and Grance, 2011).

Cloud computing can be divided into into three major categories based
on provided service: Software-as-a-Service (SaaS), Platform-as-a-Service
(PaaS), and Infrastructure-as-a-Service (IaaS). IaaS is a model that provides
the infrastructure services such as virtual servers, storage, backup, and
other computing resources to enable the users to deploy and run their
operating system, applications in the cloud (Mateescu et al., 2011).

2.2 Web services in cloud computing

Web services in cloud computing are a set of services that composed
together to achieve a customer´s request. It can be managed through a
web interface by humans or software can use API to automate some of the
management. These services are stored and distributed in different data
centers around the world.

To run any application, one or a combination of services can be used.
In that sense, the services in IaaS can be a VM or a set of VMs, and the
VM represents here a certain component. Based on that, the web service
can be a set of components. For example, a web application-based service
may consist of a database-component (MySQL), and a presentation layer
component (e.g., Apache server).

The cloud provider offers different infrastructure services in terms of
service deployment and service configuration such as installing packages
and modules, defining authorizations, and updating configurations. Al-
though the cloud vendors provide tools, significant manual effort is re-
quired once a service grows in scale. Therefore management of cloud ser-
vices deployments is a crucial feature and needs to be automated (Karakos-
tas, 2014).

6

2.2.1 Automation from API perspective

The deployment process is considered a core function of service manage-
ment in cloud computing (Li et al., 2012). It implies a set of configuration
processes for a particular need. For example, in the configuration process
of a web server, the administrator specifies the size of the virtual machine
(number of CPUs, storage, memory, etc), also specifies how long the server
needs to be running. Further, it can be specified whether the server will
be shut down or re-deployed. Imagine if one has to do the same task a
hundred times during the day when deploying a new web server. There-
fore, the idea of automating service deployment and configuration will re-
duce the workload and allow one to focus more time on higher-value goals.
Automation can be done by writing scripts, and administrators can specify
the processes based on local service requirements. The key element is that
clouds offer APIs which automate efforts can use. But with the machines
in place, the question of "What" actions are to be taken and "When" still
remains.

There are some trials to provide automation tools such as VMware ESX
and XenEnterprise. These tools abstracts processor, memory, storage, and
networking resources into multiple virtual machines (Marshall et al., 2008).
However, they are limited to certain virtual machine technology without
offering a way to expand the tool’s capabilities to local needs. (Begnum,
2006) proposed the MLN tool, it is an open sources tool that supported the
design of virtual machines and their internal configurations.

The cloud offers the opportunity for utilizing local automated scripts;
however, this can be done only on small deployment actions. So the cloud
offered us the actions but not the strategy to do that. In that sense, we can
say that
The table was set for the automation, and the only thing missing was the strategy."

2.2.2 The birth of automation of service behavior

Even though MLN provided a way to automate the deployment of the
virtual machines with its local need, i.e., local configurations, the complex
nature of cloud computing and services models motivated the researchers
to go further beyond. Therefore, the attention had been shifted from
system’s processes to system’s internal state.

The story began with the rise of "DevOps" (Development and Opera-
tions). DevOps supports the continuous collaboration between developers
and operations by optimizing the software delivery cycle and time to pro-

7

duction. Further, using agile methodologies in cloud computing have a
significant impact on software delivery. The idea behind DevOps involved
writing code in deploying and updating infrastructure. Based on that, In-
frastructure as Code (IaC) became the most popular approach for software
development and supported code-centric tools.

The emergence of IaC contributed to developing tools for "configura-
tion management" such as Puppet and Chef. Both Puppet and Chef are con-
figuration management and deployment tools that use the IaC approach in
their configuration process. The basic idea of these systems depends on
the internal state of the system. Internal state means the system should
be maintained based on predefined configurations. Therefore, the primary
role for these systems is deploying, managing, and maintaining the system
based on predefined configurations. These tools provided massive support
for engineers at that time because working in fluctuations environments
full of uncertainty is too hard (i.e cloud computing). Such tools can write,
test, and launch applications without interference from Ops staff to provi-
sion an entire environment with a single click instead of it taking a week to build
a new environment.

Based on the above, developing tools that consider the system’s internal
state and force it to return if it steers from the path was a great revolution.
Even though that was done inside the physical machines, but this was
the simplest form of system’s behavior. However, systems in the cloud
become larger and more decentralized, and the cloud face challenges with
managing and maintaining services such as resources utilization, fault
tolerance, monitoring (Tomar et al., 2018). Hence, the need for systems
to manage themselves rather than just forcing systems to be maintained
based on predefined configuration becomes necessary.

The birth of the idea "I do not need to check this by myself, I could make
it take care of itself" was in the mid of ’90s. When the idea was born,
it focused on the behavior concept. However, the story’s roots started
from "physical machines can take care of themselves" by introducing
the "computer immune system" concept. The godfather of "computer
immunology" was Mark Burgess (Burgess et al., 1998). In 1998, he provided
a paradigm capable of detecting the problem, investigating the causes, and
mobilizing resources for automatic use. The biology system in the human
body inspired the idea of computer immunology by self-healing without
interference from the brain. Later, IBM released a document discussing
system management complexity and suggested a solution to this problem
by developing self-managed systems. As a result, the term "Autonomic

8

computing" was firstly coined in 2001 (Horn, 2001).

2.2.3 Autonomic computing in a nutshell

Self-management concept is the core of autonomic computing techno-
logy. It consists of four properties which represent its cornerstones: Self-
configuration the computing system can configure itself automatically based
on the high-level policy drawn by the system administrator, Self-healing the
ability of computing systems to detect, diagnose, and repair local prob-
lems caused either by software or by hardware failures, Self-optimization
the ability of the computing system to optimize itself by changing its para-
meters based on the surrounded environment circumstances, Self-protection
the ability of the computing system to protect itself against malicious at-
tacks and failures. Moreover, the ability to predicting possible attacks or
failures and prepared against them. Shortly, they are called Self-CHOP
systems. However, autonomic computing systems do not imply only these
properties, but they extend to more. Hence, academic research adopt new
terms like self-organization, self-inspection, self-repairing, and more. Thus,
it becomes common to refer to them as self-* systems (Tesauro et al., 2004
, White et al., 2004 and De Wolf and Holvoet, 2006). For example, Ster-
ritt et al., 2005 defined autonomic computing systems as self-CHOP, self-
governing, self-adapting, self-managing, self-recovery, and self-diagnosis
of faults. While Tianfield, 2003 defined it as self-planning, self-learning,
self-scheduling, self-evolution, and more.

The emergence of autonomic computing into cloud computing techno-
logy changes the way of looking at systems. Each system consists of a set
of components, and each component is not working isolated from the oth-
ers. All components are aware of each other; moreover, they can change
themselves based on the feedback they received from each other and the
surrounded environment. Based on that, each component is considered a
service that has its behavior:

Shifting from a system with an internal state to services that have behavior

IBM introduced the vision of autonomic computing with the main
components of a self-management system; however, it did not provide
a recipe for building such systems. In the Academic field, researchers
have adopted autonomic computing and implemented it using different
methods and perspectives for developing autonomic services. Next, we
are going to review some of these research works.

9

2.2.4 Software engineering efforts towards autonomic computing

The emergence of autonomic computing into cloud computing technology
made the researchers pay more attention to designing autonomic comput-
ing from a system admin perspective and focused on collaboration and co-
ordination, rehearsal and planning, maintaining situation awareness and
managing multitasking, interruptions, and diversions.

We will review some of the research efforts that have been done from
2001 to 2020. That will give an overview of the research to adopt autonomic
computing into cloud computing systems.

The research efforts in autonomic web services had different ap-
proaches. It started from developing models and algorithms for adoption
to developing systems to reach developing systems for verifying the out-
comes from these autonomic systems. Houben et al., 2005 and Kapoor,
2005 are examples developing algorithms for self-manageability systems.
Carzaniga et al., 2008 developed an autonomic repair management service
using self-healing properties. Pastrana et al., 2008 developing a dynamic
system in terms of configuration and adaptation. Maurer et al., 2012 pro-
posed a self-adaptive management system. The system considered work-
load variations by re-configuring the VM autonomically based on the in-
coming workloads. Research also gave attention to verifying the outcomes
of self-adaptive systems: Kaddoum et al., 2010 proposing a set of criteria
for evaluating self-* properties on system performance. Cámara et al., 2013
introduced an architecture-based approach for evaluating a self-adaptive
system.

2.3 AI as panacea for autonomic computing?

The last ten years have witnessed significant adoption of autonomic
computing into cloud computing systems. The motivation behind the
adoption is the high complexity, dynamically, and uncertain nature of
cloud computing, making it too hard to manage directly by engineers. The
positive result that autonomic computing showed was the motivation of
the emerging AI-based algorithms called "Reinforcement Learning." One of
the reinforcement algorithms is Learning Automata.

Learning automata depends on learning by a trial-and-error process
until the optimal action is learned. One of its features is interacting with the
surrounding environment. Based on the feedback from the environment,
the automaton chooses its next action.

Learning through possibilities based on feedback from the environment

10

is similar to the conditions and the current needs of the cloud services. In
that sense, the academic field introduced the learning automata to develop
self-adaptive services. Another motivation of introducing learning automata
is its apparent simple structure and implementation. It does not require
large amounts of memory or complicated computations for its reward
system because it depends only on the last state of the automaton.

The self-adaptive service has been introduced in cloud computing as a
service can optimize itself based on the surrounding environment. It has
been provided more adaptive solutions for dynamic resource provisioning
(Qavami et al., 2017).

Ranjbari and Torkestani, 2018 proposes a learning automata algorithm
for improving resource utilization and reduces energy consumption
without violating the quality of service constraints . At the same time,
Misra et al., 2014 introduces the learning automata framework for improv-
ing the performance in terms of response time without under- or over-
resource utilization. Learning automata has been introduced recently for
auto-scaling in Kubernetes Toka et al., 2020.

In the next section, we aim to provide the reader with introduction of
learning automata algorithms.

2.3.1 Learning Automata algorithm

Learning Process

Learning is a continuous process that aims to evolve the agent´s behavior
based on previous experience. Computer science defines the learning
process as a process that seeks to train a program or machine to do a
set of prescribed tasks. For example: identifying spam emails or pattern
recognition, or even computer games (Lakshmivarahan, 2012).

The learning process can be achieved by the interaction between
the learner, i.e., agent or the piece of software, and the surrounding
environment. In that sense, there are a set of learning methods classified
based on the way of the interaction:

1. Supervised learning: there is a supervised interaction between the
environment and the agents—the environment guides the agent by
mapping between the inputs and outputs using labels. Through these
labels, the agents gain knowledge about the data features of each
class. When the agents are provided with different data sets, they
predict the data class based on the previous experience—for example,
neural networks.

11

2. Unsupervised learning: refers to an unguided process where the
agent learns from the detected similarities in data features. Here no
supervised labels are provided.

3. Reinforcement learning: the agent learns mainly from interacting
with the surrounded environment, so the agent receives a reward
if it selects the right action. In such a way, the agent learns from
the consequences of its previous actions by following a trial-and-
error approach. Thus, at each time, the agent seeks maximum
rewards by selecting the proper actions. This way of learning enables
the agent to interact with the environment, gain more information
about it through trials and improve its performance (Thathachar,
1990). Reinforcement learning uses different learning methods such
as Q-learning, SARSA, temporal difference learning, and learning
automata such as P-model and S-model.

The motivation behind selecting learning automata is that it does not
require training data and can be used online without any prior information.
Based on that, We found that using learning automata suits the uncertainty,
unpredictable, and fluctuating nature of the cloud computing environment
and resources management.

Introduction to learning automata

Learning automaton is a model operating in the framework of reinforce-
ment learning (Ranjbari and Torkestani, 2018). The automaton´s learning
approach is a process of determining an optimal action from a set of actions.
Then the environment evaluated the selected action and send a reinforce-
ment signal to the learning automaton.

The automaton can be classified based on the mapping between the
inputs and the outputs to: deterministic automaton and stochastic automaton.

Deterministic automaton refers to dependency between the input and the
output of the automaton. In other words, the outcome of moving from one
state to another is based on the input, while if it is not, then it is stochastic.

The stochastic automaton suits more with the topic of research due to its
uncertainty and dynamical nature of the problem. Through the following
subsections, we will try to cover essential parts of the learning automata
algorithm in the following paragraphs. It is too hard to cover all the parts
of this algorithm due too many technical details related to the AI field.
Instead, the focus will be on the main parts that help us understand how

12

this algorithm works and insight into the different learning schemas and
the different models.

Automaton structure

The automaton is an abstract agent with a finite number of actions, and
it selects from these actions and applies it to the environment (output).
Based on the environment response towards this action which represents
the input to the automaton, the automaton transforms from one state to
another state. Finally, based on the current state and the environmental
response, the next action is determined.

The above process can be expressed formally as following: the
automaton is described by a quintuple (Φ, ∝, β, F, G) where ∝ refers to a set
of the available actions ∝ = (∝ 1,∝ 2,...,∝ r), and the automaton must choose
from. The Φ= (Φ 1,Φ 2,...,Φ s) is a set of the states, while β= (β 1,β 2,...,β q) is
a set of inputs. The G : Φ→ ∝ denotes the output function, and F : Φ × β

→ Φ refers to transition map that computes the state Φ(t+1) from state Φ(t)
upon receiving the input from the environment. The selected action at time
instance (n) is denoted by ∝(n) and represents the input to the environment,
while β(n) at time instance (n) is considered the environmental response.

Environment

Figure 2.1: Environment Narendra and Thathachar, 1974

The environment is a random medium that the learning automaton
wants to maximize its rewards from by selecting the optimal action. Based
on that, the environment (figure 2.1) receives and input from the automaton
β(n) ∈ {β 1,β 2,...,β r} and sends output (response) belonging to a set X
∈{0,1}. The probability of emitting a particular output is depending on
the input. At every instance, each action will have a certain probability
ci∈{ c1,c2,...,cr}, known as penalty probability. Then the reward probability
is obtained by di=1-ci (Narendra and Thathachar, 1974). Finally, if the ci

and di do not depend on the n, the environment is said to be stationary.
Otherwise, it is non-stationary.

13

Stochastic learning automaton

The automaton represents the learning automata model’s learning unit,
while the environment represents the medium in which the automaton
or group of automata can operate. In that sense, the interaction between
the environment and the automaton in a way that helps to improve its
performance is referred to "learning automaton", figure 2.2.

Figure 2.2: Feedback connection of automaton and environment Narendra and
Thathachar, 2012

The environment response can be considered as an indicator of the
automaton’s behavior during the learning process because the environ-
ment determines whether the action is favorable or not. If the action taken
is favorable, then the automaton will be rewarded, and the selection prob-
ability of that action will be increased, and the rest of the probabilities will
be decreased. In contrast, if the action taken is unfavorable, then the auto-
maton will be penalized, and the selection probability of that action will
be decreased, and the rest of the probabilities will be increased. The auto-
maton has a greedy nature of maximizing its rewards. In that sense, the
automaton, during its learning process, will learn to select the action(s) that
maximized its values.

The classifications of stochastic learning automata

1. The stochastic automaton can be classified based on the action
probabilities values into: Fixed Structure Stochastic Automata (FSSA)
and Variable Structure Stochastic Automata (VSSA).

• In FSSA, the action probabilities are fixed.

14

• While in VSSA, the action probabilities are updated along with
time (Johnoommen, 1986). The automaton is described by a
six-tuple { Φ, ∝, β, F, G, P } where, P is the set of selection
probabilities of the actions at an instance t.

2. The environment can be classified based on the reinforcement signal
into three classes: P-model, S-model, and Q-model (Ranjbari and
Torkestani, 2018).

• P-model uses binary as an environmental response. Usually, in
P-model, the failure or unfavorable response is denoted by one,
while the successes or favorable response is denoted by 0.

• In Q-model, the value of β is a finite number of values in the
interval unit [0,1].

• In S-model, the value of β is a continuous values in the interval
unit [0,1].

Basic learning automata schemas

Learning automata´s actions have a probability distribution at each point
in time. Furthermore, this probability distribution is adjusted at every
time (t) based on the reinforcement signal it receives from the environment.
The probability distribution is denoted by p(t) = (p1(t),......,pl(t)) where pi(t)
represents the probability for selecting ith action at time (t) and l denotes
the number of actions. We introduce the most common schemas based on
the reinforcement signal type:

1. Binary signal (P-model):

There two cases if the action taken was favorable (i.e success) or
unfavorable (i.e fail):

• In case of success:

pi(t + 1) = pi(t) + a(1− pi(t)) (2.1)

if action i was taken at time step p

pj(t + 1) = (1− a)pj(t) (2.2)

∀ j 6=i

• In case of failure this becomes:

pi(t + 1) = pi(t)− bpi(t) (2.3)

15

if action i was taken at time step p

pj(t + 1) = pj(t) + b[(l − 1)-1 − pj(t)] (2.4)

∀ j 6=i

The constants a and b represent the reward and penalty paramet-
ers respectively with a ∈ [0,1] and b ∈ [0,1] , and l is the number
of actions in the action set of the automaton.

2. Continuous feedback (S-model):

pi(t + 1) = pi(t) + ar(t)(1− pi(t))− b(1− r(t))pi(t) (2.5)

if action i was taken at time step p

pj(t + 1) = pj(t)− ar(t)pi(t) + b(1− r(t))[(l − 1)-1 − pj(t)] (2.6)

∀ j 6=i

where r is the environmental response at time (t) and r ∈ [0,1]

Learning schemes:
There are three learning schemas. These schemas are classified

depending on the ratio of the constant a over the constant b as following:

• Linear reward-penalty (LR-P): if we set a = b.

• Linear reward-inaction (LR-I): if we set b = 0 so the reward only is
taken into account.

• Linear reward-∈-penalty (LR-∈P): when a is small compared to b.

2.4 Alternative approaches for achieving autonomic
resource management

Many types of research have been conducted to embrace autonomic
computing in cloud computing environments to cope with the complexity
of today’s cloud computing environments. As a result, autonomic
computing has been introduced from different approaches—for example;
some focus on developing a holistic approach to the resource management
system. In comparison, others focus on only one resource management
process, such as self-provisioning. At the same time, others introduced
autonomic computing to enhance some existing policies such as load

16

balancing, energy optimization, and quality of service combing with some
of the mechanisms like machine learning to add more power to autonomic
computing. Moreover, develop autonomic systems that can adapt based
on the surrounding environments or even predict the next workload and
provide it in advance. Through the following paragraphs, some of these
efforts are presented.

Gill et al., 2019 introduced a holistic approach to developing a complete
autonomic resource management system, including provisioning, schedul-
ing, and monitoring processes using the self-CHOP properties of the self-
management system. In addition, the developed approach used QoS policy
to enhance the provided service and provide self-optimization for en-
ergy consumption by clustering the homogeneity workloads and executing
them to minimize the energy consumption. However, they did not consider
the heterogeneity workloads in the cloud computing. While others focused
on one component of the resources management system, such as Dewan-
gan et al., 2019 presented an autonomic resource management technique
using self-CHOP for providing an efficient resource scheduling algorithm.

Some research works aimed to add more to the autonomic computing
model by adopting AI/ML algorithms while building autonomic systems.
Mateen et al., 2020 focused on autonomic resource provisioning at the
application level on a cloud. They proposed a self-adaptive approach
using fuzzy logic to develop a dynamic solution for irregular requests
during run-time. While Moreno-Vozmediano et al., 2019 used the machine
learning mechanism to predict the distributed server’s processing load and
estimated the fair number of resources to optimize resource utilization
without violating QoS constraints.

The adoption of autonomic computing shows promising results in
reducing the complexity of managing resources in the cloud computing
environment, further providing the proper amount of resources without
violating the QoS constraints. These results encourages the researchers to
adopt autonomic computing in other cloud computing paradigms such as
fog computing (Tadakamalla and Menasce, 2021).

17

18

Chapter 3

Approach

This chapter aims to provide the reader with the entire plan of how the
research will be conducted and implemented. However, before further
going into details, it is better to recall the problem statement as defined in
the introductory chapter: " investigating introducing Learning Automata (LA)
with cloud operations to achieve autonomous resource allocation web service."

Understanding the nature of the research project sheds light on the path
taken and necessary steps to achieve the goal of the research. This project
falls into the category of exploratory research.

Exploratory research is a method used for investigating a problem that
is not obviously specified (Bhat, 2019). Exploratory research is used in
types of topics that need to be investigated more in-depth or not have not
been attempted before. It is not always a way which develops a complete
solution for the proposed problem or derives conclusive results. However,
the primary goal is to bring up new research paths to be explored or
establish a strong foundation for exploring ideas (Bhat, 2019). In that sense,
it requires the researcher to be flexible and not be restricted to one idea or
path because everything depends on the findings and outcomes that come
along the way (Bhat, 2019). These findings could be positive or negative,
and based on that, new research can use these findings to build upon or
select other approaches.

3.1 Desired outcomes

As illustrated above, the nature of this research is exploratory. It opens the
door to introduce exploring questions and follows the path of: "what will
happen if I do this instead of that?". Thus, trying different ways and asking
more questions which helps in exploring more areas.

19

The path chosen will explore the usage of learning automata to
develop an autonomous web service that can be self-adaptive based on
the surrounded environment. It is a comprehensive objective; therefore,
we will focus our attention first on the resource allocation side. We can
conduct more investigation later, including other aspects such as the price
of the service or the customer’s geographical location. Also, we do not
know yet whether the findings will pave the way to add more aspects to
be investigated or not. Further, the concept of autonomous service is not a
new one, as shown in the background chapter. However, the point of view
that we are introduced our research from is relatively new. Based on that,
the nature of our research project, i.e., exploratory research, no fixed and
conclusive results are to be expected from this project.

It is unnecessary to develop a fully functional agent but provides the
technology and the idea to be explored. We are unsure whether it will work
or fail; however, we provided a guide for researchers who will continue
the same research path. The value here is the journey itself towards
the findings, not to develop a model or tool. Our project looks like an
excavation mission. Some missions end with successful results and finding
the treasure, while others end with nothing. However, the real treasure
here is inside the journey, and the gained knowledge also not wasting
future others’ resources and time by following the same path.

3.2 Objectives

In our research, we are looking to introduce new perspectives to be
investigated. Our motivation towards that is the new technologies that
have been emerged into cloud computing technologies such as edge-
computing, mobile-clouds, and IoT. These technologies create a need for
new innovative ideas to be handled. As a result, new concepts and
technologies have been developed, such as mobile agents, autonomous
services, and decentralized control systems.

In that sense, we are looking at resource allocation not from the resource
management system perspective but from the service perspective. Looking
from the service perspective gives opportunity to think of the "service
as an agent". Furthermore, integrating autonomic computing technology
and agent technology with cloud-based service provides an "autonomous
agent." The idea of the autonomous agent elaborates the concept of
"decentralized control," which now suits edge-computing, IoT, and mobile
cloud technologies.

20

Developing an autonomous agent using learning automata algorithm
represents the core of our research study. We will divide our study into a set
of phases. Each phase will explore a new aspect or introduce a solution for
the problem that appeared in the previous phase. The connection between
the different phases likes a chain of assembly of connected pieces. Each
piece connects to the next one.

Each phase is considered a complete piece of work. It has its own goals
to be addressed at the beginning of the phase, then the design part where
the plan of the experiment and the other details regarding the environment
and other elements will be provided.

As mentioned above, the study is divided into phases; therefore, the
design, implementation, and analysis will follow the same way of pro-
cessing through the different phases of the study.For the implementation
part will explain the experiment steps and the code in detail, and the res-
ults part will provide the results of the experiment. Finally, the observation
part where the analysis of results will be provided and new questions will
be addressed for the next phase.

3.3 Design

As mentioned before, our research journey will be divided into a set of
phases. We will explore a new thing at each phase or try to solve a problem
that could be addressed from the previous phase. Based on that, the first
phase will be the foundation of the research journey because exploring the
learning automata will be done during this phase, and based on the results,
the rest of the phases will be developed.

During the first phase, the design model of the autonomous service will
be provided using the learning automata algorithm. Moreover, for a deep
understanding of the behavior of learning automata, the three learning
schemas of learning automata will be used. Furthermore, a comparison
between the different learning schemas will be made to understand the
differences between the three learning schemas through the results. Finally,
based on this, one of these learning schemas will be selected for subsequent
phases.

In the second phase, the developed model of the autonomous service
will be exposed to a real scenario by using actual traffic workloads and
simulating an actual web server response to investigate the behavior of the
autonomous service. However, before implementing the actual scenario,
we may enhance the designed service model or develop a new feature or

21

a solution to tackle the finding obstacles based on the findings from phase
one.

In addition to exploring results in what can be considered normal
operations, the service model must be tested for robustness under more
unusual conditions by looking at edge cases. Thus, the final phase will
investigate the robustness via asking: How will the autonomous service
react if the web server was under anonymous attack? Or will it be able to
learn and converge under this attack, or won’t it adapt and protect itself by
stopping the web service? Things like this do happen, so testing for such
cases is essential to make an algorithm that could perform under real-life
conditions.

3.4 Implementation and Simulation

The implementation phase represents converting the design to an initial
prototype. First, the conceptual design of the autonomous service structure
will be used to build up the prototype. Moreover, the three learning
schemas of the learning automata will be implemented. Those schemas
are considered as the fuel for the autonomous service used for the learning
process of the autonomous agent. Further, the environment where the
autonomous service should live will be simulated. This simulation aims
to provide close insights to study the behavior of the automaton under
specific circumstances.

As mentioned in the previous section, that each phase leads to the
next one. Therefore, the final prototype will be done through a process
composed of different stages. Each stage introduces a different level of
autonomic sophistication.

Each stage moves towards enhancing the learning process of the
autonomous service and improving its self-adapting towards the surroun-
ded environment. The feasibility of developing an autonomous service for
resource allocation will be proved through the different scenarios towards
building this prototype, which opens the space for creating a line of logic.
This logic line shows whether this autonomous service is just for show or
provides a solid understanding that allows access to much more profound
and much more advanced scenarios that enable us to move this research
forward in the future. That means even the different cases might change
perspectives from a technical to a more architectural discussion, if neces-
sary.

The way of implementing the autonomous service in a real-life scenario

22

is not clear yet. Therefore, we will dedicate the first phase to implementing
the initial prototype. Then, based on the findings, we will add more
features or enhance the initial model of the autonomous service to be
suitable to our environmental conditions. We have to point out that the
simulated environment will be known from before. For example, the
traffic capacity of used VMs in terms of responding in time will be known.
Therefore, it will be used as an indicator of service behavior. That will give
way to understanding the automaton behavior and accurately evaluating
the performance of the developed autonomous service.

In the first phase, the P-model will be adopted due to its simplicity of
implementation. Then, after gaining a comprehensive understanding of
the behavior of learning automata, the S-model will be implemented to
add more complexity to our research and dive more in-depth.

Our crowning achievement from this phase would be a completely
functioning prototype and a demonstration of its capabilities. Finally, it is
essential to mention that the design accuracy of our autonomous service
will be investigated at the implementation stage through the different
phases.

3.5 Analysis plan

Analysis phase aims to verify the completeness of the designed model and
the implemented prototype. This analysis will be done at each phase after
the implementation stage. Based on the analysis of the results, the direction
of our compass and the focus of the next phase will be determined.

Therefore, we can expect the following questions to be answered in this
phase:

1. What are the findings after each phase?

2. How does the implemented prototype work?

3. Did the autonomous service achieve the desired results?

23

24

Chapter 4

Phase I: Autonomous web
service algorithm based on A
Single Learning Automaton

In the following chapter, we introduce the autonomous agents from a
service perspective. The chapter starts with an explanation of a web service
as an agent and its learning unit. It will then followed by a description of
the simulation process and the assumptions. The implementation section
presents explanations of different operations and functions that have been
performed. Finally, The results and observations are provided. The focus
will be on creating and observing a single learning automaton. Hopefully,
this first step will provide us with a component that can be used in more
advanced learning systems later.

4.1 Introduction

Nowadays, web services are developing very fast, and on the other side,
the cloud computing environment has a dynamic and stochastic nature
besides the dynamic changes in the customer’s requirements. Besides
the limited resources on cloud computing, all of these factors form a real
challenge for service providers to provide a reliable web service.

Since humans can no longer react and adjust to changing conditions
in large and complex services. There is a need for a service to scale itself
to accommodate the changing nature of requests, have high resiliency to
failures for interrupted service, and reply within acceptable time bounds.

The load balancer is one of the innovative solutions that has been
developed. While the cloud has a set of heterogeneous servers, the

25

load balancer aims to distribute the workloads across those servers
(i.e., resources) to optimize the provided service performance regarding
replying within an acceptable time. Therefore, the load balancer helps
provide optimal performance from the resources management point of
view.

However, this thesis introduces the web service optimization topic
from a different perspective; it is the service perspective. Our goal is
to let an intelligent web service acts as an autonomous agent. This
agent should be able to understand and interact with the surrounded
environment. Introducing such a perspective represents an essential step in
a world moving towards emerging concepts such as fog computing, edge
computing, mobile cloud computing, and IoT. In such a world, the services
should have the ability to make many decisions on their own. Here is a set
of examples for such choices:

1. Decide to grow or shrink (i.e., change its size by increasing local
resources) based on the number of current requests.

2. Select where to run among available service providers based on the
price.

3. Determine the optimal place for the execution based on the cus-
tomer’s geographical location.

Based on the preceding, we organized the first phase to introduce an agent-
based architecture with learning possibilities based-on learning automaton
algorithm. Our main contribution in this chapter is:

1. Introduce learning automaton-based autonomus web service service
using P-model method.

2. Observe the autonomous service behavior based on surrounding
environment.

3. Use the findings to design the next phase.

4.2 Web service-based learning automaton

Figure 4.1 depicts the interaction of web service-based learning automaton
agent with the surrounding environment. The environment here is the
cloud where the service is running. There is a learning unit attached to
the web service. The learning unit here represents our learning automaton

26

Figure 4.1: The web service agent architecture has its learning unit. The agent
interacts with the environment and receives feedback. Based on feedback, it updates
its learning unit.

algorithm using the P-model method. This method is a simple Reward-
Penalty binary feedback. Based on that, the environment response will be
"0" if the taken action was unfavorable and "1" if favorable.

The agent learns from trial-and-error experience. Therefore, the agents’
actions are set up on the learning probabilities. Initially, there is no
information for any optimal action. Thus, we define equal probabilities
for all actions, and the first selection will be random. (r) represents the
number of the actions and the initial configuration of the automaton is:
The Reward and penalty of the learning automaton will be determined

Actions F1 F2 F3 F4 F5
Initial probabilities 1/r 1/r 1/r 1/r 1/r

Table 4.1: All of the actions have initial equal probabilities and the selection
between these actions will be random.

according to the environmental response. The automaton selects one of its
actions in each iteration based on its probability vector. In the next iteration
and before the selection, the automaton updates its actions’ probabilities.
If the automaton has chosen the right action, it will be rewarded by (see
equation 2.1). Otherwise, it will be penalized by (see equation 2.2).

This experiment uses a single learning automaton to adapt the VM size
based on the intensity of incoming requests. The aim is to optimize the
service performance in terms of scaling up/down the service size based on

27

the incoming traffic.

4.3 Simulating the behavior of a single automaton

This section is divided into two parts. The first part presents the drawn
scenario for a running web service with a learning unit. This scenario
has been set to study an autonomous web service behavior using a single
learning automaton. The second part is simulating the drawn scenario.
We did not implement the drawn scenario; however, we simulate the
experiment to study the behavior of our autonomous Web service.

4.3.1 Scenario

The proposed scenario for exploring the behavior of web service agent
based-learning automata begins from assiging a one virtual machine (VM)
as a web service. This web service is running on the ALTO cloud and
managed by the Oslomet administration. There is a web server running
on it, and it serves a single static web page. The web service is supposed
to receive a set of HTTP requests, and it responds (Figure 4.2). From this
point, the learning unit of the autonomous agent, i.e., the web service, will
interact. It represents the brain of the autonomous agent. The brain is
setting and monitoring the situation, and it should decide to scale up or
down or keep on same size based on the incoming requests. ALTO uses the

Figure 4.2: Virtual machine runs web server with custom plug-in that implements
a learning automaton. There are a number of “VM sizes” the service can scale up
or down.

28

term "flavors" to manage the sizing for the instance’s compute, memory,
and storage capacity. Therefore, the VM size will be represented by five
flavors. We refer to these flavors from F1, which is m1.small, to F5, which is
m2.xlarge, as illustrated in the table 4.2. Furthermore, the autonomous web
service should choose from these flavors based on the incoming traffic.The
autonomous agent supposes to learn from the surrounded environment via
trial and error.

Flavor Name VCPUs VM Disk (GB) RAM (GB)
F1 m1.small 1 20 2
F2 m1.medium 2 20 4
F3 m1.large 4 20 8
F4 m1.xlarge 8 20 16
F5 m2.xlarge 8 20 32

Table 4.2: presents the available flavors that the web service will spin up based-on.

4.3.2 Simulation

The simulation part is depicting how we did simulate the above scenario.
We set a set of assumptions to simulation an autonomous web service based
on a single learning automaton. In the simulation, we have three main
elements: the web service, the traffic, and the single automaton.

1. Web service.

We will not run a real web server; instead, there is a python script
running on ALTO. This script represents the web server that receives
a set of HTTP requests and responds to these requests by exposing
the suitable flavor based on the traffic-heavy. Furthermore, the script
contains a set of functions. One of these functions is an evaluation
function which represents the environmental response. It aims to
evaluate the automaton actions based on the current action (flavor)
comparing to the current traffic (discuss in the next section). It is
worth mentioning that the web service expresses the surrounded
environment where the single automaton should observe and interact
with.

2. Single automaton.

It is responsible for the learning process. It learns from monitoring the
surrounded environment and behaves based on it. The automaton
chooses to scale the service up/down or keep on the current flavor.
There is no absolute scale; however, we represented these flavors

29

by using the names of these flavors as a set of actions (F1,,
F5). Furthermore, we assumed each flavor has a specific capacity
to serve by doing a simple calculation where each flavor can handle
ten times its type number. For example, the flavor "F1" would only
handle a maximum rate of 10, while "F5" would continuously handle
50. This simplification is necessary, at this stage, to control the
environmental response sufficiently to observe the behavior of the
automaton properly.

3. Traffic.

in other words, the HTTP requests. There is no real traffic; instead, it
is simulated by having a function that generates a random value after
a normal distribution with an average of 25 (will be described in the
next section).

To Summarize:

1. Environment: consists of a set of actions, outputs, and rewards/pen-
alties.

2. List of actions: consists of VM flavors that the web service can scale
up/down to.

3. Input to Environment: consists of the selected flavor as a response to
the incoming HTTP requests to optimize the service performance.

4. output from the environment: consists of the responses of serving the
request by selecting the suitable flavor.

5. Reward/Penalty probabilities: the probability for getting favor-
able/unfavorable responses from each flavor. These probabilities will
vary with respect to the capacity of the selected flavor comparing to
the traffic intensity.

4.4 Implementation

This section presents the python scripts and points out the main functions
that have been used to run the experiment. We used the following python
scripts:

1. Automaton

The Automaton script is for structuring the automaton, i.e, the learn-
ing unit section 4.2. It contains a set of functions responsible of receiv-
ing the environmental response, updates the learning probabilities,

30

and sending the action. We are going to present the main functions of
this script (Detailed script is provided at section 9.1).

(a) Constants a and b:

The constants a and b are the reward and penalty parameters,
respectively. In the Automaton script, these constants are
provided as inputs for the class constructor, which enables us
to change these constants’ values and see the effects on the
automaton’s behavior.

1 def __init__(self , a, b, name , verbose=1, history
=10):

2 # The reward parameter
3 self.a = a
4 # The penalized parameter
5 self.b = b
6

(b) Update Policy function:

This function takes the environmental response as input and
updates the learning probabilities based on that response. We
have three states of response as following:

• "None" is no response from the environment. This happens
only in the first interaction where the automaton is selecting
its first action. Here all available actions are assigned to
equal probabilities values.

• "0" means unfavorable environmental feedback/response
on the previously selected action. Based on that, that action
will be punished.

• "1" means favorable environmental feedback/response on
the previously selected action. Based on that, that action
will be rewarded.

1 def update_policy(self , environmental_response):
2 # first iteration all actions have equal

possibilities
3 if environmental_response == "None":
4 number_of_actions = len(self.

available_actions)
5 initial_prob = 1 / number_of_actions
6 for policy_key in self.prob_policy.keys():
7 self.prob_policy[policy_key] =

initial_prob
8 # Reward selected_action & penalized rest actions
9 elif environmental_response == 1:

31

10 for key ,value in self.prob_policy.items():
11 if key == self.selected_action:
12 self.prob_policy[key] = value +

self.a * (1 - value)
13 else:
14 self.prob_policy[key] = (1 - self.

a) * value
15 # Penalize selected_action & reward rest actions
16 else:
17 for key ,value in self.prob_policy.items():
18 if key == self.selected_action:
19 self.prob_policy[key]= value -(self

.b * value)
20 else:
21 self.prob_policy[key]= value+self.

b*abs (1/(len(self.available_actions) -1)-value)
22

(c) Select action function:

This function selects the action to be taken in the next step.
First, the function checks if all actions have equal probabilities.
Then, it randomly selects one of these actions. Otherwise, the
action will be selected randomly based on its probability using
"NumPy.random.choice()" function.

1 def select_action(self):
2 #check if all actions have same probabilities
3 prob_equal = len(list(set(list(self.

prob_policy.values ())))) == 1
4 if prob_equal:
5 random_action_index = random.randint(1,

len(self.available_actions))
6 self.selected_action = self.

available_actions[random_action_index -1]
7 else:
8 self.selected_action = np.random.choice(

list(self.prob_policy.keys()), p=list(self.
prob_policy.values ()), size =1)[0]

9 return self.selected_action
10

2. Plot Results

The Plot_results_phase1 scrip is plotting the results of the automaton
behavior when applying different schemas. The schemas have
variations on the values of the constants of (a) and (b). To plot
the automaton behavior, we created a buffer memory to store the

32

probabilities’ values of the actions during the learning process.
Therefore, the generated plots will help to study and understand
the automaton behavior when changing the values of the constants
(Detailed script is provided at section 9.2).

3. Run Simulation

The run_experiment_phase1 script is for the learning process of the
automaton. It contains a set of functions and one loop. The loop
represents the number of iterations that the automaton has to go
through and thus representing the length of the simulation. We
are introducing two main functions (Detailed script is provided at
section 9.3):

(a) Generate rate function:

This function is simulating the number of incoming HTTP re-
quests to the service to be handled. We used the NumPy.random.normal(loc=25)
function to generate a random value after a normal distribution
with an average of 25.

1 def generate_rate ():
2 return np.random.normal(loc =25)
3

(b) Evaluate action function: This function generates the environ-
mental response. It has two inputs: the taken action and the
current rate. Then it evaluates the taken action by comparing it
with the current rate (generated by the previous function). The
output is binary, "1" is an favorable response, and "0" is a unfa-
vorable response.

1 def evaluate_action(action , current_rate):
2 #calculate "capacity" of chosen flavor
3 capacity = int(re.search(r’\d+’, action).group())

* 10
4 if capacity > current_rate:
5 return 1
6 else:
7 return 0
8

4.5 Results

In this section, we are going to present the results of executing the script
run_experiment_phase1 (section 9.3). To explore, understand, and gain

33

a good insight into the automaton’s behavior and its interaction with the
environment, we decided to run different simulations. Each type intends
to explore a particular side of the automaton behavior.

4.5.1 Explore the automaton behavior by changing the proportion
of (a) to (b) using the learning automaton’s schemas

We are using the three schemas of learning automaton. In the three
schemas, the proportion of (a) to (b) is changing. Therefore, it enables
us to explore the automaton behavior when changing a to b. We will fix
a value of a =0.1 and set 250 as the number of updates for the learning
process to compare the automaton behavior between different schemas.As
mentioned earlier, a and b represent the parameters of reward and penalty,
respectively.

• The Linear Reward In Action Schema (LR-I): This algorithm can be
obtained by setting b = 0 where no updating under a penalty input.

Figure 4.3: depicts the behavior of linear reward in action schema (LR-I) with a =
0.1 and b = 0.

Figure 4.3 shows that the flavor F5 has the highest probability for
converging after 190 updates to one. On the other side, it does not
seem that the flavor F1 has a chance to be selected. While the flavors
F2 and F4, after 50 updates, their chances to be selected reached 0.

34

Flavors F3 and F5 are the continuous competitors in the automaton
learning process. It is worth observing; both actions have a similar
pattern of oscillations but in opposite directions. The figure shows
that after 30 updates steps, both actions have increasing probabilities
to be selected. However, after that point, this a dramatic change in
selection probabilities as the action F5 takes the up curve while F3
takes the down curve. Both actions meet again after 80 updates steps,
and after this point, both actions take a fixed direction to continue. F5
keeps high on reaching the coverage to 1 after 190 update steps. On
the other side, F3 keeps low on reaching the coverage to 0 after 190
update steps.
After repeating the simulation several times, we got the following
results:

– F5 and F3 have got 40% of chances to converge to 1, while F4 has
got 20% of chances for convergence.

– Having F2 getting out early and almost not selecting flavor F1
was continued in the same vein.

– The competition of converging to one was between F3, F4,
and F5 flavors during all the trails. The roles of being the
winner, competitor, and leaving were happening between the
flavors interchangeably. F5 has got a 40% chance of being the
winner and 50% of the competitor. At the same time, F4 got
a 20% chance of being the winner and 50% of the competitor.
Finally, F3 got a 40% chance of being the winner and 20% of the
competitor.

– The learning process for the automaton is ranging between 80 to
220 update steps.

– It worth observing, in this schema and with a=0.1, there are two
competitors, and one action leaves early. One action did not get
a chance to be selected F1, while the other action F2 has a very
low chance to be selected.

• The Linear Reward Penalty Schema (LR-P): This algorithm can be
obtained where 0 < a < 1 and b = a.

In the Reward-Penalty schema, there will be a punishment to receive
unfavorable responses from the environment, and the value of b
will be the same as the value of the reward (a). This schema is the
opposite of the previous one (Reward-In-Action), where the reward

35

takes action and no punishment for negative actions. We are going to
explore the behavior of the automaton based on using LR-P schema.

Figure 4.4: depicts the behavior of linear reward penalty schema (LR-P) with a =
0.1 and b =0.1.

Figure 4.5 shows the results of simulating with a=0.1 and b =0.1
with 250 update steps. It is worth observing that flavor F1 is getting
chances to be selected during the learning process of the automaton,
which is the opposite behavior of the same flavor in (LR-P) schema.
Action F1 starts with a probability of 0.2, and it slows down until
reaching 0 after 45 learning update steps. While the oscillations
in the learning curve of flavor F2 have become much smaller and
slows down significantly at the same number of update steps as F1.
Flavors F3, F4, and F5 show learning curves with sharp oscillations
until step 50, where F4 has a dramatic change towards down and
F3 and F5 continuing up. Between steps 70 and 120, there was a
dramatic change in the learning curves of F3 and F5. In comparison,
we observe F4 from 70 to 150 update steps the oscillations become
small, and on the other hand, the learning process slows down
significantly. At the 180 update step, the action F5 was able to
converge to 1, and the F3 and F4 reached 0. F5 was declared as the
optimal action after 170 updating steps. After introducing b = 0.1 as
a punishment parameter, the three flavors, F3, F4, and F5, continue in

36

the automaton’s learning process. This phenomenon is the opposite
of the actions’ behaviors in the(LR-P) schema, as only two actions were
competing to converge to 1.

After repeating the simulation several times, we got the following
results:

– 80% of trials could cover one, while 20% could not get coverage
through 250 update steps. While in the (LR-I) schema, all the
trials coverage to 1.

– F4 has got 40% of chances to converge to 1, F3 and F5 have got
20% of chances for convergence, and 20% could not converge to
one.

– After introducing a punishment parameter with a value equal
to the reward parameter, it becomes possible to have flavor F1
through the learning process of the automaton. Also, 50% of
trials have three actions F3, F4, F5 are competing to converge to
one instead of two actions like the (LR-I) schema.

– The learning process of the automaton is between 100 to 160
update steps. While in the (LR-I) schema, it was between 80 to
220 update steps.

• The Linear Reward-E -Penalty(LR-EP): This algorithm can be ob-
tained by setting the parameter b to a small positive number (b « a <
1). Figure 4.5 shows the results after running the simulation with val-
ues a =0.05 and b=0.1. The oscillation of the actions is much higher in
this schema comparing with other schemas. The probabilities of fla-
vors F1 and F2 are much higher comparing to schema LR-P, and the
period of their learning processes are more extended than in the LR-P

schema. We observe on the one hand that the oscillations for flavors
F1 and F2 become much smaller, and on the other hand, the learning
process slows down significantly after 140 update steps. At step 160,
the flavor F4 has a flat learning curve going down to reach value 0,
while F4 at the same step has fluctuated learning curve. For flavor
F3, the situation was different as it reached at 200 update step to one,
then it goes down to a probability of 0.8, and it did not reach at one
again through the provided number of the update steps 250. Finally,
flavor F5 shows similar behavior with flavor F4; however, it displays
a high probability of being selected than flavor f4, and its learning
curve continues after 250 update steps.

37

Figure 4.5: depicts the behavior of Linear Reward-E -Penalty schema (LR-EP) with
a = 0.05 and b =0.1.

After repeating the simulation several times and increasing the number
of update steps to be 1000, we got the following results:

• 50% of trials could cover one, while 50% could not get coverage
through 1000 update steps.

• F5 and F3 have equal chances of 20% converging to 1, F4 has got
10% of chances for convergence, and 0% chances for F1 and F2 for
converging to one.

• After introducing a punishment parameter with a value higher than
the reward parameter, 50% of trials have three actions F3, F4, F5 are
competing to converge to one same like (LR-P) schema.

• The oscillation in the behavior of the different flavors was very high
comparing with the other schemas. It worth observing, in some trials,
there was a high competition between three actions. Furthermore, we
found that one of the actions was advanced at some learning steps
than the others. However, the other actions could compete with the
advanced action and become the optimal actions during the learning
process of the automaton, and so on (figure 4.6). This way of learning
and the high oscillation of the automaton’s behavior was very high in
this schema compared with the other schemas. The rest of the actions

38

were competing for 200 learning steps before reaching 0 probability.
The learning process for these flavors was long comparing with other
schemas, which gives the automaton a chance for better learning and
good performance.

• The learning process of the automaton of 50% of the trials was higher
than 500 update steps, while the rest did not provide coverage to 1
through 1000 update steps.

Figure 4.6: depicts the behavior of Linear Reward-E -Penalty schema (LR-EP) with
a = 0.05 and b =0.1.

4.5.2 Explore the effects of changing the values of (a) and (b) on
the automaton’s behavior

From one side, we observed the behavior of automaton using the different
learning methods. Furthermore, we found that the (LR-I) and (LR-P)
schemes converge to pure policies, while the (LR-EP) schema no longer
converges to a pure policy but a mixed policy.

From the other side, a vital aspect of achieving an autonomous service
is choosing an appropriate learning method to reinforce action probabilities
for a learning automaton. The learning method directly impacts the
adaptation ability of the automaton to deal with changes in the service´s
environmental conditions, for example, the traffic and network conditions,
and determines its overall efficacy and optimality.

39

Therefore, we will be interested in plotting the behavior of the
automaton using (LR-EP) schema.

In the sequel of the discussion, we will, in particular, be interested
in the convergence to mixed policies due to the dynamic nature of the
environment and the dynamic behavior of the automaton using the (LR-EP)
schema. Therefore, we simulated the behavior of the automaton using
LR-EP schema with different settings of parameters of a and b (Table 4.3).

a b

0.075 0.15

0.125 0.25

0.25 0.5

0.375 0.75

0.5 1

Table 4.3: Values of a & b

After running the simulation several times using the values provided
in table 4.3, we got the following results:

1. Automaton’s behavior has high oscillations using the first and second
values of a and b, illustrated in table 4.3. However, the oscillations
continued to decrease using the last three values of a’s and b’s until it
gained a flat curve with a dramatic change towards up or down.

2. Since increasing values of a and b parameters, the automaton reached
the converge of 1. These results are opposite to the previous one with
a = 0.05 and b =0.1 (figure 4.6). That concludes, the high value of
parameter a, the more chance to converge to 1 the automaton.

3. Automaton’s learning process period becomes shorter while increas-
ing the values of a and b. Whereas the learning period was between
180 to 400 steps with a= 0.075 and b= 0.15 to be between 10 to 30 steps
with a= 0.5 and b= 1.

4. All available automaton’s actions have got chances to be selected
during the learning process while running the simulation using the
first and second values of a and b in the table 4.3. In comparison, this
chance has been decreased by increasing the parameters of reward
and punishment. By doing the simulation using the last values in
table 4.3, we got only two actions during the automaton’s learning

40

process. The explanation is the high value of the reward, then the
action gains a high probability once it is rewarded. Consequently, it
increases its chance to be selected next step comparing with the other
actions. Furthermore, the same happens with punishment. Once the
action is punished, it could vanish from the learning process at all.

4.6 Observation

For developing an autonomous web service using the learning automata
algorithm, it would be essential to explore and study the behavior of the
learning automaton.

Phase one has provided the first steps of exploring and studying the
behavior of a single learning automaton. In this phase, we simulated
a web service with a single automaton to scale up/down based on
incoming traffic. The simulation provided us with results regarding the
different automaton behaviors based on the learning schema and learning
parameters. The results provided insights about different sides of the
learning automata properties: the nature of the automaton learning curve,
the period of the learning process, the availability of the actions during the
learning process, and the probability of converging to 1.

We observed that LR-I and LR-P schemas had high chances for conver-
ging to 1 when a=b=0.1 and a= 0.1 and b=0, respectively. In comparison,
this chance decreased with the LR-EP schema when a =0.05 and b =0.1. On
another side, the oscillation of the automaton´s learning curve was very
high in the LR-EP schema comparing to LR-P and LR-I, which was very low
and had a flat curve. Furthermore, the learning process of the automaton
was very long with the LR-EP scheme comparing to the LR-P schema, while
the LR-I had the lowest period. In the LR-EP schema, all available actions
had chances to be selected during the automaton learning process, while
these chances decreased with the LR-P scheme. In the LR-I scheme, some
of the available actions did not have a chance at all. Figure 4.7 shows a
comparison between the results of the three schemas.

During this phase, we observed how the constant (a) affected the
automaton behavior, particularly with running the second simulation
using LR-EP schema and changing the values of a and b. The second phase
of the simulation shows how the increment of the reward value using the
LR-EP scheme increases the chances of convergence to 1, reducing the period
of the learning process and reducing the chances of less rewarded actions
to be continued during the automaton learning process.

41

Figure 4.7: shows comparison between the behavior of Learning Automata using
different learning schema

It worth observing the similarities between the automaton behavior
results using LR-I and LR-EP schemes after increasing the reward value of
the latter. These similarities did not exist when we used LR-EP with values
a =0.05 and b=0.1 for the first time. However, these similarities arose when
we did the second simulation phase since increasing the reward value (a).
It shows changes in the learning process period, convergence, oscillation,
and the availability of the actions.

Based on the previous observations, we can conclude that the reward
value (a) can be considered as the learning parameter of the automaton
that affects its performance. Furthermore, the actions F5 and F3 got high
chances for convergence comparing to F4.

In phase two, we will introduce aSpace-machine of learning automata.
In phase one, we were exploring a single automaton behavior based on
the current rate. While in phase two, we will consider the previous
rate, current rate, and the time. We will add more dimensions to our
environment by having a set of time intervals. At each interval, there will
explore the automaton’s behavior based on the current and previous rate.
Furthermore, we will use a network of single automaton to see the effects
of the performance of the autonomous web service.

42

Chapter 5

Phase II: Autonomous web
service using multiple learning
automata

In the following chapter, we introduce a new concept, an aSpace machine.
The chapter starts with a description of an aSpace machine and the
description of the working environment. Then the implementation section
that present explanations of different operations and functions that have
been performed. Finally, the results and observations are provided. The
focus will be on creating the aSpace machine and exploring if the machine
can recognize the traffic pattern and manage it.

5.1 Introduction

In phase I, we have run different simulations to explore and study the
automaton’s behavior. We were able to investigate the features of the
automaton’s behavior: the period of the learning process, the oscillation
of the behavior, and the convergence. Furthermore, the results revealed
the relationship between the automaton’s behavior and the used learning
schema, and the values of the learning parameters.

The environment in phase I considered only one dimension, the current
rate to explore the automaton’s behavior using one single automaton.
However, this scenario cannot handle a real-life scenario. In real life, any
web server receives a set of incoming requests during the day. The number
of incoming requests can vary during the day as well as during the week.
For example, a web server for a web store can receive high traffic during
the weekends compared to the traffic during the regular days. Also, the

43

amount of traffic can vary during the day; for example, the afternoon
period can have more traffic than the morning and evening periods.

Based on the above, in this phase, we will introduce a new concept to be
investigated. This concept introduces an aSpace machine, and the learning
automaton represents the fundamental ’learning unit’ of this machine.
Proposing the aSpace machine aims to address the challenges of learning
automaton at phase I, develop a machine that can configure the web
server’s traffic pattern, and present a suitable learning automaton based
on this traffic pattern.

In the following sections, we will introduce the aSpace machine that
consists of multi-automata, and these multi-automata are built upon the
previous learning automaton from phase I.

5.2 The aSpace machine

In environments with a highly complex nature, it is wise to decompose
the environment into a set of dimensions and find out a relationship
between those dimensions. Those dimensions can be metadata or inputs
of the environment’s characteristics used as a classifier. In this way,
it is possible to understand and have a level of control over these
complex environments. Based on that, the idea of aSpace machine arose.
Consequently, building a machine uses the environment’s dimensions as its
pillars and the learning automata as its learning unit. The aSpace machine
consists of inputs, patterns, and outputs. Furthermore, the aSpace machine
introduces for the global optima, not the local optima.

5.2.1 Environment

For a reliable web service, two factors should be considered: service avail-
ability and response time. In this context, traffic intensity is the essential
factor for avoiding latency for a reliable web server. However, traffic intens-
ity, i.e., the number of incoming HTTP requests, is unpredictable; therefore,
it will be challenging to handle. Moreover, we discussed the convergence
time and how it might affect the response time. To handle this point, we as-
sumed it might be a relationship between the previous rate and the current
rate at a specific point. Based on that assumption, we can draw an estim-
ated pattern for the traffic intensity of a web server. We are introducing two
dimensions, "time interval and previous rate," to the environment as well
as the previous one, " current rate."

44

1. Time interval represents the amount of time between two points.
The aim of introducing time intervals is to divide our space into
a set of intervals and deal with each separately. We assume the
traffic intensity does not show a dramatic change suddenly. So if
we can have a set of intervals and each interval has an average of
traffic intensity, i.e., pattern intensity. Furthermore, each pattern
has a border of two values: the previous rate, which represents the
beginning of the interval, while the current rate represents the ending
of the interval. The interval period can be represented by a set of
hours per day, or it can be regular days and the weekends, or even by
season.

2. The Previous rate and Current rate represent the second and third
dimensions, respectively. The aim of introducing both rates is a belief
that there is a relationship between them. Some types of data traffic
have a fairly non-stochastic nature, like the data traffic we will use
here in phase II. We want to test our hypothesis of whether there is a
relationship between the previous and current rate and how we can
use it to categorize the traffic.

5.2.2 The aSpace3D machine

After introducing the three dimensions into the environment, we have to
think about employing these dimensions to reduce convergence time and
deal with the variation of traffic intensity.

From this point, the idea of introducing multiple automata in a single
machine. A 3D array represents this suggested machine. The three
dimensions of the array are the time interval, the previous rate, and
the current rate. Furthermore, the learning automaton from phase 1 is
representing "the learning unit" of this machine, "aSpace3D machine". Figure
5.1 illustrates the conceptual model of aSpace3D machine.

The proposed mechanism of the aSpace3D machine starts by receiving
a request. Then it generates a cell if it does not exist—the position of the cell
is based on the values of the three dimensions: time interval, previous rate,
and current rate. The generated cell launches a new learning automaton.
The convergence here is filling the time intervals.

5.2.3 Scenario

To simulate the behavior of the aSpace3D machine, we used the file
"tf2_50k.dat". The "tf2_50k" file represents the number of active users for

45

Figure 5.1: The conceptual model of aSpace3D machine.

an online game "team fortress2", measured from "steam.com". The data was
collected by Kyrre Begnum and has been used in other projects such as Jon-
Erik Tyvand Tyvand, 2011. The data was recorded every five minutes for 173
days. The minimum number of players is less than 1000 players, and the
maximum number is up to 45K players. Based on the file characteristics,
the values of the three dimensions are:

• Time interval: every five minutes.

• Previous rate: (n) value.

• Current rate: (n+1) value.

The machine convergence should happen once it has a cell for every
possible traffic pattern, but it is not necessary for all automaton to be
created. The expected number of cells for one day for every five-minute
time interval is 24h * (6o min. / 5 min.) = 288. As mentioned above, the
minimum number of players during 173 days is less than 1000 players, and
the maximum number is up to 45K players. We divided the traffic intensity
into a set of categories based on the capacity of the flavors. Therefore, we
have five categories for both current and previous rates, as illustrated at
table 5.1.

5.3 Implementation

This section presents the python scripts and points out the main functions
that have been used to run the experiment. We used the tree python scripts

46

Flavor Traffic intensity
F1 handle up to 10k request
F2 up to 20k request
F3 up to 30k request
F4 up to 40k request
F5 more than 40k request

Table 5.1: The available flavors with the number of HTTP requests it can handle.

to build the aSpace machine, run the machine, and plot the results.

1. aSpace3D:

The aSpace3D script is for building the aSpace machine using a
set of inputs, selecting the actions, and updating the policy for
each automaton. The automaton’s location is determined by the
time_interval, previous_rate, and current_rate. We are presenting the
main function(s), and the detailed script is provided at section 9.4.

(a) d1length, d2length, d3length: represent the length of the three
dimensions of our environment time_interval, previous_rate,
and current_rate respectively. This function initializes the
machine based on these three inputs. These inputs could be any
number based on the environment.

1 def __init__(self , d1length , d2length , d3length ,
name="", a=0.1, b=0.05, verbose=1, history =10):

2 #specify the length of the three dimensions
3 self.d1length = d1length
4 self.d2length = d2length
5 self.d3length = d3length
6 #loop to build up the machine using the length of

3 dimensions
7 self.aspace = [[[0 for k in range(1, d3length

+ 2)] for j in range(1, d2length + 2)] for i in
8 range(1, d1length + 2)]

(b) Select_action & update_policy: These functions use the same
code in phase one to select the action and update the policy
based on the environmental response. However, the only change
is specifying the location of the automaton based on the value of
the three dimensions. Also, if the automaton does not exist, it
will be created.

1 def select_action(self , p1, p2, p3):
2 # find the right automata (and create it if it doesnt

exist)

47

3 if self.aspace[p1][p2][p3] == 0:
4 # automata does not exist. We need to create it

and update the policy once in order to initialize
it

5 # the name will mimic it’s position in the space ,
so 1,2,4 will be named 1-2-4

6 self.aspace[p1][p2][p3] = Automaton(self.a,
self.b, str(p1) + "-" + str(p2) + "-" + str(p3))

7 self.aspace[p1][p2][p3]. update_policy("None")
8 self.aspace[p1][p2][p3]. setVerbose (0)
9 self.automata_count += 1

10 return self.aspace[p1][p2][p3]. select_action ()
11

12 def update_policy(self , p1, p2, p3 ,
environment_response):

13 self.aspace[p1][p2][p3]. update_policy(
environment_response)

14 self.usage_count += 1
15 self.history.append(environment_response)

(c) Print_statistics: this function is for calculating and printing the
count of automata usage and accuracy for the whole machine.
We present only how the mean usage and the median accuracy
are calculated (see for full code at section 9.4).

1 def print_automata_statistics(self):
2 self.out("Automata count: " + str(self.

automata_count))
3 self.automata_saturation = self.automata_count / (

self.d1length * self.d2length * self.d3length)
4 self.out("saturation of possible number of

automata: " + str(self.automata_saturation))
5 automata_usage_count = []
6 automata_accuracy_count = []
7 for p1 in range(1, self.d1length + 1):
8 for p2 in range(1, self.d2length + 1):
9 for p3 in range(1, self.d3length + 1):

10 if self.aspace[p1][p2][p3] != 0:
automata_usage_count.append(self.aspace[p1][p2

][p3]. usage_count)
11 automata_accuracy_count.append(self.

aspace[p1][p2][p3]. calculate_accuracy ())
12 self.out("** Count statistics **")
13 self.out("Median usage: " + str(np.median(

automata_usage_count)))
14 self.out("Mean usage: " + str(np.mean(

automata_usage_count)))
15 self.out("** Accuracy statistics **")
16 self.out("15% percentile accuracy: " + str(np.

48

percentile(automata_accuracy_count , 15)))
17 self.out("Median accuracy: " + str(np.median(

automata_accuracy_count)))

2. aSpace-3D-simulation:

The aSpace3D-simulation script runs the aSpace machine by provid-
ing the machine with the traffic data as input, then the machine uses
the data to apply the pattern and print out the results. The input data
comes from "tf2_50k.dat" file (for detailed code see section 9.5).

1 # read data from file
2 file1 = open(’tf2_50k.dat’, ’r’)
3 Lines = file1.readlines ()
4

5 count = 0
6 last_rate = 0
7 current_rate = 0
8 # Strips the newline character
9 for line in Lines:

10 count += 1
11 if count > 288:
12 count = 1
13 if last_rate == 0:
14 last_rate = translate_rate(line.strip ())
15 continue
16

17 current_rate = translate_rate(line.strip ())
18

19 action = machine.select_action(count , current_rate ,
last_rate)

20

21 outcome = evaluate_action(action , current_rate)
22 machine.update_policy(count , current_rate , last_rate ,

outcome)
23 #print outputs
24 machine.print_state ()
25 machine.print_automata_statistics ()

3. Plot_traffic_data:

This script aims to plot the players’ numbers from the "tf2_50k.dat"
file. Plotting the players’ numbers helps to understand the nature
of the used data. The script contains a set of functions to load data
and prepare it, then plotting. We present three functions for the rest
functions see section 9.6.

(a) load_data_set: this function reads the data, i.e., the players’

49

numbers, from the "tf2_50k.dat" file and save it into the data_set
variable to be used for plotting.

1 def load_data_set(file):
2 data_set = np.loadtxt(file)
3 return data_set

(b) get_statistics(data): The function uses the data_set variable to
calculate the mean, median, and standard deviation for players’
numbers at each time interval over the 173 days. It returns three
arrays of mean, median, and standard deviation.

1 def get_statistics(data):
2 mean = []
3 std = []
4 median =[]
5 data = np.array(data)
6 for col in data.T:
7 mean.append(np.mean(col))
8 std.append(np.std(col))
9 median.append(np.median(col))

10 return mean , std , median

(c) plot_data(data_set, mean, std, median): the function takes four
inputs. The data_set input is used to plot the players’ numbers
for each day individually. While the rest of inputs to plot the
mean, standard deviation, and median for each time interval.

1 def plot_data(data_set , mean , std , median):
2 x = np.arange(1, 289, 1)
3 colors = []
4 for i in range (288):
5 if i == 0:
6 colors.append(’b’)
7 elif (i % 2) == 0:
8 colors.append(’b’)
9 else:

10 colors.append(’r’)
11 for i in range(len(data_set)):
12 y = data_set[i]
13 plt.plot(x, y,’--’,linewidth =0.7)
14 plt.errorbar(x, mean , yerr=std ,fmt="k--",

errorevery =72,label="mean")
15

16 plt.plot(median ,’r-’, linewidth =3, markersize =3,
label="median")

17 plt.title(’Traffic Intensity ’)
18 plt.xlabel(’24H’)
19 plt.ylabel(’Players ’)

50

20 plt.legend(loc="upper right")
21 plt.show()

5.4 Results

Figure 5.2: The traffic intensity of an online game website for 288-time intervals
per day over 173 days with the mean and median values of the players of each time
interval

Figure 5.2 illustrates the non-stochastic nature of the supported data
traffic. It seems that this data set has a symmetric pattern behind this chaos.
For example, the intervals from 75 to 120 have a seemingly symmetric
distribution, while the intervals before 75 and after 120 have a seemingly
asymmetric distributions. Based on these observations and the data nature,
we assumed that: the aSpace3D machine might use its total capacity (288
intervals * 173 days)= 49 824 or fewer automata to handle the variation of
the traffic intensity. On another side, these variations between the different
intervals might affect the accuracy and the usage amount of the automaton.
We think that at some intervals, it might end up with the same automaton
usage. To investigate these assumptions, we are interested in exploring the
status of the aSpace3D machine after simulating. There are two interesting
aspects to be studying: (1) the usage count for each automaton and (2) the
accuracy of the aSpace3D machine.

After running the aSpace3D machine simulation, we got the following
results:

51

Automata count: 1266
Usage Statistics Accuracy Statistics

mean median max 85% usage 1thquart mean median 3rdquart
39 20 134 121 0.2 0.67 0.95 1

Table 5.2: Statistical results of aSpace3D machine using P-model

Table 5.2 presents the statistical results of the automaton usage and the
accuracy of the aSpace3D machine using P-model.

1. Usage results:

The statistical results show the total amount of used automata
which was only 1266 automata out of 49824. Hence, it is less than
10% of the total capacity of the aSpace3D machine. This result is
inconsistent with our previous assumption of one automaton for
each interval over 173 days. Consequently, it reflects the fact of
using one automaton more than one time, which is evident from the
mean usage value of 40. On the other side, the aSpace3D machine
recorded maximum usage for an automaton 134 times and 40 times
as an average. Therefore, it proves the second assumption of using
one automaton more than one time—this due to having some time
intervals with a homogeneous traffic intensity. Furthermore, the
other time intervals with heterogeneous intensity have an average
lying between 10K to 20K, reflecting the lowness of the data spread.
Therefore, we can see that 85% of automaton got used 121 times or
less, while 15% of automaton got used 121 times or more.

2. Accuracy results:

The environmental response represents the accuracy indicator of the
aSpcae3D machine. By looking at the first and third quartiles, 25%
and 75%, respectively, as outliers of usage accuracy, the aSpace3D
machine developed its learning process to move from 0.2 at 25%
usage accuracy to 0.95 as median accuracy. It then reaches complete
accuracy with the total positive environmental responses at the third
quartile. Due to the heterogeneity nature of supported data, it took
time for the aSpace3D machine to reach a reasonable accuracy level
with proves our claim.

The above results intrigued us to ask what is happening inside the
aSpace3D machine, in other words, the experience of each automaton
during the learning process of the aSpace3D machine. Therefore, for
the rest of the results section, we will answer the following questions,

52

which will give us more insights into the automata status during the
machine learning process.

(a) What is the likelihood of an automaton getting a "typical"
amount of usage?

Automaton Usage amount

1-2-2 131

1-3-2 16

240-2-2 127

240-3-2 30

Table 5.3: Automaton usage at different time intervals with different traffic
intensity.

Suppose one automaton would be selected every day to handle
the traffic at a specific time interval. In that case, the total usage
count is 173 times regardless of the traffic intensity. However,
this is not the situation because we have variation in the traffic
intensity during the different time intervals or even at one
interval over the 173 days. For example, table 5.3 illustrates
two selected automata abruptly from different time intervals,
midnight and 8:00 pm, respectively. The results show that the
first interval with the highest automaton usage 131 times out
of 173 times, where the current and previous rates were 20K
players. However, it was only two days at midnight where there
was traffic intensity between 20K and 30K players. On the other
side, comparing two automata at two different time intervals, 1
and 240, serving the same traffic capacity (2,2), we can observe
the total usage amount. It is almost the same amount of usage
131 and 127 times. Therefore, there is no absolute answer for the
provided question; however, the traffic intensity mostly between
10k to 20K. Consequently, there are not many variations between
other automata usage amount values at (2,2) in the different time
intervals. However, usage amounts vary between different time
intervals at the same position, as illustrated in table 5.3.

(b) How much automaton usage is sufficient in terms of conver-
gence?

It is not easy to answer this question because more than one
factor affects convergence. Table 5.4 shows the learning process

53

Automaton Usage count Action Action Probability
1-3-2 16 F5 0.5

240-3-2 30 F4 0.48

Table 5.4: The relationship between the amount of usage and the chances
of convergence.

of both automata (1-3-2) and (240-3-2). Even though the number
of updates for the first automaton is less than the second one, it
got F5 with a probability of selection 0.5, which is slightly higher
than the second automaton with the probability of selection 0.48.
Consequently, it is not the number of updates only. It is also the
homogeneity of the data at a time interval over the 173 days.
Moreover, whether the automaton was lucky in its selections
reduces the number of penalties and increases the chances of a
quick convergence.

(c) What is the likelihood of the optimal action that each auto-
maton will end up with?

It was clear from phase I that the nature of the automaton is
greedy. It was always looking to increase the chances of being
rewarded. Therefore, it ended up selecting one of these flavors
F3, F4, or F5. Phase two showed similar results, where the
selected action at each automaton was F3, F4, or F5, regardless of
the intensity of the traffic. It seems strange because the aSpace3D
machine was built on instantiating an automaton based on
the previous and current traffic. Nevertheless, the supported
data has a pattern of traffic intensity between 10K to 20K with
some variations above/below these boundaries. Therefore, the
possible interpretation is the selected action(s) during the first
trials of the automaton. Automaton might select F5, for example,
and be rewarded, which increases the probability of F5 being
selected again. Nevertheless, some automata selected either
F1 or F2 as optimal actions. For example, automaton (3-1-2)
selected F1 with accuracy 1 after a total of 25 days of updates.

(d) What will be the results after introducing noisy and stochastic
data to the aSpace3D machine?

The aSpace3D machine was provided with random data gener-
ated using the function NumPy.random.uniform. The generated
data set had the exact length of the previous data set to mimic
the previous simulation but with noisy and stochastic data. At

54

this step, we have to recall our previous claim, "Data variations
between the different intervals might affect the accuracy and the
usage amount of the automaton." The results show an increment
of automata count =1440 comparing with the previous simula-
tion automata count = 1266. That proves our claim of affect-
ing the amount of used automaton. Therefore, the aSpace3D
machine needs more automata to handle the variations in time
intervals. Therefore, the higher the variation data is the more
amount of automaton used. The accuracy results show that at
the first quartal, the accuracy was 0.6, and at 40%, the accuracy
was one. Consequently, the machine showed significant accur-
acy with heterogeneity data comparing with the homogeneity
data.

5.5 Observations

The main goal of phase two was to introduce a set of automata to serve
the incoming traffic at different time intervals. These automata have
been provided via the aSpace machine. After running the simulation and
inspecting the results, there were a set of observations:

• Before running the simulation, there was a belief that the aSpace3D
machine would assign one automaton for every time interval over
the 173 days. Therefore, the total expected number of automata
was 49824 automata(288 interval/day * 173 days); however, we
got 1266 automata after running the simulation. Furthermore,
after introducing a data set with high noise, we got a higher
number of used automata comparing with the symmetric data set.
Consequently, we can conclude that "the lower number of automata, the
higher the homogeneity data."

• After investigating the aSpace automata status during the learning
process, we found most of the automata got a high accuracy, although
they did not converge. It comes as a fact of having homogeneous
data, making it easy to settle the automaton quickly. It also reflects
the ability of the aSpace3D machine to generate different automata to
manage the different traffic intensity, which serves our primary goal
of phase II.

• After plotting the raw data, players’ average was between 10K to 20K
during the 24 hours over 173 days (figure 5.2). Besides, based on our

55

assumptions (table 5.1), we expected the automaton, which handles
the traffic intensity between 10K to 20K, to select F2 or even F1.
However, most automata selected F3, F4, or F5. Only a few automata
selected F1 and F2 as optimal action. For example, automaton (286-
2-2) with the highest automaton usage 134 out of 137 selected F2 as
optimal action. The automaton’s greedy nature opens the door to
re-think whether the automaton selects the optimal action not only in
terms of quality of service but also the amount of exhausted resources
to achieve that quality.

Therefore, phase three aims to introduce the idea of wastefulness without
violating the quality of service constraints.

56

Chapter 6

Phase III: Introducing an
elastic autonomous
self-provisioning web-service

In the following chapter, we present the problem addressed in the previous
chapter: over-provisioning. We are aiming to develop a policy to overcome
the over-provisioning issue and provide an elastic autonomous webs
service. After that, the implementation section presents explanations of
different operations and functions that have been performed. Finally, we
provide the results and observations section.

6.1 Introduction

In phase II, the idea of introducing the aSapce machine, which uses
the environment dimensions as its "pillars" and the learning automaton
as its "learning unit," showed promising results in terms of reducing
the convergence time and providing accurate results. Therefore, after
determining the working environment dimensions, we developed the
aSpace machine using those dimensions and called it the "aSpace3D
machine," referring to the environment’s dimensions numbers. The
aSapce3D machine aimed to recognize the traffic pattern and provide
multiple-automata to manage the variations in time intervals.

The provided results in phase II were evidence of the aSpace3D
machine’s ability to enhance the performance by recognizing the traffic
pattern of the webserver over 173 days and generate multiple automata
to handle the different traffic intensities at different time intervals. Thus,
the aim of phase II has been achieved successfully. However, after

57

investigating the automatas’ learning history, we found that most automata
selected F3, F4, or F5 as optimal action even though the traffic intensity
was either under 10K or between 10K to 20K. That means there is over-
provisioning which leads to wasting and exhausting the limited available
resources. This observation directed our attention to investigate the
automaton’s greedy nature and how it affects its decision during the
learning process.

Therefore, phase III aims to investigate the amount of exhausted
resources by the automaton to serve the incoming traffic. Through phase
III, we are aiming to develop a policy to avoid under-or over-provisioning.
The policy will consider the number of exhausted resources compared to
the suitable amount to serve the traffic intensity on one side. The other side
deals with not violating the quality of the service constraints.

6.2 Proposed method for efficient resource provision-
ing

Successful adoption of cloud computing systems requires rational usage
for the limited available resources. Therefore, elasticity is one of the vital
features of the cloud computing system. Elasticity refers to growing and
shrinking the virtual resources dynamically according to users’ demands
Bharanidharan and Jayalakshmi, 2021.

In phase II, the automaton behavior did not show the elasticity feature;
however, the automaton could grow with the high workloads but not
return, i.e., shrink, with low workloads. In other words, the automaton has
a scalable feature, not an elastic feature. It is worth mentioning that there is
a difference between scalability and elasticity. Scalability refers to growing
the virtual resources with a high workload but not shrinking during the
low workloads. That results in exhausting the available resources even
though it grantees not violating the quality of services constraints.

Al-Dhuraibi et al., 2017 proposed the following equation, which
illustrating the elasticity concept (see figure 6.1):

Figure 6.1: Elasticity concept Al-Dhuraibi et al., 2017

Based on this equation, complicated algorithms are developed to

58

optimize resources by predicting the workload and providing appropriate
resources in advance, such as machine learning algorithms. However, by
using learning automata, we will explore the ability of learning automata
to optimize its behavior regarding over-provisioning and investigate
whether the automaton will be able to develop its policy about resource
provisioning optimally. Based on that, we will present the proposed
method for developing an elastic autonomous service and explore the
automaton behavior and obtained policy.

Punishing model using S-model:

Our proposed method depends on developing a punishment model
using S-model. Here there two essential pillars that the proposed model
stands on. The first is using the S-model instead of the P-model. The reason
lies behind the ways of representing the environmental response in both
models. As illustrated in the two previous phases, in the P-model, two
values represented whether the input to the environment was favorable or
unfavorable. However, there is one question needs to be introduced: If we
have more than one action that is correct, but one is better than the other, how can
we represent that and vise versa for the wrong action?.

P-model can not answer this question because it provides two absolute
values for favorable and unfavorable actions. Therefore, there is a need for
another model to answer our question. While the S-model’s environmental
response is an input set of an interval [0,1], it could be the answer of
the question by providing continuous input responses within the interval
[0,1]. Accordingly, We want to evaluate the different selected actions
in each update based on the optimal action that should be taken based
on the current workload and the actual taken action. Consequently the
environmental response will be a relative value based on the taken action and the
optimized action.

The second pillar is that the environmental response will follow
the punishment system. So our message for choosing to work with a
punishment system, not a rewarding system, is: "there is one right choice;
however, there could be more than one wrong choice, and it is better to distinguish".
Hence, the proposed model will punish based on two things. The first is:
the selected actions with lower flavor will be punished harder than the
higher one. The second is: the punishment value will be based on the
distance between the optimized flavor and the selected one.

The working mechanism of the proposed punishing-model:

In the proposed model, we distinguish between three situations based
on the selected flavor comparing with the optimal one. The available

59

Figure 6.2: The mechanism of the proposed rewarded model where F4 is optimal
choice for the case

actions vector is divided into three areas: the higher flavor area, the lower
flavor area, and the optimum area. Assume action(4) is the optimum action
based on the current workload. Based on that, figure 6.2 displays three
areas where the left area represents the lower flavors area, while the right
area represents the higher flavors area, and the middle is the optimum area.
Although the left area is slightly greener, there is a considerable increase on
both sides. Further,the punishment system does not go from the bottom to
the top dramatically, but it goes from a certain point. The aim lies behind
this is to gain some convergence by stabilizing the convergence to an area
to be a center range of choices. By doing that, the automaton will not
gravitate too much towards either side and stabilize towards the optimal
area; consequently, it can be converge rapidly. This previous punishment
system that allows this gravitation and distinguishes between both sides.
In other words, we do not want symmetric values between both areas. The
following paragraph presents an example to illustrate the mechanism of
the proposed model (see figure 6.2).

Assuming the optimal action based on the current workload is action
(4). To distinguish between the lower flavors area and the higher flavors
area, damage factor (f) will be used. Moreover, the punishment model will be
less forgiving with the lower flavors while more forgiving with high ones.
Based on that, the damage factor f1 denotes the higher flavors area while f2
denotes the lower flavors area. Based on that, f1 > f2 and f ∈[0,1]. Moreover,
to force the automaton to gravitate towards the areas near the optimum
area, a distance factor (d) is used. The (d) factor represents the distance
between the optimum action and the selected action and the degree of

60

Figure 6.3: Proposed punishment model

the punishment will be based on this distance. Based on the above, the
environmental response is represented by the equation:

r(t) =
f
d

(6.1)

where r(t) denotes to the environmental response at time (t).

If a low value has been chosen as a start value for f, then the lower
starter has been chosen, and the difference between the two areas of flavors
will say something about the relative seriousness and damage of each side.

Finally, the probabilities of the available actions will be changed, and
the new probabilities will be calculated using the equation 2.5 of P-model.

For more illustration of how the environment response will be calcu-
lated; we will use the same above example.First we have to determine the
damage factor values, the lower flavor area f1= 0.2 and for the higher area
f2= 0.1 (as mentioned before, the lower area will be punished harder than
higher area). Then assume the first action was action 5 (F5) then the envir-
onment response should be = 0.1/(5-4) = 0.1 /1 = 0.1. If the second action
was action 7 then the environment response should be = 0.1/(7-4) = 0.03.
So the automaton get less rewarded when it selects actions far from the op-
timal one. Same will happen with other side (higher flavor side). Finally if
the action was right then the response will be 1.

In the following section, the implementation of the model is presented.

61

6.3 Implementation

This section presents the python scripts and points out the main functions
that have been used to run the experiment. We used the same python
scripts to build the aSpace machine, run the machine, and plot the results.

1. update_policy function: we did minor changes on the automaton
script, specifically the update_policy function to apply P-model
formula inside of S-model formulas:

1 def update_policy(self , environmental_response):
2 # if it is first iteration then the selection will

be random and all actions will have equal
possibilities

3 if environmental_response is "None":
4 number_of_actions = len(self.available_actions

)
5 initial_prob = 1 / number_of_actions
6 for policy_key in self.prob_policy.keys():
7 self.prob_policy[policy_key] =

initial_prob
8 return
9 for key , value in self.prob_policy.items ():

10 if key == self.selected_action:
11 # apply p_i formula on the chosen action
12 self.prob_policy[key] = value + a *

environmental_response * (1 - value) - b * (1 -
environmental_response)*value

13 #self.prob_policy[key] = value + self.a *
(1 - value)

14 else:
15 # apply p_j formula on all other actions
16 self.prob_policy[key] = value - a *

environmental_response * value + b * (1 -
environmental_response) * (1/(len(self.available_a$

17 # self.prob_policy[key] = (1 - self.a) *
value

18 self.prob_policy = self.trim_prob_policy(self.
prob_policy)

19 self.history.append(environmental_response)
20 self.usage_count += 1

2. environment_response.py: we developed a new python script
represents the environmental response to implement the developed
punishment algorithm. We specified the values f_lower if taken
action was lower that the optimal one. f_higher if taken action was
higher that the optimal one. Also, we specified the values of both 0.1

62

and 0.2. The function "evaluate_action" to evaluate the taken action
and generate the environmental response. The distance is calculated
by "optimal action (current_rate) - taken action (capacity)" and if the
taken action was the optimal one then the value will be 1.

1 import re
2 class flavorEnvironment:
3 def __init__(self ,name ,f_lower = 0.1, f_higher = 0.2):
4 self.name = name
5 self.f_higher = f_higher
6 self.f_lower = f_lower
7 def evaluate_action(self ,action ,current_rate):
8 # lets figure out what flavor was chosen and

calculate the "capacity" of this flavor
9 capacity = int(re.search(r’\d+’, action).group())

10

11 if capacity > current_rate:
12 # Too high , we are wasting resources. apply

f_higher
13 response = self.f_higher / (capacity -

current_rate)
14 elif capacity < current_rate:
15 # Too low , we are damaging the service. apply

f_lower
16 response = self.f_lower / (current_rate -

capacity)
17 else:
18 response = 1
19

20 return response

6.4 Results

After applying the P-model and the punishment algorithm, we could ask,
"What level of degree did it affect on the statistical results of the aSapce
machine?".

Automata count: 1266
Usage Statistics Accuracy Statistics

mean median max 85% usage 1thquart mean median 3rdquart
39 20 134 121 0.103 0.49 0.45 1

Table 6.1: Statistical results of aSpace3D machine using S-model

Table 6.1 illustrates the statistical results, and there is no change
in usage results comparing to the results of phase II (see table 5.2).

63

Applying different models does not affect the mechanism of instantiating
the automatons on the aSapce machine because the instantiation depends
on the existence of the automaton in a time interval that can handle a
specific current based on a previous rate. However, when looking at
the accuracy results, the of value at the 1st percentile and the median,
we find the accuracy did not reach even 0.5, while it reached one in the
3rd percentile. That can be explained by how severe the aSapce machine
becomes with selecting the automaton to the different flavors. Therefore, it
needs time from the aSpace machine to reach complete accuracy with the
total positive environmental responses. Also, another reason that could
affect the accuracy results is the initial choice of the automatons. For
example, assume an automaton has its position in aSapce machine <1-2-1>,
which means an automaton manages the first interval, with current load
2, and with previous load 1 and the first selection was F5. The first choice
was far from the optimal action (F2), and therefore, it will take some time
to converge towards the optimal action and it depends on how much the
automaton will be lucky in its first selection until gets the optimal one.

However, we argue that the developed punishment system that we
proposed helps to gravitate the automaton towards the optimal action or
at least towards the area with the preferable choices. If we look back to
the previous example: we argue that most of the automaton choices will be
around F1 (represent the lower flavors area) and F3 (represent the higher
flavors area) based on the developed punishment system (see figure 4.2).
Based on that, the automaton can gravitate towards the preferable range
of actions, enabling the automaton to enhance the learning experience by
reaching optimal action or at least the sub-optimal actions.

The above results intrigued us to investigate our claim whether
the punishment algorithm achieved the planned goals of gravitation or
not. Also, we need to investigate whether using S-model contributes to
reducing wastefulness or not. Therefore, the rest of the results section
will be dedicated to answering these questions, which will give us more
insights into the automata status during the learning process. It is
worth to state that the selected automatons are representative for similar
automatons from the previous phase. Moreover, we reviewed the entire
data set of the aSpace machine and not just the selected automatons before
we reflect our observations.

1. What is the likelihood of the automaton gravitating towards the
optimal action and towards the area with the preferable choices?

To answer this question, we selected two automatons with two

64

different usage numbers. Table 6.2 illustrates the automatons position
in aSapce machine and the number of usage.

Automaton Usage amount

288-2-2 131

1-1-2 25

Table 6.2: Automaton usage at different time intervals with different traffic
intensity using S-model.

We traced the history of those automatons through their learning
process to figure out how many times each flavor was chosen and
how far were the most chosen flavors from the optimal action. Figure

Figure 6.4: The number of actions occurrence of each automaton

6.4 illustrates the results of how many times each action has been
selected. By taking a look at the first automaton <288-2-2>, we can
see the optimal action should be F2 based on the interval’s current
rate (the middle number). F2 was selected 108 times out of 25 times
(82%), while both of the nearest actions, F1 and F3, were selected five
times and eight times, respectively. The farthest action is F5 and was
selected two times. At the same time, the second automaton <1-1-2>
the optimal action should be F1 based on the interval’s current rate
(the middle number). F1 was selected 11 times out of 25 times (44%),
while both of the nearest actions, F2 and F3, were chosen four times
and five times, respectively. The farthest action is F5 and was selected
two times.

65

There is a set of observations we can state here. First, in both auto-
matons, the optimal action was the most selected by the automaton.
Second, in the automaton <288,2,2> the nearest neighbors are F1 and
F3, and both showed a high number of selections comparing to F4,
but still, F5 shows a high number of selections comparing to F3. An-
other thing is that the number of selections for lower flavor capacity
F2 is less than higher flavor capacity F4 (gravitate more towards high
flavor area, see figure 6.3). The same happened with the automaton
<1,1,2>, the optimal action F1 was the most action was selected. Also,
the nearest neighbor is F2 with four selection times, which is greater
than F4, and F5 is the farthest neighbor. However, F3 was greater
than F2,even though F2 is the most near to F1; but the difference is
not that much (only one time).

Based on that, the automaton in both cases, regardless of the number
of usages, selected the optimal action. Moreover, they reduced the
wastefulness by selecting the nearest actions without being under- or
over-provisioning.

2. Is the number of occurrences of the optimal action enough to
evaluating the service behavior towards optimization?

The number of occurrences may be a good indicator to see how many
times the optimal action was selected. However, it is not enough to
decide whether the service was able to optimize its behavior through
its learning process or not. Therefore, we have to investigate two
things. First, the first and the last actions to see the evolution of
the learning process of the automaton. Second, see after 173 days
the probability distribution of the automaton. We will use the same
previous automatons.

Probability distribution
Automaton <288-2-2> Automaton <1-1-2>

F1 F2 F3 F4 F5 F1 F2 F3 F4 F
3.27E-06 0.99 4.08E-06 3.28E-06 3.01E-06 0.67 0.10 0.08 0.08 0.08

Table 6.3: The probability distribution of Automatons after 173 days

Table 6.3 illustrates the probability distribution of the automatons
after 173 days. The first automaton <288-2-2> shows that the
probability of F2 is 0.99, the optimal action in this case; it almost
reaches one. While the automaton <1-1-2> shows that the probability
of F1 is 0.67, the optimal action in this case, and it is the highest

66

probability compared with others.

On the other side, when we take a close look at the automaton <288-
2-2> behavior through its learning process (see table 6.4), we find the
development in its behavior through the last ten updates where all
selections were F2 comparing with the first ten updates where the
selections were still random.

First occurrence f3 f4 f5 f5 f5 f4 f1 f2 f2 f5

Last occurrence f2 f2 f2 f2 f2 f2 f2 f2 f2 f2

Table 6.4:
The Automaton <288-2-2 > through learning process using the S-model

Also, the automaton <1-1-2> shows development in the behavior of
the last five updates where all selections were F1 comparing with the
first five updates where the selections were still random (see table
6.5).

Based on that, we can see the improvement of the automaton through
its learning process. However, for the automaton <1-1-2>, there
were F3 and F2 in the automaton´s selections. On the opposite, the
automaton <288-2-2> all the last selections were the optimal actions.
That leads to thinking about the convergence of each automaton. The
next question will investigate that.

First occurrence f4 f1 f2 f5 f3

Last occurrence f3 f2 f1 f1 f1

Table 6.5: The behavior of automaton <1-1-2 >through the its learning
process

3. How much automaton usage is sufficient in terms of convergence?

Automaton Usage count Action Action Probability
288-2-2 131 F2 0.99

1-1-2 25 F1 0.67
1-3-2 16 F3 0.38

Table 6.6: The usage and the chances of choosing the optimal action using
S-model

To answer this question, we selected the same two automatons. Then,

67

we selected one more with lower usage to see the convergence value
compared to the number of usages. As illustrated in the table 6.6 the
first automaton with 131 usages has F2 with a probability of selection
0.99, while the middle automaton with 25 usages has F1 with a
probability of selection 0.67, and the automaton with 16 usages has
F3 with a probability of selection 0.38. Based on that, the number of
usages or updates of the automaton increases the learning experience,
consequently increases the chances of convergence. The good part
here is, the optimal action in all presented automatons has a higher
probability of selection. That represents the achievement of using
the S-model with the punishment system to reduce wastefulness and
enhance the automatons learning experience.

4. Does introducing the S-model and the punishment algorithm affect
the aSapce machine in terms of accuracy comparing to P-model?

We plotted the environmental response for each time interval (from
1 to 288) through the 173 days to investigate the accuracy of all time
intervals.

Figure 6.5: Accuracy of aSpace machine using P-model

Figure 6.5 shows the accuracy of the first, second, and third quartiles
of each time interval over 173 days for aSapec machine using the
P-model. The aSapces machine shows high accuracy from the first
quartile.

While figure 6.5 shows the accuracy of the first, second, and third
quartiles of each time interval over 173 days for aSapec machine using
the S-model. The aSapces machine does not reach accuracy until the
third quartile.

That means the aSpace machine using S-model needs more time

68

Figure 6.6: Accuracy of aSpace machine using S-model

for convergence than aSpace machine using S-model. That can be
interpreted as the values of environmental response where the P-
model uses only 0 or 1 while the S-model uses values from the
interval [0,1]. Moreover, when the aSpace machine used the P-
model, there is only one absolute answer, optimal or non-optimal,
regardless of the taken action wasting resources or not. However,
the situation is different in the S-model, where the selection of the
actions is evaluated whether it is optimal or not and how far it is
from the optimal action. Based on that, the aSapce machine using S-
model may take some time to reach a high accuracy compared with
the aSapce machine using the P-model.

However, the convergence of the aSpace machine is not the only
essential factor to be considered; we have to consider the selected
actions by each automaton for service optimization. When we
introduced the service optimization, we considered the optimization
from the customer perspective (cost, response time) and the provider
perspective (not wasting the limited available resources). Based on
that, we have to investigate the automatons’ status in both models.

5. Comparing the automaton´s convergence status in the P-model and
the S- models.

We will use the same automatons examples that we used in the
previous phase (see table 5.4) in this phase (see table 6.7).

When comparing the automaton <1-3-2> in both models, we will

69

Automaton Usage count Action Action Probability
1-3-2 16 F3 0.38

240-3-2 30 F3 0.28

Table 6.7: The amount of usage and the chances of convergence using S-
model.

find the probability was 0.5 after 16 updates in P-model, which is
higher than the 0.38 in the S-model. However, the action was F5 in
the P-model while it was F3 in the S-model. At the same time, the
automaton <240-3-2> in both models will find the convergence was
0.48 after 16 updates in P-model, which is higher than the 0.28 in the
S-model. However, the action was F4 in the P-model while it was F4
in the S-model.

Based on the above results, the automaton shows higher values of
convergence in the P-model comparing to the S-model. However, the
selected action in the automaton <1-3-2> was the optimal action F3,
while in the P-model, it was F5. Also, in the automaton <240-3-2>,
the selected action in the automaton <1-3-2> was the optimal action
F3, while in the P-model, it was F4.

Based on the above results, the automatons showed higher values in
term of convergence when using P-model. That means using S-model
needs more time to converge.

6. Comparison between the learning evolution of the automaton in
both models.

To investigate the effectiveness of introducing the S-model on the
learning process of the automaton, we will select the most usage
automaton <288-2-2> and compare the first and the ten updates with
the same automaton using the P-model.

First occurrence f2 f2 f1 f1 f1 f1 f2 f4 f1 f1

Last occurrence f2 f2 f2 f2 f2 f2 f2 f2 f2 f2

Table 6.8: The behavior of automaton <288-2-2 >through the its learning
process using P-model.

The table 6.8 represents the learning experience of the automaton
using the P-model; we used the results that we got from the previous
phase II. While table 6.4 reflects the learning experience of the

70

automaton using the S-model.

Using the P-model (table 6.8) shows the first ten updates where the
most updates were F1 and F2, then one time F4; while the last ten
updates were F1. The automaton was lucky in its first selections
between F1 and F2; therefore, it can reach the optimal action during
the last ten updates F1. Maybe that was not the case with others
automatons, especially if the first selections were higher than the
optimal one, as we saw earlier. On the other side, the table 6.4 shows
the first ten updates where the most updates were shifting between
the actions from F1 to F5. However, in the last ten updates, the
automaton reached convergence to the optimal action.

6.5 Observations

The main goal of phase three was optimizing the service performance in
terms of wastefulness. After running the simulation and inspecting the
results, there were a set of observations:

1. Introducing S-model and the punishment algorithm enabled to
reduce the wastefulness without affecting the response time. We
observed that on the automaton´s actions during its learning process,
the automaton has the highest probabilities centered in the favorable
area that we specified in our model.

2. After investigating the aSpace machine and the status of its auto-
matons, we figured out that the aSapce machine and the automatons
using S-model need more time to convergence comparing with the
aSapce machine using P-model.

3. Although the automatons need more time for convergence, the
optimal action probabilities of the automatons were high, reflecting
the enhancement of the automaton learning experience.

4. The ability of convergence depends not only on the time it needs
to converge but also on how the automaton was lucky in its first
selections. That helps the automaton to increase the optimal action
probabilities.

71

72

Chapter 7

Discussion

7.1 Answering the problem statements

The first problem statement states introducing AI into service management
by designing a learning automata-based model (P1). The design of the
model was developed through a set of phases. In phase I, the initial
model was the structure of the autonomous service using the learning
automata algorithm as the learning unit of the service. Then, based
on the observations from the first phase, the model was expanded to
consider different elements, the dimensions of the environment, and how
to overcome the convergence issue. Based on that, the design of the aSapce
machine model was introduced in phase II. Finally, in phase III, some
enhancements were introduced in the model; based on the observations
from the previous phase. The enhanced model aimed to reduce the waste
of resources by using S-model and the punishment algorithm.

Based on the above the service management was achieved by designing
the learning automata-model for optimizing resource management.

If we returned to the problem statement (P1), we would rephrase
"learning automata-based model" to "Reinforcement learning automata
algorithm." When we developed the statement, it was unclear what we will
end with; therefore, we chose the "model"; maybe at that time, it meant
something but now no. Therefore, using "algorithm" describes what we
ended up with much better.

The second problem statement represents the implementation of the
designed model. The implementation process was done by simulating the
behavior of the autonomous service through the different phases. Through
the simulation, we explored the behavior of the automaton through its
learning process and then exploring how the service behavior was changed

73

after implementing and simulating the aSapce machine. The results were
surprising regarding the ability of the service to adapt its behavior based
on the surrounding environment.

The aSapces represents the actual implementation of the designed
model. It uses the learning automaton as its learning unit and the
environment dimensions as its pillars. The aSpace machine has proved
its ability to optimize the service performance autonomously by providing
the optimal action based on environment circumstances.

By returning to the formulation of P2, we would remove one of
"developing and implementing" cause both give the same meaning.
Further, we may use "experiment" or "simulation" for the prototype
and "evaluation" for that prototype because any prototype needs to be
evaluated. Based on that, a better formulation would be "Implementing,
Simulating, and Evaluating the prototype based on the designed model."

Even though we got promising results from the aSpace machine, it still
needs more investigation under different circumstances. Also, it can be
expanded more by adding new features to strengthen its functionality.

7.2 Planning the exploration process

In planning this project, we had to think about the project’s nature and the
most suitable approach. In the approach chapter, we described the project
as an exploratory project and divided it into a set of phases. Each phase
had a question to be answered or an objective to achieve. However, the
nature of exploratory projects does not provide a clear line of achieving a
complete end results. This kind of project implies a set of challenges and
ideas.

What if the next step is not clear after the phase? What if one feels lost after
the phase and needs to return and start over, or there is no connection, and
the phases do not build top on each other? However, it did not happen in
this project, but this does not mean we did not have these concerns while
working.

What if one overestimates the size of each phase? The phases become more
extensive than they need. OR Is this phase sufficiently covered, and are we ready to
go to the next chapter? Ironically, everything one wants to happen, and every
goal one wants to achieve, was also the source of the most frustration. Our
initial thoughts were that we wanted new ideas, but we were not prepared
for the frustration of saying no to these new ideas. So if one wants to do a
new project and follow the same way, one needs to be mentally prepared

74

to look at these new openings as successes as we want to be open, and
saying no to these openings is not necessarily negative. It is easy to be more
frustrated because one is used to working systematically on everything that
is opened in front of ones eyes.

Is the amount of work enough? The exploratory project is not effective
in producing the results. One never sees the goal line that one has to
cross and only sees long series of small tasks that need to be complete.
It might be easier to have one big task and know what one has to do. It is
straightforward, and there is an end.

So we can say that the exploratory project may fit more with the
long thesis or a Ph.D., and is not fully compatible with the short thesis.
However, the time in the short thesis is valuable comparing with the long
thesis.

7.3 The road towards achieving results

The road towards achieving the final results was full of difficulties and
uncertainties. In the following paragraphs, we will discuss the most
important of these difficulties and efforts that have been exhausted. The
project was divided into a set of phases, and each phase had its objective to
help reach the final goal, "an autonomous web service." However, before
going through these phases, it is important to address the difficulty of
integrating a different discipline (AI) in our own problem domain. This
step was crucial because the whole project was built upon this step.

The road before starting the phases:

Specific formal terms in AI need to be put in our field of systems operations.
In that sense, we need to find local representations of those terms in our
paradigm. For example, the main terms in learning automata that anyone
needs to know before implementing this algorithm are environment,
reinforcement signal, states, transitions, and actions. If we take "the
environment", we had to define the meaning of environment in our case.
Does it mean the physical area (VM or something else) where to place the
automaton, or does it mean the customer? Another example describing the
connection between the automaton and its environment is "the environment
sends a reinforcement signal to the automaton." What kind of signal?. It
required spending time and effort to understand and model these terms
into our paradigm. It was a challenging process to accomplish, and it
needed one to understand the meaning of the original term then mapping
it to a local meaning in the operation field. Despite these challenges, we can

75

say it is exciting and can it sometimes feels like it is completely uncharted
territory that everything is open and needs more work to explore.

Reading, and understanding another field on ones own is challenge. One
of the main reasons for these difficulties was the lack of examples of
transforming the learning automata terms in the operations context in the
relevant research papers. They could explain the developed algorithm
without illustrating the concepts like environment or reinforcement signals
explicitly. Therefore, it was not clear to us how they approached their
algorithms and models. Further, each one translated these concepts
to fit their own problem domain. Based on that, we had to read the
original Ph.D. thesis Velusamy, 2018 to see how they explained the
learning automata algorithm from the operation side in details. Moreover,
we reviewed some technical papers in learning automata (Nowé et al.,
2005) and (Narendra and Thathachar, 1974) and read the introduction
chapter and pick some sections from other chapters of the book "Learning
automata: an introduction" (Narendra and Thathachar, 2012) to get a better
understanding of the algorithm and its different models. It was a challenge
to understand and absorb these concepts in a limited time. However, it
was the main support for us to read through the different technical stuff
of the algorithm such as different classifications which helped us decide
whether to use a stochastic or deterministic automaton. Also, another
critical classification was the different environmental responses and their
different models. Consequently, it helped us to think critically to select and
implement the algorithms that suited our problem domain.

The processes towards the results:

The translation of an abstract model into a particular context was challenging.
We read so many approaches that the others have done, and we could
not directly apply them. The way other papers approach their project is
different even though they are targeting the same or similar problems.
For example, both (Ranjbari and Torkestani, 2018) and (Misra et al.,
2014) proposed learning automata algorithms for optimizing service
performance in terms of resource management. However, the context of
introducing the learning automata was different. Ranjbari and Torkestani,
2018 used a learning automaton to predict whether the physical machine
will be overloaded or not based on the average of the total CPUs usage of
that machine. Then if the machine will be overloaded, one VM or more will
be migrated to another physical machine. Misra et al., 2014 used a learning
automaton as a learning system to select the suitable resource target to
serve the user requests based on the maximum job success rate of each.

76

We were inspired by how they defined the automaton’s actions, inputs,
outputs, and how defining surrounded the environment. Both were using
the learning automata in a deterministic way. Therefore, it needed to be
transformed to fit our situation. We introduced service performance based
on incoming workload; therefore, we had to figure out how to implement
the automaton stochastically.

There is no standard way or a clear outline of using and implementing AI
into the operations field. In that sense, we had two ways to implement the
learning automata algorithm, either using an existing engine from a python
library or develop the algorithm from the ground using our own code. We
decided to develop the algorithm from the ground up. The first reason, we
could not find a python library that fits our domain problem. We found
just a few libraries that were developed deterministic automatons, not the
stochastic ones. Moreover, there was one question on our mind at that time
"If we found a python library for agent-based learning automata and adapt it into
our environment, would it give us accurate results?". As an exploration, we
wanted to avoid a black-box situation where we could not investigate what
happened along the way. Even though it was challenging to translate the
automaton structure based on the AI terminology to code and the different
models to represent the environment response, it was exciting to figure out
how to do that. Moreover, developing the algorithm from scratch gives us
more control over the problem domain.

What do we mean when we say that we are using AI? There is no standard
when someone says, "I have used AI", it is not like the next one using AI.
There is no standard way to implement it, at least in such a way that we
can easily take their way and replicated it in our case. Further, there is
perhaps a knowledge gap, and once this knowledge gap is closed it would
be straightforward to understand what someone means when they say we
are using AI in our field. In that sense, we could expect to have a new
buzzword AIOps like DevOps. That represents the professions who can do
the translation for us.

7.4 Proposing aSpace machine and related work

The aSpace machine has been developed through different phases due to
the observations of the previous phase. However, there is more to be
explored and investigated. Through the journey, some questions arosed
and need to be answered:

What is the contribution of the aSpace machine in our field? After analyzing

77

the results and our observations, we can say it provides a simple and
straight forward way to reuse it in other contexts. The aSapce machine
works well on time-series data; however, it does not require it. It seems
to be well suited to the type of data we used all the time. Moreover, it
allows us to have arbitrary length of non-stochastic memory. Also, it offers
a way to expand the environment dimensions based on the context of the
problem to fit more than three dimensions. In theory, it can provide an
arbitrary amount of combinations. It is effective when we use it with only
three dimensions, and two of them are the same data type. It can be used
with some configuration to other time-series data, so it is quite adaptive
due to it is the simplicity of configuration. So, it can be reused in many
situations, but that requires a much deeper understanding of the problem
domain first.

What has been achieved by developing aSpace machine? The aSpace machine
provides a new way to solve one of the fundamental issues related to
embracing learning automata; Convergence and Optimal policy.

1. Convergence: it provided a set of automatons; each can handle a
different workload. That was built based on recognizing the behavior
of the time-series data. For example, is this data is homogeneous or
heterogeneous? We adjusted the five minutes between each interval to
reduce the noise level by current and previous rates, then assigned them as
dimensions for our aSpace machine. In that way, we were able to provide
a solution to the convergence problem.

2. Optimal policy: During the learning process, the auto automaton
develops a policy that has been used until it reaches convergence. This
opens up the question: is the obtained policy the optimal one? This
question is crucial because we do not know the best solution, especially
with the high complexity problems like resource allocation or VM capacity.
Therefore, it is essential to think of this question while using the learning
automaton algorithm. In the last phase, we tried to answer this question
using the S-model and developing a punishment/reward system. The idea
of that system is that "if we cannot reach optimality, at least we can reach
sub-optimality." Using a P-model provided that. However, many types of
research use the P-model for its simplicity, but it provides only an absolute
yes or no, which does not fit with the nature of the cloud environment. P-
model does not get that much attention even though it is a powerful way
to be adapted to circumstances where a nuanced answer is required.

There may be some risks during the implementation. What if our results
are influenced by errors we did not discover? If we built everything in one

78

goal without phases and the aSpace was everything, we would run the
experiment and the sum of complexity would be significant, and the logs
would likely not make any sense. It will be like a black box. But the way
the project was organized as phases was beneficial because we dealt with
the complexity by building every piece and continuously testing it with the
same cases. That meant we had a better position to examine the things if
something started to behave weirdly. Also, we saw improvements along
the way because we still understood what was going on at each phase.
That is happened because we started building the aSpace machine from
the ground up. But what would happen if we used some python library
that has everything. Then we just put the data in and get the answer out.
So the phase design may have been a hidden way to prevent losing control
of what the aSapce machine was doing along the way. Also, reviewing the
results at every step and keeping a very close eye on every stage manually
gave us a good position to believe the results.

We think the results are believable because we approached it piece by
piece, and the results were manually inspected by time. So we can have
some confidence in the produced results.

7.4.1 aSpace machine and related work

In our study, we used the learning automata algorithm to optimize the
service performance by selecting the optimal action based on the incoming
workload without under-or over-provisioning. While Maurer et al., 2012
proposed an algorithm using the rule-based knowledge management (KM)
approach to avoid under- and over-utilization of available resources based
on threat threshold (TT). Both studies achieved the same results that prove
the effectiveness of the learning automata used in our study.

Ranjbari and Torkestani, 2018 proposed an algorithm using learning
automata for resource utilization. Their study used the P-model to predict
only the overloaded physical machine(s). In our study, we were able to
provide solution for the under-or over-provisioning by using the S-model
and the punishment/reward algorithm.

7.5 Future work

In this thesis, we have developed the learning automata-based algorithm
for implementing the aSpace machine model. Our goal was to enable
an autonomous service to be self-adaptive based on the workload. We
achieved our goal; however, we believe many new stories can be told.

79

Therefore, there are potential future directions the project paves the way
for.

One of these situations is: the individual automatons with little
experience need a way to reach convergence. That could be achieved by
developing an inter-communication way between the automaton and its
nearest neighbors. Then, based on that communication, the neighbors can
vote for an action based on their previous experiences. Based on that, the
problem statement could be stated as:

"Developing an inter-communication system for enhancing the learning
process of the automatons with little experience."

80

Chapter 8

Conclusion

The goal of the thesis was to explore introducing the learning automaton
algorithm with cloud operations to achieve an autonomous web service.
In order to address the problem statement both in theory and practice,
a model has been designed, formal terms of AI have been modeled in
operations terminology, a prototype has been implemented based on the
designed model, and the proposal of aSpace machine as solution was
discussed.

The model design has been developed through the different phases
of the project. In the initial phase, the model was confined to a scalable
automaton to handle the incoming requests. Then, the initial model was
developed through the second and third phases based on the previous
phase’s results and observations. The developed model was found to be
a good representation of the aim of each goal, and it paved the way for
the next phase to develop upon it. Moreover, the developed model can be
expanded to cover more explorations that are not uncovered yet.

The prototype was created in the same way as the design model was
created. With each new exploration or a problem at each phase, the
model was developed, and the prototype was developed as a consequence.
These local solutions showcase how the learning automaton evolves from
an autonomous scalable web service towards aSpace machine that can
manage time-series data.

Future suggestions include exploring aSapce machine, both on a design
level and a technical perspective. Another potential work could be
implementing an inter-communication system between the automatons
inside aSpace that could benefit more complex situations.

81

82

Chapter 9

Appendix

9.1 Automaton.py

1 import random
2 import numpy as np
3

4 class Automaton:
5 def __init__(self , a, b, name , verbose=1, history =10):
6 # The reward parameter can be a = 0.1
7 self.a = a
8 # The penalized parameter can be b = 0.05
9 self.b = b

10 # the name of this particular automata instance
11 self.name = name
12 self.verbose = verbose
13 self.history_length = history
14 self.history = []
15 self.version = "v1"
16 # A list of the available actions to choose between
17 self.available_actions = ["f1", "f2", "f3", "f4", "f5"]
18 # self.available_actions = ["f1", "f2", "f3", "f4", "f5

"]
19 # A variable to store the selected action after each

response from the environment
20 self.selected_action = None
21 # Dict for the policy mapping states to probabilities
22 self.prob_policy = {’f1’: 0, ’f2’: 0, ’f3’: 0, ’f4’: 0,

’f5’: 0}
23

24 self.usage_count = 0
25

26 # function to get the environmental_response and update
rule for changing the policy mapping states to
probabilities

83

27 # or preferences for actions.
28 # if the selected_action is favorable then the

environmental_response will be 1
29 # or unfavorable then the environmental_response will be 0
30 def update_policy(self , environmental_response):
31 # if it is first iteration then the selection will be

random and all actions will have equal possibilities
32 if environmental_response == "None":
33 number_of_actions = len(self.available_actions)
34 initial_prob = 1 / number_of_actions
35 for policy_key in self.prob_policy.keys():
36 self.prob_policy[policy_key] = initial_prob
37 return
38 # if the environmental_response = 1 then reward the

selected action and penalized the rest of actions
39 elif environmental_response == 1:
40 for key , value in self.prob_policy.items ():
41 if key == self.selected_action:
42 self.prob_policy[key] = value + self.a * (1

- value)
43 else:
44 self.prob_policy[key] = (1 - self.a) *

value
45

46 # if the environmental_response = 0 then reward the
selected action and penalized the rest of actions

47 else:
48 for key , value in self.prob_policy.items ():
49 if key == self.selected_action:
50 self.prob_policy[key] = value - (self.b *

value)
51 else:
52 self.prob_policy[key] = value + self.b *

abs(1 / (len(self.available_actions) - 1) - value)
53

54 self.prob_policy = self.trim_prob_policy(self.
prob_policy)

55 self.history.append(environmental_response)
56 self.usage_count += 1
57

58 # function to assign the action with highest probability to
be the selected_action at time(t+1)

59 def select_action(self):
60 # check if all actions have same probabilities then

choose one action randomly
61 prob_equal = len(list(set(list(self.prob_policy.values

())))) == 1
62 if prob_equal:

84

63 random_action_index = random.randint(1, len(self.
available_actions))

64 self.selected_action = self.available_actions[
random_action_index - 1]

65 else:
66 # change this one
67 self.selected_action = \
68 np.random.choice(list(self.prob_policy.keys()), p=

list(self.prob_policy.values ()), size =1) [0]
69 return self.selected_action
70

71 def trim_prob_policy(self , prob_policy):
72 if sum(list(prob_policy.values ())) > 1:
73 difference = sum(list(prob_policy.values ())) - 1
74 highest_prob = max(prob_policy , key=prob_policy.get

)
75 prob_policy[highest_prob] -= difference
76 self.out(" Probability needed to be adjusted by " +

str(difference) + " for action " + str(highest_prob))
77

78 return prob_policy
79

80 def out(self , text):
81 if self.verbose == 1:
82 print(" <" + self.name + ">: " + text)
83

84 def setVerbose(self , value):
85 self.verbose = value
86

87 def print_state(self):
88 self.out("Usage count for this automata: " + str(self.

usage_count))
89 self.out("Probability policy:")
90 self.out(str(self.prob_policy))
91 self.out("Sum of probablilities: " + str(sum(list(self.

prob_policy.values ()))))
92 self.out("Accuracy so far: " + str(self.

calculate_accuracy ()))
93 self.out("history: " + str(np.array(self.history)))
94

95 def calculate_accuracy(self):
96 # this function uses a sliding window of the last X

outcomes to determine it’s accuracy
97 return sum(self.history) / self.history_length

9.2 plot_results_phase1.py

85

1 import matplotlib.pyplot as plt
2

3 # plot the learning probablities of automaton during x updates
4 def plot_automaton_behavior(f1, f2 , f3 , f4, f5):
5 figure , axs = plt.subplots(3, 2)
6 axs[0, 0]. plot(f1)
7 axs[0, 0]. set_title(’F1’)
8 axs[0, 1]. plot(f2 , ’tab:orange ’)
9 axs[0, 1]. set_title(’F2’)

10 axs[1, 0]. plot(f3 , ’tab:green ’)
11 axs[1, 0]. set_title(’F3’)
12 axs[1, 1]. plot(f4 , ’tab:red’)
13 axs[1, 1]. set_title(’F4’)
14 axs[2, 0]. plot(f5 , ’tab:gray’)
15 axs[2, 0]. set_title(’F5’)
16 axs[2, 1]. axis(’off’)
17 figure.tight_layout ()
18 figure.suptitle(’Single Automaton with a=0.3, b=0.05’)
19 plt.rcParams[’font.size’] = ’5’
20 for ax in axs.flat:
21 ax.set(xlabel=’Updates ’,ylabel=’Probability of Action ’)
22 plt.show()

9.3 run_experiment_phase1.py

1 import re
2 import numpy as np
3 from LA_v1 import Automaton
4 from plot_results_phase1 import plot_automaton_behavior
5

6 # lists save the history of the actions ’ learning probabilities
7 # of the automaton during x updates
8 f1 = []
9 f2 = []

10 f3 = []
11 f4 = []
12 f5 = []
13

14 def generate_rate ():
15 # this function generates a random value between 0 and 50

after a normal distribution
16 # average will be 25
17 return np.random.normal(loc =25)
18

19 def evaluate_action(action , current_rate ,):
20 # lets figure out what flavor was chosen and calculate the

"capacity" of this flavor

86

21 capacity = int(re.search(r’\d+’, action).group()) * 10
22 if capacity > current_rate:
23 return 1
24 else:
25 return 0
26

27 # initiated object from Automaton class
28 new_service = Automaton (0.3, 0.05, "First")
29 action = new_service.select_action ()
30

31 # we have initiated the probabilities (but no action is taken
yet)

32 new_service.print_state ()
33 new_service.update_policy("None")
34 new_service.setVerbose (0)
35

36 for iteration in range(1, 200):
37 new_service.setVerbose (1)
38

39 # the state of the environment
40 current_rate = generate_rate ()
41

42 # the service makes a move:
43 action = new_service.select_action ()
44

45 # evaluate if we should reward or punish the action
46 outcome = evaluate_action(action , current_rate)
47

48 # update the actions ’ learning probabilities
49 new_service.update_policy(outcome)
50 # save the history of the actions ’ values of probabilities

during the learning process(no. updates)
51 x = list(new_service.prob_policy.values ())
52 f1.append(round(x[0], 4))
53 f2.append(round(x[1], 4))
54 f3.append(round(x[2], 4))
55 f4.append(round(x[3], 4))
56 f5.append(round(x[4], 4))
57

58 # draw the results of the iteration
59 plot_automaton_behavior(f1 , f2, f3, f4 , f5)

9.4 aSpace3D

1 import random
2 import numpy as np
3 from numpy_ringbuffer import RingBuffer

87

4 from LA_v2 import *
5

6 class aSpace3D:
7

8 def __init__(self , d1length , d2length , d3length , name="", a
=0.1, b=0.05 , verbose=1, history =10):

9

10 self.verbose = verbose
11

12 self.name = name
13

14 self.a = a
15

16 self.b = b
17

18 self.d1length = d1length
19 self.d2length = d2length
20 self.d3length = d3length
21

22 self.history_length = history
23

24 self.aspace = [[[0 for k in range(1, d3length + 2)] for
j in range(1, d2length + 2)] for i in

25 range(1, d1length + 2)]
26 #self.aspace = [[[0 for k in range(d3length)] for j in

range(d2length +1)] for i in
27 #range(d1length +1)]
28

29 self.usage_count = 0
30

31 self.history = RingBuffer(capacity=history)
32

33 self.automata_count = 0
34

35 def out(self , text):
36 if self.verbose == 1:
37 print("[" + self.name + "]: " + text)
38

39 def setVerbose(self , value):
40 self.verbose = value
41

42 def select_action(self , p1, p2, p3):
43 # for example 1,2,4
44

45 # find the right automata (and create it if it doesnt
exist)

46

47 if self.aspace[p1][p2][p3] == 0:

88

48 # automata does not exist. We need to create it and
update the policy once in order to initialize it

49 # the name will mimic it’s position in the space ,
so 1,2,4 will be named 1-2-4

50 self.aspace[p1][p2][p3] = Automaton(self.a, self.b,
str(p1) + "-" + str(p2) + "-" + str(p3))

51 self.aspace[p1][p2][p3]. update_policy("None")
52 self.aspace[p1][p2][p3]. setVerbose (0)
53 self.automata_count += 1
54

55 return self.aspace[p1][p2][p3]. select_action ()
56

57 def update_policy(self , p1, p2, p3 , environment_response):
58 self.aspace[p1][p2][p3]. update_policy(

environment_response)
59 self.usage_count += 1
60 self.history.append(environment_response)
61

62 def print_state(self):
63 # print("This is the state of the automata ")
64 # print(version)
65 self.out("Usage count for this A-space machine: " + str

(self.usage_count))
66

67 self.out("Accuracy so far for machine: " + str(self.
calculate_accuracy ()))

68 self.out("Content of ringbuffer (history): " + str(np.
array(self.history)))

69 self.out("Automata space output: ")
70

71 for p1 in range(1, self.d1length + 1):
72 for p2 in range(1, self.d2length + 1):
73 for p3 in range(1, self.d3length + 1):
74 if self.aspace[p1][p2][p3] != 0:
75 self.aspace[p1][p2][p3]. setVerbose (1)
76 self.aspace[p1][p2][p3]. print_state ()
77

78 def calculate_accuracy(self):
79 # this function uses a sliding window of the last X

outcomes to determine it’s accuracy
80 return sum(np.array(self.history)) / self.

history_length
81

82 def print_automata_statistics(self):
83 self.out("Automata count: " + str(self.automata_count))
84 self.automata_saturation = self.automata_count / (self.

d1length * self.d2length * self.d3length)
85 self.out("saturation of possible number of automata: "

89

+ str(self.automata_saturation))
86 automata_usage_count = []
87 automata_accuracy_count = []
88

89 for p1 in range(1, self.d1length + 1):
90 for p2 in range(1, self.d2length + 1):
91 for p3 in range(1, self.d3length + 1):
92 if self.aspace[p1][p2][p3] != 0:
93 automata_usage_count.append(self.aspace

[p1][p2][p3]. usage_count)
94 automata_accuracy_count.append(self.

aspace[p1][p2][p3]. calculate_accuracy ())
95

96 self.out("************ Count statistics **********")
97

98 self.out("Median usage: " + str(np.median(
automata_usage_count)))

99 self.out("Min usage: " + str(np.min(
automata_usage_count)))

100 self.out("Max usage: " + str(np.max(
automata_usage_count)))

101 self.out("Mean usage: " + str(np.mean(
automata_usage_count)))

102 self.out("85% percentile usage: " + str(np.percentile(
automata_usage_count , 85)))

103

104 self.out("************ Accuracy statistics **********")
105 self.out("Mean usage: " + str(np.mean(

automata_accuracy_count)))
106

107 self.out("Min usage: " + str(np.min(
automata_accuracy_count)))

108 self.out("15% percentile accuracy: " + str(np.
percentile(automata_accuracy_count , 15)))

109 self.out("30% percentile accuracy: " + str(np.
percentile(automata_accuracy_count , 30)))

110 self.out("40% percentile accuracy: " + str(np.
percentile(automata_accuracy_count , 40)))

111 self.out("Median accuracy: " + str(np.median(
automata_accuracy_count)))

112 self.out("70% percentile accuracy: " + str(np.
percentile(automata_accuracy_count , 70)))

113 self.out("85% percentile accuracy: " + str(np.
percentile(automata_accuracy_count , 85)))

114 self.out("Max usage: " + str(np.max(
automata_accuracy_count)))

115 return automata_usage_count

90

9.5 aSpace-3D-simulation

1 from aSpace3D import *
2 import re
3

4 def evaluate_action(action , current_rate):
5 # lets figure out what flavor was chosen and calculate the

"capacity" of this flavor
6 capacity = int(re.search(r’\d+’, action).group())
7 if capacity >= current_rate:
8 return 1
9 else:

10 return 0
11

12 # translate the traffic into set of categories to be provided
into machine as inputs

13 def translate_rate(ratestring):
14 rate = int(ratestring)
15 if rate <= 10000:
16 return 1
17 elif rate > 10000 and rate <= 20000:
18 return 2
19 elif rate > 20000 and rate <= 30000:
20 return 3
21 elif rate > 30000 and rate <= 40000:
22 return 4
23 elif rate > 40000 and rate <= 50000:
24 return 5
25 #provide the machine with inputs
26 machine = aSpace3D(name="3Dtest", d1length =288, d2length=5,

d3length =5)
27

28 # Using readlines ()
29 file1 = open(’tf2_50k.dat’, ’r’)
30 Lines = file1.readlines ()
31

32 count = 0
33 last_rate = 0
34 current_rate = 0
35 # Strips the newline character
36 for line in Lines:
37

38 count += 1
39 if count > 288:
40 count = 1
41 if last_rate == 0:
42 last_rate = translate_rate(line.strip ())
43 continue

91

44

45 current_rate = translate_rate(line.strip())
46 action = machine.select_action(count , current_rate ,

last_rate)
47 outcome = evaluate_action(action , current_rate)
48 machine.update_policy(count , current_rate , last_rate ,

outcome)
49

50 #print the outputs
51 machine.print_state ()
52 machine.print_automata_statistics ()

9.6 plot_traffic_data

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4 def load_data_set(file):
5 data_set = np.loadtxt(file)
6 return data_set
7

8 def chunks(lst , n):
9 for i in range(0, len(lst), n):

10 yield lst[i:i + n]
11

12 def reshape_data(data):
13 for i in range(len(data)):
14 if i == len(data) - 1:
15 list_len = 288 - len(data[i])
16 convert_list = data[i]. tolist ()
17 for j in range(list_len):
18 convert_list.append (0)
19 data[i] = np.array(convert_list)
20 return data
21

22 def get_statistics(data):
23 mean = []
24 std = []
25 median =[]
26 data = np.array(data)
27 for col in data.T:
28 mean.append(np.mean(col))
29 std.append(np.std(col))
30 median.append(np.median(col))
31 return mean , std , median
32

33 def plot_data(data_set , mean , std , median):

92

34 x = np.arange(1, 289, 1)
35 colors = []
36 for i in range (288):
37 if i == 0:
38 colors.append(’b’)
39 elif (i % 2) == 0:
40 colors.append(’b’)
41 else:
42 colors.append(’r’)
43

44 for i in range(len(data_set)):
45 y = data_set[i]
46 plt.plot(x, y,’--’,linewidth =0.7)
47

48 plt.errorbar(x, mean , yerr=std ,fmt="k--", errorevery =72,
label="mean")

49

50 plt.plot(median ,’r-’, linewidth =3, markersize =3,label="
median")

51

52 plt.title(’Traffic Intensity ’)
53 plt.xlabel(’24H’)
54 plt.ylabel(’Players ’)
55 plt.legend(loc="upper right")
56 plt.show()
57

58 data_set = load_data_set(’tf2_50k.dat’)
59 file_data = list(chunks(data_set , 288))
60 data_to_plot = reshape_data(file_data)
61 mean , std , median = get_statistics(file_data)
62 plot_data(data_to_plot , mean , std , median)

93

94

Bibliography

Al-Dhuraibi, Y., Paraiso, F., Djarallah, N. & Merle, P. (2017). Elasticity in
cloud computing: State of the art and research challenges. IEEE
Transactions on Services Computing, 11(2), 430–447.

Begnum, K. M. (2006). Managing large networks of virtual machines. LISA,
6, 205–214.

Bharanidharan, G. & Jayalakshmi, S. (2021). Elastic resource allocation,
provisioning and models classification on cloud computing a
literature review. 2021 7th International Conference on Advanced
Computing and Communication Systems (ICACCS), 1, 1909–1915.

Bhat, A. (2019). Exploratory research: Definition, methods, types and
examples. Questionpro. com.

Burgess, M. et al. (1998). Computer immunology. LISA, 98, 283–298.
Cámara, J., de Lemos, R., Vieira, M., Almeida, R. & Ventura, R. (2013).

Architecture-based resilience evaluation for self-adaptive systems.
Computing, 95(8), 689–722.

Carzaniga, A., Gorla, A. & Pezzè, M. (2008). Self-healing by means of auto-
matic workarounds. Proceedings of the 2008 international workshop on
Software engineering for adaptive and self-managing systems, 17–24.

De Wolf, T. & Holvoet, T. (2006). Evaluation and comparison of decentral-
ised autonomic computing systems. CW Reports, 10–10.

Dewangan, B. K., Agarwal, A., Venkatadri, M. & Pasricha, A. (2019). Design
of self-management aware autonomic resource scheduling scheme
in cloud. International Journal of Computer Information Systems and
Industrial Management Applications, 11, 170–177.

Gill, S. S., Chana, I., Singh, M. & Buyya, R. (2019). Radar: Self-configuring
and self-healing in resource management for enhancing quality of
cloud services. Concurrency and Computation: Practice and Experience,
31(1), e4834.

Horn, P. (2001). Autonomic computing: Ibm’s perspective on the state of
information technology.

95

Houben, G.-J., Fiala, Z., Van Der Sluijs, K. & Hinz, M. (2005). Building
self-managing web information systems from generic components.
CAiSE Workshops (2), 53–67.

Johnoommen, B. (1986). Absorbing and ergodic discretized two-action
learning automata. IEEE transactions on systems, man, and cybernetics,
16(2), 282–293.

Kaddoum, E., Raibulet, C., Georgé, J.-P., Picard, G. & Gleizes, M.-P. (2010).
Criteria for the evaluation of self-* systems. Proceedings of the
2010 ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems, 29–38.

Kapoor, V. (2005). Services and autonomic computing: A practical approach
for designing manageability. 2005 IEEE International Conference on
Services Computing (SCC’05) Vol-1, 2, 41–48.

Karakostas, B. (2014). Towards autonomic cloud configuration and deploy-
ment environments. 2014 International Conference on Cloud and Auto-
nomic Computing, 93–96.

Lakshmivarahan, S. (2012). Learning algorithms theory and applications:
Theory and applications. Springer Science & Business Media.

Li, W., Svärd, P., Tordsson, J. & Elmroth, E. (2012). A general approach
to service deployment in cloud environments. 2012 Second Interna-
tional Conference on Cloud and Green Computing, 17–24.

Marshall, D., Beaver, S. S. & McCarty, J. W. (2008). Vmware esx essentials in
the virtual data center. Auerbach Publications.

Mateen, M., Hayat, S., Tehreem, T., Akbar, M. A. et al. (2020). A self-
adaptive resource provisioning approach using fuzzy logic for
cloud-based applications. International Journal of Computing and
Digital Systems, 9(03).

Mateescu, G., Gentzsch, W. & Ribbens, C. J. (2011). Hybrid comput-
ing—where hpc meets grid and cloud computing. Future Generation
Computer Systems, 27(5), 440–453.

Maurer, M., Brandic, I. & Sakellariou, R. (2012). Self-adaptive and resource-
efficient sla enactment for cloud computing infrastructures. 2012
IEEE Fifth International Conference on Cloud Computing, 368–375.

Mell, P. & Grance, T. (2011). The nist definition of cloud computing.
Misra, S., Krishna, P. V., Kalaiselvan, K., Saritha, V. & Obaidat, M. S.

(2014). Learning automata-based qos framework for cloud iaas.
IEEE Transactions on Network and Service Management, 11(1), 15–24.

96

Moreno-Vozmediano, R., Montero, R. S., Huedo, E. & Llorente, I. M. (2019).
Efficient resource provisioning for elastic cloud services based on
machine learning techniques. Journal of Cloud Computing, 8(1), 1–18.

Narendra, K. S. & Thathachar, M. A. (1974). Learning automata-a survey.
IEEE Transactions on systems, man, and cybernetics, (4), 323–334.

Narendra, K. S. & Thathachar, M. A. (2012). Learning automata: An
introduction. Courier corporation.

Nowé, A., Verbeeck, K. & Peeters, M. (2005). Learning automata as a basis
for multi agent reinforcement learning. International Workshop on
Learning and Adaption in Multi-Agent Systems, 71–85.

Pastrana, J. L., Pimentel, E. & Katrib, M. (2008). Composition of self-
adapting components for customizable systems. The Computer
Journal, 51(4), 481–496.

Qavami, H. R., Jamali, S., Akbari, M. K. & Javadi, B. (2017). A learning
automata based dynamic resource provisioning in cloud computing
environments. 2017 18th International Conference on Parallel and
Distributed Computing, Applications and Technologies (PDCAT), 502–
509.

Ranjbari, M. & Torkestani, J. A. (2018). A learning automata-based al-
gorithm for energy and sla efficient consolidation of virtual ma-
chines in cloud data centers. Journal of Parallel and Distributed Com-
puting, 113, 55–62.

Sterritt, R., Parashar, M., Tianfield, H. & Unland, R. (2005). A concise intro-
duction to autonomic computing. Advanced engineering informatics,
19(3), 181–187.

Tadakamalla, U. & Menasce, D. A. (2021). Autonomic resource manage-
ment for fog computing. IEEE Transactions on Cloud Computing.

Tesauro, G., Chess, D. M., Walsh, W. E., Das, R., Segal, A., Whalley, I.,
Kephart, J. O. & White, S. R. (2004). A multi-agent systems approach
to autonomic computing. Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems-Volume 1,
464–471.

Thathachar, M. (1990). Stochastic automata and learning systems. Sadhana,
15(4-5), 263–281.

Tianfield, H. (2003). Multi-agent autonomic architecture and its application
in e-medicine. IEEE/WIC International Conference on Intelligent Agent
Technology, 2003. IAT 2003., 601–604.

97

Toka, L., Dobreff, G., Fodor, B. & Sonkoly, B. (2020). Adaptive ai-based auto-
scaling for kubernetes. 2020 20th IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGRID), 599–608.

Tomar, R., Khanna, A., Bansal, A. & Fore, V. (2018). An architectural
view towards autonomic cloud computing. Data engineering and
intelligent computing (pp. 573–582). Springer.

Tyvand, J.-E. (2011). On the predictability of server resources in online games, an
investigative approach (Master’s thesis).

Velusamy, G. (2018). Energy-delay aware web request routing using learning
automata (Doctoral dissertation). University of Houston.

Voas, J., Bojanova, I. & Zhang, J. (2013). Cloud computing. IT Professional,
15(2), 0012–14.

White, S. R., Hanson, J. E., Whalley, I., Chess, D. M. & Kephart, J. O. (2004).
An architectural approach to autonomic computing. International
Conference on Autonomic Computing, 2004. Proceedings., 2–9.

9.7 LAs.py

1 import random
2 import numpy as np
3 from numpy_ringbuffer import RingBuffer
4

5 #
6

7

8 # This is a LA of the running service in the cloud
9 class Automaton:

10

11 def __init__(self , a, b, name ,verbose=1,history =10):
12 # The reward parameter can be a = 0.1
13 self.a = a
14 # The penalized parameter can be b = 0.05
15 self.b = b
16 # the name of this particular automata instance
17 self.name = name
18

19 self.verbose = verbose
20

21 self.history_length = history
22

23 self.version = "v1"
24 # A list of the available actions to choose between
25 self.available_actions = ["f1", "f2", "f3", "f4", "f5"

]

98

26 # self.available_actions = ["f1", "f2", "f3", "f4", "f5
"]

27 # A variable to store the selected action after each
response from the environment

28 self.selected_action = None
29 # Dict for the policy mapping states to probabilities
30 self.prob_policy = {’f1’: 0, ’f2’: 0, ’f3’: 0, ’f4’: 0,

’f5’: 0}
31

32 self.usage_count = 0
33

34 self.history = RingBuffer(capacity=history)
35

36 # function to get the environmental_response and update
rule for changing the policy mapping states to
probabilities

37 # or preferences for actions.
38 # if the selected_action is favorable then the

environmental_response will be 1
39 # or unfavorable then the environmental_response will be 0
40 def update_policy(self , environmental_response):
41 # if it is first iteration then the selection will be

random and all actions will have equal possibilities
42 if environmental_response is "None":
43 number_of_actions = len(self.available_actions)
44 initial_prob = 1 / number_of_actions
45 for policy_key in self.prob_policy.keys():
46 self.prob_policy[policy_key] = initial_prob
47 return
48 for key , value in self.prob_policy.items ():
49 if key == self.selected_action:
50 # apply p_i formula on the chosen action
51 self.prob_policy[key] = value + a *

environmental_response * (1 - value) - b * (1 -
environmental_response)*value

52 #self.prob_policy[key] = value + self.a * (1 -
value)

53 else:
54 # apply p_j formula on all other actions
55 self.prob_policy[key] = value - a *

environmental_response * value + b * (1 -
environmental_response) * (1/(len(self.available_actions)
- 1) - value)

56 # self.prob_policy[key] = (1 - self.a) * value
57

58

59 self.prob_policy = self.trim_prob_policy(self.
prob_policy)

99

60 self.history.append(environmental_response)
61 self.usage_count += 1
62

63 # function to assign the action with highest probability to
be the selected_action at time(t+1)

64 def select_action(self):
65 # check if all actions have same probabilities then

choose one action randomly
66 prob_equal = len(list(set(list(self.prob_policy.values

())))) == 1
67 if prob_equal:
68 random_action_index = random.randint(1, len(self.

available_actions))
69 self.selected_action = self.available_actions[

random_action_index - 1]
70 else:
71 # change this one
72 self.selected_action = np.random.choice(list(self.

prob_policy.keys()),p=list(self.prob_policy.values ()),size
=1) [0]

73 # self.selected_action = max(self.prob_policy , key=
self.prob_policy.get)

74

75 self.out("selecting action: " + self.selected_action)
76 return self.selected_action
77

78

79 def trim_prob_policy(self ,prob_policy):
80 if sum(list(prob_policy.values ())) > 1:
81 difference = sum(list(prob_policy.values ())) - 1
82 highest_prob = max(prob_policy , key=prob_policy.get

)
83 prob_policy[highest_prob] -= difference
84 self.out(" Probability needed to be adjusted by " +

str(difference) + " for action " + str(highest_prob))
85

86 return prob_policy
87

88 def out(self ,text):
89 if self.verbose == 1:
90 print(" <" + self.name + ">: " + text)
91

92 def setVerbose(self ,value):
93 self.verbose = value
94

95 def print_state(self):
96 # print("This is the state of the automata ")
97 # print(version)

100

98 self.out("Usage count for this automata: " + str(self.
usage_count))

99 self.out("Probability policy:")
100 self.out(str(self.prob_policy))
101 self.out("Sum of probablilities: " + str(sum(list(self.

prob_policy.values ()))))
102 self.out("Accuracy so far: " + str(self.

calculate_accuracy ()))
103 self.out("Content of ringbuffer (history): " + str(np.

array(self.history)))
104

105 def calculate_accuracy(self):
106 # this function uses a sliding window of the last X

outcomes to determine it’s accuracy
107 return sum(np.array(self.history)) / self.

history_length

9.8 environment_response

1 import re
2 class flavorEnvironment:
3 def __init__(self ,name ,f_lower = 0.1, f_higher = 0.2):
4 self.name = name
5 self.f_higher = f_higher
6 self.f_lower = f_lower
7 def evaluate_action(self ,action ,current_rate):
8 # lets figure out what flavor was chosen and calculate

the "capacity" of this flavor
9 capacity = int(re.search(r’\d+’, action).group())

10

11 if capacity > current_rate:
12 # Too high , we are wasting resources. apply

f_higher
13 response = self.f_higher / (capacity -

current_rate)
14 elif capacity < current_rate:
15 # Too low , we are damaging the service. apply

f_lower
16 response = self.f_lower / (current_rate - capacity

)
17 else:
18 response = 1
19

20 return response

101

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Problem Statement
	Outline

	Background
	The need for rental computing services
	Web services in cloud computing
	Automation from API perspective
	The birth of automation of service behavior
	Autonomic computing in a nutshell
	Software engineering efforts towards autonomic computing

	AI as panacea for autonomic computing?
	Learning Automata algorithm

	Alternative approaches for achieving autonomic resource management

	Approach
	Desired outcomes
	Objectives
	Design
	Implementation and Simulation
	Analysis plan

	Phase I: Autonomous web service algorithm based on A Single Learning Automaton
	Introduction
	Web service-based learning automaton
	Simulating the behavior of a single automaton
	Scenario
	Simulation

	Implementation
	Results
	Explore the automaton behavior by changing the proportion of (a) to (b) using the learning automaton's schemas
	Explore the effects of changing the values of (a) and (b) on the automaton's behavior

	Observation

	Phase II: Autonomous web service using multiple learning automata
	Introduction
	The aSpace machine
	Environment
	The aSpace3D machine
	Scenario

	Implementation
	Results
	Observations

	Phase III: Introducing an elastic autonomous self-provisioning web-service
	Introduction
	Proposed method for efficient resource provisioning
	Implementation
	Results
	Observations

	Discussion
	Answering the problem statements
	Planning the exploration process
	The road towards achieving results
	Proposing aSpace machine and related work
	aSpace machine and related work

	Future work

	Conclusion
	Appendix
	Automaton.py
	plot_results_phase1.py
	run_experiment_phase1.py
	aSpace3D
	aSpace-3D-simulation
	plot_traffic_data
	LAs.py
	environment_response

