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Abstract

As the fifth generation of mobile networks move into the cloud, there
is a need to develop new and more flexible monitoring systems. In-
band Network Telemetry (INT) has begun to make its mark on the
Network Monitoring field, and provides a new way of collecting and
processing network telemetry data directly on programmable switches.
With INT we can use the in-band network traffic itself as the carrier
for monitoring metrics by leveraging the data plane of programmable
switches. In this thesis we develop a fully virtualized 4G Long Term
Evolution (LTE) testbed in a VirtualBox environment with INT support,
and we develop an algorithm that leverages the TOS field in IP Packet
Headers to detect Packet Loss and Network Delay between two P4-capable
BMV2 switches. The Radio Access Network (RAN) and and Evolved
Packet Core (EPC) components of the LTE network are implemented with
the OpenAirInterface project, and the EPC components are deployed in
a Mininet environment as containers, which are connected to P4-capable
Behavioral Model V2 (BMV2) switches. INT does incur a higher cost to
CPU compared to more traditional monitoring systems such as passive and
active systems, but maintains a higher measured bandwidth even with this
cost. INT is also able to detect network delay with high reliability, but has
reduced accuracy for detecting packet loss.
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Chapter 1

Introduction

In recent years there have been two major additions to the field of network
monitoring. The first is the Top-Down approach, which is a new take on
designing, implementing, and operating Monitoring Systems. It focuses
on increased programmability and the network-wide capabilities of such
systems, with the ultimate goal of becoming omniscient and omnipresent
throughout the network [1]. The second addition is In-band Network
Telemetry (INT), which is a method of utilizing programmable switches
to gain insight into network traffic at nearly full line rate [2]. INT can
be implemented with a relatively new programming language called P4,
which focuses on processing packets in the ingress and egress interfaces of
programmable switches [3].

The fifth generation of mobile networks have now started to be de-
ployed on a significant scale. 5G is envisioned to bring major improve-
ments to flexibility and capacity through the use of virtualized network
functions, cloud environments, and improved base stations for radio ac-
cess [4]. This generation is more Service Oriented and can be tailored to fit
a specific use case, such as Massive Machine Type Communication, Crit-
ical Communication, and enhanced mobile broadband for regular users.
5G core components can be implemented as Virtual Network Functions
(VNFs) and as a result several 4G and 5G testbeds have been developed
and deployed in Cloud environments such as OpenStack [5, 6]. None of
these testbeds, however, have integrated P4-capable switches into their en-
vironments. And seeing as 5G technology is still young, there is no stan-
dardized and agreed upon approach to network monitoring in these new
environments.

With the new approaches to network monitoring and the introduction
of software-defined networking to mobile networks, INT appears to be a
viable candidate for Monitoring in these new cloudified mobile networks.
With that there are two research questions we attempt to answer in this
project. How does INT impact the network performance of a 4G Long
Term Evolution (LTE) network, compared to passive and active monitoring
systems? To what extent can INT be used to detect two common network
problems, delay and packet loss, in such networks?

In order to investigate these questions we design and implement a fully
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virtualized 4G LTE testbed with added support for P4-capable software
switches. The 4G LTE network uses the OpenAirInterface (OAI) project for
both the Radio Access Network (RAN) and the Evolved Packet Core (EPC)
[7]. The P4 switches are implemented with the Behavior Model V2 (BMV2)
project [8]. These components are integrated with each other through the
Function Offloading Prototyping with P4 (FOP4) project [9], which is based
on Mininet. With this testbed, we compare each monitoring system with a
baseline measurement in order to investigate how INT with P4 impacts
the performance of this testbed, as well as to what extent INT can detect
common network problems.

1.1 Contributions

Through this project we have made the following contributions to the field
of network monitoring and software-defined mobile networks:

• Created a virtual testbed with P4 switches and an open source LTE
implementation that can be deployed on commercial hardware.

• Developed an algorithm in P4 that leverages the TOS field in IP
Packet Headers to detect Packet Loss and Network Delay between
two P4-capable BMV2 switches.

• Investigated the performance impact of INT in a virtualized 4G LTE
network.

• Investigated the capabilities of INT in a virtualized 4G LTE Network.

• Discovered bug in the makefile of P4-OVS and created a Pull Request
with the proposed fix.

1.2 Structure of the report

The remainder of this thesis is organized as follows:

• Chapter 1 - Introduction: Explains the problem, research questions
and motivation behind this work.

• Chapter 2 - Background: Provides the necessary background knowl-
edge of 5G Networks, Network Monitoring and the related work in
this field.

• Chapter 3 - Methodology: Outlines the selected approach to investi-
gate the proposed research questions.

• Chapter 4 - Implementation: Presents an overview of the virtualized
testbed and how we arrived at the final iteration.

• Chapter 5 - Results: Details the performed experiments and the
results gathered from these.
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• Chapter 6 - Discussion: Discusses the results and their implication.

• Chapter 7 - Conclusion: Gives an overview of what we have done,
our findings, and our final conclusion.

3
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Chapter 2

Background

In this chapter we cover all the necessary technical details and background
knowledge needed to understand the work done throughout the thesis.
The chapter is divided into three main sections, namely 1) Mobile
Networks, 2) Network Monitoring, and finally 3) Software Defined
Networking. In the first section, we cover what mobile networks are and
the high-level operation of these networks. In the second section, we cover
new and old approaches to monitoring and some methods for collecting
data. In the third section, we introduce software defined networking and
In-band Network Telemetry. Finally we outline the related works to this
project.

2.1 Mobile Networks

Today, cellular networks are widespread and used by virtually everyone
with a smartphone of which, according to Statista [10], there are over
3.8 billion. Many IoT devices also utilize cellular networks in order
to gain Internet access. The number of Internet-connected IoT devices
range in the tens of billions, and is estimated to reach 43 billion by 2027
[11]. This puts tremendous pressure on the networks providing Internet
access. The current infrastructure needs to be expanded and modernized
in order to handle this ever-increasing demand. 5G aims to improve
upon 4G with increased bandwidth and a service oriented approach to
support a diverse set of services as pointed out in a survey on network
slicing in 5G networks [12]. The most important improvement is the shift
towards a service oriented architecture, which follows the Infrastructure
as Code (IaC) [13] paradigm with increased levels of virtualisation and
slicing. The IaC paradigm aims to include more DevOps in the Operations
of digital infrastructure, in the form of machine-readable configuration
files to deploy and run services in a virtualised environment, and other
practices borrowed from Agile Development. An example is Test-Driven
Development of the configuration files in order to verify that any server or
software updates will not break during deployment.

Cellular networks are wide-area networks divided into cells, hence
the name Cellular, where each cell has a base station to which a client
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connects. The client, also known as User Equipment (UE), needs some
form of authentication in order to connect to a given base station, which
is usually provided through SIM Cards. These cards are pre-configured
with all the information the mobile client needs to discover, connect, and
authenticate itself to a cellular network. The Base Station connects to a
Network Core in order to let the client communicate over the network and
out to the Internet. A simplified view of the Cellular Network architecture
is divided into two parts and is shown in figure 2.1, the Radio Access
Network (RAN) where the Base Station lives, and the Core Network which
handles all traffic to and from the RAN as well as supporting services
such as mobility management, authentication, quality of service, and more.
Cellular, or mobile, networks have a long and interesting history spanning
back to the 1980s, but for the sake of brevity only a brief history lesson is
given in the next sections.

Figure 2.1: A High-level overview of the Virtual Testbed with P4-switches

2.1.1 Earlier Generations

This section briefly covers the history of cellular network evolution from
analog 1G networks, all the way up to digital 4G networks with an all-
IP core. This is to give the reader some background into the underlying
technology in the thesis. Most of the material is based on [14] which
presents a brief history of these network generations.

1G, 2G and 2.5G

The first generation of cellular networks was a completely analog system
with voice-only support. These were replaced by the digital 2G, still
with voice-only support. 2.5G extended the 2G standard with limited
data-support in the form of an Internet-connection. The general structure
of 2G networks follows the Global System for Mobile Communications
(GSM) standard. According to this structure, mobile clients connect to
a Base Transceiver Station (BTS). The BTS forms the cell, and is serviced
by the Base Station Controller (BSC) which is responsible for providing
connectivity to and from the BTS. It also handles resource allocation in the
form of radio channels to mobile clients and paging which is how a BTS
finds a given mobile client and its current cell. The BSC is connected to
a Mobile Switching Center (MSC) which connects several BSC’s together,
and performs user authorization and accounting, call establishment and
teardown. A provider can have multiple MSC’s which contain up to five
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BSC’s, and a set of MSC Gateways which connect the cellular network to
a larger public telephone network. Seen from another perspective, the BTS
and BSC form the RAN and the MSC and MSC Gateways form the Core
Network.

3G

3G supports voice and data, but enhances the data capabilities and
provides higher speeds. The underlying architecture splits voice and data
into two from the base station. Voice data is sent across the same network
infrastructure as the old 2 and 2.5G, meaning the old telephone systems.
TCP/IP data is sent to the Network Core. 3G further improves on 2G
radio access by more efficient multiplexing of available radio resources to
provide higher speeds. 2G and 3G lived largely in parallel.

4G LTE

4G Long-Term Evolution (LTE) introduced two important factors to the
field; An all-IP Core Network and enhanced radio access. The underlying
network is no longer split between voice and data, rather everything goes
across the same network. Instead of splitting traffic from UE based on its
content, everything is encapsulated by the eNodeB and forwarded to the
Evolved Packet Core (EPC). This allows for IP address allocation to all UE
and more advanced networking features such as Quality of Service (QoS)
can be applied to the traffic. The Evolved Packet Core (EPC) is made up
of four main components: 1) MME, 2) HSS, 3) SPGW-U, and 4) SPGW-C.
Figure 2.2 shows the components and how they relate to each other.

Figure 2.2: A High-level overview of the Virtual Testbed with P4-switches

The Mobility Management Entity (MME) handles connection and mobil-
ity management for all UE in its dedicated cell. The MME interacts with
the Home Subscriber Server (HSS) to get the required UE information to
perform its functions.

The Home Subscriber Service (HSS) acts as a database service that
stores all relevant information about the service levels for each UE. This
information can be QoS profiles, roaming access capabilities (the ability to
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let UE from different providers use the network) and more importantly
authentication information. In cases where a roaming UE attempts to
attach to the network, the HSS will contact the HSS of the Service Provider
to the UE and get the relevant information to decide if the UE should be
authorized to attach or not.

The User Plane of the Packet Data Network Gateway (SPGW-U) will handle
the user traffic to and from the Internet and between the individual UE
attached to the network using GPRS Tunnelling Protocol (GTP) between
the RAN and itself.

The Control Plane of the Packet Data Network Gateway (SPGW-C handles
the Control Plane traffic, which is the type of traffic used to configure and
control the different components of the EPC. It will communicate with the
MME and send Control Traffic to the SPGW-U to let it know how to handle
User Plane Traffic.

The flow of the traffic in the Core can be generalized: 1) Assuming the
UE is successfully attached to the RAN, the MME will detect it through the
base station and retrieve its Subscriber Identity Module (SIM) information
and contact the HSS to verify if the UE should be allowed to attach to the
network. 2) The UE will receive IP configuration from the SPGW-U. 3) user
traffic can then flow between the RAN and SPGW-U, and to the Internet if
needed.

2.1.2 5G NG

The evolution from 4G to 5G Next Generation Core (NGC) is all about
enhancing existing capabilities and introducing a more service-oriented
view of the network, as well as improving the EPC. According to a survey
on slicing in 5G networks [12], the specific purpose of 5G is yet to be
determined. While 4G LTE was focused on human to human traffic
through mobile devices, 5G is envisioned to expand on this and cater
to many different use-cases. There are three main use-cases identified
by the ITU and 3GPP which are enhanced mobile broadband (or human
to human communication, as 4G is used for today), massive machine
type communication (machine to machine, IoT devices), and critical
communication. Each of these can be further broken down into more fine-
grained services, each with its own set of requirements such as ability
to handle connection density, be highly reliable, or provide high-speed
user data rates. The introduction of slicing and virtualisation to such
a network makes it possible to deploy either small or large network
infrastructures to facilitate a wide range of services. Slicing simply means
to divide a physical infrastructure into several smaller virtualized pieces
to provide specific service sets and meet diverse customer requirements,
which enables the service oriented approach to networking in 5G. This
relies on the underlying infrastructure to be able to handle virtualization,
which can be done with OpenStack or similar cloud platforms.

An important part of what makes 5G the next logical step in the
evolution is the fact that it introduces a softwarized approach to cellular
networking. This allows for slicing of the underlying hardware resources
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to facilitate the previously mentioned use-cases in an isolated manner
on the same hardware. This largely follows the IaC paradigm where
a cloud provider’s hardware resources are made available for several
customers and can be tailored to their needs by the customers themselves.
As presented in a survey [12], the architecture of 5G Networks can
be summarized as a three-layer architecture with a Management and
Orchestration (MANO) entity spanning all three. These layers are 1)
Service layer, 2) Network Function layer, 3) Infrastructure layer. As a result,
the authors identify a number of challenge areas which is useful to facilitate
future work in the field of 5G Networks.

The Service layer service concerns the description of a slice and possibly
having predefined slices based on a set of requirements. The Network
Function layer concerns provisioning of resources, Life-Cycle Management
(LCM), configuration/control of forwarding plane. The main point to take
away is the consideration of granularity. Coarse granularity represents a
high-level control of functions that deals with network operation. Fine
granularity takes each function and divides it into smaller pieces for a
higher level of control. The Infrastructure layer concerns deployment,
control, and management of the underlying infrastructure. Whenever a
new slice needs to be deployed, this layer will reveal and provide available
resources which comply with the given resource requirements.

There are several challenges with this new generation of cellular
networks, of which three key aspects are brought up as not well-
understood and should be focused on in future research. These are 1)
RAN Virtualisation, 2) Service Composition with Fine-Grained Network
Functions, and 3) End-to-end Slice Orchestration and Management.

RAN Virtualisation exists in the Infrastructure layer and is composed
of three main topics. Radio Resource Isolation which is the problem of how
to isolate several slices from each other on a base station. Shared/Dedicated
resource allocation, or how to keep slices isolated while still facilitating
multiple slices per station with varying SLA requirements. RaaS, or RAN as
a Service concerns how one would best facilitate virtualised RAN instance
creation on the fly and also keep different slices isolated. This challenge
has in recent time been addressed by a tool named Orion[15]. This is not
directly related to monitoring, but it does address the challenge of RAN
Virtualisation and resource isolation. The method by which this is done
is base station virtualisation to provide dynamic on-the-fly virtualisation
and slicing to meet service requirements. The base station is divided
into two parts, the physical layer and the virtual layer. The physical
layer is considered as infrastructure and falls under the responsibility of
the infrastructure provider. The virtual layer is realised as a hypervisor
which manages the different slices on the base station. Isolation is
guaranteed through the process of controller isolation, meaning each slice
has their own controller which can be separated through well-known
techniques such as KVM (Virtual Machines) or Containers (Docker, LXD).
The underlying hardware resources are exposed through a novel set of
abstractions. Each slice is allocated a set of resources and do not have access
to any more than what they are given.
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Service Composition with Fine-Grained Network Functions is in the
Network Function layer and points out the fact that due to a number of
different network equipment vendors, there is currently no interopable and
scalable method for service composition.

End-to-End Slice Orchestration and Management exists in the Service
Layer and raises the issue of how to translate a high-level service
description to a concrete slice. To solve this one could look at designing
and implementing a Domain-Specific Language (DSL) which allows an
operator to express service characteristics, KPIs and network element
capabilities and requirements, similar to how the IaC paradigm tackles this
issue.

There are radical changes made to the Network Core as well, which has
moved from the very static EPC design to a Service-Oriented design [4].
New components are introduced which replace existing components in the
EPC and some with new functionality to complement the move to a cloud
environment.

Access and Mobility Management Function (AMF) which provides
Access Control and Mobility, similar to the MME node from the 4G
LTE EPC. In cases where mobility of UE is not a concern, the Mobility
Management is not needed in the AMF.

Session Management Function (SMF) uses network policy in order to
manage sessions.

User Plane Function (UPF) acts as the main gateway for user traffic and
can be deployed according to service requirements. In cases where a high
connection density is expected, multiple UPFs can be deployed as edge
nodes to improve throughput and capacity. This combines the SPGW-U
and SPGW-C from the 4G LTE EPC.

Policy Control Function (PCF) holds all policies required by the other
functions in the NG Core, such as roaming and mobility management.

Unified Data Management (UDM) acts as the database that stores
subscriber data and profiles, and is similar to the HSS in the 4G LTE EPC.

NF Repository Function (NRF) provides registration and discovery
functionality to the other network functions. It acts as a Service Discovery
and allows for functions in the NG Core to find and communicate with
other functions using their APIs.

Authentication Server Function (AUSF) is responsible for authenticat-
ing the UE that connects to the network.

Network Slice Selection Function (NSSF) maintains a list of all the
defined network slices, which the AMF authorizes the use of based on the
subscription information stored in the UDM.

Network Exposure Function (NEF) exposes the available APIs in the
network core to the other internal functions and in some cases to external
3rd party applications.

Application Function (AF) performs many tasks, such as retrieving
information from the NEF, interacting with the PCF, and exposing services
to end users.

The Service-Oriented architecture is shown in figure 2.3, which pro-
vides a simplified, high-level view of the 5G NG Service-Oriented Archi-
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tecture. The 5G NG Core (NGC) is made up several services realized as
virtual functions, which can be tailored to fit a given set of requirements.
If a network needs to be deployed in a setting where mobility is not a re-
quirement, the AMF can be configured to not include Mobility Manage-
ment. The general idea is that the NGC can be customized to fit the given
requirements to provide an appropriate service level.

AMF SMF

NRF UDM

UE

PCF

UPFRAN

AUSF

NEF NSSF

AF

Internet

5G NG Core

Access

Control Plane
User Plane

Figure 2.3: A high-level view of the 5G NG Service-Oriented Architecture

There are two main deployment strategies when it comes to 5G
Networks, Non-standalone (NSA) and Standalone (SA). The NSA strategy
is used in cases where there is an existing 4G LTE EPC which needs
increased throughput and capacity in the access network to handle an
increase in UE. This model does not use the 5G NG Core, but rather extends
the 4G LTE EPC with a gNodeB (a 5G capable base station) to provide the
increased performance. The SA strategy uses a complete 5G NG Core as
well as an eNodeB to provide access to UE that is not 5G capable.

2.2 Network Monitoring

Monitoring is the act of collecting metrics from devices in any given infras-
tructure (data centers, enterprise networks, virtualized environments) for
the sake of being omniscient and omnipresent. Metrics in this case are KPIs
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(Key-Performance Indicators) such as network latency, jitter, delay, or they
can be more specific to services, such as service response time or availabil-
ity. Omniscient in this case means that the operator knows everything that
happens in the infrastructure at any given time, and omnipresent means
that the monitoring system will be all places all at once, always working.
Without monitoring there is no way to know if a service has gone down or
if it is functioning as intended. If a service is not measured it is not man-
aged, and unmanaged services generate very little value [16].

Monitoring is largely based on the producer-consumer model in which
the producer generates some output which is the input for the consumer.
This model is typically expanded with a register, directory service, or
broker in order to act as an intermediary node between producers and
consumers. The register is also in some cases responsible for locating the
producers and making them available for the consumer. This is essentially
how monitoring systems work. There can be an agent (producer) which
observes the network traffic or system events on a given node, looking for
a specific trigger. When triggered, the producer will send a message with
some information either directly to a central monitoring server (consumer),
or via a message broker [17].

It is important to make the distinction between Service and Network
monitoring. Service monitoring usually means to have more insight into
an application that runs on some node, including its source code. This
type of monitoring concerns itself with application layer metrics such as
service response times, CPU and Memory utilization, and other metrics
specific to the behaviour of the system or environment on which the
application runs. Network monitoring however is all about insight into
the network infrastructure and its behaviour and state, this also includes
network device and client availability, network response times, jitter, delay,
and latency [16, 18].

On a general level, monitoring systems can either be coarsely or finely
granulated. Granularity refers to the level of detail and the timeliness
of the data. Coarse granularity means that the collected data contains
a wide, usually aggregated, set of metrics across longer periods of time.
This reduces the strain put on any given system by monitoring it, but also
reduces the level of insight. Events that span a short period of time might
not be picked up by the monitoring system. Fine granularity is to collect
highly specific metrics and events such as the specific TCP header in a
given TCP Flow. The immediate concern is the amount of storage required
to collect and store all of this information, as such a finely granulated
monitoring system requires careful configuration, but can inevitably be
more accurate and efficient compared to a coarsely granulated system [1,
19, 20].

In the next few sections, we cover the history of network monitoring
and how it has moved from coarsely grained systems such as SNMP, to
more fine-grained systems in datacenter environments such as Trumpet
[19]. We also discuss some of the different methods used to collect data
and some of their strengths and weaknesses.
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2.2.1 Coarsely and Finely Grained Systems

In the early days of networking a system was needed to collect specific
information from network devices. SNMP (Simple Network Management
Protocol) is comprised of three main components; the SNMP agent, the
SNMP manager, and MIBs. The agent lives on a device and is responsible
to either respond to periodic polling from the manager, or react to a trigger
on the device and send some data to the manager. The manager simply
polls the agents or receives requests triggered by some event. The MIB
(Management Information Base) is a collection of variables the SNMP
agent can use to send information to the manager. A MIB variable can
be the switch model, os version, or which interface that has gone down if
triggered by such an event [16, 18]. As SNMP only periodically collects
some predefined set of variables, or reacts to only certain events which
must be configured manually, it has a very poor sampling rate and misses
a lot of crucial information. These coarsely granulated systems are highly
inefficient as the network complexity grows, and they tend to become a
source of confusion due to the amount of total information collected, which
is not very precise [1, 19, 21]

These old, coarsely granulated systems belong to the bottom-approach
to network telemetry. It involves a high degree of configuration per
network device, and in the more modern, highly complex networks of
today this is simply not sustainable. These old-school systems often result
in datasets with high overhead and low precision and accuracy, and they
often miss out on critical events in the network.

Recently a more modern approach has begun to take hold in monitoring
of datacenter and enterprise networks, where each device is no longer
configured manually, but rather a network-wide system can be used to
distribute queries to the appropriate agents. An early work which really
embraced this is NetSight [22] which was one of the first to point out
that network diagnosis tools do not have the capability to process high-
level queries and do not have enough historical information to process
them. The solution was to develop NetSight, a platform consisting of four
applications in order to keep a detailed packet history. The goal was to
have the answers to the what, where, how and why of the packet. What
the packet headers looked like on a given switch, where the packet was
forwarded (switches, ports), how the packet headers were modified if at all,
and why it was forwarded (match-action taken on the flow and the flow
table). The goal of the project was to design and implement a platform
which allowed for high-level queries that would perform the brunt of the
troubleshooting for an operator.

Later works include Trumpet [19] and Sonata [20]. The former is an
event monitoring system that monitors every packet and produces a report
at millisecond timescales. The main problem Trumpet tackles is the fact
that modern monitoring solutions in data centers operate on a very coarse
timescale. This is fine for human readability, but is insufficient to provide
the data necessary to perform traffic engineering. The system is based on
each end-host performing complete packet monitoring at full line rate and
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reports events based on triggers. These triggers can be programmed, which
allows the system to monitor events that are important in data centers. An
event has two elements: a packet filter and a predicate. The packet filter
defines what packets to monitor for specific events, the predicate defines
the conditions that must be true in order for the system to detect that an
event has occurred.

Sonata (Streaming Network Traffic Analysis) essentially defines a query
interface to perform trigger-based monitoring on programmable switches.
It will program a switch to look for traffic that matches the query which
can be analysed to detect network attacks, such as SYN Flooding, or other
DDoS methods. The work is experimental and tests have currently been
done with two different models of switches (one using software switching,
the other hardware switching). The system consists of two main parts, the
runtime on a programmable switch and a stream processor. The runtime
will accept a query and compile it to code that can run on the switch in
order to inspect incoming traffic that matches. If the query is computing-
intensive the query can be partitioned between the stream processor and
switch. All matching traffic gets mirrored to the stream processor which
will then perform the more demanding parts of the query. However,
Sonata cannot distribute queries across multiple switches, but [23] provides
a combination of Sonata and another tool named Herd to provide a scalable
and network-wide telemetry system. Herd essentially distributes a query
across multiple switches, a feature missing from Sonata as it was presented
in the original paper. The main difference I would like to point out between
Trumpet and Sonata is that the former is an end-host based monitoring
system, and the latter is a switch-based monitoring system.

2.2.2 New Approaches to Monitoring

The systems discussed previously, Trumpet and Sonata, belong to the more
modern Top-Down approach to network telemetry [1]. This is a new
approach to designing and implementing monitoring systems. The author
presents a good argument as to why the traditional way of monitoring
networks, i.e. individual configuration of each device using methods with
generally high overhead, should be replaced with a more modern top-
down approach. The top-down approach borrows ideas from the IaC
paradigm [13] such as a more programmatic approach. The approach
sets some requirements that a new monitoring system should aspire to
fulfill. These requirements are 1) a declarative measurement abstraction,
2) an efficient network-wide runtime system, and 3) new measurement
primitives at devices.

A declarative measurement abstraction means that the operator of the
monitoring system (MS) should be able to write their query in plain text,
e.g. ”in region EU, watch all outgoing TCP connections with destination
port 8080”, of course in a real-world setting the language would not be this
plain, but it works to illustrate the point. The abstraction should be intent
based (”watch all outgoing TCP connections”), use named principles (”in
region EU”), be network-wide (i.e. monitor the entire communication path
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until the traffic leaves the network), and support many concurrent queries
to enable cases of many different management tasks and multi-tenancy
or multi-application environments. A challenge with this requirement
related to 5G networks is that this kind of network bring its own set of
requirements regarding resource constraints, scalability and new types of
queries that must be addressed when designing a new MS.

An efficient network-wide runtime system should take the abstracted
measurement query and translate it to functional queries that the network
devices understand. In addition, the runtime should return information
in real-time, it should support different granularities (both aggregated
queries and fine-grained queries), and it should also provide different
levels of accuracy (meet given accuracy requirements, while staying within
resource constraints). In order to achieve this, one will need new data
structures and algorithms to store and analyze collected data, and of course
reduce the bandwidth usage between devices and the monitoring system
agent/server. Lastly the runtime should efficiently multiplex its available
resources between multiple queries. A related challenge is how to handle
large volumes of traffic and handling of dynamics such as changes to the
routing topology and traffic patterns.

New measurement primitives at devices has two terms that need
to be explained further, primitives and devices. A primitive refers to
the actual metric the MS will collect, including but not limited to CPU,
memory, and storage usage, additional primitives can be the current
throughput on a given Network Interface Controller (NIC). A device in
a network context can be one of several types, such as hosts, switches,
and other programmable devices. The challenge with designing and
implementing new primitives is that you cannot design the most efficient
algorithm and data structure per measurement query, as new queries will
be made as operators gain more familiarity with the MS and their own
network. Considering this the new primitives must be generic and efficient
to support many different devices and meet performance requirements.
Another consideration when designing such primitives is the fact that
different types of devices each have their own level on insight into network
traffic. Hosts are close to a given application, whereas switches are closer
to aggregate information about the general flow of network traffic and has
a higher degree of insight into in-network failures. To conclude, the MS
should be able to quickly correlate information from a diverse set of devices
to provide a unified view of the network to the operators. One challenge
pertinent to 5G networks is how to design the primitives of services in these
networks, e.g. what primitives should be available for queries on eNodeB’s
(base stations), AMF, and PCF which are just some of the services required
to provide 5G connectivity to users.

The trend of moving more computation and monitoring to the network
devices, as in the case of Sonata, is clear, and some have discussed when
and what parts of an application should be outsourced to network devices.
[24] proposes a framework to classify different types of applications and
how they would benefit from utilizing in-network processing. The reason
this is relevant is because some Monitoring Systems are by nature in-
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network and some of the monitoring-related tasks can be performed by
other in-network devices, such as data aggregation and timestamping to
name a couple. The framework presents five principles which should be
followed when performing in-network computation: 1) Offload primitives,
not applications, 2) Make primitives reusable, 3) Preserve fate sharing, 4) Keep
state out of the network, and 5) Minimal interference.

Offload primitives, not applications suggests that primitives such as
timestamps and aggregation could be performed on in-network devices.
This means that the dedicated server running a monitoring system can
skip timestamp-generation and data aggregation where possible to further
improve efficiency.

Make primitives reusable means to have a standardized set of primitives
that are always available on the in-network device which can be used by
several applications.

Preserve fate sharing essentially means that when one device fails it
should not affect the rest of the network or application, unless it is a single
point of failure.

Keep state out of the network. Only maintain a soft-state in the network,
lost data should be recoverable from a server.

Minimal interference should go without saying. Any application
offloading some of its computation to an in-network device should not
have any say on routing policies and similar network-specific functionality.

2.2.3 Active and Passive Monitoring

Before we can discuss the different data collection methods used in
monitoring, there are two general types of systems that must be explained.
Active and Passive systems.

Active monitoring. This type of monitoring will use an event to
trigger some action. In network monitoring, the event can be a detected
TCP retransmission, and the action would be to send an ICMP packet
in order to discover the path of the TCP packet. This can be used for
many different operations, but one notable tool is 007 which consists
of a monitoring agent that runs on the end-host and a central analysis
agent. There are three components to 007: TCP monitoring agent which
monitors for retransmissions. When a retransmission is detected, the next
component takes over. The Path Discovery Agent will identify the path of the
retransmitted flow using a specialised ICMP packet and mark the path as
bad. The last component, the Analysis Agent will tally the votes every 30s to
find the most voted paths and links. 007 is a highly specific tool, used only
to identify the links that cause packet drops and does so with very high
accuracy. During a 2-month long trial, 007 found every problem which
other similar tools also detected, but it also found previously undetected
problems [21].

Passive monitoring. In this case the monitoring agent or software
will simply listen and observe the system it operates on and look for
certain events which it will collect and send to a central entity. Previously
discussed systems that can be classified as Passive are Trumpet, Sonata,
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SNMP, and NetSight. The purpose of passive monitoring is to detect and
report on the current state and current problems in the network, as well as
letting operators see trends and potential problems, allowing them to react
to events as they happen.

2.2.4 Data Collection Methods

This section goes into some detail on the different methods for collecting
data, and some strategies to consider for later chapters. Monitoring is
essentially a producer-consumer type system, and as such many of the
following methods will be explained using this terminology. Generally
speaking the monitored node is the producer and the collection agent is
the consumer.

There are two main methods for collecting data and information in any
given system, push and pull. In pull-based systems the consumer is the
initiator of all communication. Such systems are less precise but they have
the smallest overhead, as the pulling happens in set intervals. This method
uses a very low amount of bandwidth and consume the least resources
(CPU, Memory, Disk IO) vs. Push-methods. There is a substantial risk that
the monitoring system using this method will miss out on many critical
events if the pulling-interval is low.

ConsumerProducer
Consumer is Intitiator

Pull

Figure 2.4: Pull-method

In push-based systems the producer is the initiator of all communica-
tion. These are more precise than pull-based systems, but also have the
highest overhead, especially if the system is poorly configured. The general
idea is to have a monitoring system on any given node which monitors for
events that exceed some resource threshold, such as CPU utilization peak-
ing above some given percentage. When an event has been detected it will
send the relevant alert to a central entity, or if the monitoring system is an
active one it will perform some action which can be to restart a service or
perform a tracepath to provide additional information to the central entity.

Combination of Push and Pull: Ideally we would want an adaptive
model that can decide the data collection method for each individual node.
This has been explored in literature, known as the P&P model (Push
and Pull) [17], which uses a variable called User Tolerant Degree (UTD)
which describes how tolerant the user is to status inaccuracy of the system
that is being monitored. For example if the service owner or user needs
continuous updates for a critical service, UTD can be considered small.
If the only requirement is a regular heartbeat from a service every fifth
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Figure 2.5: Push-method

minute, UTD is considered large. If UTD is large, the model prefers Pull,
if it is small Push is preferred. If it is moderate, neither is preferred and
both will be used interchangeably. This model can then form the baseline
of which method that should be used in different situations.

2.2.5 Levels of insight

The level of insight a monitoring system has into a monitored node can be
classified into two types: 1) black-box, and 2) white-box.

When using black-box monitoring, the system has no direct insight into
the nodes it monitors as shown in figure 2.6. It can only see basic metrics
such as traffic going to and from the node, it can also measure how long
the node takes to respond or if it is up or down, and some basic HTTP
requests can be performed. This is useful in cases where a customer denies
access to the inner workings of a given network service, but still wants the
infrastructure provider to have some sort of monitoring in place.

Host AgentTraffic

HTTP

Ping

MS
Push/Pull

Figure 2.6: Black-box monitoring

White-box monitoring assumes nearly a full access to the node’s inner
workings as shown in figure 2.7. This includes resource usage (CPU,
Memory, bandwidth, storage), as well as how the operating system
behaves. In some cases the monitoring system can have access to logs from
any running application to record errors and events, but this is usually a
task for a logging system.

2.2.6 Monitoring System Placement

Next is the placement of the monitoring system and its agents in a given
infrastructure. This can be explained as two main types: 1) in-network, and
2) end-host. The placement is important because it more or less dictates the
level of insight into the nodes of the network. We can consider that the
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Figure 2.7: White-box monitoring

former is more akin to black-box monitoring, whereas the latter is more
similar to white-box monitoring.

In-network placement as shown in figure 2.8 leverages programmable
switches and port mirroring in order to observe the traffic going through
the network. It allows for insight into every traffic flow through any given
switch which can be used to paint a picture of the network-wide state
and can be used to detect many different incidents, such as heavy hitters
or multiple types of attack as shown with Sonata. In-network placement
can also be used by other systems such as IDS/IPS which requires a large
amount of traffic in order to analyse it for potential attacks and intrusions,
in such a case all traffic would be mirrored from a given switch to a
dedicated analysis node.

MS

Switch

Host

MA

Host

Host

Host

Figure 2.8: In-network monitoring

With End-host placement the monitoring agent is placed on the end-
hosts throughout the network as shown in figure 2.9. This allows for much
more detailed insight into the specific state of each node, as explained
with white-box monitoring. Due to the flexibility of cloud environments,
recent works have implemented packet capture modules on the virtual
switch present on most cloud nodes in order to perform traffic sniffing and
mirroring before the traffic enters the network [19, 21, 25]. Such systems
utilize a push-model for collecting data and usually have a central analysis
entity which does most of the heavy lifting.
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Figure 2.9: End-host monitoring

2.2.7 Use-cases for Monitoring

Now that the basics of monitoring are presented, we can discuss some of
the different use cases for monitoring. There are several such cases, some
are directly related to gaining insight into the network state, others are
more related to network automation and security.

The main use-case for monitoring is to gain insight into the state of the
network at any point in time. A network state refers to how it operates
and functions throughout a given time period. To give an example, a
monitoring system can be deployed on several switches in order to check if
there are certain flows or paths which experience a significant packet loss
or delay.

By monitoring incoming traffic load to any given application node we
can use thresholds to trigger automatic scaling by adding or removing
nodes. There are several ways of doing this, the simplest variant is to have
a python-script scraping metrics from a load-balancer at regular intervals,
and if the current number of sessions or traffic load exceeds a given
threshold, the script can add or remove a node in a cloud environment.
Such usage of monitoring can save some money by reducing the amount
of unused resources in a pay-as-you-go cloud environment such as AWS.

Sonata can be used to discover a wide variety of different network
attacks by looking directly at the flows going through a given switch.
This can trigger automatic filtering of such traffic or raise an alert and let
an operator investigate. IDS/IPS rely heavily on sniffed network traffic
in order to generate baselines and detect anomalous traffic. Resource
placement: Coupled with Machine Learning, monitoring can be used to
find optimal resource placement in an NFVI (NFV Infrastructure). A good
example of such a system is Z-TORCH[26] which combines the MANO
with Monitoring and Machine Learning. Their monitoring solution uses
generic KPI (Key Performance Indicators) which are relevant for any given
VNF. Some of these indicators are Network Load, Computational Burden
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on the underlying hardware, and Storage Utilization. Z-TORCH uses
these metrics to identify which VNF profiles that are high demanding
and will attempt to provide optimal placement of these VNFs in the
underlying infrastructure. For this purpose they use Machine Learning
and unsupervised learning to create a model of which VNF profiles that
are high demanding and which that are not.

Both Active and Passive monitoring can be leveraged to introduce self-
healing to a network or a service. If certain events are discovered, such as
log files exceeding maximum size for a small node, the monitoring system
can trigger a job to backup and reset the log file to conserve disk space.

The amount of data generated by monitoring systems is significant,
some estimates show that it accounts for 25% of enterprise data storage.
Machine learning models, and by extension neural networks, require a
huge amount of data in order to be properly trained. By utilizing the
data generated by service and network monitoring, instead of generating
training data in simulated networks, the resulting accuracy of the models
can potentially be increased.

2.2.8 Monitoring in 5G NG

There is no specific and standardized approach to monitoring 5G networks.
We believe this is because the new generation is largely based around SDN,
NFVs and deployment is done in datacenters and cloud environments,
which means that monitoring approaches that work for modern service
monitoring can in theory be applied to 5G NGC. There are several systems
and frameworks for monitoring software-defined networks which could be
applied to 5G networks.

OpenNetMon [27] is an adaptive polling scheme which leverages
OpenFlow-capable switches to monitor the flow of traffic. In cases where
the flow rates vary between sampling, the polling rate will be increased.
When the flow rate on any given switch stabilizes, the polling rate can be
reduced. This ensures a minimal level of resource usage on the network
devices, but keeps a fair level of accuracy.

Software Defined Monitoring[28] is a proposed framework to inte-
grate a monitoring controller into a software defined network. It utilizes
probes on all nodes and a central collection agent called the SDM Con-
troller. By leveraging software-defined elements, this system can be inte-
grated into VNFs or OpenFlow capable switches.

IoT based framework for monitoring [29] leverages IoT devices to
collect information about the network. It essentially treats every pro-
grammable device or node (wireless routers, phones, switches, network
functions in VNFs) as a producer, each producer then sends its measure-
ments to a broker. The broker acts as a message queue, and allows a knowl-
edge base (which acts as the consumer) to connect and get measurements
when it has available capacity.

PayLess [30] is one of the more known monitoring frameworks for
SDNs and provides a RESTful API interface to query an OpenFlow
controller for information about flows in the network. PayLess is a
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pull-based framework and allows for developers to rapidly prototype
monitoring systems on top of the framework.

DCM [31] (Distributed Collaborative Monitoring) provides a dis-
tributed system to allow for programmable switches to collaborate to
achieve flow monitoring tasks and balance measurement load by leverag-
ing two-stage bloom filters. It essentially allows the monitoring system to
choose the switch that fits best for a given monitoring task.

2.2.9 Challenges

This section presents some of the challenges related to 5G Networks and
networking monitoring in such an environment. Most of the challenges are
related to available resources, isolation and sharing of these resources and
multitenancy in cloud environments.

Resource Isolation and Sharing: As pointed out in section 2.1.2, such
networks are often realized as a VNF. This means that a provider of 5G
might have several VNFs existing in the same datacenter in which each
VNF addresses a different use-case such as critical communication or user
access. In such a case, should the monitoring system be network-wide in
the sense that one system monitors several VNFs, or should it be one MS
per VNF. How would multiple monitoring systems be implemented in this
case? If they are in-network based systems, will they interfere with each
other, and how would that impact the hardware resources made available
to them.

Multitenancy: If several providers of 5G approach the same Cloud
provider to host their Network Services, should each provider monitor
their own systems, or should the cloud provider have their own solution
made available to their clients.

Centralisation: If a 5G provider has multiple NS to handle several use-
cases, should the provider monitor all of these services using one central
system or implement one MS per service (also related to multitenancy,
should there be a central entity for the cloud infrastructure, how should
it operate, and should it have white-box knowledge on all VNFs/NS’)

Resource constraints: Monitoring systems should not incur any
significant cost in terms of resources and generate a minimal amount of
interference on the network traffic. There must be a balance between
accuracy and overhead, the former must be maintained while the latter
should be minimized. Several works as previously discussed have different
approaches to this, such as aggregation of metrics, adaptive polling
schemes or distributed query schemes.

2.3 Software Defined Networking

Software Defined Networks (SDN) has in the last decade seen a substantial
rise in popularity, mainly in data centers for public and private cloud usage
[32]. Software switches such as OpenVSwitch (OVS) delivers high-end
performance while being highly customizable [33]. SDN generally focuses
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on increased programmability and the ability to control the network from
a central controller. It allows new monitoring systems to integrate with this
controller to allow for flow based monitoring, and will as a result become
almost completely network wide. The consequences and implications of
more SDN-dominant data centers are the clear need for monitoring systems
which integrates well into these environments.

2.3.1 INT

In-band Network Telemetry has also begun to make its mark on the field
[2, 34]. Languages like P4 enables an operator or technician to program
a match-action pipeline for very fine grained control of how the network
device forwards the data. It essentially allows for operations such as
measuring time-per-switch in a packet during its traversal through the
network by continually updating a custom packet field per network hop.
A good example of such a system is a scheme to detect network-wide
heavy-hitters [35] which uses the P4 language to essentially treat every
switch in a network as one in order to discover network-wide heavy hitters.
Each switch is configured to look for flows that exceed some bandwidth
threshold and stores some metrics about those flows. A coordinator-node
will then receive reports from all switches where a flow has exceeded the
threshold and combines the count for a flow seen across multiple switches.
If this count exceeds the global threshold, the coordinator will poll all the
switches for their current count of the flow in order to verify that it is a
network-wide heavy hitter.

In-network computation and In-band Network Telemetry (INT) are not
without problems and challenges. [36] Shows that unrestrained usage
of INT will substantially degrade network performance unless measures
are taken to minimize overhead in the data, management and control
planes. A comprehensive survey also raises several issues, such as new
and unforeseen threat vectors when introducing in-network processing
to enterprise networks, or how INT operations will be orchestrated [37].
INT is a major addition to network monitoring and will most likely see
increased usage in the years to come.

2.3.2 P4

P4 is a data plane programming language focusing on the processing of
packets in the ingress and egress directions of a programmable switch [3].
It is named P4 for Programming Protocol-Independent Packet Processors.
The P4 language also introduces a major challenge of simulated test
environments, as it is its own complete language and requires specialized
software switches in order to run as intended. The general flow of a P4
program consists of parsing and deparsing traffic in either the ingress
or egress directions of the interfaces on the programmable switch. A
single parser-function can for instance be used to extract the destination
IP address from the IPv4 packet, and set the desired egress interface of the
switch.
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A typical P4 program follows a relatively simple flow:

• The Parser instructs the switch how it will unpack the incoming
packets, so for example extract the etherType field from the ethernet-
header, and inspect it, then take further action based on this. The
parser is then applied to all packets processed by the switch.

• The ingress and egress processors allow for definition of actions and
tables. This is where the action packet processing is executed. Here
the content of a given header can be read and altered, and further
action decided based on the content of the header.

• The Deparser will restructure the packet in a very specific order, for
example the ethernet-header must come before the IP-header. What
this essentially does is release the packet back into the data plane in
order to be forwarded with the newly updated headers.

With P4 we can also implement INT. In order to better explain how
P4 and INT works, we provide here a simplified overview of packet-
switched computer networks. The units of information in this type of
network are called Protocol Data Units (PDU), which are single units of
information that are transmitted in a network. PDUs generally consists of
a set of headers with a given width or length in bits. These headers can
be read and updated using Data Plane Programming. To provide more
context, we have included here a simplified explanation of modern packet-
switched networks using the TCP/IP model as a reference model. The
TCP/IP model consists of four layers: 1) Link, 2) Network, 3) Transport,
4) Application.

The Link Layer PDU is called a MAC Frame. Simply explained it is
made up by a destination and source MAC address, and a payload. The
payload in packet-switched networks is usually IPv4 or IPv6 packets.

The Network Layer PDU is called a Packet and consists of a destination
and source IP address, and another payload.

The Transport Layer PDU is called either a segment or a datagram,
depending on whether the traffic uses TCP or UDP respectively. This
consists of a destination and source port, and of course a payload. The
destination port is used to identify which application on the target host
will receive the data, and the source port is used to determine which port
the reply should use.

The Application Layer has no specific PDU associated with it as all the
protocols that operate on this layer are encapsulated in TCP or UDP PDUs,
and uses the destination port to define which application that will receive
the data. HTTP/S, SSH, DNS all exist in this layer and are encapsulated in
either segments or datagrams.

This also explains the most common data-structure used in network
monitoring, the 5-tuple, which consists of source and destination IP
address, source and destination port, and transport protocol (i.e. TCP, UDP,
SCTP, or similar). The source and destination MAC addresses of the MAC
frame are not used as often, as these fields can change multiple times as
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a PDU flows through a network. The 5-tuple is highly useful as it can be
used to create a Hash which works as an ID of the traffic flow. A flow can
be considered any traffic from a specific host to another specific host, on
a specific set of ports, with a specific protocol. Which means that if host
A opens a TCP stream to Host B, the traffic from A to B is considered one
flow, and traffic from B to A is its own distinct flow.

2.3.3 Software Switches

The main enabling component of Software Defined Networks is the
software switch. Most SDN implementations rely on an OpenFlow
Controller to manage and control any software switch running the
OpenFlow protocol [38]. The OpenVSwitch has become the de facto
industry standard software switch in Software Defined Networks. In the
context of this thesis it has one main limitation, which is that it is not
compatible with P4 out of the box.

Behavioral Model V2

The Behavioral Model switch is the reference switch for P4 [8]. It is not
intended as a production-grade switch and the performance is not at all
what one can expect from more advanced software switches. It will work
well to develop a prototype P4 program which can be used as a template
for future development of INT in EPCs and RANs. The switch architecture
does have some limitations, such as no support for floating point arithmetic
and modulo operations.

OpenVSwitch

OVS is a software switch which implements most of the well-known net-
work protocols and standards necessary to have an operational enterprise
network [33]. The main use-case of OVS is in data centers and on hyper-
visors running multiple VMs. An instance of OVS is usually tethered to a
controller using OpenFlow. This enables the switch to send the first packet
in a flow to the controller and receive instructions on how the entire flow
should be forwarded. This is a reactive approach in which the flow must
first be observed before the switch can determine an appropriate action.

P4-OvS

P4-OvS is an extension of OVS [39]. By extending the original implemen-
tation with Berkely Packet Filter (BPF) and a P4-to-uBPF compiler, P4 code
can be translated to run on this system. This allows a user to write P4 pro-
grams that operate on OVS instances with greatly increased performance
compared to the BMV2 switch.
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2.3.4 Network Emulation

It has become possible to emulate a fully functional enterprise network on
commercial hardware with Mininet [40]. Since the introduction of Mininet,
several other implementation have been developed, such as ContainerNet
and FOP4. Each of these are presented here in turn, but it is important to
note that ContainerNet and FOP4 are both forks of Mininet and implement
the same techniques for management and orchestration.

Mininet is a system for rapidly prototyping large networks on a single
host. It allows the user to deploy N emulated hosts attached to M instances
of OpenVSwitches. The Mininet system is highly flexible and interactive,
allowing the user to add and remove hosts at runtime. It also provides
realistic results in terms of network behaviour.

ContainerNet [41] is an extension of Mininet that allows the user
to deploy Docker Containers as hosts, in order to test out their own
applications in an emulated network. This is also part of the OpenSource
MANO (OSM) project and is frequently used in the field of network
function virtualisation and cloud computing research.

FOP4 [9] is a further extension of the ContainerNet project that adds the
capability to deploy BMV2 switches in a Mininet topology. This allows the
user to write and test P4 programs in just about any type of deployment
compatible with ContainerNet, and by extension Mininet.

2.3.5 NFVs

Network Function Virtualisation (NFV) as defined by ETSI[42] is an
enabling technology to virtualize services that traditionally have been
placed directly in the network as hardware appliances, such as cellular
network nodes. The value of this is that Virtual Private Clouds (VPCs)
and other Cloud platforms can be used to deploy complete network
architectures. One immediate issue with NFVs is that there is no clear
answer on whether or not the virtualized version of a service outperforms
the hardware appliance. One advantage that is important to point out
with NFVs is that monitoring systems that already work in datacenter
environments can now be leveraged to monitor for example 5G NGC due
to the fact that it can now live in a datacenter. Figure 2.10 shows the general
structure of a Virtual Network Function (VNF) with its Virtual Deployment
Units (VDU) and Virtual Links (VL) which connect these VDUs together.

An NFVI (NFV Infrastructure) consists of one or more VNFs which
make up a Network Service. VNFs are configured and deployed by making
a VNF Descriptor (VNFD) which is essentially just a YAML-file containing
the necessary parameters to get the VNF up and running, such parameters
can be the image of a node or how the nodes are interconnected. On top of
this you can have an NSD (Network Service Descriptor) which combines
multiple VNFDs to deploy a network service. There are many benefits to
using NFVs, such as reduced deployment time, reduced equipment cost,
flexible VNF placement, and supporting multitenancy. Figure 2.11 shows
how multiple VNFs are grouped together to form a service.
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Figure 2.10: A high-level view of VNF with its VDUs and VLs
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Figure 2.11: A Network Service consisting of several VNFs

2.4 OpenAirInterface

The OpenAirInterface (OAI) Consortium is a group which consists of
members from all over the world and from many technology companies
and firms. They have created the OAI RAN and EPC implementations for
4G LTE and are currently developing the necessary components to realize
a 5G Next-Generation Core (NGC) and RAN [7]. The OAI RAN and EPC
are both free and open-source with a comprehensive set of guides and
tutorials for both users and developers [43, 44]. The next sections will
present a brief overview of the EPC and RAN, and their components and
core functionality.

EPC

The EPC consists of four main components which are shown in figure
2.12, in which we show how the RAN is related to the EPC and which
components it connects to. Each component serves a distinct purpose and
communicates with other components as needed. For a more detailed
explanation of the EPC components, refer to section 2.1.1.

The flow of the traffic in the Core can be generalized: 1) Assuming the
UE is successfully attached to the RAN, the MME will detect it through the
base station and retrieve its Subscriber Identity Module (SIM) information
and contact the HSS to verify if the UE should be allowed to attach to
the network. 2) The UE will receive IP configuration from the SPGW-U.
3) user traffic can then flow between the RAN and SPGW-U, and to the
Internet if needed. The OAI EPC project can be deployed as standalone
applications on dedicated hosts or as Containers in Docker or similar
Container Management Systems.
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Figure 2.12: A high-level view of the 4G LTE Architecture

RAN

The OAI RAN project is an open-source platform used to deploy a mock
network with a high level of realism. What that means is that we can
deploy a software defined base station, which in the 4G LTE realm is the
eNodeB (eNB), as well as simulate UE using different emulators. The
project also includes support for many different hardware platforms in
order to create a RAN to which physical UE can connect.

2.5 Related Works

There are mainly two fields that are relevant to our work here. The first
is SDN, which includes by extension many of the solutions and projects
that are integrated into our project. The second field is naturally Network
Monitoring. Here we describe the works in these fields that closely relates
the work in this project.

SDNs became increasingly popular with the introduction of the Open-
Flow protocol [38]. This allowed for the design and implementation of
Mininet [40], which enabled the simulation of fully functional enterprise
networks in a laptop. Later, OpenVSwitch [33] was developed and inte-
grated with Mininet. Shortly after the introduction of SDN and Mininet,
ETSI proposed the NFV Standard [42] which is an enabling technology
to virtualize network functions that have previously required specialised
hardware, such as the different components in a 4G Core network. This
also resulted in the development of Open Source MANO (OSM), which
is a Management and Orchestration (MANO) system to deploy and control
NFVIs in cloud environments. As a consequence of the ETSI NFV Standard,
the OpenAirInterface (OAI) project [7] could begin development. The OAI
project provides the necessary software in order to run a complete 4G LTE
RAN and EPC network on commercial hardware. Mininet was also taken
a step further with the introduction of ContainerNet [41], which added the
capability to use Docker Containers as hosts in a Mininet topology. Con-
tainerNet has also been integrated with OSM as a NFV Multi-PoP emula-
tion platform.
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As a consequence of the previously mentioned projects, standards,
and innovations, there was a substantial push to create virtual testbeds
for mobile radio and core networks. By utilizing the OAI Projects,
several testbeds have been developed and deployed at many universities
and research institutions, such as Oslo Metropolitan University, Simula
Metropolitan Center for Digital Engineering, and Oulo University [6].
These are all fairly recent developments, but have been used to explore
network slicing in 5G Networks and utilize various cloud environments
such as OpenStack and VMWare. The MANO of these vary, SimulaMet’s
testbed relies on OSM [45] for the orchestration of OAIs core components.
OsloMet’s testbed uses OpenStack’s own Heat system [46, 47] and also
integrates Cisco switches into the environment for further separation with
the use of VLANs, and also uses the OAI project. Finally, Oulu University’s
testbed is deployed to a combined environment of OpenStack and VMWare
and uses OSM for orchestration. This testbed differs from the other testbeds
discussed previously in that it uses the 5G Test Network (5GTN) [48]
instead of the OAI project.

In the field of network monitoring there have been many additions and
innovations over the past decade. With the introduction of SDNs, we have
seen suggestions that a new approach is needed as a whole. The Top-
Down approach suggests that monitoring should move from individual
configuration of network devices and hosts, to a more programmatic
approach [1]. There are several works which apply this approach with
network-wide capabilities such as Trumpet and Sonata [19, 20], and further
extensions of the latter have further increased its network-wide capabilites
[23].

Another relatively young, but promising addition to network monitor-
ing is In-band Network Telemetry (INT) [49]. INT aims to provide the ca-
pability to leverage the data plane of programmable switches to inspect
packets in real time. This allows one to perform monitoring and teleme-
try collection by utilizing the packets themselves with minimal overhead
compared to more traditional approaches such as passive and active mon-
itoring. The main programming language to realize INT is P4 [50]. This
enables an operator or technician to program a match-action pipeline for
very fine grained control of how the network device forwards the data. It
essentially allows for operations such as measuring time-per-switch in a
packet during its traversal through the network by continually updating a
custom packet field per network hop.

In-network computation and In-band Network Telemetry (INT) are not
without problems and challenges. It has been shown that unrestrained us-
age of INT will substantially degrade network performance [36]. That is
unless measures are taken to minimize overhead in the data, management
and control planes. A comprehensive survey also raises several issues, such
as new and unforeseen threat vectors when introducing in-network pro-
cessing to enterprise networks, or how INT operations will be orchestrated
[37]. INT is a major addition to network monitoring and will most likely
see increased usage in the years to come. These problems are further sup-
ported by a paper that investigates how INT can be applied in industrial
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wireless sensor networks [51]. Here the authors point out that P4 is not
designed with the limitations and characteristics of such networks.

As INT and P4 has become increasingly popular, there has also risen
a need to integrate P4-capable switches such as the BMV2 into the
aforementioned mobile network testbeds. To the best of our knowledge
there are no published works on this exact feature. There are however
works to provide P4-capabilites to network emulation, such as the
Function Offloading Prototyping with P4 (FOP4) project. This provides the
necessary libraries and scripts to deploy a Mininet topology with Docker
containers as hosts and has the option to replace the stock OVS networking
with BMV2 switches, which are P4-capable [9]. Another interesting project
is the P4-OvS, which aims to integrate P4 with the OvS and enable it to use
much, if not all, of the functionality that P4 provides [39].

2.6 Summary

In this chapter we have outlined the background material which lays the
groundwork for the rest of the thesis. Network Monitoring is a complex
and large field with a lot of existing research. There currently is a paradigm
shift with increased focus on software defined networking and finely
grained monitoring systems. This is a direct result of the cloudification
of the Internet. The consequences of which can be seen with the new
5G NGC which heavily relies on NFVs and cloud computing. The next
chapter presents our methodology and approach to investigate the research
questions we present in chapter 1.
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Chapter 3

Methodology

This chapter presents the chosen methodology by which we will investigate
the proposed research questions. In order to investigate these questions,
a testbed must be designed, developed and implemented. We must also
design and develop the necessary INT systems, as well as choose the
appropriate systems by which we will implement Active and Passive
monitoring.

3.1 The Testbed

There are several requirements to the testbed. It must support the
integration of P4-capable switches, and it must be able to run the
OpenAirInterface EPC and RAN. The EPC can be built and deployed as
Docker Containers, and the RAN binaries can be compiled and run on a
dedicated virtual machine. There is currently no official support to run
the RAN components, i.e. the eNodeB and User Equipment, as containers.
Ergo the testbed must have three virtual machines, which also must be
connected via a common network.

Figure 3.1 shows a high-level overview of the testbed with its different
virtual machines and how they are connected. The testbed itself runs in
VirtualBox which is managed and orchestrated through Vagrant. The RAN
consists of two virtual machines, one for the eNB base station and one
which acts as the User Equipment. The EPC VM runs the EPC components
as containers in Docker with the addition of P4 switches that allows for the
investigation into INT and how such systems impact the general network
performance.

3.2 Approach

The general approach uses Iperf3 as a traffic generator in order to measure
and evaluate the general network performance. To measure this, Key
Performance Indicators (KPIs) will be collected from various points in the
infrastructure. The bandwidth measurements and KPIs helps to investigate
and answer the first research question of how INT impacts the general
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Figure 3.1: A High-level overview of the Virtual Testbed with P4-switches

network performance compared to active and passive monitoring systems.
The active monitoring system is emulated with a high frequency ping
on a 10 millisecond interval, which is similar to a network probe and
is a well-known method for active monitoring systems. The passive
monitoring system is implemented with Tshark [52], which is Wireshark’s
[53] command-line tool to sniff packets, and can write these to a file and
further analyze the packet dump if needed.

In order to investigate the second research question, there are two
INT systems implemented in this infrastructure. The first attempts to
detect delay using interarrival times of sequential packets, and establishes a
baseline reading which is analysed with basic linear regression to visualize
the trend of the data. The second system counts packets on a given time
interval in order to measure packet loss, and the results are analysed with
simple percentage calculation. Both of these systems are explained more
in-depth in Chapter 4.

3.2.1 Experiments

There are in total 9 experiments performed here which are divided into
two groups with an associated research question. The first group consists
of four experiments designed to establish a baseline network performance
and then implement active, passive, and INT monitoring systems to see
how each of these behave compared to the baseline. These experiments
provide the data to answer the first research question. The second group of
five experiments are all related to the second question. These implement
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two different INT systems, each with a specific functionality. For each
experiment either delay or packet loss is introduced at a specific point in
the infrastructure. These provide a substantial amount of time-series data
such as the number of packets seen the last ten milliseconds, or interarrival
times between packets, which are further analysed to answer the second
research question.

3.2.2 Data Collection

There are four KPIs that are collected from various points in the infrastruc-
ture. The bandwidth is measured from the User Equipment VM, to emulate
how a user experiences the network. CPU and Memory usage is measured
and collected from the P4 Switches, to see how the different monitoring
systems affect these, and Disk Input/Output (IO) is collected from the EPC
host machine.

Each and every experiment uses Iperf3, which is run 30 times for 30
seconds, with a 30 second pause between each run. As Iperf3 runs, the
other KPIs (CPU, Memory, Disk IO) are collected from the P4 switches
and EPC host, which will provide more contextual data to see how each
monitoring system specifically impacts the testbed.

In order to collect the relevant data from the INT systems, each of the
switches’ logs are scraped for relevant output and stored locally for further
analysis. The reason it is done this way is that a more comprehensive
monitoring system with automatic log scraping would potentially incur a
higher resource cost. The collection scripts are written to be lightweight
such that the actual performance impact is incurred through the INT
systems themselves, and not through the data collection scripts.

3.2.3 Data Analysis

The result from the first four experiments, i.e. the different monitoring
approaches as well as the baseline, will be compared in order to see the
effect each approach has on the KPIs. These are compared using box plots,
where extreme outliers are pruned from the result to reduce unnecessary
bias.

The result from experiments with Network Delay Detection are ana-
lyzed using simple linear regression to establish a trend of the data, and
to see if an added delay in the network has any significant impact to this
trend. Results from Packet Loss Detection will be presented with simple
tables, and to see if the detected packet loss correlates with the induced
packet loss in the network. Packet Loss detection uses simple percentage
calculation to show the total number of lost packets versus the total number
of seen packets.

The KPIs collected during the first group of experiments are also
collected from the second group. The reason for this is that it is of interest
to see if the specific functionality of the INT system, i.e. delay detection
and packet loss detection, incurs similar cost to performance, or if one or
the other has a significantly higher or lower cost.
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The next chapter gives a more detailed explanation of the testbed, how
it is configured and deployed, as well as some challenges faced during the
development. Each INT system is also explained in depth.
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Chapter 4

Implementation

In order to move forward with the investigation of INT, it is necessary
to create a virtual testbed which allows for the integration of P4-capable
switches into the EPC environment. There are several options for this
purpose. OpenAirInterface provides the necessary software in order to run
a 4G LTE EPC implementation. The design and implementation of such a
testbed requires extensive engineering, and this chapter presents some of
the challenges faced during the implementation of the testbed.

4.1 Challenges

The main challenge was that there was no documentation that describe
how to integrate a P4-capable switch into the OAI EPC environment. There
was the possibility of deploying each EPC component on a standalone
hardware platform and connect these using physical P4-capable switches.
The other option was to deploy these components as Virtual Network
Functions (VNF) which has been done by SimulaMet [54]. The last option
was to deploy the EPC as Docker Containers, which is a well documented
approach.

4.1.1 Frequent redeployments

Another challenge that must be addressed is the number of redeployments
and iterations to get the testbed up and fully functional. The main
reason for these redeployments are the issues faced when integrating new
components into the EPC and RAN environments. If a step in the build
and compile processes fails, the most efficient solution is to record the
error, delete the virtual machine, and begin again with an updated build
script. When recording an error, it is also preferential to test a possible fix
before deleting the virtual machine, but the machine must be deleted and
redeployed to verify that a fix is successful.

Building the EPC and RAN components can take up to 30 minutes
each, and building the P4 compiler and related packages can take up to
120 minutes from start to finish. In order to minimize the time spent on
server configuration, we decided to manage and orchestrate the testbed
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environment with a Vagrant provisioning file. Vagrant is developed by
HashiCorp and allows the user to define one or several virtual machines
in a VirtualBox environment much like a Dockerfile [55]. This allowed for
automation of the deployment and configuration of the relevant servers
and packages needed for the testbed and saved a substantial amount of
time. We have made the Vagrantfile publicly available on GitHub [56].

With the Vagrant provisioning file in place, it is also possible to more
easily update build scripts as these are copied to the target virtual machine
by Vagrant. This is a substantial time saver as each component in the
testbed have a multitude of dependencies. For instance, the P4 Compiler
depends on 10 required packages, most of which have their dependencies.
There are a few publicly available scripts that will set up P4 with BMV2
switches and all necessary dependencies on GitHub with associated guides
and walkthroughs [57].

4.1.2 OAI 4G LTE EPC

Setting up the EPC is a complicated process, but very well documented.
Each component has an associated Dockerfile for several platforms, e.g.
Ubuntu 18.04, CentOS 7 and 8. Each component’s Docker image must
be built separately, and once the Image is built, the user must generate
configuration files for the EPC components using the provided Python
scripts. These scripts must be supplied with the configuration parameters
for the EPC, such as authentication keys and IP addresses to each relevant
EPC component. In addition to this, all of the EPC components must have
a dedicated common Docker network, over which they will communicate
with each other. In order to reach the EPC from outside the Docker
Host machine, appropriate routing and IP forwarding must be set up and
enabled on the host machine. A functional deployment of the EPC can be
seen in figure 4.1, which shows the containers that are connected to the
docker network, which is reachable through the other NICs on the host
machine.

Figure 4.1: Basic Deployment of the EPC as docker containers
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4.1.3 OAI RAN

The RAN is an equally complicated process to set up as it includes
several radio simulators and support for many different physical radio
implementations [44]. As COVID-19 related lockdowns prevented a
stable access to the physical lab that SimulaMet has at its disposal, the
focus was shifted towards a fully virtualized deployment. This ruled
out the use of any specialized physical equipment such as Software
Defined Radio hardware. In order to get a RAN operational in a virtual
environment, it is required to investigate and test the available radio
simulators. These simulators all aim to simplify the testing of the RAN
and EPC environments. There are several simulators available, but there
are two which are of interest in this thesis, the L2 NFAPI and Basic
Simulator. The approaches behind them are different and their use-cases
are slightly different, but the end-goal is the same; Enable a simulated
UE to communicate with a simulated eNB and get a stable connection to
an operational EPC. Each simulator is further discussed in the following
sections. It is important to point out that there is no comprehensive
documentation on the simulators readily available online.

L2 NFAPI simulator

The use-case for this simulator is to test layer 2 and above in the
network stack. It uses the local loopback interface for communication
between the UE and eNB, and both can be deployed on the same virtual
machine. It is also meant to be used for testing more than a single
UE, ideally up to 255 simulated UEs. The main problem here lies in
the transport protocol used by the eNB and UE for communication,
namely the Stream Control Transmission Protocol (SCTP). SCTP is a blend
between UDP and TCP, it has the message-oriented feature of UDP, but
provides the reliability of TCP. SCTP also implements multihoming and
redundant paths. Multihoming means that the protocol will send out
its packets on many different interfaces in order to reach its intended
destination. This fact combined with the testbed environment, resulted in
a failed deployment caused by the NAT-ed interface on each virtual host.
VirtualBox uses NAT in order to let the virtual machine in question reach
the internet and allow the host to connect to the VM using SSH. SCTP
will flood its packets out on this NAT network, but there are no valid
destination addresses for the SCTP packets on the NAT network. This will
cause SCTP to fail and shut down its connection entirely. The NAT network
in Virtualbox is not highly customizable, and the rules cannot be changed
easily, thus configuring this network to properly handle SCTP connections
could not be done in a reasonable time span.

Basic Simulator

The basic simulator can be used in situations where it’s only necessary
to test one UE instance. It replaces the physical radio head with a
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network interface on the host machine. This removes unpredictable air
perturbations, but also limits the number of UEs in the network to one, it
also removes any channel. These limitations do not stand in the way of the
end goal of this project. This approach is also functional in a virtualized
environment and allowed us to get a basic RAN operational. The finalized
version of the RAN can be seen in figure 4.2.

Figure 4.2: Finalized deployment of the RAN with Basic Simulator

4.1.4 Connecting the RAN to the EPC

In order to get an eNB attached to the MME in the EPC, it must have
the appropriate routing from the eNB machine to the EPC. The EPC is
running on its own dedicated IP subnet which is initially unreachable from
any host except the EPC Host machine. It is made available by enabling
IP forwarding and configuring IP routing to the EPC subnet on the EPC
host machine. Any machine in the testbed environment that needs to
communicate with the EPC must also be configured with the routes to this
subnet via the EPC host machine. The UE VM must have a network in
common with the eNB VM. Using the VirtualBox internal network, this was
all possible using the same network segment. It is not, however, necessary
for the UE machine to have any knowledge of the EPC network segment.
Once all the necessary routing and forwarding was in place, and the correct
authentication information was in place, the UE could attach to the EPC
and receive an IP address from the SPGW-U.

4.1.5 Integrating P4-capable switches

The integration of a P4-capable switch is a complex task, as the available
implementations all have several dependencies and requirements for the
platform on which they run. The most commonly used P4-capable switch
is the BMV2 [8]. It has poor performance and a limited set of features,
but implements all of the well-known P4 features necessary to create a
basic INT monitoring system. The initial idea was to replace the Docker
networking with a BMV2 switch. The problem with this approach is that
the Docker Engine, which controls the networking between containers and
host machine, has no support for BMV2 switches. In order to add this
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support one would have to write a new plug-in, which would further add
on the complexity of the virtual testbed, and it is also outside the scope of
this thesis.

P4-OvS was another option that we spent much time on. It implements
all the well-known features from OvS with the addition of supporting
basic P4 programs. The problem was to build and run the switch. OvS
already has support for adding Docker Containers as hosts to an OvS
Bridge, and as P4-OvS is a fork of OvS it also has this functionality. During
the implementation phase it also became apparent that in order for P4-
OvS to integrate with the Docker containers, it would require a dedicated
controller such as Faucet to operate as intended. As P4-OvS is still under
heavy development it had a few bugs that had to be fixed, such as missing
symbols in the makefiles. A pull request has been created to fix these bugs,
but it has not been approved.

From this point we had to consider rebuilding the testbed from scratch
or find another way to integrate P4 switches into the testbed. Given this we
looked into network emulation which could use docker containers as hosts,
which led us to ContainerNet. ContainerNet allows the user to deploy
docker containers in a Mininet topology, but requires the containers to have
certain packages installed. ContainerNet also does not have support for
BMV2 switches, but the developers created another version called FOP4
which does exactly this.

4.1.6 Network Emulation using FOP4

FOP4 as explained earlier is a fork of ContainerNet with support for BMV2
switches [9]. With this approach we could implement an extended network
segment connected to the SPGW-U. This allowed us to perform basic
INT on any user-generated traffic between an emulated Internet server
and the UE. In order to let the EPC components be controlled by FOP4,
there are a few required packages, such as iputils-ping, net-tools, and
iproute2. These packages allow for basic Mininet functionality such as
pingall, and also allows the FOP4 system to set up the necessary routing on
the containers. We had to fork each of the EPC component repositories and
expand the relevant Dockerfiles with the additional packages and build the
new images, the repositories and branches used can be seen in table 4.1.
The advantage of using a Mininet-based emulator is that we can define the
topology however we want, which resulted in an efficient deployment of
the EPC. We can also create several topology definitions for different cases,
such as having no monitoring at all or including packet capturing.

Component Version/Tag Branch
MME 2020.w47 [58]
HSS v1.1.1 [59]

SPGW-C v1.1.0 [60]
SPGW-U v1.1.0 [61]

Table 4.1: EPC component branches
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4.2 The final testbed

The final version of the testbed consists of three VMs deployed in a
VirtualBox environment. The UE and RAN VMs have 4GB RAM and
2 cores of a 6-core 3.7GHz Ryzen 5 2600X CPU each as well as 20GB
of storage. The EPC VM has the same amount of RAM and CPU, but
50GB of storage to account for the amount of logs and packet capture
files that will accumulate on this VM. The EPC components are deployed
in a FOP4 controlled network, and has an extended network segment
consisting of two BMV2 switches and two simple docker containers. These
two containers are the Forwarder and Iperf3 server. The Forwarder will
act as a simple router between the SPGW-U and the Iperf3 server. The full
testbed is shown in figure 4.3.

An interesting point is that the eNB machine has no knowledge of
any network except the path to the EPC and its own directly connected
networks. The UE has no explicit path to the EPC network, and only knows
of its directly connected networks. This includes the address pool from
which it has its IP address assigned through the SPGW-U. With default
routing through the oaitun ue1 interface (the basic simulator interface), it
can reach the extended network segment.

4.3 Deploying the different versions

In order to move on to experimentation, we have defined three slightly
different topologies. The basic topology deploys the EPC and the extended
network segment with minimal logging and monitoring, shown in the
appendix A.3.1. We also defined a topology that uses packet capturing
as a rudimentary bottom-up monitoring system, shown in the appendix
A.3.2. This version will enable packet capturing on the switches, and every
component in the EPC. We did attempt to enable packet capturing on the
RAN components, but the amount of packets flowing between these VMs
exceed what we can store on each machine (e.g. more than 7GB) in just a
few minutes of monitoring. The third version starts up the BMV2 switches
with a specialized P4 program that we’ll explain the next section. The
topology without any monitoring and the one with packet capturing still
relies on a simple P4 program which forwards traffic out to the appropriate
port on a given switch, which can be seen in the appendix A.4.1. The
final version performs basic in-band network telemetry using P4 and is
explained in more depth in the next section.

4.4 INT with P4

P4 and INT is introduced in section 2.3.2. Essentially what this allows one
to do is to mark and inspect packets at nearly full line-rate. In order to
investigate the potential performance impact of INT, we have implemented
two different programs with different goals. The first program uses the
interarrival time between the two last packets in any given flow to detect
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Figure 4.3: The final version of the Virtualized Testbed

delay in the network path. The second program uses packet counters in
order to detect packet loss. Each program is explained in the following
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sections. Both programs use the switch logs to dump the most important
information and these are analyzed following an experiment. We are not
writing these to be complete monitoring systems in their own right, but
rather to show that INT can be used to detect these kinds of problems.

4.4.1 Delay Detection

There are several ways to measure delay in a given network path. The
simplest approach is to probe it with ICMP packets (i.e. ping) and measure
the round-trip time (RTT). This however falls into the active monitoring
category. In order to do this with INT and P4, we can use timestamps of
packets. The general idea is to calculate the interarrival time between the
last two packets in a flow at any given switch in the network, and mark
the packet with the result such that it can be inspected down the line in the
network. The interarrival time of the last two packets will then be written
to the Type of Service field in the IP Header of the current packet and sent
on its way in the network. Any switch running the same program in the
network path can look at this field to see the interarrival time recorded by
the previous switch for the given flow. From this we can infer if there is
any delay on the specific network path.

This can be shown by the following: Switch A measures the interarrival
time given by ρk = Tk − Tk−1 where Tk is the kth packet, i.e. the current
packet in the flow and Tk−1 is the previous packet in the same flow. T of
course is the packet’s arrival time at the switch. Assume that Tk is 10, and
Tk−1 is 5, which gives the interarrival time of 5. Switch B however records
an interarrival time of 20. Switch B logs its own measured interarrival time
as 20 and the incoming interarrival time of 5 from Switch A. We would
expect that the interarrival time is closer to equal given perfect network
conditions with zero delay. If there is a substantial difference, we can
infer that there is a delay on the path between switch A and B causing
the interarrival time to increase.

Our approach uses registers on the BMV2 switches, which are simple
key-value stores that are available to the dataplane at runtime. The key
must be unique and simple to calculate at runtime. We use a hash of the
5-tuple of any flow that passes through the switch. In order to reduce the
network overhead, we do not introduce new headers to the traffic as it
might cause issues on the forwarder node. The available header is the
Type of Service field in the IP Header, which is an 8-bit wide field. This
limits the information that we can store in this field to 28 = 256. The
problem is that the interarrival time can be on the order of milliseconds and
the timestamp is given in microseconds. One millisecond is 10−3 seconds
and one microsecond is 10−6 seconds, which means that the interarrival
times will almost always be greater than 256 even in near perfect network
conditions. Another limitation is that the BMV2 switch architecture cannot
perform floating point arithmetic, which means we can only work with
integers, and the result of any division will yield an integer without
decimal points.

To circumvent these limitations we can represent milliseconds and
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microseconds as 4-bit values and combine them to an 8-bit representation of
the interarrival time. This produces intervals which are easily convertable
from the represented value to the approximated value by any subsequent
switch in the network path. This solution will result in some loss of
information, but it should suffice to detect delay in the network path.
Microseconds are divided into intervals of 64, which are represented by
values 0 to 15, where 0 ∈ [0, 63], 1 ∈ [64, 127], etc, resulting in a lower and
an upper bound to the actual recorded microsecond value. This is done
because it is expected that it will be more than a thousand microseconds
between most packets in any flow. Milliseconds on the other hand will
have a much more simplistic representation. Any value < 15 is written as
is, whereas any value > 15 is simply represented as 15. Any value > 15
can be interpreted as a high interarrival time. When a subsequent switch
in the path detects a marked TOS field, it will revert the representation to
the approximate value recorded on the previous switch and write this to
its logs. This is done by taking the last 4 bits in the field and multiplying
by 64, and convert the first 4 bits of the field to an integer and multiplying
by a thousand, and add these two values together. Even though we lose
some information by compressing the data in this way, it will be sufficient
to check interarrival times across two switches. It is possible to use the
IP Options field, the problem with this is that it is rarely used and can
potentially be marked as dangerous by some router implementations.

Both switches in the final testbed will be set up with the delay
detection program, shown in its entirety in the appendix A.4.2. Because
the timestamps are stored using the hashed 5-tuple, each switch will be
monitoring a specific direction of the traffic. This is caused by the fact that
we are using the TOS field of the IP header, and it must be marked for a
switch to record its own and the incoming interarrival time.

4.4.2 Packet Loss Detection

As with delay detection, there are many different solutions to the problem
of detecting packet loss. The simplest way is to use ICMP packets and
send a set amount to a host. If we send a thousand packets, and only
950 receive a reply, we can assume there is a 5% loss in the network path.
This falls into the active monitoring category, and we are more interested
in how we can do this with INT. The obvious solution is to count packets at
switch A and B, and compare these. The problem with this solution is that
network traffic is rarely symmetrical, and switch A will not necessarily see
the same amount of packets as switch B. One reason could be that there are
more hosts connected to switch B, compared to switch A, and that there is
more host-to-host communication between these. The solution is as before
to count packets on a per flow basis. We can reasonably expect that the
number of packets seen in flow 1, which flows from switch A to switch B,
is the same for both switches.

Our approach uses counters which are stored in registers. We will use
the TOS field in the IP header to send the number of packets seen in the
flow. There are two counters on each switch. One that counts packets in an
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epoch of 10µs and at the end of the epoch it will mark the current packet’s
TOS field with the count and resets the stored count to 0. The other counter,
which is at the second switch, is incremented for each packet seen between
marked packets. This counter is incremented until the switch detects a
marked packet, and then stores the incoming packet count, its own packet
count, and the difference between the two, as well as resets the counter to
0.

To give an example of how this works: Switch A records 10 packets
in the last 10µs, and marks the current packet with this value in the TOS
field. Switch B has, since the last time it saw a marked packet in the current
flow, seen 7 packets. Switch B will then see that the incoming packet
from Switch A is marked with 10, and write the following to the logs:
”pcount=7, inc pcount=10, pcount diff=3”, i.e. there must be 3 packets that
did not make it from Switch A to B. From this we can infer that there is an
approximately 30% packet loss in the network path. With a sample size this
small, the detected packet loss is massive. However, for a thousand or ten
thousand packets, it will in theory come closer to the actual loss rate.

4.4.3 Considerations

To be perfectly clear, we are not investing a significant amount of time
into perfecting the algorithms for both loss and delay detection. We are
merely interested in finding out if it’s possible or not. The main focus of the
thesis is to investigate the performance impact of INT compared to other
approaches to monitoring. Both of the programs detailed in the previous
sections will hopefully incur a measurable cost in terms of CPU, memory,
disk IO, and bandwidth.

4.5 Summary

In this chapter we outlined the challenges we had to overcome in order
to implement the virtualized testbed and the variations of the EPC and
extended network segment that we will use for experimentation. The
variations make it possible for us to test several different approximations
of monitoring approaches, such as INT, packet capturing, and active
monitoring. We also presented the two different INT implementations we
deploy in the testbed. The next chapter explains the different experiments
and presents the results.
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Chapter 5

Results

This chapter presents the results from the experiments and establishes
some context around the individual experiments and how each monitoring
system performed in comparison with an established baseline.

5.1 Placement of the Monitoring Systems

To visualize how the different monitoring systems are placed throughout
the network, a simplified network topology can be seen in figure 5.1.
This figure shows the RAN and UE as a single entity, which is connected
to the EPC host. On the EPC host, each individual component (MME,
HSS, SPGW-U and SPGW-C) are shown as connected via a common OVS
switch named S1. The SPGW-U is further connected to a BMV2 switch,
S2. S2 connects to the Forwarder node, which in turn is connected to
another BMV2 switch, S3. S3 is the final intermediary network node which
connects the rest of the network to the Iperf3 Server. This figure will be
used throughout this chapter with additional graphics to show how each
monitoring system is placed in the testbed network.

Figure 5.1: A simplified network topology of the virtual testbed.

In figure 5.2 shows where the active monitoring system is placed within
a simplified network topology. It is important to note here that while the
figure shows the active monitoring system on both the Iperf3 server and
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the SPGW-U, it is in fact run directly from the SPGW-U node towards the
Iperf3 server. The advantage this system has over both passive monitoring
and INT, is that it is only placed on one node. The consequence of this fact
is that the amount of configuration needed is vastly less compared to both
INT, which must be tailored to fit a given use-case, and passive monitoring,
which in many cases requires many different nodes to be set up with the
monitoring system.

Figure 5.2: Placement of the Active Monitoring System within the testbed
network.

Figure 5.3 shows how the passive monitoring system has been placed
on every node in the network. This also highlights the inherent weakness of
bottom-up, passive monitoring systems. In order to have a network-wide
monitoring system with this approach, the system itself must be present
on all nodes. It is also important to note that while the MME, HSS and
SPGW-C are monitored, they do not generate a substantial amount of data
while Iperf3 runs. This is caused by the fact that the traffic between these
components belongs to the control plane of the network, and not the data
plane.

Finally the INT system is shown in figure 5.4. Here it is shown how
the INT system is placed on both of the BMV2 switches. The footprint is
lower compared to the passive monitoring system, but it is important to
highlight the fact that the development time of the INT system is fairly
longer compared to both the passive and active monitoring systems. In
order for INT to function properly, it must be thoroughly tested during
its development cycle, whereas both the passive and active systems used
here work out of the box. The passive system does require the operator to
configure which interfaces it will monitor and where to save the captured
packets, but beyond that there is little configuration.
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Figure 5.3: Placement of the Passive Monitoring System within the testbed
network.

5.2 Comparing INT to conventional methods

Presented here is a comparison of how INT performed, plotted in a
boxplot together with the baseline and with either active or passive
monitoring. The INT program used for these measurements was the
Delay Detection program, which has been presented in section 4.4.1. The
baseline bandwidth is measured to be 15.5 Megabits per second (Mbps),
the mean CPU usage is measured at 60%, the mean memory usage is at
approximately 1% of 4096MB, or about 400 MB steady usage. The mean
Disk IO is approximately 100 KBytes written to disk every 5 seconds. These
measurements are used for all comparisons between the Baseline, INT, and
Active and Passive monitoring. All of these baseline measurements are
plotted from 30 runs of Iperf3.

5.2.1 INT v. Active monitoring

Figure 5.5 shows a comparison between the baseline measurement, INT,
and an active monitoring approach. The active monitoring approach
was implemented with High Frequency Ping (HFP) with an interval of
10msec. Figure 5.5a shows the measured bandwidth in megabits per
second between the UE and Iperf3 server. The baseline measurement with
no monitoring has the highest bandwidth at 15.5 Mbps, with INT slightly
behind at a mean 14 Mbps, which is a 10% reduction. HFP performed the
worst of these three with a mean measured bandwidth of 11.5, which is a
25.8% reduction in bandwidth. This is likely caused by excessive queuing
at the SPGW-U, which lowers the overall throughput for the Iperf3 traffic.

Figure 5.5b shows the CPU usage of the BMV2 processes as a percent
of two cores at 3.8GHz. INT had the highest usage at a mean 80% usage,
which is not surprising as it processes each packet. HFP had the lowest
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Figure 5.4: Placement of the INT system within the testbed network,

CPU usage at approximately 45%. This is 25% lower than the baseline CPU
usage and it is unclear why it is that much lower. One possible explanation
is that Ping uses ICMP packets. These packets exist in Layer 3. In order for
the BMV2 switches to process the packets, they must have a layer 4 header
such as a TCP Header. With the reduced bandwidth, there are fewer TCP
packets moving through the switches, giving them less to do per flow.

Figure 5.5c shows the memory usage of the BMV2 processes as a
percent of a total of 4GB. The general memory usage is fairly low, below
1.3% of 4096MB of memory, but INT has the highest usage of these three
approaches. This is unsurprising as the BMV2 switches has to process each
packet and read/write to its hash table of flow timestamps. This increase
in usage is however insignificant when brought into a larger scale. The
difference on an absolute scale of 100% is approximately 0.5% percentage
points, even though the difference is 62.5% between the lowest and highest
measured memory usage.

Figure 5.5d shows the kilobytes written to disk on an interval of 5
seconds. Each data point represents this average. INT on average had
slightly lower disk usage compared to HFP, but also shows a higher
amount of outliers. It is important to note that the scale is fairly small
in terms of Kilobytes, ranging from 0 to 5000. It goes to show that the
difference in Disk IO between INT and Active is fairly small.

5.2.2 INT v. Passive Monitoring

Figure 5.6 shows a comparison between no monitoring, INT, and a passive
monitoring approach. Packet Capturing was selected as the preferred
approach to passive monitoring. The results for INT and no monitoring are
the same as the previous section, and are compared with packet capturing.
Figure 5.6a shows the measured bandwidth of the three approaches. It
shows that a passive monitoring approach has a significant impact on
the measured bandwidth. It measured in at 12 Mbps, which is a 22.5%
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(a) Measured Bandwidth (b) CPU Usage, percent of 2 cores
@3.8GHz

(c) Memory Usage, percent of 4GB (d) Disk Usage, KB/5s

Figure 5.5: INT Versus Baseline and Active Monitoring, based on 30
seconds of iperf3 with 30 second pause, repeated 30 times.

reduction compared to the baseline of 15.5 Mbps. This is caused by the fact
that each and every packet it recorded and written to file, which increases
the time to process a full stream by a substantial amount.

Figure 5.6b shows the measured CPU which is measured at an average
of 65%. This is an 8.3% increase from the baseline measurement. Packet
Capturing does have a slightly lower impact on the CPU usage compared
with INT, which is caused by the fact that the BMV2 switches are not
processing each individual packet to the same extent with the simple
forwarder program.

Figure 5.6c shows the measured memory usage. As with the previous
results, INT uses slightly more than a passive approach, but the overall
memory usage is still quite low.

Figure 5.6d shows the kilobytes written to disk on an interval of 5
seconds. What is clear from the results is that a passive monitoring requires
significantly more disk usage compared to INT. When compared, the INT
disk usage is insignificant. This is again caused by the fact that each packet
is written to a file, and there is one file per monitored node.

49



(a) Measured Bandwidth (b) CPU Usage, percent of 2 cores
@3.8GHz

(c) Memory Usage, percent of 4GB (d) Disk Usage, KB/5s

Figure 5.6: INT Versus Baseline and Passive Monitoring, based on 30
seconds of iperf3 with 30 second pause, repeated 30 times.

5.2.3 Summary

From the results presented in the previous sections, it is clear that INT
has a measurable impact on CPU usage compared to both active and
passive monitoring approaches. Disk Usage was the highest with a passive
monitoring approach. Even though the impact on the CPU usage is
significant, INT performed the best in terms of measured bandwidth. Both
the passive and active monitoring approaches had a larger impact on the
bandwidth. In the next section the results from the investigation of network
delay and packet loss detection will be presented.

5.3 Network Delay Detection

There are three cases that will be presented here: 1) No delay in the
network, 2) a delay between the BMV2 switches, and 3) a delay between
the UE and EPC VMs. The delay was introduced with NetEm [62], with
a mean delay of 500 milliseconds with a variation of 300 milliseconds
on a normal distribution. The delay was introduced on the Fowarder’s
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ethernet interface towards S2 in the egress. Simply put, any packet that
goes towards S2 from the Forwarder will experience a delay between 200
and 800 ms, with a mean value of 500 ms.

All of the results that follow are data points plotted in a scatterplot,
where the X-axis represents the measured time difference, and the Y-axis
represents the incoming time difference from the other switch. For a more
detailed explanation of the timestamping program, see section 4.4.1 in
chapter 4. The figures are supplemented with a simple line regression and
the R-squared value, which represents the overall accuracy of the model.

5.3.1 No delay

Figure 5.7 shows how the data is expected to behave. In a case where there
is no added delay between two P4 switches with a delay detection system,
the interarrival time recorded on both switches should be close to equal,
or Y ≈ X. The A Figure shows Switch 2, while the B figure shows Switch
3. Any point on these plots, is plotted using any given flow’s incoming
interarrival time in the Y axis, meaning time recorded at the other switch.
While the recorded interarrival time on the current switch for any given
flow is plotted in the X axis. From this we can expect any delay between
S2 and S3, in S2’s direction, would cause S2’s recorded interarrival time to
increase, and thus skew the linearly regressed line in a downwards fashion.

(a) S2 results (b) S3 results

Figure 5.7: No Delay between S2 and S3

5.3.2 Delay between S2 and S3

In this first case, where we have introduced a delay of 500 ms with a
variation of 300 ms, we expect the interarrival time measured on S2 to be
higher for any flow moving from the Iperf3 server towards the UE VM.
This is because we know that the delay is only applied to egress traffic
on the Forwarder node, and traffic from the UE to the Iperf3 server will
not be affected. However any replies from the Iperf3 server to the UE
VM will be, as these flows must go through the Forwarder towards the
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S2 switch. Figure 5.8 shows how a delay between the switches affects
the measured and incoming interarrival times between S2 and S3. On S2
there is a clear impact on the interarrival time. The interarrival time on
S2 is higher compared to the incoming interarrival time from S3, shown in
figure 5.8a, which causes a much more gentle slope and a lower R-squared
value. Figure 5.8b shows little to no impact of the delay, which is explained
by the fact that NetEm only applies delay to outgoing packets, and was
configured only on the interface towards S2.

(a) S2 results (b) S3 results

Figure 5.8: Delay between S2 and S3, in S2’s direction

5.3.3 Delay between UE and EPC

In this case we have introduced the delay on the egress interface which
connects the EPC VM to the eNB and UE VMs. Since there is no delay
between the P4 switches, we can expect that the interarrival time to be close
to equal on both switches. Figure 5.9 shows the impact of this introduced
delay, which is minor. S2 shows a slight skew, meaning it did record
slightly higher interarrival times for its recorded flows, but compared to
the previous case it is not significant. What this tells us is that INT can
be fairly imprecise if there is a network problem such as delay outside of
the monitored segment, and yield a false negative when there is in fact a
problem in the network. This also points towards the fact that any INT
system must be network-wide to yield accurate results.

5.4 Packet Loss Detection

There are two cases that are presented here: 1) No loss in the network, and
2) a 5% loss between S2 and S3. The loss was introduced with NetEm, and
as with delay, it will only be applied to outgoing packets on the interface
which connects S2 and the Forwarder node. The results are presented with
simple tables that show the mean loss percent for each major flow on a
switch. A major flow is defined here as a flow with more than a thousand
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(a) S2 results (b) S3 results

Figure 5.9: Delay on EPC VM, outside the INT segment

packets counted. The result tables are random samples of ten rows from
the relevant switch and case.

All of the tables follow the same format with six columns. The hash
column contains the hash of the 5-tuple of a given flow. The total pcount
column shows the total number of counted packets across all 10 millisecond
epochs during the experiments, and the total loss column shows the total
difference between the packet count and incoming packet count across all
epochs. The loss percent column is the percentage of loss measured in the
given flow. The switch and case columns are added for readability in post-
processing of the results, as a way to see which switch and which case the
results represent. There are five columns that have been truncated, which
make up the 5-tuple of the flow with source and destination IP address,
source and destination port and protocol type.

5.4.1 No Loss

Tables 5.1 and 5.2 show samples of ten rows with no added packet loss in
the network path between the two switches. There are some flows which
experienced some minor packet loss, which should be considered normal
behaviour of a fully virtualized and emulated network.

5.4.2 Loss between S2 and S3

Tables 5.3 and 5.4 show the impact of added loss in the network. All
the flows monitored by S2 experienced a loss percentage quite close to
the actual 5% introduced through NetEm. It is clearly not 100% accurate,
but the mean loss across all flows is 4.09, which gives an accuracy of
(4.09/5) ∗ 100 = 81.8%. The flows monitored by S3 did not experience
any significant loss, which is explained by the direction of the introduced
loss.
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total pcount total loss loss percent switch case
hash
437 19335 0 0.000000 s2 baseline
7067 17757 0 0.000000 s2 baseline
14 23784 14 0.058863 s2 baseline
5914 47110 0 0.000000 s2 baseline
3245 21947 0 0.000000 s2 baseline
7699 17183 0 0.000000 s2 baseline
6945 24525 0 0.000000 s2 baseline
8107 21943 0 0.000000 s2 baseline
400 20188 0 0.000000 s2 baseline
4627 21147 2 0.009458 s2 baseline

Table 5.1: Detected Packet Loss on S2 with no added loss in the network.

total pcount total loss loss percent switch case
hash
5265 36068 0 0.000000 s3 baseline
6542 39673 0 0.000000 s3 baseline
5782 35574 3 0.008433 s3 baseline
1420 1243 0 0.000000 s3 baseline
8082 37295 0 0.000000 s3 baseline
4573 40281 0 0.000000 s3 baseline
340 33172 9 0.027131 s3 baseline
2689 39549 0 0.000000 s3 baseline
3083 35166 0 0.000000 s3 baseline
4851 34115 3 0.008794 s3 baseline

Table 5.2: Detected Packet Loss on S3 with no added loss in the network.

5.5 Loss v. Delay Detection

The last set of results is a comparison between the two different INT pro-
grams. Each graph shows how each experiment impacted the measure-
ments compared with no delay or loss in the network. The tstamp label
represents Delay Detection, and the Ploss label represents Packet Loss de-
tection. The impact to the measured bandwidth, shown in figure 5.10a,
does not vary much between the two methods and their related experi-
ments. CPU Usage, shown in figure 5.10b, does not vary much. Memory
usage, shown in figure 5.10c, is also fairly equal between the two methods.
The only difference of some note is the Disk Usage, shown in figure 5.10d,
where there are some higher values for delay detection. This is a side-effect
how the delay detection program is written and how the data is collected.
For every packet in any given flow, the delay detection program will cal-
culate and record the interarrival time, which is written to the switch logs.
This is a disk IO operation, which is costly in terms of time. Loss detection
on the other hand operates on a 10msec epoch, while still processing each
packet, but it only performs the necessary work at the end of each epoch.
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total pcount total loss loss percent switch case
hash
910 20911 858 4.103104 s2 with loss
3853 18590 708 3.808499 s2 with loss
7712 20754 879 4.235328 s2 with loss
5771 18779 780 4.153576 s2 with loss
2868 21109 869 4.116727 s2 with loss
4492 19711 861 4.368119 s2 with loss
4234 21743 926 4.258842 s2 with loss
11 21363 841 3.936713 s2 with loss
1177 21080 896 4.250474 s2 with loss
6823 21670 932 4.300877 s2 with loss

Table 5.3: Detected Packet Loss on S2 with added loss in the network

total pcount total loss loss percent switch case
hash
2301 36288 0 0.00000 s3 with loss
7402 38071 3 0.00788 s3 with loss
3007 34571 0 0.00000 s3 with loss
5048 1348 0 0.00000 s3 with loss
4627 37806 0 0.00000 s3 with loss
7069 36662 0 0.00000 s3 with loss
2526 37486 0 0.00000 s3 with loss
3452 36808 0 0.00000 s3 with loss
2720 34728 0 0.00000 s3 with loss
1797 35848 0 0.00000 s3 with loss

Table 5.4: Detected Packet Loss on S3 with added loss in the network

5.6 Summary

Section 5.2 presents how INT performs compared to Active and Passive
monitoring. INT does incur a higher CPU cost with a mean 80% usage,
but the measured bandwidth between the UE and Iperf3 server remains
close to the baseline measurement with an average of 14.5 Mbps. Passive
monitoring does however have the highest Disk IO cost of the three
monitoring approaches, where it exceeded well over 50,000 KBytes written
to disk in 5 seconds, for the duration of the experiments. This can be
explained by the fact that each packet must be copied and written to
disk, which will increase the processing time per packet by a substantial
amount. Active Monitoring incurred the highest cost to the measured
bandwidth, clocking in at approximately 11.5 Mbps, which is a 25.8%
reduction compared to the baseline of 15.5 Mbps. Passive monitoring
measured approximately 12 Mbps, which is a 22.5% reduction.

Section 5.3 presents how INT can be used to detect delay between two
P4-capable switches running the same P4 program. The delay detection
system itself is sensitive to direction, what that means is that if there is
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(a) Measured Bandwidth (b) CPU Usage, percent of 2 cores
@3.8GHz

(c) Memory Usage, percent of 4GB (d) Disk Usage, KB/5s

Figure 5.10: Packet Loss versus Delay Detection, based on 30 seconds of
iperf3 with 30 second pause, repeated 30 times.

a delay between S2 and S3, in the direction of S2, as the case is in these
results, it will only be detectable on S2. It should also then follow that if the
direction of the delay is changed to be towards S3, this switch would then
detect the delay. However it did not reliably detect any delay whenever it
was introduced outside of the network segment between S2 and S3.

Section 5.4 presents how INT can be used to detect packet loss between
two P4-capable switches. As is the case with delay detection, the same P4
program runs on both switches. We introduced a 5% packet loss between
S2 and the forwarder, in S2’s direction. Similar to delay detection, packet
loss detection is sensitive to the direction of the loss. It did not achieve
100% accuracy in detecting the packet loss, but it did detect 81.8% of the
lost packets, which shows that INT can indeed with reasonable accuracy
detect packet loss in a given network segment.
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Chapter 6

Discussion

Here we discuss the findings of the results presented in the previous
chapter. First we answer each research question in turn and discuss
the implications of our findings. Then we briefly address some of the
limitations and criticism of our work.

6.1 Findings

In chapter 1 we propose two research questions; How does INT impact
the network performance of a 4G LTE Network compared to Active and
Passive monitoring approaches? And to what extent can INT be used to
detect two common network problems, and how accurate is it? Here we
present our final answers to these questions in turn. In order to provide
the reader with some additional context to understand our conclusions,
we give here a brief, high-level overview of INT. INT leverages the data
plane of programmable switches, which means we can use the in-band
network traffic itself to shuttle monitoring data between switches. To give
an example, in this thesis we use the TOS Field of the IP Header to send the
interarrival time of packets from one switch to the next. This is then used
on the subsequent switch to write its own measured interarrival time and
the one received from the other switch to its logs. This information can be
used to spot any major difference between the two, which can be used to
detect network delay.

6.1.1 The Performance Impact of INT

In order to answer this question we must first discuss what performance
means. In our case it means the measured bandwidth between two
fixed points in the network (i.e. the UE VM and Iperf3 server) and
the resource usage of selected network components. The measured
bandwidth is considered as the baseline experience of the network. The
resources we have measured are the CPU and Memory usage of the BMV2
switch instances and the Disk IO of the EPC VM. With the bandwidth
measurements and the KPIs combined, we have a fairly solid overview of
how the network performs.
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The baseline measurement shows that the average bandwidth of our
network is 15.5 megabits per second (Mbps), which is the maximum
bandwidth that the OAI RAN can provide with the simulators. The
bandwidth is considered as the main metric which we use for further
comparisons between INT, active and passive monitoring systems. The
CPU and memory usage are collected from the BMV2 switch instances
during experiments, and tells us how each monitoring system specifically
impacts the switches. These readings do not necessarily tell us how each
EPC component is performing during each experiment, but coupled with
the bandwidth measurements we can extrapolate how the network as a
whole is performing. At the end of the day the bandwidth measurements
can be used as an analogy of how a user or network host would experience
the network.

From the results we can see that INT performs better than both the
active and passive monitoring systems in terms of bandwidth. But this
alone does not tell the whole story. The CPU cost of INT is higher than
both of the other systems, while the measured bandwidth is also higher.
INT has on average 14.5 Mbps of bandwidth, compared to the 11.5 Mbps of
Active monitoring and the 11.9 Mbps of Passive monitoring. If we compare
these bandwidth measurements to the baseline, we see that INT incurs a
10% reduction, Passive incurs a 22.2% reduction, and Active incurs a 25.8%
reduction. The scale for the Memory usage is small to the point where the
difference between the highest usage (INT) and the lowest usage (Passive)
is approximately 0.5% percentage points. This makes the difference in
Memory cost insignificant between the three approaches.

The Active monitoring system was implemented with a high frequency
ping on 10 millisecond intervals. What this high frequency achieves is a
higher monitoring fidelity. If the sampling rate were to be significantly
lower we would run into the same issues that more coarsely granulated
systems have, which is the risk of not catching any transient congestion
or packet loss in the network. It is important to point out that we are
increasing the total volume of traffic by a substantial amount, which causes
an increased amount of work for the SPGW-U. The SPGW-U itself has a key
role as the main gateway for all user-generated traffic in the network, and
the added work of handling the high frequency ping operation, it should
then be expected to see a drop in the measured bandwidth. We conclude
that the main reason INT performs better compared to the active system
is that INT does not generate any additional traffic, but rather utilizes
available fields in the IP header of any packet passing through the switch.

The passive monitoring system on the other hand was implemented
with Tshark, which copies each packet on any selected interfaces and
writes these to a file. This causes a significant amount of Disk IO, which
is one of the most time consuming processes in a modern computer. It
should also be noted that the passive monitoring system was present on the
SPGW-U, the Forwarder, the Iperf3 server and both of the BMV2 switches.
With all of these nodes being monitored with an approach that writes a
significant amount of information to disk all at the same time, a decrease
in bandwidth is to be expected. The main reason that INT performs better
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is that it does not write a comparable amount of information as the passive
system. There is some Disk IO per BMV2 switch, but the log output
generated for each packet in the delay detection system is small compared
to a full packet copy with all protocol headers. Since there are only nodes
generating Disk IO in the INT case, compared to the five in the passive
monitoring case, we can explain the discrepancy in measured bandwidth
between these two approaches. It is possible to improve the performance
of passive monitoring systems by introducing a dedicated node to handle
packet capturing. By implementing port mirroring on a strategically placed
network node, it can send a copy of every packet to this dedicated node,
which will handle packet capturing and analysis. This is incidentally how
most IPS and IDS implementations function.

INT does incur a higher cost than both active and passive monitoring
when it comes to CPU usage. This is caused by the added overhead of
processing each packet and calculating either interarrival time or potential
packet loss. The amount of calculation necessary for one packet is minimal,
i.e. timestamp of current packet subtracted by the previous packet’s
timestamp. But when there are 20,000 packets that must be processed, it
will quickly add up to more CPU time. Each switch must also have a
flow table to store data about each flow, whether it is the timestamp or
number of packets seen in a given time span, which also uses CPU time.
The Memory cost that INT incurs is minimal in the bigger picture.

To summarize, INT does perform better than both the active and
passive monitoring systems we have implemented here, but the resource
cost is slightly higher in terms of CPU. We believe this is caused by the
added processing each BMV2 switch must do per packet, but each switch
does not write the full content of each packet to disk, nor do they generate
any additional traffic. The result is a monitoring system which can have
minimal impact on the bandwidth, at a slight cost to CPU. Because there is
a cost to CPU, it could potentially impact an enterprise network in a more
significant way, as CPU on network devices such as routers and switches is
costly and strictly limited. It was briefly discussed briefly in chapter 2 that
reckless use of INT will have a significant impact on the performance of
any given network. INT must be implemented with care and due diligence
in relation to how much information is stored per packet and how the
information is stored and analyzed later on. The results here also speak
to this fact with a very simple program as delay detection, the CPU usage
was significantly higher than both active and passive monitoring, going up
to 100% at times.

6.1.2 Detecting common Network Problems with INT

The second research question we have investigated here is to what extent
can INT be used to detect two common network problems; Delay and
Packet loss. To answer this we have developed two distinct INT programs,
each tailored to detect a single problem. The delay detection program was
also used as the INT system of choice to help answer the first research
question. Here we discuss each program in turn and how well each could
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detect the given problem.
The delay detection results show a clear impact on the trend of the data

whenever there is an added delay in the network path. It is also sensitive
to direction, meaning that each switch detects any delay in the incoming
traffic, if that traffic has previously passed through another BMV2 switch.
The reason for this is that the system is flow-based and relies on detecting a
packet marked with the interarrival time of itself and the previous packet in
the given flow. The most challenging part of this system is the analysis and
detection of the actual problem. It requires that the data is first collected
from the switch log, which is raw text. This must be parsed and formatted
into CSV data, which can be read and parsed through the Pandas library.
Finally it must be plotted and a linear regression must be performed in
order to establish a trend of the data. It was however unreliable and
inaccurate at best when the delay was introduced on the EPC VM, and not
on an interface between the two BMV2 switches. This goes to show that
if the INT system is to maintain reasonable accuracy, it must be network-
wide.

The Packet Loss detection program does detect the problem with an
accuracy of approximately 80%, or about 4 out of every 5 lost packets. The
reason for this inaccuracy is not known for sure, but we can speculate that
it is caused by transient bursts of network traffic. The Forwarder node does
not have specialised switching software, and will in addition apply the 5%
packet loss. This could cause some excessive queuing on the Forwarder
node, causing the marked packet to get shuffled and arrive before or after
other packets. The result here could be that the receiving switch would
count too few or too many packets to maintain an accurate count in a given
flow. In order to verify this we would need to perform more elaborate
experiments. If we compare this to a simple test where we introduce the
same packet loss and use ping, we will detect 100% of the loss. It does
show that INT can be used to detect packet loss, but with reduced accuracy
compared to simpler and more lightweight systems and tools.

6.1.3 Other Findings and Observations

The original results included the time taken for the Iperf3 client to complete
a full run and the number of retransmissions recorded on the client. These
were both omitted from the results chapter as they do not add any value,
positive or negative, to the overall evaluation of INT. The time taken is of
little interest as we did not create a file with a given size and content for
Iperf3 to transmit from client to server. In retrospect this would have been
valuable, as Iperf3 will attempt to max out the throughput and available
bandwidth with the parameters used in the experiments.

Retransmissions on the other hand can be spurious with TCP. This can
be caused by a number of different reasons, such as corrupted header
fields, packet loss, or excessive delay resulting in timeouts. What we
also found was that as the measured bandwidth increased, the number of
retransmissions went up. In order to discover the root cause of this, we
designed a simple experiment. This experiment consisted of an additional
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node in the FOP4 network which was connected to the SPGW-U. The Iperf3
script was run from this node and metrics were collected from the BMV2
switches and EPC node in the same manner as earlier experiments. In this
case the measured bandwidth was twice the measured bandwidth from
the UE, but the number of retransmissions did not increase accordingly
with the higher bandwidth. From this we can conclude that it is the
connection between the UE and eNodeB which is at fault, and that
an increased amount of retransmissions is expected behaviour as the
measured bandwidth reaches its maximum capacity. Thus it was decided
that retransmissions are of little interest in the final evaluation.

6.2 Limitations and Criticism

There are a few limitations that are important to point out in the
implementation and experiments. The BMV2 software switch is first and
foremost meant to be used for prototyping and experimentation with P4,
it is not a production-grade switch. Its performance compared to OvS
is poor. Where OvS can achieve bandwidths of several Gbps, the BMV2
can achieve up to 30 Mbps. This is however not a major limitation as the
OAI RAN does not provide more than 15 Mbps. In a more ideal setting it
would be advantageous to implement the P4-OvS, which has comparative
performance to the stock OvS implementation.

The testbed created in this project uses solid open-source projects
such as FOP4 and OpenAirInterface. In order to deploy the OAI EPC
components, they do require some slight alteration of the Dockerfiles.
This is done to install the necessary packages to allow the base image
to be controlled by FOP4 and connect them to a OpenVSwitch instance.
Because the testbed is based on Mininet, the internal performance relies
on the OpenVSwitch, which is quite powerful. However the emulated
radio network between the UE and RAN has its limitations and the BMV2
switches are not high performance switches compared to OpenVSwitch
instances. The internal network in VirtualBox can achieve bandwidths of
up to 3Gbps, which means that in a high performance environment such
as a data center it will not be up to par. This leads us to considering the
testbed to be an environment limited to prototyping and training.

Both of the INT systems implemented cannot be considered real-time
monitoring systems, and thus they are not fully compliant with the Top-
Down Approach. Neither are they network-wide, nor do they have a
declarative measurement abstraction with which to dynamically adjust
the use-case of the systems. Both systems however can, in theory, be
implemented in Sonata [20], which does have a query-language with which
to adjust what the switches should monitor. Using the approach outlined
in section 4.4.1 in chapter 4 with interarrival times, it should be possible to
create a delay detection query. The major limitation in this project’s context
is that the collected data must be first copied from the logs, then parsed and
analyzed.

A natural criticism of the work is whether or not the testbed should
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have been deployed in a cloud environment, rather than on a desktop
computer. The defense of this choice is multi-faceted. Firstly, the COVID-
19 pandemic resulted in government-ordered lockdowns, which meant
that all technical work in extended periods of time had to be done from
home. With that there is the uncertainty of network access to SimulaMet’s
cloud environment, which relies on not only the uptime of the environment
itself but also the ISP. There were several short outages during the spring
semester at crucial times where network access was a must, which had
only a minor impact as the testbed was deployed locally. Secondly
there is the consideration of deployment times and setup of automated
deployments. With a cloud environment comes the requirement of more
complex automation systems such as Puppet, OpenStack Heat, Ansible,
or similar systems. With a more localized environment, i.e. a desktop
computer, this can be done faster and more reliably, and remote work in
this environment relies only on the fact that the computer is powered on.

It is also important to consider the purpose of the testbed. Other 5G
and 4G testbeds focus on network slicing and are generally deployed in
complex OpenStack environments with complete MANO systems. The
testbed created in conjunction with this project relies on VirtualBox and
has some fairly heavy resource requirements for a desktop computer. This
testbed can be deployed by anyone with a similar system, but who do
not necessarily have access to a much more complex and powerful cloud
environment. It can also be used to test P4 prototypes or to gain familiarity
with the OAI EPC and RAN. Since the EPC is deployed in a Mininet
network, it can also be expanded with a fully simulated enterprise network
to see how it potentially will behave in such a setting.
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Chapter 7

Conclusion

The main objective of this thesis was to design and a develop a 4G
LTE Testbed to investigate the performance impact of INT in such an
environment, with a secondary objective to investigate how well INT can
detect two common network problems in this environment. Here we have
developed a testbed that deploys three virtual machines. Two of these VMs
are for the OAI RAN components, the eNodeB and User Equipment, with
a simulated radio connection over ethernet. The last VM runs the EPC in
a FOP4 environment with all of the EPC components as containers and
two BMV2 switch instances which can run P4 programs. P4 has been used
to implement two different INT systems, one to detect packet loss and the
other to detect network delay. We use the interarrival time between packets
in a given flow to detect delay, and packet counters are used to detect
packet loss. The INT system to detect delay has been compared to an Active
monitoring system, which has been implemented with high frequency
ping, and a Passive monitoring system, which has been implemented with
Packet Capturing through Tshark. The experiments use primarily Iperf3 to
generate traffic between the UE VM and an Iperf3 server located on the EPC
VM in the FOP4 environment, whereas the common network problems
have been introduced with NetEm on a single node between the Iperf3
server and the SPGW-U node in the EPC.

The testbed itself is flexible in that the EPC segment can be controlled
through FOP4, a fork of Mininet. With this we can customize the
networking between each EPC component and introduce additional
network segments, which we used to deploy the Iperf3 Server. The
deployment of the testbed infrastructure is managed and orchestrated with
Vagrant and is publicly available on Github [56]. This testbed is, to the best
of our knowledge, unique in that no other publicly available 4G LTE or 5G
NGC testbeds have the capability to integrate P4 switches.

The results show that INT has a lower impact on the measured
bandwidth between the UE and Iperf3 server and no significant cost to
Disk IO. INT, however, incurs a higher cost to CPU and a minimal increase
to the Memory cost when compared to Active and Passive monitoring. We
believe this is caused by the added computation required per packet on
each BMV2 switch instance. Each switch must keep a hash table keyed
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on the 5-tuple of each flow, and store either the current packet count of
a flow, or the previous packet’s arrival time to compute the interarrival
time. The resulting data from these operations is stored to the switch’s logs,
which causes some disk IO. Active Monitoring had the most significant
impact on the measured bandwidth, which may be caused by the fact
that we introduce additional traffic on top of the heavy Iperf3 traffic.
Passive Monitoring had the highest measured impact on Disk IO, which is
unsurprising due to the fact that Tshark will write the full content of each
and every packet to a packet dump file, which causes significant Disk IO.
From this we can conclude that INT is a viable monitoring system when
implemented with caution, since it will incur some cost to CPU, which
already is a sparse resource in the context of networking devices.

Both of the INT systems implemented here are shown to be able to
detect common network problems. The delay detection system can use
simple linear regression in order to detect the trend of the data. The packet
loss detection system however was only able to detect 80% of lost packets.
Both of these systems are flow-based and sensitive to the direction of the
introduced problem. When compared to each other in terms of cost to
resources and bandwidth they have similar cost. This goes to show that
these types of systems, i.e. direction-sensitive flow-based INT systems, are
viable systems for monitoring in the testbed environment, and both are
potentially useful in larger, more complex environments.

7.1 Future Work

As it stands currently the Vagrantfile is only compatible with VirtualBox.
There is the possibility of expanding or creating a similar Vagrantfile
that is compatible with OpenStack. There are plugins that allow for
this, and it would also mean that the testbed could be deployed in a
more powerful cloud environment with more resources and a more high
performance network. It would mean a more powerful testbed that can be
used by students, technicians, and engineers who have access to such an
environment.

Both of the INT systems can be taken several steps further. The
BMV2 switch has the capability of being connected to a controller which
can dynamically access counters, but not registers, at runtime. The
disadvantage of using P4 counters is that they cannot be read by the switch
at runtime, but they can be written to.

The INT systems can also be deployed in a more advanced testbed, such
as the one created by SimulaMet, on P4-OvS switches that connect the EPC
components. With this approach it is possible to also monitor the control
traffic between the EPC components.

The testbed could also be used to generate datasets to train machine
learning models. By expanding each component or using tools for docker
containers, it is possible to collect a huge amount of information while the
EPC undergoes normal operation. For example, by inducing heavy load on
one specific component, how will this affect the other components.
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The project relies heavily on FOP4 which has some drawbacks. One
example is the fact that it does not behave exactly as a typical Python
package. In order to use the libraries, the topology scripts must be placed
and run from the FOP4 root directory. Ideally it would be updated to be
installed as a standard Python package, similarly to ContainerNet, such
that the libraries can be used from any directory on the machine which
hosts the FOP4 topology.
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Appendix A

Listings

A.1 Vagrant Provisioning

A.1.1 Vagrantfile

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3

4 """

5 This Vagrantfile will set up 3 VMs, requiring up to 90GB total storage, 12GB

RAM and at least 6 available cores.↪→

6

7 These VMs are connected using the internal VBox Network and each has a NIC

connected to the VBox NAT Network for Internet Access↪→

8

9 The eNB and UE VMs use the same script for configuration and requires the

user to manually build the binaries↪→

10

11 The EPC machine requires the user to manually run the ansible-playbook

located in FOP4/ansible↪→

12 - Any topology script must be run from within the FOP4 directory

13

14 """

15

16 Vagrant.configure("2") do |config|

17 # Dedicated VM for eNB and UE

18 config.vm.define "enb" do |enb|

19 # Using Ubuntu 18.04 Bionic Beaver

20 enb.vm.box = "ubuntu/bionic64"

21

22 # Using vagrant-disksize plugin

23 enb.disksize.size = '20GB'

24

25 # set name, ram, cpus

26 enb.vm.provider "virtualbox" do |v|

27 v.name = "ran"
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28 v.memory = 4096

29 v.cpus = 2

30 v.customize ["modifyvm", :id, "--natnet1", "192.168.72.0/24"]

31 end

32

33 enb.vm.network "private_network", ip: "10.10.1.2", virtualbox__intnet:

true↪→

34

35 # Install required packages and build binaries

36 enb.vm.provision "shell", path: "scripts/bootstrap_ran.sh"

37

38 # Copy and move config files to correct locations

39 enb.vm.provision "file", source: "config/lte-fdd-basic-sim.conf",

destination: "~/"↪→

40 enb.vm.provision "shell", inline: "mv

/home/vagrant/lte-fdd-basic-sim.conf

/home/netmon/src/enb_folder/ci-scripts/conf_files/"

↪→

↪→

41

42 end

43

44 # VM for UE

45 config.vm.define "ue" do |ue|

46 ue.vm.box = "ubuntu/bionic64"

47 ue.disksize.size = "20GB"

48

49 ue.vm.provider "virtualbox" do |v|

50 v.name = "ue"

51 v.memory = 4096

52 v.cpus = 2

53 v.customize ["modifyvm", :id, "--natnet1", "192.168.72.0/24"]

54 end

55

56 ue.vm.network "private_network", ip: "10.10.1.3", virtualbox__intnet:

true↪→

57

58 # Install required packages and build binaries

59 ue.vm.provision "shell", path: "scripts/bootstrap_ran.sh"

60

61 # Copy and move config files to correct locations

62 ue.vm.provision "file", source: "config/ue_eurecom_test_sfr.conf",

destination: "~/"↪→

63 ue.vm.provision "shell", source: "mv

/home/vagrant/ue_eurecom_test_sfr.conf

/home/netmon/src/enb_folder/openair3/NAS/TOOLS/ue_eurecom_test_sfr.conf"

↪→

↪→

64 end

65

66 # VM for EPC and FOP4 topology

67 config.vm.define "epct" do |epct|

68 epct.vm.box = 'ubuntu/bionic64'
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69 epct.disksize.size = '50GB'

70 epct.vm.provider "virtualbox" do |v|

71 v.name = "epct"

72 v.memory = 4096

73 v.cpus = 2

74 v.customize ["modifyvm", :id, "--natnet1", "192.168.72.0/24"]

75 end

76 epct.vm.network "private_network", ip: "10.10.1.4", virtualbox__intnet:

true↪→

77 epct.vm.provision "shell", path: "scripts/bootstrap_epc.sh"

78 end

79 end

A.1.2 VM Bootstrap scripts

The following scripts are used by Vagrant to provision each VM and set
them up with the necessary software packages and repositories. Both
scripts follow the same structure, first they create the netmon-user and
related permissions, sudo-rights, and folders. Next, they install some
required packages and clone down necessary repositories. Finally they set
the necessary ownership of the netmon home-folder.

RAN Bootstrap

1 #!/usr/bin/env bash

2

3 set +x

4

5 apt-get update

6 # Needed to install Tshark (and by extension, Wireshark) without any

installation prompts↪→

7 echo "wireshark-common wireshark-common/install-setuid boolean true" |

debconf-set-selections↪→

8 DEBIAN_FRONTEND=noninteractive apt-get install -y git tshark

linux-image-5.4.0-66-lowlatency linux-headers-5.4.0-66-lowlatency iperf3↪→

9

10 # Set up the local user with a known password and add necessary permissions,

set groups, and add home folder↪→

11 useradd -m -d /home/netmon -s /bin/bash netmon

12 echo "netmon:netmon" | chpasswd

13 echo "netmon ALL=(ALL) NOPASSWD:ALL" > /etc/sudoers.d/99_netmon

14 chmod 440 /etc/sudoers.d/99_netmon

15 usermod -aG vboxsf netmon

16

17 mkdir /home/netmon/src

18

19 # Pull the OpenAirInterface and checkout the required version. The eNB and

UE are always in distinct folders for increased usability.↪→
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20 BASE_DIR="/home/netmon/src"

21 cd "$BASE_DIR"

22 git clone https://gitlab.eurecom.fr/oai/openairinterface5g.git enb_folder

23 cd enb_folder

24 git checkout v1.2.2

25 cd ..

26 cp -R enb_folder/ ue_folder

27

28 # Set necessary ownership

29 chown -R netmon:netmon /home/netmon/

EPC Bootstrap

1 #!/usr/bin/env bash

2

3 # Set up the local user with a known password and add necessary permissions,

set groups, and add home folder↪→

4 useradd -m -d /home/netmon -s /bin/bash netmon

5 echo "netmon:netmon" | chpasswd

6 echo "netmon ALL=(ALL) NOPASSWD:ALL" > /etc/sudoers.d/99_netmon

7 chmod 440 /etc/sudoers.d/99_netmon

8 usermod -aG vboxsf netmon

9

10 # Prepare relevant folders and permissions

11 mkdir -p /home/netmon/src/openair-components

12 mkdir -p /home/netmon/src/archives

13 chown -R netmon:netmon /home/netmon/src

14

15 # ENVs to properly pull and build Docker images

16 BASE_DIR="/home/netmon/src"

17 EPC_DIR="/home/netmon/src/openair-components"

18

19 sudo apt-get update

20 sudo apt-get install git

21

22 # Pull the required repositories to build the EPC components and the FOP4

environment↪→

23 git clone --branch fop4_extension_new

https://github.com/vetletm/openair-hss.git "$EPC_DIR/openair-hss"↪→

24 git clone --branch fop4_extension_new

https://github.com/vetletm/openair-mme.git "$EPC_DIR/openair-mme"↪→

25 git clone --branch fop4_extension_new

https://github.com/vetletm/openair-spgwc.git "$EPC_DIR/openair-spgwc"↪→

26 git clone --branch fop4_extension_new

https://github.com/vetletm/openair-spgwu-tiny.git

"$EPC_DIR/openair-spgwu-tiny"

↪→

↪→

27 git clone --branch vetletm-fix-ansible https://github.com/vetletm/FOP4

"$BASE_DIR/FOP4"↪→
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28 git clone https://github.com/OPENAIRINTERFACE/openair-epc-fed.git

"$BASE_DIR/openair-epc-fed"↪→

29

30 # Build each image in turn

31 cd "$EPC_DIR"

32 cd openair-hss

33 sudo -E docker build --target oai-hss --tag oai-hss:production --file

docker/Dockerfile.ubuntu18.04 .↪→

34 cd "$EPC_DIR"

35

36 cd openair-mme

37 sudo -E docker build --target oai-mme --tag oai-mme:production --file

docker/Dockerfile.ubuntu18.04↪→

38 cd "$EPC_DIR"

39

40 cd openair-spgwc

41 sudo -E docker build --target oai-spgwc --tag oai-spgwc:production --file

docker/Dockerfile.ubuntu18.04 .↪→

42 cd "$EPC_DIR"

43

44 cd openair-spgwc

45 sudo -E docker build --target oai-spgwc --tag oai-spgwc:production --file

docker/Dockerfile.ubuntu18.04 .↪→

46 cd "$BASE_DIR"

47

48 # Pull repository needed to install P4, BMV2, Mininet and all necessary

dependencies↪→

49 git clone https://github.com/jafingerhut/p4-guide "$BASE_DIR/p4-guide"

50 cd "$BASE_DIR"

51 # This script calls exit on finish, nothing can be done after it through

vagrant.↪→

52 ./p4-guide/bin/install-p4dev-v2.sh |& tee log.txt

A.2 EPC Scripts

The following sections contain the scripts used to deploy, configure, start
and stop the EPC network functions as containers.

A.2.1 Docker Deployment and Configuration

Here is a collection of simple management scripts used after the EPC, RAN
and FOP4 environment has been fully configured.

Copy and execute configuration-scripts

1 #!/usr/bin/env bash

2 echo "Configuring HSS"
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3 sudo -E docker cp ./hss-cfg.sh mn.hss:/openair-hss/scripts

4 sudo -E docker exec -it mn.hss /bin/bash -c "cd /openair-hss/scripts &&

chmod 777 hss-cfg.sh && ./hss-cfg.sh"↪→

5

6 echo "Configuring MME"

7 sudo -E docker cp ./mme-cfg.sh mn.mme:/openair-mme/scripts

8 sudo -E docker exec -it mn.mme /bin/bash -c "cd /openair-mme/scripts &&

chmod 777 mme-cfg.sh && ./mme-cfg.sh"↪→

9

10 echo "Configuring SPGW-C"

11 sudo -E docker cp ./spgwc-cfg.sh mn.spgwc:/openair-spgwc

12 sudo -E docker exec -it mn.spgwc /bin/bash -c "cd /openair-spgwc && chmod

777 spgwc-cfg.sh && ./spgwc-cfg.sh"↪→

13

14 echo "Configuring SPGW-U"

15 sudo -E docker cp ./spgwu-cfg.sh mn.spgwu:/openair-spgwu-tiny

16 sudo -E docker exec -it mn.spgwu /bin/bash -c "cd /openair-spgwu-tiny &&

chmod 777 spgwu-cfg.sh && ./spgwu-cfg.sh"↪→

Start Tshark Packet Capturing

1 #!/usr/bin/env bash

2 # Sets up all containers with Tshark for Packet Capturing

3

4 echo "Starting Tshark on all FOP4 network hosts: HSS, MME, SPGW-C, SPGW-U,

Forwarder, Iperf_dst"↪→

5 # Start network logs

6 sudo -E docker exec -d mn.hss /bin/bash -c "nohup tshark -i hss-eth0 -i eth0

-w /tmp/hss_check_run.pcap 2>&1 > /dev/null"↪→

7 sudo -E docker exec -d mn.mme /bin/bash -c "nohup tshark -i mme-eth0 -i

lo:s10 -i eth0 -w /tmp/mme_check_run.pcap 2>&1 > /dev/null"↪→

8 sudo -E docker exec -d mn.spgwc /bin/bash -c "nohup tshark -i spgwc-eth0 -i

lo:p5c -i lo:s5c -w /tmp/spgwc_check_run.pcap 2>&1 > /dev/null"↪→

9 sudo -E docker exec -d mn.spgwu /bin/bash -c "nohup tshark -i any -w

/tmp/spgwu_check_run.pcap 2>&1 > /dev/null"↪→

10 sudo -E docker exec -d mn.forwarder /bin/bash -c "nohup tshark -i

forwarder-eth2 -i forwarder-eth3 -w /tmp/forwarder_check_run.pcap 2>&1 >

/dev/null"

↪→

↪→

11 sudo -E docker exec -d mn.iperf_dst /bin/bash -c "nohup tshark -i

iperf_dst-eth0 -w /tmp/iperf_dst_check_run.pcap 2>&1 > /dev/null"↪→

Start each EPC component in turn

1 #!/usr/bin/env bash

2 # Starts each EPC component with a 2 second pause

3
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4 echo "Starting HSS ..."

5 sudo -E docker exec -d mn.hss /bin/bash -c "nohup ./bin/oai_hss -j

./etc/hss_rel14.json --reloadkey true > hss_check_run.log 2>&1"↪→

6 sleep 2

7

8 echo "Starting MME ..."

9 sudo -E docker exec -d mn.mme /bin/bash -c "nohup ./bin/oai_mme -c

./etc/mme.conf > mme_check_run.log 2>&1"↪→

10 sleep 2

11

12 echo "Starting SPGW-C ..."

13 sudo -E docker exec -d mn.spgwc /bin/bash -c "nohup ./bin/oai_spgwc -o -c

./etc/spgw_c.conf > spgwc_check_run.log 2>&1"↪→

14 sleep 2

15

16 echo "Starting SPGW-U ..."

17 sudo -E docker exec -d mn.spgwu /bin/bash -c "nohup ./bin/oai_spgwu -o -c

./etc/spgw_u.conf > spgwu_check_run.log 2>&1"↪→

Stop each EPC component in turn and stop Tshark processes

1 #!/usr/bin/env bash

2 # Stops each EPC component and the Tshark process, first with SIGINT, then

SIGKILL to ensure they are shut down.↪→

3

4 echo "Sending SIGINT to EPC component processes and Tshark ..."

5 sudo -E docker exec -it mn.hss /bin/bash -c "killall --signal SIGINT oai_hss

tshark"↪→

6 sudo -E docker exec -it mn.mme /bin/bash -c "killall --signal SIGINT oai_mme

tshark"↪→

7 sudo -E docker exec -it mn.spgwc /bin/bash -c "killall --signal SIGINT

oai_spgwc tshark"↪→

8 sudo -E docker exec -it mn.spgwu /bin/bash -c "killall --signal SIGINT

oai_spgwu tshark"↪→

9

10 echo "Sleeping 10 seconds and then sending SIGKILL to EPC component

processes and Tshark"↪→

11 sleep 10

12 sudo -E docker exec -it mn.hss /bin/bash -c "killall --signal SIGKILL

oai_hss tshark tcpdump"↪→

13 sudo -E docker exec -it mn.mme /bin/bash -c "killall --signal SIGKILL

oai_mme tshark tcpdump"↪→

14 sudo -E docker exec -it mn.spgwc /bin/bash -c "killall --signal SIGKILL

oai_spgwc tshark tcpdump"↪→

15 sudo -E docker exec -it mn.spgwu /bin/bash -c "killall --signal SIGKILL

oai_spgwu tshark tcpdump"↪→
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Collect all relevant files

1 #!/usr/bin/env bash

2 # This script collects all configuration files, log files, and packetdumps,

then zips everything together.↪→

3

4 echo "Starting application log and PCAP collection"

5 sudo rm -rf EPC

6 sudo mkdir -p EPC/oai-hss-cfg EPC/oai-mme-cfg EPC/oai-spgwc-cfg

EPC/oai-spgwu-cfg EPC/hss-logs↪→

7

8 echo "Collecting configuration files ..."

9 sudo -E docker cp mn.hss:/openair-hss/etc/. EPC/oai-hss-cfg

10 sudo -E docker cp mn.mme:/openair-mme/etc/. EPC/oai-mme-cfg

11 sudo -E docker cp mn.spgwc:/openair-spgwc/etc/. EPC/oai-spgwc-cfg

12 sudo -E docker cp mn.spgwu:/openair-spgwu-tiny/etc/. EPC/oai-spgwu-cfg

13

14 echo "Collecting log files ..."

15 sudo -E docker cp mn.hss:/openair-hss/hss_check_run.log EPC

16 sudo -E docker cp mn.hss:/openair-hss/logs/ EPC/hss-logs

17 sudo -E docker cp mn.mme:/openair-mme/mme_check_run.log EPC

18 sudo -E docker cp mn.spgwc:/openair-spgwc/spgwc_check_run.log EPC

19 sudo -E docker cp mn.spgwu:/openair-spgwu-tiny/spgwu_check_run.log EPC

20

21 echo "Collecting PCAP files ..."

22 sudo -E docker cp mn.hss:/tmp/hss_check_run.pcap EPC

23 sudo -E docker cp mn.mme:/tmp/mme_check_run.pcap EPC

24 sudo -E docker cp mn.spgwc:/tmp/spgwc_check_run.pcap EPC

25 sudo -E docker cp mn.spgwu:/tmp/spgwu_check_run.pcap EPC

26 sudo -E docker cp mn.forwarder:/tmp/forwarder_check_run.pcap EPC

27 sudo -E docker cp mn.iperf_dst:/tmp/iperf_dst_check_run.pcap EPC

28

29 filename="$(date '+%Y%m%d-%H%M%S')-epc-archives"

30 sudo -E zip -r -qq "$filename".zip EPC

31 echo "Saved all logs and PCAP files as archive with name: $filename"

A.3 FOP4 Topology definitions

A.3.1 Basic Topology with minimal monitoring

1 #!/usr/bin/python

2

3 from mininet.net import Containernet

4 from mininet.node import Controller, Node, OVSKernelSwitch

5 from mininet.cli import CLI

6 from mininet.link import TCLink

7 from mininet.log import info, setLogLevel
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8 from mininet.bmv2 import Bmv2Switch, P4DockerHost

9

10

11 setLogLevel('info')

12

13

14 net = Containernet(controller=Controller)

15

16 info('*** Adding controller\n')

17 net.addController('c0')

18

19 info('*** Adding docker containers\n')

20 # EPC

21 hss = net.addDocker('hss',

22 cls=P4DockerHost,

23 ip='192.168.61.2/24',

24 dimage='oai-hss:production')

25 mme = net.addDocker('mme',

26 cls=P4DockerHost,

27 ip='192.168.61.3/24',

28 dimage='oai-mme:production')

29 spgw_c = net.addDocker('spgwc',

30 cls=P4DockerHost,

31 ip='192.168.61.4/24',

32 dimage='oai-spgwc:production')

33 spgw_u = net.addDocker('spgwu',

34 cls=P4DockerHost,

35 ip='192.168.61.5/24',

36 dimage='oai-spgwu-tiny:production')

37 # Segment for testing monitoring

38 forwarder = net.addDocker('forwarder',

39 cls=P4DockerHost,

40 ip='192.168.62.3/24',

41 mac='00:00:00:00:00:F3',

42 dimage='forwarder:1804')

43 iperf_dst = net.addDocker('iperf_dst',

44 cls=P4DockerHost,

45 ip='192.168.63.3/24',

46 mac='00:00:00:00:00:D3',

47 dimage='iperf:1804')

48

49 info('*** Adding core switch\n')

50 s1 = net.addSwitch('s1', cls=OVSKernelSwitch)

51

52 info('*** Adding BMV2 switches\n')

53 s2 = net.addSwitch('s2', cls=Bmv2Switch, json='./forwarder.json',

switch_config='./s2f_commands.txt')↪→

54 s3 = net.addSwitch('s3', cls=Bmv2Switch, json='./forwarder.json',

switch_config='./s3f_commands.txt')↪→
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55

56 info('*** Creating links\n')

57 net.addLink(hss, s1)

58 net.addLink(mme, s1)

59 net.addLink(spgw_c, s1)

60 net.addLink(spgw_u, s1)

61 net.addLink(spgw_u, s2, intfName1='spgwu-eth2', port1=2, port2=1)

62 net.addLink(forwarder, s2, intfName1='forwarder-eth2', port1=1, port2=2)

63 net.addLink(forwarder, s3, intfName1='forwarder-eth3', port1=2, port2=1)

64 net.addLink(iperf_dst, s3, port2=2)

65

66 info('*** Setting up additional interfaces on: forwarder, spgwu_u\n')

67 # Set MAC and IP on new interfaces

68 spgw_u.setMAC(mac='00:00:00:00:00:F2', intf='spgwu-eth2')

69 spgw_u.setIP(ip='192.168.62.2', prefixLen=24, intf='spgwu-eth2')

70 forwarder.setMAC(mac='00:00:00:00:00:D2', intf='forwarder-eth3')

71 forwarder.setIP(ip='192.168.63.2', prefixLen=24, intf='forwarder-eth3')

72

73 info('*** Setting up forwarding on: forwarder\n')

74 # set up forwarding

75 forwarder.cmd('iptables -P FORWARD ACCEPT')

76 forwarder.cmd('sysctl net.ipv4.conf.all.forwarding=1')

77

78 info('*** Starting network\n')

79 net.start()

80 net.staticArp()

81

82 info('*** Setting up additional ARP\n')

83 # Some ARP entries must be manually added:

84 forwarder.setARP('192.168.62.2', '00:00:00:00:00:F2')

85 forwarder.setARP('192.168.63.3', '00:00:00:00:00:D3')

86 iperf_dst.setARP('192.168.63.2', '00:00:00:00:00:D2')

87

88 info('*** Setting up additional routing\n')

89 # Set up appropriate routing for hosts connected to more than one network

90 spgw_u.cmd('ip route add 192.168.63.0/24 via 192.168.62.3')

91 forwarder.cmd('ip route add 12.1.1.0/24 via 192.168.62.2')

92 iperf_dst.cmd('ip route add 192.168.62.0/24 via 192.168.63.2')

93 iperf_dst.cmd('ip route add 12.1.1.0/24 via 192.168.63.2')

94

95 info('*** Disabling TCP checksum verification on hosts: iperf_dst,

forwarder, spgw_u\n')↪→

96 # Don't verify TCP checksums, as BMV2 switches change this up and causes TCP

packets to be dropped by the kernel:↪→

97 iperf_dst.cmd('ethtool --offload iperf_dst-eth0 rx off tx off')

98 forwarder.cmd('ethtool --offload forwarder-eth2 rx off tx off')

99 forwarder.cmd('ethtool --offload forwarder-eth3 rx off tx off')

100 spgw_u.cmd('ethtool --offload spgwu-eth2 rx off tx off')

101
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102 info('*** Running CLI\n')

103 CLI(net)

104

105 info('*** Stopping network')

106 net.stop()

A.3.2 Topology with Packet Capturing

1 #!/usr/bin/python

2

3 from mininet.net import Containernet

4 from mininet.node import Controller, Node, OVSKernelSwitch

5 from mininet.cli import CLI

6 from mininet.link import TCLink

7 from mininet.log import info, setLogLevel

8 from mininet.bmv2 import Bmv2Switch, P4DockerHost

9

10

11 setLogLevel('info')

12

13

14 net = Containernet(controller=Controller)

15

16 info('*** Adding controller\n')

17 net.addController('c0')

18

19 info('*** Adding docker containers\n')

20 # EPC

21 hss = net.addDocker('hss',

22 cls=P4DockerHost,

23 ip='192.168.61.2/24',

24 dimage='oai-hss:production')

25 mme = net.addDocker('mme',

26 cls=P4DockerHost,

27 ip='192.168.61.3/24',

28 dimage='oai-mme:production')

29 spgw_c = net.addDocker('spgwc',

30 cls=P4DockerHost,

31 ip='192.168.61.4/24',

32 dimage='oai-spgwc:production')

33 spgw_u = net.addDocker('spgwu',

34 cls=P4DockerHost,

35 ip='192.168.61.5/24',

36 dimage='oai-spgwu-tiny:production')

37 # Segment for testing monitoring

38 forwarder = net.addDocker('forwarder',

39 cls=P4DockerHost,
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40 ip='192.168.62.3/24',

41 mac='00:00:00:00:00:F3',

42 dimage='forwarder:1804')

43 iperf_dst = net.addDocker('iperf_dst',

44 cls=P4DockerHost,

45 ip='192.168.63.3/24',

46 mac='00:00:00:00:00:D3',

47 dimage='iperf:1804')

48

49 info('*** Adding core switch\n')

50 s1 = net.addSwitch('s1', cls=OVSKernelSwitch)

51

52 info('*** Adding BMV2 switches\n')

53 s2 = net.addSwitch('s2', cls=Bmv2Switch, json='./forwarder.json',

54 loglevel='debug', pktdump=True,

switch_config='./s2f_commands.txt')↪→

55 s3 = net.addSwitch('s3', cls=Bmv2Switch, json='./forwarder.json',

56 loglevel='debug', pktdump=True,

switch_config='./s3f_commands.txt')↪→

57

58 info('*** Creating links\n')

59 net.addLink(hss, s1)

60 net.addLink(mme, s1)

61 net.addLink(spgw_c, s1)

62 net.addLink(spgw_u, s1)

63 net.addLink(spgw_u, s2, intfName1='spgwu-eth2', port1=2, port2=1)

64 net.addLink(forwarder, s2, intfName1='forwarder-eth2', port1=1, port2=2)

65 net.addLink(forwarder, s3, intfName1='forwarder-eth3', port1=2, port2=1)

66 net.addLink(iperf_dst, s3, port2=2)

67

68 info('*** Setting up additional interfaces on: forwarder, spgwu_u\n')

69 # Set MAC and IP on new interfaces

70 spgw_u.setMAC(mac='00:00:00:00:00:F2', intf='spgwu-eth2')

71 spgw_u.setIP(ip='192.168.62.2', prefixLen=24, intf='spgwu-eth2')

72 forwarder.setMAC(mac='00:00:00:00:00:D2', intf='forwarder-eth3')

73 forwarder.setIP(ip='192.168.63.2', prefixLen=24, intf='forwarder-eth3')

74

75 info('*** Setting up forwarding on: forwarder\n')

76 # set up forwarding

77 forwarder.cmd('iptables -P FORWARD ACCEPT')

78 forwarder.cmd('sysctl net.ipv4.conf.all.forwarding=1')

79

80 info('*** Starting network\n')

81 net.start()

82 net.staticArp()

83

84 info('*** Setting up additional ARP\n')

85 # Some ARP entries must be manually added:

86 forwarder.setARP('192.168.62.2', '00:00:00:00:00:F2')

86



87 forwarder.setARP('192.168.63.3', '00:00:00:00:00:D3')

88 iperf_dst.setARP('192.168.63.2', '00:00:00:00:00:D2')

89

90 info('*** Setting up additional routing\n')

91 # Set up appropriate routing for hosts connected to more than one network

92 spgw_u.cmd('ip route add 192.168.63.0/24 via 192.168.62.3')

93 forwarder.cmd('ip route add 12.1.1.0/24 via 192.168.62.2')

94 iperf_dst.cmd('ip route add 192.168.62.0/24 via 192.168.63.2')

95 iperf_dst.cmd('ip route add 12.1.1.0/24 via 192.168.63.2')

96

97 info('*** Disabling TCP checksum verification on hosts: iperf_dst,

forwarder, spgw_u\n')↪→

98 # Don't verify TCP checksums, as BMV2 switches change this up and causes TCP

packets to be dropped by the kernel:↪→

99 iperf_dst.cmd('ethtool --offload iperf_dst-eth0 rx off tx off')

100 forwarder.cmd('ethtool --offload forwarder-eth2 rx off tx off')

101 forwarder.cmd('ethtool --offload forwarder-eth3 rx off tx off')

102 spgw_u.cmd('ethtool --offload spgwu-eth2 rx off tx off')

103

104 info('*** Running CLI\n')

105 CLI(net)

106

107 info('*** Stopping network')

108 net.stop()

A.3.3 Topology with P4 INT

1 #!/usr/bin/python

2

3 from mininet.net import Containernet

4 from mininet.node import Controller, Node, OVSKernelSwitch

5 from mininet.cli import CLI

6 from mininet.link import TCLink

7 from mininet.log import info, setLogLevel

8 from mininet.bmv2 import Bmv2Switch, P4DockerHost

9

10

11 setLogLevel('info')

12

13

14 net = Containernet(controller=Controller)

15

16 info('*** Adding controller\n')

17 net.addController('c0')

18

19 info('*** Adding docker containers\n')

20 # EPC
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21 hss = net.addDocker('hss',

22 cls=P4DockerHost,

23 ip='192.168.61.2/24',

24 dimage='oai-hss:production')

25 mme = net.addDocker('mme',

26 cls=P4DockerHost,

27 ip='192.168.61.3/24',

28 dimage='oai-mme:production')

29 spgw_c = net.addDocker('spgwc',

30 cls=P4DockerHost,

31 ip='192.168.61.4/24',

32 dimage='oai-spgwc:production')

33 spgw_u = net.addDocker('spgwu',

34 cls=P4DockerHost,

35 ip='192.168.61.5/24',

36 dimage='oai-spgwu-tiny:production')

37 # Segment for testing monitoring

38 forwarder = net.addDocker('forwarder',

39 cls=P4DockerHost,

40 ip='192.168.62.3/24',

41 mac='00:00:00:00:00:F3',

42 dimage='forwarder:1804')

43 iperf_dst = net.addDocker('iperf_dst',

44 cls=P4DockerHost,

45 ip='192.168.63.3/24',

46 mac='00:00:00:00:00:D3',

47 dimage='iperf:1804')

48

49 info('*** Adding core switch\n')

50 s1 = net.addSwitch('s1', cls=OVSKernelSwitch)

51

52 info('*** Adding BMV2 switches\n')

53 s2 = net.addSwitch('s2', cls=Bmv2Switch, json='./timestamping_s2.json',

54 loglevel='info', switch_config='./s2f_commands.txt')

55 s3 = net.addSwitch('s3', cls=Bmv2Switch, json='./timestamping_s3.json',

56 loglevel='info', switch_config='./s3f_commands.txt')

57

58 info('*** Creating links\n')

59 net.addLink(hss, s1)

60 net.addLink(mme, s1)

61 net.addLink(spgw_c, s1)

62 net.addLink(spgw_u, s1)

63 net.addLink(spgw_u, s2, intfName1='spgwu-eth2', port1=2, port2=1)

64 net.addLink(forwarder, s2, intfName1='forwarder-eth2', port1=1, port2=2)

65 net.addLink(forwarder, s3, intfName1='forwarder-eth3', port1=2, port2=1)

66 net.addLink(iperf_dst, s3, port2=2)

67

68 info('*** Setting up additional interfaces on: forwarder, spgwu_u\n')

69 # Set MAC and IP on new interfaces
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70 spgw_u.setMAC(mac='00:00:00:00:00:F2', intf='spgwu-eth2')

71 spgw_u.setIP(ip='192.168.62.2', prefixLen=24, intf='spgwu-eth2')

72 forwarder.setMAC(mac='00:00:00:00:00:D2', intf='forwarder-eth3')

73 forwarder.setIP(ip='192.168.63.2', prefixLen=24, intf='forwarder-eth3')

74

75 info('*** Setting up forwarding on: forwarder\n')

76 # set up forwarding

77 forwarder.cmd('iptables -P FORWARD ACCEPT')

78 forwarder.cmd('sysctl net.ipv4.conf.all.forwarding=1')

79

80 info('*** Starting network\n')

81 net.start()

82 net.staticArp()

83

84 info('*** Setting up additional ARP\n')

85 # Some ARP entries must be manually added:

86 forwarder.setARP('192.168.62.2', '00:00:00:00:00:F2')

87 forwarder.setARP('192.168.63.3', '00:00:00:00:00:D3')

88 iperf_dst.setARP('192.168.63.2', '00:00:00:00:00:D2')

89

90 info('*** Setting up additional routing\n')

91 # Set up appropriate routing for hosts connected to more than one network

92 spgw_u.cmd('ip route add 192.168.63.0/24 via 192.168.62.3')

93 forwarder.cmd('ip route add 12.1.1.0/24 via 192.168.62.2')

94 iperf_dst.cmd('ip route add 192.168.62.0/24 via 192.168.63.2')

95 iperf_dst.cmd('ip route add 12.1.1.0/24 via 192.168.63.2')

96

97 info('*** Disabling TCP checksum verification on hosts: iperf_dst,

forwarder, spgw_u\n')↪→

98 # Don't verify TCP checksums, as BMV2 switches change this up and causes TCP

packets to be dropped by the kernel:↪→

99 iperf_dst.cmd('ethtool --offload iperf_dst-eth0 rx off tx off')

100 forwarder.cmd('ethtool --offload forwarder-eth2 rx off tx off')

101 forwarder.cmd('ethtool --offload forwarder-eth3 rx off tx off')

102 spgw_u.cmd('ethtool --offload spgwu-eth2 rx off tx off')

103

104 info('*** Running CLI\n')

105 CLI(net)

106

107 info('*** Stopping network')

108 net.stop()
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A.4 P4 Source

A.4.1 Basic Forwarder

1 /* -*- P4_16 -*- */

2 /* Disclaimer: This p4-code is copied from p4lang/tutorials

(exercises/basic/solution) to save time, and I've modified it to reduce

TTL by 5 instead of 1 to make it explicitly clear when it has run. */

↪→

↪→

3 #include <core.p4>

4 #include <v1model.p4>

5

6 const bit<16> TYPE_IPV4 = 0x800;

7

8 /*************************************************************************

9 *********************** H E A D E R S ***********************************

10 *************************************************************************/

11

12 typedef bit<9> egressSpec_t;

13 typedef bit<48> macAddr_t;

14 typedef bit<32> ip4Addr_t;

15

16 header ethernet_t {

17 macAddr_t dstAddr;

18 macAddr_t srcAddr;

19 bit<16> etherType;

20 }

21

22 header ipv4_t {

23 bit<4> version;

24 bit<4> ihl;

25 bit<8> diffserv; // TOS / DSCP

26 bit<16> totalLen;

27 bit<16> identification;

28 bit<3> flags;

29 bit<13> fragOffset;

30 bit<8> ttl;

31 bit<8> protocol;

32 bit<16> hdrChecksum;

33 ip4Addr_t srcAddr;

34 ip4Addr_t dstAddr;

35 }

36

37 struct metadata {

38 /* empty */

39 }

40

41 struct headers {

42 ethernet_t ethernet;
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43 ipv4_t ipv4;

44 }

45

46 /*************************************************************************

47 *********************** P A R S E R ***********************************

48 *************************************************************************/

49

50 parser MyParser(packet_in packet,

51 out headers hdr,

52 inout metadata meta,

53 inout standard_metadata_t standard_metadata) {

54

55 state start {

56 transition parse_ethernet;

57 }

58

59 state parse_ethernet {

60 packet.extract(hdr.ethernet);

61 transition select(hdr.ethernet.etherType) {

62 TYPE_IPV4: parse_ipv4;

63 default: accept;

64 }

65 }

66

67 state parse_ipv4 {

68 packet.extract(hdr.ipv4);

69 transition accept;

70 }

71

72 }

73

74 /*************************************************************************

75 ************ C H E C K S U M V E R I F I C A T I O N *************

76 *************************************************************************/

77

78 control MyVerifyChecksum(inout headers hdr, inout metadata meta) {

79 apply { }

80 }

81

82

83 /*************************************************************************

84 ************** I N G R E S S P R O C E S S I N G *******************

85 *************************************************************************/

86

87 control MyIngress(inout headers hdr,

88 inout metadata meta,

89 inout standard_metadata_t standard_metadata) {

90 action drop() {

91 mark_to_drop(standard_metadata);
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92 }

93

94 action ipv4_forward(macAddr_t dstAddr, egressSpec_t port) {

95 standard_metadata.egress_spec = port;

96 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;

97 hdr.ethernet.dstAddr = dstAddr;

98 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

99 }

100

101 table ipv4_lpm {

102 key = {

103 hdr.ipv4.dstAddr: lpm;

104 }

105 actions = {

106 ipv4_forward;

107 drop;

108 NoAction;

109 }

110 size = 1024;

111 default_action = drop();

112 }

113

114 apply {

115 if (hdr.ipv4.isValid()) {

116 ipv4_lpm.apply();

117 }

118 }

119 }

120

121 /*************************************************************************

122 **************** E G R E S S P R O C E S S I N G *******************

123 *************************************************************************/

124

125 control MyEgress(inout headers hdr,

126 inout metadata meta,

127 inout standard_metadata_t standard_metadata) {

128 apply { }

129 }

130

131 /*************************************************************************

132 ************* C H E C K S U M C O M P U T A T I O N **************

133 *************************************************************************/

134

135 control MyComputeChecksum(inout headers hdr, inout metadata meta) {

136 apply {

137 update_checksum(

138 // If checksum is valid, update with the following fields

139 hdr.ipv4.isValid(),

140 { hdr.ipv4.version,
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141 hdr.ipv4.ihl,

142 hdr.ipv4.diffserv,

143 hdr.ipv4.totalLen,

144 hdr.ipv4.identification,

145 hdr.ipv4.flags,

146 hdr.ipv4.fragOffset,

147 hdr.ipv4.ttl,

148 hdr.ipv4.protocol,

149 hdr.ipv4.srcAddr,

150 hdr.ipv4.dstAddr },

151 // Update the checksum if the header is valid

152 hdr.ipv4.hdrChecksum,

153 // Update with the following algorithm

154 HashAlgorithm.csum16);

155 }

156 }

157

158 /*************************************************************************

159 *********************** D E P A R S E R *******************************

160 *************************************************************************/

161

162 control MyDeparser(packet_out packet, in headers hdr) {

163 apply {

164 packet.emit(hdr.ethernet);

165 packet.emit(hdr.ipv4);

166 }

167 }

168

169 /*************************************************************************

170 *********************** S W I T C H *******************************

171 *************************************************************************/

172

173 V1Switch(

174 MyParser(),

175 MyVerifyChecksum(),

176 MyIngress(),

177 MyEgress(),

178 MyComputeChecksum(),

179 MyDeparser()

180 ) main;

A.4.2 Basic Forwarder with Timestamping

1 /* -*- P4_16 -*- */

2 #include <core.p4>

3 #include <v1model.p4>

4
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5 const bit<16> TYPE_IPV4 = 0x800;

6 const bit<8> TYPE_TCP = 6;

7

8 /*************************************************************************

9 *********************** H E A D E R S ***********************************

10 *************************************************************************/

11

12 typedef bit<9> egressSpec_t;

13 typedef bit<48> macAddr_t;

14 typedef bit<32> ip4Addr_t;

15

16 header ethernet_t {

17 macAddr_t dstAddr;

18 macAddr_t srcAddr;

19 bit<16> etherType;

20 }

21

22 header ipv4_t {

23 bit<4> version;

24 bit<4> ihl;

25 bit<8> diffserv;

26 bit<16> totalLen;

27 bit<16> identification;

28 bit<3> flags;

29 bit<13> fragOffset;

30 bit<8> ttl;

31 bit<8> protocol;

32 bit<16> hdrChecksum;

33 ip4Addr_t srcAddr;

34 ip4Addr_t dstAddr;

35 }

36

37 header tcp_t {

38 bit<16> srcPort;

39 bit<16> dstPort;

40 bit<32> seqNo;

41 bit<32> ackNo;

42 bit<4> dataOffset;

43 bit<3> res;

44 bit<3> ecn;

45 bit<6> ctrl;

46 bit<16> window;

47 bit<16> checksum;

48 bit<16> urgentPtr;

49 }

50

51 struct metadata {

52 bit<32> flow_hash;

53 bit<48> flow_tstamp;
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54 bit<48> flow_tstamp_previous;

55 bit<48> time_now;

56 bit<48> time_diff;

57 bit<10> microsecs;

58 bit<10> millisecs;

59 bit<8> diff_repr;

60 bit<4> micro_hex;

61 bit<4> milli_hex;

62 bit<8> inc_diff_repr;

63 bit<48> inc_time_diff;

64 bit<16> inc_milli;

65 bit<16> inc_micro;

66 bit<48> jitter;

67 }

68

69 struct headers {

70 ethernet_t ethernet;

71 ipv4_t ipv4;

72 tcp_t tcp;

73 }

74

75 /*************************************************************************

76 *********************** P A R S E R ***********************************

77 *************************************************************************/

78

79 parser MyParser(packet_in packet,

80 out headers hdr,

81 inout metadata meta,

82 inout standard_metadata_t standard_metadata) {

83

84 state start {

85 transition parse_ethernet;

86 }

87

88 state parse_ethernet {

89 packet.extract(hdr.ethernet);

90 transition select(hdr.ethernet.etherType) {

91 TYPE_IPV4: parse_ipv4;

92 default: accept;

93 }

94 }

95

96 state parse_ipv4 {

97 packet.extract(hdr.ipv4);

98 transition select(hdr.ipv4.protocol) {

99 TYPE_TCP: parse_tcp;

100 default: accept;

101 }

102 }
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103

104 state parse_tcp {

105 packet.extract(hdr.tcp);

106 transition accept;

107 }

108

109 }

110

111 /*************************************************************************

112 ************ C H E C K S U M V E R I F I C A T I O N *************

113 *************************************************************************/

114

115 control MyVerifyChecksum(inout headers hdr, inout metadata meta) {

116 apply { }

117 }

118

119

120 /*************************************************************************

121 ************** I N G R E S S P R O C E S S I N G *******************

122 *************************************************************************/

123

124 control MyIngress(inout headers hdr, inout metadata meta, inout

standard_metadata_t standard_metadata) {↪→

125 /* index: flow hash, value: last timestamp */

126 register<bit<48>>(8192) tstamp_register;

127

128 // Calculating time_diff

129 action calc_time_diff(){

130 // Use built-in metadata for timestamps, given in microseconds

131 meta.time_now = standard_metadata.ingress_global_timestamp;

132

133 // If timestamp of previous is zero, let time_diff be 0

134 if (meta.flow_tstamp == 0) {

135 meta.time_diff = 0;

136 } else {

137 // Else if not zero, assume current time is larger than previous

and get difference↪→

138 meta.time_diff = meta.time_now - meta.flow_tstamp;

139 }

140 // Set stored timestamp as previous and update to be current

timestamp↪→

141 meta.flow_tstamp_previous = meta.flow_tstamp;

142 meta.flow_tstamp = meta.time_now;

143

144 // Bit-slice to get bits containing milli and microseconds

145 // Causes some loss of information as time_diff increases

146 meta.millisecs = meta.time_diff[19:10];

147 meta.microsecs = meta.time_diff[9:0];

148
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149 // All millisec-values <= 15 can be directly represented

150 // All millisec-values > 15 will be represented as 15, can be

interpreted as significant time_diff↪→

151 if (meta.millisecs <= 15) {

152 meta.milli_hex = (bit<4>) meta.millisecs;

153 } else {

154 meta.milli_hex = (bit<4>) 15;

155 }

156 // produces intervals of 64, starting at 0 and going up to 1000'ish

157 meta.micro_hex = (bit<4>) (meta.microsecs / 64);

158

159 // Produce a composite of each value

160 // To check: Slice and multiply microseconds with 64

161 // Lower bound: micro * 64

162 // Upper bound: (micro * 64) + 63

163 meta.diff_repr[7:4] = meta.milli_hex;

164 meta.diff_repr[3:0] = meta.micro_hex;

165

166 // Set the TOS/diffserv field to be the difference representation

167 hdr.ipv4.diffserv = meta.diff_repr;

168 }

169

170 action store_time_diffs() {

171 // reverse representation to get approximate time_diff from other

switch↪→

172 meta.inc_milli = (bit<16>) meta.inc_diff_repr[7:4];

173 meta.inc_micro = (bit<16>) meta.inc_diff_repr[3:0];

174 meta.inc_time_diff = (bit<48>) ((meta.inc_milli * 1000) +

(meta.inc_micro * 64));↪→

175

176 // Write crucial information to switch logs for further processing

177 log_msg("TIMEDIFFS: flow_hash={}, ip_src={}, time_diff={},

inc_time_diff={}",↪→

178 {meta.flow_hash, hdr.ipv4.srcAddr, meta.time_diff,

meta.inc_time_diff}↪→

179 );

180 }

181

182 action drop() {

183 mark_to_drop(standard_metadata);

184 }

185

186 // Basic forwarding logic

187 action ipv4_forward(macAddr_t dstAddr, egressSpec_t port) {

188 standard_metadata.egress_spec = port;

189 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;

190 hdr.ethernet.dstAddr = dstAddr;

191 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

192 }
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193

194 table ipv4_lpm {

195 key = {

196 hdr.ipv4.dstAddr: lpm;

197 }

198 actions = {

199 ipv4_forward;

200 drop;

201 NoAction;

202 }

203 size = 1024;

204 default_action = drop();

205 }

206

207 apply {

208 if (hdr.ipv4.isValid()) {

209 ipv4_lpm.apply();

210 }

211 if (hdr.tcp.isValid()) {

212 @atomic {

213 hash(meta.flow_hash,

214 HashAlgorithm.crc16,

215 (bit<32>)0,

216 { hdr.ipv4.srcAddr, hdr.ipv4.dstAddr, hdr.ipv4.protocol,

hdr.tcp.srcPort, hdr.tcp.dstPort },↪→

217 (bit<32>) 8192);

218

219 // Ensure import variables are 0 for any given packet

220 meta.millisecs = 0;

221 meta.microsecs = 0;

222 meta.diff_repr = 0;

223 meta.flow_tstamp = 0; // Explicitly set to

0 to ensure correct calculation↪→

224 meta.inc_diff_repr = hdr.ipv4.diffserv;

225

226 // Read the previously stored timestamp

227 tstamp_register.read(meta.flow_tstamp, (bit<32>)

meta.flow_hash);↪→

228 // Calculate time difference between previous and current

229 calc_time_diff();

230 // Store the current timestamp

231 tstamp_register.write((bit<32>) meta.flow_hash,

meta.flow_tstamp);↪→

232

233 // If TOS/diffserv field is not 0, assume it's used for

time_diff↪→

234 if (meta.inc_diff_repr > 0) {

235 store_time_diffs();

236 }
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237 }

238 }

239 }

240 }

241

242 /*************************************************************************

243 **************** E G R E S S P R O C E S S I N G *******************

244 *************************************************************************/

245

246 control MyEgress(inout headers hdr,

247 inout metadata meta,

248 inout standard_metadata_t standard_metadata) {

249 apply { }

250 }

251

252 /*************************************************************************

253 ************* C H E C K S U M C O M P U T A T I O N **************

254 *************************************************************************/

255

256 control MyComputeChecksum(inout headers hdr, inout metadata meta) {

257 apply {

258 update_checksum(

259 // If checksum is valid, update with the following fields

260 hdr.ipv4.isValid(),

261 { hdr.ipv4.version,

262 hdr.ipv4.ihl,

263 hdr.ipv4.diffserv,

264 hdr.ipv4.totalLen,

265 hdr.ipv4.identification,

266 hdr.ipv4.flags,

267 hdr.ipv4.fragOffset,

268 hdr.ipv4.ttl,

269 hdr.ipv4.protocol,

270 hdr.ipv4.srcAddr,

271 hdr.ipv4.dstAddr },

272 // Update the checksum if the header is valid

273 hdr.ipv4.hdrChecksum,

274 // Update with the following algorithm

275 HashAlgorithm.csum16);

276 }

277 }

278

279 /*************************************************************************

280 *********************** D E P A R S E R *******************************

281 *************************************************************************/

282

283 control MyDeparser(packet_out packet, in headers hdr) {

284 apply {

285 packet.emit(hdr.ethernet);
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286 packet.emit(hdr.ipv4);

287 packet.emit(hdr.tcp);

288 }

289 }

290

291 /*************************************************************************

292 *********************** S W I T C H *******************************

293 *************************************************************************/

294

295 V1Switch(

296 MyParser(),

297 MyVerifyChecksum(),

298 MyIngress(),

299 MyEgress(),

300 MyComputeChecksum(),

301 MyDeparser()

302 ) main;

A.4.3 Basic Forwarder with Packet Loss Detection

1 /* -*- P4_16 -*- */

2 #include <core.p4>

3 #include <v1model.p4>

4

5 const bit<16> TYPE_IPV4 = 0x800;

6 const bit<8> TYPE_TCP = 6;

7

8 /*************************************************************************

9 *********************** H E A D E R S ***********************************

10 *************************************************************************/

11

12 typedef bit<9> egressSpec_t;

13 typedef bit<48> macAddr_t;

14 typedef bit<32> ip4Addr_t;

15

16 header ethernet_t {

17 macAddr_t dstAddr;

18 macAddr_t srcAddr;

19 bit<16> etherType;

20 }

21

22 header ipv4_t {

23 bit<4> version;

24 bit<4> ihl;

25 bit<8> diffserv; // TOS / DSCP

26 bit<16> totalLen;

27 bit<16> identification;
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28 bit<3> flags;

29 bit<13> fragOffset;

30 bit<8> ttl;

31 bit<8> protocol;

32 bit<16> hdrChecksum;

33 ip4Addr_t srcAddr;

34 ip4Addr_t dstAddr;

35 }

36

37 header tcp_t {

38 bit<16> srcPort;

39 bit<16> dstPort;

40 bit<32> seqNo;

41 bit<32> ackNo;

42 bit<4> dataOffset;

43 bit<3> res;

44 bit<3> ecn;

45 bit<6> ctrl;

46 bit<16> window;

47 bit<16> checksum;

48 bit<16> urgentPtr;

49 }

50

51 struct metadata {

52 bit<32> flow_hash;

53 bit<48> flow_tstamp;

54 bit<48> time_now;

55 bit<48> time_diff;

56 bit<8> pcount;

57 bit<8> inc_pcount;

58 bit<8> pcount_diff;

59 bit<8> ploss_count;

60 }

61

62 struct headers {

63 ethernet_t ethernet;

64 ipv4_t ipv4;

65 tcp_t tcp;

66 }

67

68 /*************************************************************************

69 *********************** P A R S E R ***********************************

70 *************************************************************************/

71

72 parser MyParser(packet_in packet,

73 out headers hdr,

74 inout metadata meta,

75 inout standard_metadata_t standard_metadata) {

76
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77 state start {

78 transition parse_ethernet;

79 }

80

81 state parse_ethernet {

82 packet.extract(hdr.ethernet);

83 transition select(hdr.ethernet.etherType) {

84 TYPE_IPV4: parse_ipv4;

85 default: accept;

86 }

87 }

88

89 state parse_ipv4 {

90 packet.extract(hdr.ipv4);

91 transition select(hdr.ipv4.protocol) {

92 TYPE_TCP: parse_tcp;

93 default: accept;

94 }

95 }

96

97 state parse_tcp {

98 packet.extract(hdr.tcp);

99 transition accept;

100 }

101

102 }

103

104 /*************************************************************************

105 ************ C H E C K S U M V E R I F I C A T I O N *************

106 *************************************************************************/

107

108 control MyVerifyChecksum(inout headers hdr, inout metadata meta) {

109 apply { }

110 }

111

112

113 /*************************************************************************

114 ************** I N G R E S S P R O C E S S I N G *******************

115 *************************************************************************/

116

117 control MyIngress(inout headers hdr, inout metadata meta, inout

standard_metadata_t standard_metadata) {↪→

118 /* index: flow_hash, value: first timestamp */

119 register<bit<48>>(8192) tstamp_register;

120 /* index: flow_hash, value: packet counter */

121 register<bit<8>>(8192) pcount_register;

122 /* index: flow_hash, value: ploss counter */

123 register<bit<8>>(8192) ploss_register;

124
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125 action drop() {

126 mark_to_drop(standard_metadata);

127 }

128

129 action check_time() {

130 // Checks if time since first packet in epoc is >10,000 (i.e. 10

milliseconds)↪→

131 meta.time_now = standard_metadata.ingress_global_timestamp;

132

133 // If current timestamp is 10msec after first tstamp, reset and

write packet_count to packet↪→

134 meta.time_diff = meta.time_now - meta.flow_tstamp;

135 if (meta.time_diff > 10000) {

136 meta.flow_tstamp = meta.time_now;

137 hdr.ipv4.diffserv = meta.pcount;

138 meta.pcount = 0;

139 }

140 }

141

142 action store_ploss() {

143 // Stores the difference between current packet counter and incoming

packet counter↪→

144 if (meta.ploss_count < meta.inc_pcount) {

145 meta.pcount_diff = meta.inc_pcount - meta.ploss_count;

146 }

147 log_msg("PLOSS: hash = {}, sAddr = {}, dAddr = {}, prot = {}, sPort

= {}, dPort = {}, ploss_count = {}, inc_pcount = {}, pcount_diff

= {}",

↪→

↪→

148 { meta.flow_hash, hdr.ipv4.srcAddr, hdr.ipv4.dstAddr,

149 hdr.ipv4.protocol, hdr.tcp.srcPort, hdr.tcp.dstPort,

150 meta.ploss_count, meta.inc_pcount, meta.pcount_diff

151 }

152 );

153 // Reset ploss to 0 after receiving a packet count from another

switch in given flow↪→

154 meta.ploss_count = 0;

155 }

156

157 action ipv4_forward(macAddr_t dstAddr, egressSpec_t port) {

158 standard_metadata.egress_spec = port;

159 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;

160 hdr.ethernet.dstAddr = dstAddr;

161 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

162 }

163

164 table ipv4_lpm {

165 key = {

166 hdr.ipv4.dstAddr: lpm;

167 }
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168 actions = {

169 ipv4_forward;

170 drop;

171 NoAction;

172 }

173 size = 1024;

174 default_action = drop();

175 }

176

177 apply {

178 if (hdr.ipv4.isValid()) {

179 ipv4_lpm.apply();

180 }

181 if (hdr.tcp.isValid()) {

182 @atomic {

183 // Hash the 5-tuple

184 hash(meta.flow_hash,

185 HashAlgorithm.crc16,

186 (bit<32>)0,

187 { hdr.ipv4.srcAddr, hdr.ipv4.dstAddr, hdr.ipv4.protocol,

hdr.tcp.srcPort, hdr.tcp.dstPort },↪→

188 (bit<32>) 8192);

189

190 // read timestamp, pcount, ploss and tcount from register

191 tstamp_register.read(meta.flow_tstamp, (bit<32>)

meta.flow_hash);↪→

192 pcount_register.read(meta.pcount, (bit<32>) meta.flow_hash);

193 ploss_register.read(meta.ploss_count, (bit<32>)

meta.flow_hash);↪→

194

195 // increment pcount and ploss

196 meta.pcount = meta.pcount + 1;

197 meta.ploss_count = meta.ploss_count + 1;

198

199 // check mark, if mark seen, write ploss to log and reset

ploss↪→

200 meta.inc_pcount = hdr.ipv4.diffserv;

201 if (meta.inc_pcount > 0) {

202 store_ploss();

203 // Reset TOS field

204 hdr.ipv4.diffserv = 0;

205 }

206

207 // check time, if end of epoch, mark packet with pcount and

reset pcount↪→

208 if (meta.flow_tstamp == 0) {

209 tstamp_register.write((bit<32>) meta.flow_hash,

standard_metadata.ingress_global_timestamp);↪→

210 } else {
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211 // If not first packet in flow, check time

212 check_time();

213 tstamp_register.write((bit<32>) meta.flow_hash,

meta.flow_tstamp);↪→

214 }

215

216 // if ploss > 240, reset ploss to avoid overflows

217 if (meta.ploss_count > 240) {

218 meta.ploss_count = 0;

219 }

220

221 // Write pcount, ploss and tcount to registers

222 pcount_register.write((bit<32>) meta.flow_hash,

meta.pcount);↪→

223 ploss_register.write((bit<32>) meta.flow_hash,

meta.ploss_count);↪→

224 }

225 }

226 }

227 }

228

229 /*************************************************************************

230 **************** E G R E S S P R O C E S S I N G *******************

231 *************************************************************************/

232

233 control MyEgress(inout headers hdr,

234 inout metadata meta,

235 inout standard_metadata_t standard_metadata) {

236 apply { }

237 }

238

239 /*************************************************************************

240 ************* C H E C K S U M C O M P U T A T I O N **************

241 *************************************************************************/

242

243 control MyComputeChecksum(inout headers hdr, inout metadata meta) {

244 apply {

245 update_checksum(

246 // If checksum is valid, update with the following fields

247 hdr.ipv4.isValid(),

248 { hdr.ipv4.version,

249 hdr.ipv4.ihl,

250 hdr.ipv4.diffserv,

251 hdr.ipv4.totalLen,

252 hdr.ipv4.identification,

253 hdr.ipv4.flags,

254 hdr.ipv4.fragOffset,

255 hdr.ipv4.ttl,

256 hdr.ipv4.protocol,
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257 hdr.ipv4.srcAddr,

258 hdr.ipv4.dstAddr },

259 // Update the checksum if the header is valid

260 hdr.ipv4.hdrChecksum,

261 // Update with the following algorithm

262 HashAlgorithm.csum16);

263 }

264 }

265

266 /*************************************************************************

267 *********************** D E P A R S E R *******************************

268 *************************************************************************/

269

270 control MyDeparser(packet_out packet, in headers hdr) {

271 apply {

272 packet.emit(hdr.ethernet);

273 packet.emit(hdr.ipv4);

274 packet.emit(hdr.tcp);

275 }

276 }

277

278 /*************************************************************************

279 *********************** S W I T C H *******************************

280 *************************************************************************/

281

282 V1Switch(

283 MyParser(),

284 MyVerifyChecksum(),

285 MyIngress(),

286 MyEgress(),

287 MyComputeChecksum(),

288 MyDeparser()

289 ) main;

A.4.4 BMV2 Switch Commands

S2 Commands

1 table_add ipv4_lpm ipv4_forward 192.168.62.2/32 => 00:00:00:00:00:F2 1

2 table_add ipv4_lpm ipv4_forward 192.168.62.3/32 => 00:00:00:00:00:F3 2

3 table_add ipv4_lpm ipv4_forward 192.168.63.0/24 => 00:00:00:00:00:F3 2

4 table_add ipv4_lpm ipv4_forward 12.1.1.0/24 => 00:00:00:00:00:F2 1
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S3 Commands

1 table_add ipv4_lpm ipv4_forward 192.168.63.2/32 => 00:00:00:00:00:D2 1

2 table_add ipv4_lpm ipv4_forward 192.168.63.3/32 => 00:00:00:00:00:D3 2

3 table_add ipv4_lpm ipv4_forward 192.168.62.0/24 => 00:00:00:00:00:D2 1

4 table_add ipv4_lpm ipv4_forward 12.1.1.0/24 => 00:00:00:00:00:D2 1

A.5 Iperf3 script and metric collection

A.5.1 Iperf3 command-line tool

1 #!/usr/bin/env python3

2 import argparse

3 import json

4 from statistics import mean

5 from time import time, sleep, strftime

6 from typing import Dict, Any

7

8 import iperf3

9

10 """

11 Using a script to automate several tests with iperf3. Ten total runs, save

output of each run↪→

12 """

13

14

15 def run_test(bind_addr: str = '127.0.0.1',

16 srv_addr: str = '127.0.0.1',

17 port: int = 5201,

18 duration: int = 30,

19 zerocopy: bool = False

20 ) -> Dict[str, Any]:

21 """

22 Simple method to automate testing, returns a list of KPIs, i.e. Mbps,

retransmits, time, CPU usage↪→

23 :param bind_addr: Local address used by client

24 :param srv_addr: Server address

25 :param port: Server address port

26 :param duration: How long to perform test, default is 30s

27 :param zerocopy: Use zerocopy to reduce CPU load, default is False

28 :param run_no: ID for the current run, useful for later parsing of the

results↪→

29 :return: Dict of KPIs

30 """

31 client = iperf3.Client()

32

33 client.bind_address = bind_addr
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34 client.server_hostname = srv_addr

35 client.port = port

36 client.duration = duration

37 client.zerocopy = zerocopy

38

39 time_start = time()

40 timestamp = strftime('%Y%m%d-%H%M%S')

41 result = client.run()

42 time_end = time()

43

44 total_time = time_end - time_start

45 to_return = {

46 'timestamp': timestamp,

47 'sent_mbps': result.sent_Mbps,

48 'retransmits': result.retransmits,

49 'cpu_load': result.local_cpu_total,

50 'total_time': total_time

51 }

52

53 return to_return

54

55

56 def read_results(filename: str):

57 with open(filename, 'r') as f:

58 to_return = json.loads(f.read())

59 return to_return

60

61

62 def main():

63 parser = argparse.ArgumentParser(description='Perform several runs of

Iperf3')↪→

64 parser.add_argument('-B', '--bind_addr',

65 help='Client Address',

66 default='127.0.0.1',

67 type=str)

68 parser.add_argument('-s', '--srv_addr',

69 help='Server Address',

70 default='127.0.0.1',

71 type=str)

72 parser.add_argument('-r', '--runs',

73 help='Number of runs to perform',

74 default=1,

75 type=int)

76 parser.add_argument('-P', '--pause',

77 help='How long to pause between runs in seconds',

78 default=30,

79 type=int)

80 parser.add_argument('-t', '--duration',

81 help='How long to perform each run in seconds',
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82 default=5,

83 type=int)

84 parser.add_argument('-Z', '--zerocopy',

85 help='Use zerocopy method, see Iperf3 docs.',

86 action='store_true')

87 parser.add_argument('-p', '--port',

88 help='Bind to specific port or default 5201',

89 default=5201,

90 type=int)

91 parser.add_argument('-e', '--suffix',

92 help='Suffix to add to results file',

93 default='',

94 type=str)

95 parser.add_argument('-R', '--read',

96 help='Start script in read-mode, opens a file with

given filename using -F flag',↪→

97 action='store_true')

98 parser.add_argument('-F', '--filename',

99 help='Specify filename to read',

100 default='',

101 type=str)

102

103 args = parser.parse_args()

104

105 arg_runs = args.runs

106 arg_pause = args.pause

107 arg_bind = args.bind_addr

108 arg_srv = args.srv_addr

109 arg_port = args.port

110 arg_duration = args.duration

111 arg_zerocopy = args.zerocopy

112 arg_suffix = args.suffix

113 arg_read = args.read

114 arg_filename = args.filename

115

116 if arg_read:

117 if not arg_filename:

118 print('A filename must be provided if using the -R flag')

119 exit(1)

120 else:

121 results = read_results(arg_filename)

122 for item in results:

123 print(item)

124 exit(0)

125

126 filename = f'{strftime("%Y%m%d-%H%M")}-iperf-results'

127 if arg_suffix:

128 filename = filename + f'-{arg_suffix}'

129 filename = filename + '.json'
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130

131 print(f'Will perform {arg_runs} runs with {arg_duration} seconds

duration with'↪→

132 f' {arg_pause} seconds pause between each run and store results to

{filename}')↪→

133 results = []

134 for i in range(1, arg_runs + 1):

135 # Wrap with try-except block to ensure results are written to file

even in failure↪→

136 try:

137 print(f'performing run {i} of {arg_runs}')

138 to_add = run_test(bind_addr=arg_bind,

139 srv_addr=arg_srv,

140 port=arg_port,

141 duration=arg_duration,

142 zerocopy=arg_zerocopy)

143 results.append(to_add)

144 if arg_runs > 1:

145 sleep(arg_pause)

146 except Exception as err:

147 print(err)

148 break

149

150 with open(filename, 'w') as f:

151 f.write(json.dumps(results))

152

153

154 if __name__ == '__main__':

155 main()

A.5.2 Metric collection

1 #!/usr/bin/env bash

2

3 # This script collects CPU and Memory usage from the BMV2 switch instances

and the Disk IO of the EPC VM↪→

4 # and writes these to a CSV file on a 5 second interval until keyboard

interrupt.↪→

5 # Disk IO is the difference between each 5 second measurement.

6

7 csv_filename="$(date +"%Y%m%d-%H%M")-metrics.csv"

8 touch $csv_filename

9 echo "timestamp,pid1,cpu1,mem1,pid2,cpu2,mem2,kb_wrtn" >> $csv_filename

10

11 # First time reading Disk IO.

12 disk_io_previous=$(iostat -d sda | tail -n 2 | xargs | awk '{print $6}')

13
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14 # Until keyboard interrupt

15 while true

16 do

17 # Current time

18 timestamp=$(date +"%Y%m%d-%H%M%S")

19

20 # CPU and Memory usage of BMV2 switch instances

21 cpu_mem_usage=$(pgrep simple_switch | xargs -I % top -b -n 1 -p % | grep

simple_switch | awk '{print $1 "," $9 "," $10 ","}' | tr -d '\n' | sed

's/.$//')

↪→

↪→

22

23 # Current Disk IO

24 disk_io_current=$(iostat -d sda | tail -n 2 | xargs | awk '{print $6}')

25

26 # Difference since last measurement

27 disk_io_diff=$(($disk_io_current-$disk_io_previous))

28

29 # Write timestamp and metrics to CSV file

30 echo "$timestamp,$cpu_mem_usage,$disk_io_diff" >> $csv_filename

31

32 # Set current Disk IO measurement as previous

33 disk_io_previous=$disk_io_current

34

35 sleep 5

36 done

A.6 Data Analysis Scripts

Here is a collection of the data analysis scripts used to parse and analyze
the different experiment results. The data set is available per request to the
author.

A.6.1 Comparing baseline, INT, Active, and Passive results

1 import pandas as pd

2

3 from utils import save_boxplot, interleave_lists

4

5 nm_bw1 =

pd.read_json('data/baseline/no_monitoring/20210417-0927-iperf-results-metric-collection-no-monitoring.json')↪→

6 nm_bw2 =

pd.read_json('data/baseline/no_monitoring/20210417-0944-iperf-results-metric-collection-no-monitoring.json')↪→

7 nm_d_bw1 = pd.read_json('data/with_delay/no_monitoring/'

8

'20210414-1237-iperf-results-metric-collection-no-monitoring-with-delay.json')↪→

9 nm_d_bw2 = pd.read_json('data/with_delay/no_monitoring/'
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10

'20210414-1256-iperf-results-metric-collection-no-monitoring-with-delay.json')↪→

11

12 hfp_bw1 =

pd.read_json('data/baseline/high_freq_ping/20210413-1650-iperf-results-metric-collection-hfp.json')↪→

13 hfp_bw2 =

pd.read_json('data/baseline/high_freq_ping/20210413-1707-iperf-results-metric-collection-hfp.json')↪→

14 hfp_d_bw1 =

pd.read_json('data/with_delay/hfp/20210414-1409-iperf-results-metric-collection-hfp-delay.json')↪→

15 hfp_d_bw2 =

pd.read_json('data/with_delay/hfp/20210414-1432-iperf-results-metric-collection-hfp-delay.json')↪→

16

17 pcap_bw1 =

pd.read_json('data/baseline/pcaps/20210414-1325-iperf-results-metric-collection-pcap.json')↪→

18 pcap_bw2 =

pd.read_json('data/baseline/pcaps/20210414-1344-iperf-results-metric-collection-pcap.json')↪→

19 pcap_d_bw1 =

pd.read_json('data/with_delay/pcaps/20210414-1505-iperf-results-metric-collection-pcaps-delay.json')↪→

20 pcap_d_bw2 =

pd.read_json('data/with_delay/pcaps/20210414-1525-iperf-results-metric-collection-pcaps-delay.json')↪→

21

22 int_bw1 =

pd.read_json('data/baseline/int/20210413-1829-iperf-results-metric-collection-int.json')↪→

23 int_bw2 =

pd.read_json('data/baseline/int/20210413-1851-iperf-results-metric-collection-int.json')↪→

24 int_d_bw1 =

pd.read_json('data/with_delay/int/20210415-0927-iperf-results-metric-collection-int-delay.json')↪→

25 int_d_bw2 =

pd.read_json('data/with_delay/int/20210415-0952-iperf-results-metric-collection-int-delay.json')↪→

26

27 nm_metrics1 =

pd.read_csv('data/baseline/no_monitoring/20210417-0927-metrics.csv')↪→

28 nm_metrics2 =

pd.read_csv('data/baseline/no_monitoring/20210417-0944-metrics.csv')↪→

29 nm_d_metrics1 =

pd.read_csv('data/with_delay/no_monitoring/20210414-1237-metrics.csv')↪→

30 nm_d_metrics2 =

pd.read_csv('data/with_delay/no_monitoring/20210414-1256-metrics.csv')↪→

31

32 hfp_metrics1 =

pd.read_csv('data/baseline/high_freq_ping/20210413-1652-metrics.csv')↪→

33 hfp_metrics2 =

pd.read_csv('data/baseline/high_freq_ping/20210413-1709-metrics.csv')↪→

34 hfp_d_metrics1 =

pd.read_csv('data/with_delay/hfp/20210414-1409-metrics.csv')↪→

35 hfp_d_metrics2 =

pd.read_csv('data/with_delay/hfp/20210414-1432-metrics.csv')↪→

36

37 pcap_metrics1 = pd.read_csv('data/baseline/pcaps/20210414-1325-metrics.csv')
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38 pcap_metrics2 = pd.read_csv('data/baseline/pcaps/20210414-1344-metrics.csv')

39 pcap_d_metrics1 =

pd.read_csv('data/with_delay/pcaps/20210414-1505-metrics.csv')↪→

40 pcap_d_metrics2 =

pd.read_csv('data/with_delay/pcaps/20210414-1525-metrics.csv')↪→

41

42 int_metrics1 = pd.read_csv('data/baseline/int/20210413-1831-metrics.csv')

43 int_metrics2 = pd.read_csv('data/baseline/int/20210413-1853-metrics.csv')

44 int_d_metrics1 =

pd.read_csv('data/with_delay/int/20210415-0927-metrics.csv')↪→

45 int_d_metrics2 =

pd.read_csv('data/with_delay/int/20210415-0952-metrics.csv')↪→

46

47 # Combine to a single frame

48 nm_frames = [nm_bw1, nm_bw2]

49 nm_d_frames = [nm_d_bw1, nm_d_bw2]

50

51 hfp_frames = [hfp_bw1, hfp_bw2]

52 hfp_d_frames = [hfp_d_bw1, hfp_d_bw2]

53

54 pcap_frames = [pcap_bw1, pcap_bw2]

55 pcap_d_frames = [pcap_d_bw1, pcap_d_bw2]

56

57 int_frames = [int_bw1, int_bw2]

58 int_d_frames = [int_d_bw1, int_d_bw2]

59

60 nm_metric_frames = [nm_metrics1, nm_metrics2]

61 nm_metric_d_frames = [nm_d_metrics1, nm_d_metrics2]

62

63 hfp_metric_frames = [hfp_metrics1, hfp_metrics2]

64 hfp_metric_d_frames = [hfp_d_metrics1, hfp_d_metrics2]

65

66 pcap_metric_frames = [pcap_metrics1, pcap_metrics2]

67 pcap_metric_d_frames = [pcap_d_metrics1, pcap_d_metrics2]

68

69 int_metric_frames = [int_metrics1, int_metrics2]

70 int_metric_d_frames = [int_d_metrics1, int_d_metrics2]

71

72 nm_result = pd.concat(nm_frames, ignore_index=True)

73 nm_d_result = pd.concat(nm_d_frames, ignore_index=True)

74

75 hfp_result = pd.concat(hfp_frames, ignore_index=True)

76 hfp_d_result = pd.concat(hfp_d_frames, ignore_index=True)

77

78 pcap_result = pd.concat(pcap_frames, ignore_index=True)

79 pcap_d_result = pd.concat(pcap_d_frames, ignore_index=True)

80

81 int_result = pd.concat(int_frames, ignore_index=True)

82 int_d_result = pd.concat(int_d_frames, ignore_index=True)
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83

84 nm_metric_result = pd.concat(nm_metric_frames, ignore_index=True)

85 nm_metric_d_result = pd.concat(nm_metric_d_frames, ignore_index=True)

86

87 hfp_metric_result = pd.concat(hfp_metric_frames, ignore_index=True)

88 hfp_metric_d_result = pd.concat(hfp_metric_d_frames, ignore_index=True)

89

90 pcap_metric_result = pd.concat(pcap_metric_frames, ignore_index=True)

91 pcap_metric_d_result = pd.concat(pcap_metric_d_frames, ignore_index=True)

92

93 int_metric_result = pd.concat(int_metric_frames, ignore_index=True)

94 int_metric_d_result = pd.concat(int_metric_d_frames, ignore_index=True)

95

96 # Filter out results with unexplainably low bandwidth (edge cases)

97 nm_result = nm_result[nm_result['sent_mbps'] > 2]

98 nm_d_result = nm_d_result[nm_d_result['sent_mbps'] > 2]

99

100 hfp_result = hfp_result[hfp_result['sent_mbps'] > 2]

101 hfp_d_result = hfp_d_result[hfp_d_result['sent_mbps'] > 2]

102

103 pcap_result = pcap_result[pcap_result['sent_mbps'] > 2]

104 pcap_d_result = pcap_d_result[pcap_d_result['sent_mbps'] > 2]

105

106 int_result = int_result[int_result['sent_mbps'] > 2]

107 int_d_result = int_d_result[int_d_result['sent_mbps'] > 2]

108

109 # Filter out results with less than 40% CPU utilization, only keep periods

where Iperf3 is running↪→

110 nm_metric_result = nm_metric_result[nm_metric_result['cpu1'] > 40]

111 nm_metric_d_result = nm_metric_d_result[nm_metric_d_result['cpu1'] > 40]

112

113 hfp_metric_result = hfp_metric_result[hfp_metric_result['cpu1'] > 40]

114 hfp_metric_d_result = hfp_metric_d_result[hfp_metric_d_result['cpu1'] > 40]

115

116 pcap_metric_result = pcap_metric_result[pcap_metric_result['cpu1'] > 40]

117 pcap_metric_d_result = pcap_metric_d_result[pcap_metric_d_result['cpu1'] >

40]↪→

118

119 int_metric_result = int_metric_result[int_metric_result['cpu1'] > 40]

120 int_metric_d_result = int_metric_d_result[int_metric_d_result['cpu1'] > 40]

121

122 # Merge related frames together

123 baseline_bw = [

124 nm_result['sent_mbps'], hfp_result['sent_mbps'],

125 pcap_result['sent_mbps'], int_result['sent_mbps']

126 ]

127 baseline_retr = [

128 nm_result['retransmits'], hfp_result['retransmits'],

129 pcap_result['retransmits'], int_result['retransmits']
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130 ]

131 baseline_cpu = [

132 nm_metric_result['cpu1'], hfp_metric_result['cpu1'],

133 pcap_metric_result['cpu1'], int_metric_result['cpu1']

134 ]

135 baseline_mem = [

136 nm_metric_result['mem1'], hfp_metric_result['mem1'],

137 pcap_metric_result['mem1'], int_metric_result['mem1']

138 ]

139 baseline_disk = [

140 nm_metric_result['kb_wrtn'], hfp_metric_result['kb_wrtn'],

141 pcap_metric_result['kb_wrtn'], int_metric_result['kb_wrtn']

142 ]

143 baseline_time = [

144 nm_result['total_time'], hfp_result['total_time'],

145 pcap_result['total_time'], int_result['total_time']

146 ]

147 delay_bw = [

148 nm_d_result['sent_mbps'], hfp_d_result['sent_mbps'],

149 pcap_d_result['sent_mbps'], int_d_result['sent_mbps']

150 ]

151 delay_retr = [

152 nm_d_result['retransmits'], hfp_d_result['retransmits'],

153 pcap_d_result['retransmits'], int_d_result['retransmits']

154 ]

155 delay_cpu = [

156 nm_metric_d_result['cpu1'], hfp_metric_d_result['cpu1'],

157 pcap_metric_d_result['cpu1'], int_metric_d_result['cpu1']

158 ]

159 delay_mem = [

160 nm_metric_d_result['mem1'], hfp_metric_d_result['mem1'],

161 pcap_metric_d_result['mem1'], int_metric_d_result['mem1']

162 ]

163 delay_disk = [

164 nm_metric_d_result['kb_wrtn'], hfp_metric_d_result['kb_wrtn'],

165 pcap_metric_d_result['kb_wrtn'], int_metric_d_result['kb_wrtn']

166 ]

167 delay_time = [

168 nm_d_result['total_time'], hfp_d_result['total_time'],

169 pcap_d_result['total_time'], int_d_result['total_time']

170 ]

171

172 comparison_nm_bw = [

173 nm_result['sent_mbps'], nm_d_result['sent_mbps']

174 ]

175 comparison_hfp_bw = [

176 hfp_result['sent_mbps'], hfp_d_result['sent_mbps']

177 ]

178
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179 comparison_pcap_bw = [

180 pcap_result['sent_mbps'], pcap_d_result['sent_mbps']

181 ]

182

183 comparison_int_bw = [

184 int_result['sent_mbps'], int_d_result['sent_mbps']

185 ]

186

187 # Create interleaved lists of results with and without delay

188 comparison_all_bw = interleave_lists(baseline_bw, delay_bw)

189 comparison_retr = interleave_lists(baseline_retr, delay_retr)

190 comparison_cpu = interleave_lists(baseline_cpu, delay_cpu)

191 comparison_mem = interleave_lists(baseline_mem, delay_mem)

192 comparison_disk = interleave_lists(baseline_disk, delay_disk)

193 comparison_time = interleave_lists(baseline_time, delay_time)

194

195 # Define content of figures

196

197 labels = ['no_monitoring', 'HFP', 'PCAPs', 'INT']

198 baseline_figs = [

199 [baseline_bw, 'Baseline Bandwidth', 'Mb/s',

'figures/no_delay/baseline_bw'],↪→

200 [baseline_retr, 'Baseline Retransmissions', 'Retransmissions',

'figures/no_delay/baseline_retr'],↪→

201 [baseline_cpu, 'Baseline CPU Usage of BMV2 Switches', 'CPU %',

'figures/no_delay/baseline_cpu'],↪→

202 [baseline_mem, 'Baseline Memory Usage of BMV2 Switches', 'Mem %',

'figures/no_delay/baseline_mem'],↪→

203 [baseline_disk, 'Baseline Disk I/O', 'KBytes/5s',

'figures/no_delay/baseline_disk'],↪→

204 [baseline_time, 'Baseline Time Usage, Iperf3 Client', 'Seconds',

'figures/no_delay/baseline_time']↪→

205 ]

206

207 # Draw and save figures

208 for item in baseline_figs:

209 save_boxplot(data=item[0], fig_labels=labels, title=item[1],

ylabel=item[2], fig_name=item[3])↪→

210

211 delay_figs = [

212 [delay_bw, 'Delay Bandwidth', 'Mb/s', 'figures/with_delay/delay_bw'],

213 [delay_retr, 'Delay Retransmissions', 'Retransmissions',

'figures/with_delay/delay_retr'],↪→

214 [delay_cpu, 'Delay CPU Usage of BMV2 Switches', 'CPU %',

'figures/with_delay/delay_cpu'],↪→

215 [delay_mem, 'Delay Memory Usage of BMV2 Switches', 'Mem %',

'figures/with_delay/delay_mem'],↪→

216 [delay_disk, 'Delay Disk I/O', 'KBytes/5s',

'figures/with_delay/delay_disk'],↪→
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217 [delay_time, 'Delay Time Usage, Iperf3 Client', 'Seconds',

'figures/with_delay/delay_time']↪→

218 ]

219

220 # Draw and save figures

221 for item in delay_figs:

222 save_boxplot(data=item[0], fig_labels=labels, title=item[1],

ylabel=item[2], fig_name=item[3])↪→

223

224 # Prepare figure data for comparisons

225 labels = ['Without Delay', 'With Delay']

226 to_compare = [

227 [

228 comparison_nm_bw,

229 'Bandwidth, with and without Delay, No Monitoring',

230 'Mb/s',

231 'figures/comparisons/comp_bw_nm'

232 ],

233 [

234 comparison_hfp_bw,

235 'Bandwidth, with and without Delay, High Frequency Ping',

236 'Mb/s',

237 'figures/comparisons/comp_bw_hfp'

238 ],

239 [

240 comparison_pcap_bw,

241 'Bandwidth, with and without Delay, Packet Capturing',

242 'Mb/s',

243 'figures/comparisons/comp_bw_pcap'

244 ],

245 [

246 comparison_int_bw,

247 'Bandwidth, with and without Delay, In-band Network Telemetry',

248 'Mb/s',

249 'figures/comparisons/comp_bw_int'

250 ],

251 ]

252 for item in to_compare:

253 save_boxplot(data=item[0], fig_labels=labels, title=item[1],

ylabel=item[2], fig_name=item[3])↪→

254

255 labels = ['nm', 'nm_d', 'hfp', 'hfp_d', 'pcap', 'pcap_d', 'int', 'int_d']

256 to_compare = [

257 [

258 comparison_all_bw,

259 'Bandwidth, With and Without Delay, all methods',

260 'Mb/s',

261 'figures/comparisons/comp_bw_all'

262 ],
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263 [

264 comparison_retr,

265 'Retransmissions, With and Without Delay, all methods',

266 '',

267 'figures/comparisons/comp_retr_all'

268 ],

269 [

270 comparison_cpu,

271 'CPU Usage of BMV2 Switches, With and Without Delay, all methods',

272 'CPU %',

273 'figures/comparisons/comp_cpu_all'

274 ],

275 [

276 comparison_mem,

277 'Memory Usage of BMV2 Switches, With and Without Delay, all

methods',↪→

278 'Mem %',

279 'figures/comparisons/comp_mem_all'

280 ],

281 [

282 comparison_disk,

283 'Disk Usage of EPC VM, With and Without Delay, all methods',

284 'KBytes/5sec',

285 'figures/comparisons/comp_disk_all'

286 ],

287 [

288 comparison_time,

289 'Iperf3 Time usage, With and Without Delay, all methods',

290 'Seconds',

291 'figures/comparisons/comp_time_all'

292 ]

293 ]

294 for item in to_compare:

295 save_boxplot(data=item[0], fig_labels=labels, title=item[1],

ylabel=item[2], fig_name=item[3])↪→

A.6.2 Delay Detection Analysis

Parsing

1 def parse_timediffs(filename):

2 to_return = []

3 with open(filename, 'r') as f:

4 lines = f.readlines()

5 for line in lines:

6 first_half = line.split('TIMEDIFFS:')[0]

7 second_half = line.split('TIMEDIFFS:')[1]

8 to_add = {
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9 'timestamp': first_half.split(' ')[0].strip('[').strip(']'),

10 'flow_hash': second_half.split(',')[0].split('=')[1],

11 'ip_src': second_half.split(',')[1].split('=')[1],

12 'time_diff': second_half.split(',')[2].split('=')[1],

13 'inc_time_diff':

second_half.split(',')[3].split('=')[1].strip()↪→

14 }

15 to_return.append(to_add)

16 return to_return

17

18

19 def dec_to_ip(decimal_representation):

20 hex_repr = hex(int(decimal_representation))

21 hex_repr = hex_repr[2:]

22 # pad with extra 0 if hex-representation is less than 8 (will only

happen in cases where first octet is <15)↪→

23 if len(hex_repr) < 8:

24 hex_repr = ''.join(('0', hex_repr))

25 ip_addr = '.'.join([str(int(hex_repr[i:i+2], 16)) for i in range(0,

len(hex_repr), 2)])↪→

26 return ip_addr

27

28

29 s2_timediffs = parse_timediffs('data/baseline/int/s2_timediffs.txt')

30 s3_timediffs = parse_timediffs('data/baseline/int/s3_timediffs.txt')

31

32 # for item in s2_timediffs:

33 # item['ip_src'] = dec_to_ip(item['ip_src'])

34 #

35 # for item in s3_timediffs:

36 # item['ip_src'] = dec_to_ip(item['ip_src'])

37 #

38 for item in s2_timediffs[:10]:

39 print(item['ip_src'], dec_to_ip(item['ip_src']))

40 for item in s3_timediffs[:10]:

41 print(item['ip_src'], dec_to_ip(item['ip_src']))

Analysis

1 import pandas as pd

2 import numpy as np

3

4 from datetime import datetime

5 from scipy import stats

6

7 from utils import save_scatter_with_line_regr

8
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9

10 print(datetime.now(), 'Starting parsing')

11 # These are more than 580,000 lines each, be patient

12 s2_timediffs =

pd.read_json('data/baseline/int/s2_timediffs.json').sample(50000)↪→

13 s3_timediffs =

pd.read_json('data/baseline/int/s3_timediffs.json').sample(50000)↪→

14 print(datetime.now(), 'Parsed INT baseline, 100000 samples')

15

16 s2_timediffs_d =

pd.read_json('data/with_delay/int/s2_timediffs.json').sample(50000)↪→

17 s3_timediffs_d =

pd.read_json('data/with_delay/int/s3_timediffs.json').sample(50000)↪→

18 print(datetime.now(), 'Parsed INT with delay, 100000 samples')

19

20 s2_timediffs_ed =

pd.read_json('data/with_delay/int_epc_delay/s2_timediffs.json').sample(50000)↪→

21 s3_timediffs_ed =

pd.read_json('data/with_delay/int_epc_delay/s3_timediffs.json').sample(50000)↪→

22 print(datetime.now(), 'Parsed INT with delay at EPC, 100000 samples')

23

24 items = [

25 ('s2', s2_timediffs), ('s3', s3_timediffs),

26 ('s2_d', s2_timediffs_d), ('s3_d', s3_timediffs_d),

27 ('s2_ed', s2_timediffs_ed), ('s3_ed', s3_timediffs_ed)

28 ]

29

30 print(datetime.now(), 'Starting to draw and save figures')

31 for item in items:

32 name = item[0]

33 df = item[1]

34

35 # Replace all values in X that are larger than 15960 to ensure similar

scaling↪→

36 a = np.array(df['time_diff'].values.tolist())

37 df['time_diff'] = np.where(a > 15960, 15960, a).tolist()

38 x = df['time_diff']

39 y = df['inc_time_diff']

40

41 slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)

42 eq_label = f'{round(slope, 3)}x + {round(intercept, 3)}'

43 title = f'Time Diff vs Inc Time Diff, {name}, ' \

44 + '$r^{2}=' + str(round(r_value, 3)) + '$'

45 # Draw and save figures

46 # save_histogram(x, y, 30, title, 'Millisecs',

f'figures/int/hists/{name}_td_v_itd_hist')↪→

47 save_scatter_with_line_regr(x, y, slope, intercept, title,

'inc_time_diff', 'time_diff', eq_label,↪→
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48

f'figures/testing/{name}_td_v_itd_scatter_lineregr_rsqrd')↪→

49 print(datetime.now(), f'--- Drawn scatterplott of {name}')

50

51 print(datetime.now(), 'Finished parsing and drawing')

A.6.3 Packet Loss Analysis

Parsing

1 import json

2

3

4 def parse_ploss(filename):

5 to_return = []

6

7 with open(filename, 'r') as f:

8 lines = f.readlines()

9 for line in lines:

10 # Split line on PLOSS, select last item and split again on ','

11 row = line.split('PLOSS:')[1].split(',')

12 to_add = {}

13 # Go through each item in each row

14 for item in row:

15 # Split each item on = to get a list of two elements

16 item = item.split('=')

17 # Set first element as key, second element as value

18 key, val = item[0].strip(), item[1].strip()

19 # Add to dictionary

20 to_add[key] = val

21 # Append the row as a dictionary to the final list of

dictionaries↪→

22 to_return.append(to_add)

23

24 return to_return

25

26

27 def as_json_file(filename, obj):

28 with open(filename, 'w') as file:

29 file.write(json.dumps(obj))

30

31

32 filenames = [

33 'data/ploss/baseline/s2_loss',

34 'data/ploss/baseline/s3_loss',

35 'data/ploss/with_loss/s2_loss',

36 'data/ploss/with_loss/s3_loss',

37 ]
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38

39 for name in filenames:

40 item = parse_ploss(name + '.txt')

41 as_json_file(name + '.json', item)

Analysis

1 from datetime import datetime

2

3 import pandas as pd

4 import numpy as np

5

6 from utils import dec_to_ip

7

8 names = [

9 'data/ploss/baseline/s2_loss.json',

10 'data/ploss/baseline/s3_loss.json',

11 'data/ploss/with_loss/s2_loss.json',

12 'data/ploss/with_loss/s3_loss.json',

13 ]

14 print(datetime.now(), 'Starting parsing')

15 items = []

16 for name in names:

17 item = pd.read_json(name)

18 switch_name = name.split('/')[-1].split('_')[0]

19 case = name.split('/')[2]

20 items.append((item, switch_name, case))

21

22 print(datetime.now(), 'Finished parsing')

23

24 # Transform integer notated IP address to dotted decimal form

25 for item in items:

26 for key in ['sAddr', 'dAddr']:

27 item[0][key] = item[0][key].apply(lambda x: dec_to_ip(x))

28

29 # Create new aggregated dataframes with the most important information about

the results↪→

30 results = []

31 for item in items:

32 result = item[0].groupby('hash').agg(

33 total_pcount=('ploss_count', sum),

34 total_loss=('pcount_diff', sum),

35 sAddr=('sAddr', set),

36 dAddr=('dAddr', set),

37 sPort=('sPort', set),

38 dPort=('dPort', set),

39 prot=('prot', set)
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40 )

41 result['loss_percent'] = (result['total_loss'] / result['total_pcount'])

* 100↪→

42 result['switch'] = item[1]

43 result['case'] = item[2]

44 result = result[result['total_pcount'] > 1000]

45 results.append(result)

46

47 pd.set_option('display.max_columns', None)

48 pd.set_option('display.max_colwidth', None)

49 pd.set_option('display.width', 2000)

50 for item in results:

51 # Extract all possible hash collisions, i.e. 2 or more elements in sPort

or dPort↪→

52 dport_collisions = item.loc[item['dPort'].apply(lambda x: len(list(x)) >

1)]↪→

53 sport_collisions = item.loc[item['sPort'].apply(lambda x: len(list(x)) >

1)]↪→

54 hash_collisions = pd.concat([dport_collisions, sport_collisions],

ignore_index=True)↪→

55 # Clean up the final tables to be printed, i.e. all sets are converted

to comma-separated values in a string↪→

56 to_clean = ['sAddr', 'dAddr', 'sPort', 'dPort', 'prot']

57 for column in to_clean:

58 item[column] = item[column].apply(lambda x: ','.join(str(i) for i in

x))↪→

59

60 print(item.sample(5))

61 print('mean loss:', round(item['loss_percent'].mean(), 3))

62 if not hash_collisions.empty:

63 print('hash collisions:')

64 print(hash_collisions)

65 print()

A.6.4 Supporting scripts

Utils

1 # import matplotlib

2 import matplotlib.pyplot as plt

3

4 # Use SVG as default renderer

5 # matplotlib.use('png')

6

7

8 def save_boxplot(data, fig_labels, title, ylabel, fig_name):

9 """
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10 Draws and saves figure with given data, labels, title, and given figure

name↪→

11 :param data: Dataframe to draw

12 :param fig_labels: Labels along the X axis, representing each column

drawn↪→

13 :param title: Title of the figure

14 :param ylabel: Scale, metric, or similar

15 :param fig_name: Name to save the figure as on disk

16 :return: None

17 """

18 fig = plt.figure(figsize=(10, 10))

19 plt.boxplot(data, labels=fig_labels)

20 plt.title(title)

21 plt.grid()

22 plt.ylabel(ylabel)

23 plt.savefig(fig_name)

24 plt.close(fig)

25

26

27 def save_scatterplot(x, y, title, ylabel, xlabel, fig_name):

28 """

29 Draws and saves a scatterplot with given parameters

30 :param x: Data to plot in x

31 :param y: Data to plot in y

32 :param title: Title of the figure

33 :param ylabel: Y label

34 :param xlabel: X label

35 :param fig_name: Name to save as

36 :return: None

37 """

38 fig = plt.figure(figsize=(10, 10))

39 plt.scatter(x, y)

40 plt.title(title)

41 plt.ylabel(ylabel)

42 plt.xlabel(xlabel)

43 plt.savefig(fig_name)

44 plt.close(fig)

45

46

47 def save_scatter_with_line_regr(x, y, m, b, title, ylabel, xlabel, eq_label,

fig_name):↪→

48 """

49 Takes x, y and draws scatter plot with line regression

50 :param x: Data to plot in x

51 :param y: Data to plot in y

52 :param m: Slope

53 :param b: Intercept

54 :param title: Title of the figure

55 :param ylabel: Y label
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56 :param xlabel: X label

57 :param eq_label: Equation of fit

58 :param fig_name: Name to save as

59 :return: None

60 """

61 fig = plt.figure(figsize=(5, 5))

62 plt.plot(x, y, 'o')

63 plt.plot(x, m*x + b, label=eq_label)

64 plt.xlabel(xlabel)

65 plt.ylabel(ylabel)

66 plt.title(title)

67 plt.grid(True)

68 plt.legend(fontsize='small')

69 plt.savefig(fig_name)

70 plt.close(fig)

71

72

73 def save_histogram(x, y, bins, title, xlabel, fig_name):

74 """

75 Draws two histograms side by side

76 :param x: Data for first

77 :param y: Data for second

78 :param bins: N bins

79 :param title: Title of the histograms

80 :param xlabel: Label of X

81 :param fig_name: Name to save figure as on disk

82 :return: None

83 """

84 fig, axs = plt.subplots(1, 2, sharey=True, sharex=True,

tight_layout=True)↪→

85 axs[0].hist(x, bins=bins)

86 axs[1].hist(y, bins=bins)

87 axs[0].set_title('time_diff')

88 axs[0].set_xlabel(xlabel)

89 axs[1].set_title('inc_time_diff')

90 axs[1].set_xlabel(xlabel)

91 plt.savefig(fig_name)

92 plt.close(fig)

93

94

95 def interleave_lists(l1, l2):

96 """

97 Will interleave two lists of the same length.

98 If l1 = [a, b, c], l2 = [1, 2, 3]

99 result = [a, 1, b, 2, c, 3]

100 :param l1: List with arbitrary elements

101 :param l2: List with arbitrary elements and equal length as l1

102 :return: Interleaved list of l1 + l2

103 """
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104 return [val for pair in zip(l1, l2) for val in pair]

105

106

107 def dec_to_ip(decimal_representation):

108 """

109 Takes IP represented by integers (which are a result of hex-values) and

returns the dotted decimal form↪→

110 :param decimal_representation: IP as integer, i.e. '3232251651' or

'3232251394'↪→

111 :return: Dotted decimal form

112 """

113 hex_repr = hex(int(decimal_representation))

114 hex_repr = hex_repr[2:]

115 # pad with extra 0 if hex-representation is less than 8 (will only

happen in cases where first octet is <15)↪→

116 if len(hex_repr) < 8:

117 hex_repr = ''.join(('0', hex_repr))

118 ip_addr = '.'.join([str(int(hex_repr[i:i + 2], 16)) for i in range(0,

len(hex_repr), 2)])↪→

119 return ip_addr
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