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Abstract. Block-based programming languages have lowered the threshold to 
computer science (CS), providing a powerful (low threshold-high ceiling) arena 
for early CS education and engagement in STEM subjects. This paper presents 
results of an empirical study in three schools, involving 43 pupils aged 12‒16 
using MakeCode with Microbit (a microcontroller), basic physical objects, and 
Zoom video communication as a shared learning environment. Using design-
based research (DBR) together with teachers, we created technology-rich learn-
ing materials and tasks in math, biology, and physics and organized a series of 
project-based learning activities wherein pupils met three hours per week for 16 
weeks during two semesters. Recorded Zoom meetings serve as our data. We 
thematized and transcribed the video material of selected groups’ online activities 
and used verbal interaction analysis and visual artefact analysis as our methods. 
Our results include a new analytical framework, design-based collaborative 
learning (DBCL), achieved by adopting concepts from computer-supported col-
laborative learning (CSCL) and end-user development (EUD), specifically do-
main-oriented design environments (DODE). Our empirical findings are: 1) 
block-based programming in a collaborative context, 2) block-based program-
ming as part of a DODE, 3) block-based programming integrated with school 
subjects, and 4) block-based programming as an explorative design method. 

Keywords: Block-Based Programming, Computer-Supported Collaborative 
Learning, Design-Based Collaborative Learning, Design-Based Research, Do-
main-Oriented Design Environment, End-User Development, Programming in 
School. 

1 Introduction 

In the Nordic countries, it has been suggested that programming and computational 
thinking (CT) in K‒12 should not be taught as a separate subject but as part of a more 
comprehensive twenty-first century skills approach sometimes labelled as digital com-
petence [3]. As of the autumn 2020, our country has implemented a curriculum where 
programming and CT have been integrated in other subjects, in particular mathematics, 
natural science, music, and arts and crafts. This unique situation calls for research on 
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the implications of the new, technology-enriched curriculum to determine how it works 
in practice. 

End-user development (EUD) is referred to as a set of methods and techniques that 
allow people who are nonprofessional software developers to create or modify a soft-
ware artefact [18], as the opposite of technical development carried out by trained pro-
grammers and software engineers. It includes, among others, visual programming [23], 
domain-oriented design environments [10], and programmable applications [9]. 

The usefulness of these EUD environments can be assessed according to access, 
flexibility, and purpose. Access means the extent to which the EUD environment pro-
vides a gentle slope to modification and programming [21, 28]. Flexibility refers to the 
extent to which the tools are low threshold and high ceiling, allowing a large number 
of interesting artefacts to be created [9, 23, 24]. Furthermore, access and flexibility 
should be measured against purpose (e.g., solving technical problems, practicing com-
putational thinking, or learning science, technology, engineering, and mathematics 
(STEM) topics) [10]. Our aim is to understand block-based programming as a tool for 
explorative learning of STEM topics. Therefore, we asked the following research ques-
tion: What characterizes block-based programming as an explorative design space to 
learn STEM topics in an online collaborative setting?   
 The rest of the paper is organized as follows. First, empirical studies of block-based 
programming are discussed. Next, end-user development and collaborative learning are 
elaborated upon; this results in an analytical framework, which we use to analyze our 
empirical data. Finally, we discuss our results by comparing them with related work. 

2 Related Work 

This section presents a review of the literature related to end-user development and 
learning: block-based programming, domain-oriented design environments, and com-
puter-supported collaborative learning. 

2.1 Brief Review of Literature on Block-Based Programming 

Block-based programming is a method of programming in which visual code blocks 
are combined to create and modify animations and games, and to interact with physical 
objects (sensors, buzzers, motors, lamps, LED displays, etc.). Popular block-based lan-
guages are Scratch, Blocky, Agentsheets, Alice, and MakeCode [23, 24]. The idea of 
blocks to encapsulate software programs goes back to structured programming with 
notions such as block structure and nesting (blocks inside blocks) to organize code in 
editors and compiled code in memory. Today’s code blocks draw on children’s visual 
metaphors (e.g., jigsaw puzzle; wooden blocks; lego bricks) and computational inno-
vations like drag and drop interfaces and online repositories of code for reuse. They 
have lowered the threshold to programming and broadened participation to the entire 
school system. However, the success of block-based programming is hampered when 
children use block-based languages without understanding the programming concepts 
underlying the blocks, which may prevent computational thinking from being achieved.  
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 Our own preliminary observation suggests that children refer to block types by color 
and talk about the “blue block” and “red block” and “red goes inside blue,” etc., instead 
of “loops” and “conditionals” and “conditionals are used in loops.” This is supported 
by affordance because blocks snap together to create syntactically correct programs. 
Researchers have found that primary school children use color, shape, and arguments 
(parameters in blocks) as visual cues when searching for blocks, and the children pick 
up both intended and false affordances when programming [8]. 
 Lewis [17] compared the learning outcome of sixth graders’ coding of similar tasks 
in Logo and Scratch and found that the two languages were similar in terms of stimu-
lating continued interest in programming, but differed in how affordances for program-
ming varied for different programming constructs. In particular, Lewis [17] found that 
children understood loops better in Logo, but conditionals better in Scratch. 
 Based on a series of examples from the Scratch online community, Brennan and 
Resnick [4] argued that visual programming is more than writing code and leads chil-
dren to socializing with peers. The authors suggested that computational practices and 
computational perspectives should supplement computational concepts (e.g., loops and 
conditionals) toward an understanding of computational thinking as a mass collabora-
tion phenomenon. The authors found that some students were able to engage in com-
putational practice and reuse code to create a new project without fully understanding 
the underlying computational concepts. The current study builds on this finding. 
 Based on empirical studies of middle and high school students’ practices with coding 
in and out of school, Lee et al. [16] suggested a model of computational practice, use-
modify-create, which can scaffold children’s acquisition of CT concepts. The model 
entails children going through a progression toward learning computational thinking. 
In the use stage, they test existing solutions (e.g., playing a game created by someone 
else). In the modify stage, they begin to modify the game at different levels of com-
plexity. In the create stage, they reuse the acquired understanding and apply it to create 
something new.  

2.2 Domain-Oriented Design Environments: Visual language vs. Components  

Researchers in EUD have been concerned with bringing programming closer to the 
domain expert users’ practices and needs for more than 30 years, along several dimen-
sions. One dimension is general purpose vs. domain orientated technology support, 
which includes work in EUD that spans visual programming languages [e.g., 6, 23] to 
component-based design and end-user tailoring [e.g., 21, 27]. This line of work was 
reviewed in [20] and is here summarized as a conceptual framework, domain-oriented 
design environment (DODE). In a DODE, a programming language and software com-
ponents are combined. A DODE is a software application consisting of a domain-ori-
ented user interface that supports design activities within a particular domain [10], and 
a programming environment in the background that allows end-user developers to mod-
ify and further develop the DODE, such as to introduce new components and rules [11]. 
Component-based design is accomplished by users when they interact with components 
in visual builders to select, modify, and connect components using high-level opera-
tions rather than writing program code [21, 27]. In a DODE this is accomplished by the 
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end users when they select components from a palette of parts, which are further edited 
in a work area, stored in a catalog of examples, and incorporated in future applications 
by reuse and redesign. Block-based programming languages combine aspects of a high-
level programming language and component-based design not unlike a DODE. There-
fore, we used DODE in a conceptual framework to understand block-based program-
ming in practical use with research methods from the social sciences. 

2.3 Group Cognition Review of Computer-Supported Collaborative Learning 

Computer-supported collaborative learning (CSCL) is an interdisciplinary research 
field in which two or more people learn or attempt to learn something together [7]. The 
underlying premises in CSCL are that people learn together with the help of a computer 
and that what they learn together is more than what they could have learned inde-
pendently [26]. The final results of CSCL are shared knowledge and expertise devel-
oped by collaborating through the creation of shared artefacts, which can enhance skills 
in social interaction and collaboration [19]. Thus, the core features of CSCL are: 1) 
interaction between learners, 2) information sharing, 3) joint meaning making based on 
negotiation within the group, and 4) developing common artefacts [1, 26]. CSCL re-
search encompasses both co-located and distributed contexts. An empirical study of 
distributed CSCL referred to as collaborative knowledge creation [1], identified mutual 
development processes in online collaborative learning. “Mutual development” was 
first coined in the context of EUD as a joint collaboration process between different 
stakeholders when they co-create a shared artefact [1, 2]. We use CSCL in order to 
understand how pupils learn together when working in small groups to create code and 
physical artifacts to solve subject-specific tasks. 

3 Analytical Framework: Design-Based Collaborative Learning 

We created an analytical framework derived from central terms in CSCL and EUD. We 
refer to the combination of EUD and CSCL as design-based collaborative learning 
(DBCL). Our goal was to understand collaborative learning of knowledge and skills in 
specific STEM domains (e.g., math, biology, and physics) and to use block-based pro-
gramming as a method toward that end. From CSCL we focused on the collaborative 
learning process of creating common artifacts. From EUD we drew on DODEs. This 
combination of concepts provided a group interaction perspective on domain-oriented 
design environments, which is new. The concepts in our analytical framework are dis-
played in Table 1. 

Table 1. Concepts of analytical framework 

Analytic concepts from CSCL   Analytic concepts from DODEs 

Information sharing (from me to you) 
Design unit (DU, separate building blocks to 
be combined with other DUs) 

Negotiation (you and I decide what to focus 
on) 

Rule (knowledge of the relations between two 
or more DUs to form a more complex DU) 
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Group cognition (shared meaning) 
Argumentation base (a priori shared 
knowledge) 

Scaffolding (help from teacher/senior peer) Example (a previous solution for reuse) 
 
Information sharing is a central element in collaborative learning as it starts all the other 
processes of meaning making [26]. Negotiation is defined as establishing a shared 
meaning, in which the individual group members have to negotiate multiple personal 
perspectives to create one that can be shared and to affirm that the meaning is shared 
[25]. Group cognition is a goal of collaborative learning and entails multiple people 
participating in coherent interactions that achieve cognitive accomplishments that are 
best analyzed, at least in part, at the group level, rather than attributing contributions 
and agency entirely to individual minds [25]. Scaffolding involves a metaphor in the 
collaborative learning context describing how teachers and more senior peers support 
learners by providing feedback and support [12].   
 From DODE [10], we adopted the following components: Design units (DUs) are 
defined as the basic objects in the design environment. They model specific domain 
objects as standalone components as well as more technical objects. Rules define do-
main knowledge and consist of desired relations between domain objects. The rules are 
triggered by actions and events in the environment. Critics are automated scaffolding 
based on rules, but this component is outside the scope of our work. Argumentation 
base is the design rationale associated with domain knowledge in the form of arguments 
for and against adding, removing, or replacing design units. Examples are previous so-
lutions created by other users in the design environment, which provide ideas and start-
ing points for new users to reuse and redesign. We used the two sets of analytic concepts 
in an integrated effort as thematic codes to make sense of empirical data in our analysis.  

4 Methods 

In this section, we describe our research design and techniques for data collection and 
analyses within the umbrella of design-based research (DBR). 
 Design-Based Research is an educational research tradition focused on both the de-
velopment of pedagogical practice and the development of theory. In DBR, researchers, 
teachers, and other stakeholders typically design educational interventions collabora-
tively. The interventions are situated in authentic educational contexts and are tested 
and developed through several iterations [14]. Note that the use of design in DBR (de-
sign as intervention) is different from the use of design in DODE (design as creation). 

Research Design and Participants. We developed and tested a series of technology-
enriched classes for gifted pupils to learn block-based programming as an integral part 
of their course subject. Four iterations are planned over two years, with one intervention 
per semester. Based on evaluations and feedback, the DBR process iterates. In total up 
to 100 pupils aged 12-16 will participate, 50 each semester, divided into four classes. 
Each class is taught by a high school teacher, which means there are also four partici-
pating high school teachers in the research project. Each of the four interventions has a 



6 

different focus concerning the course subject. All of the interventions have the same 
time perspective: a duration of eight weeks, with a three-hour class each week.  

Materials and procedure. The data derived from the second intervention where the 
topics were mathematics, biology, and physics, aided by physical components and Mi-
crobit. Each week began with the teacher introducing the topic for the half-day and the 
topic to be learned and then the teacher divided the class into groups (breakout rooms 
in Zoom) consisting of three to four pupils. The assigned task was to learn a one or 
more domain concepts by using MakeCode as one of the tools. In order to collaborate 
with the use of different materials, the teachers encouraged the pupils to share their 
screens with the others to show their partial solutions. In this way, the pupils had a 
common ground for the discussions. The group was the unit of analysis in our research.  

  
Figure 1. a) The physical materials the pupils had access to and used in some of the assignments. 
b) Microbit circuit board with electronic components. We referred to each item as a design unit. 

Figure 1a) shows the materials the pupils were provided when participating in the 
second intervention. Figure 1b), is a picture of the Microbit microcontroller (a small 
computer) with some sensors that can be connected to it. MakeCode is the block-based 
programming environment used for writing the code that controls the Microbit.   

Selection of participants and context of study. The participants in the study were 
gifted children, who, through nomination from parents/teachers, applied for participa-
tion in the research project. The reason for choosing gifted pupils as participants was 
their need for differentiated learning. As the pupils were aged 12‒16, the intervention 
covered competence goals aimed at high school pupils, that is, one to four academic 
years above their actual ages.  

4.1 Data Collection 

When collecting the empirical data, we used participant observation and video record-
ings of the participants’ screens in Zoom. We collected our data in an online context 
due to the Covid-19 pandemic. Virtual participatory observation is a technique used in 
virtual ethnography. Virtual ethnography is a method for analyzing social interactions 
in an online context. Hine [13] stated that virtual ethnography is an ethnographic ap-
proach to the Internet. When conducting virtual ethnography, different techniques can 
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be used, ranging from “fly on the wall” (non-participant observation) to engaging in the 
social interactions when collecting empirical data [13]. We used a participant observa-
tion approach wherein we sometimes asked the pupils to explain what they were doing 
while programming to initiate social interaction [15]. In total, from Intervention 2, we 
collected around 70 hours of screen recordings of interaction data. The pupils decided 
whether and when they shared their screens, and toggled their web cameras and micro-
phones at will. Data privacy is an important concern in all research, therefore, we ob-
tained written consent from all the participants’ parents/guardians, and the data is stored 
in encrypted and secure data management servers. In addition, all the extracts presented 
in this article are anonymized using pseudonyms. The Norwegian center for research 
data approved this study, ensuring that we collect personal data legally and safely.  

4.2 Data Analysis 

To analyze the empirical data, the first two authors used a combination of thematic 
analysis [5] and interaction analysis [15] in a two-step manner. In using this approach, 
we applied a combination of inductive and deductive coding schemes, defined as an 
abductive approach [22]. Through collective analysis in data workshops, we focused 
on the participant’s “voice,” being inductive, and we also relied on our analytical frame-
work, being deductive.  

Thematic Analysis. Thematic analysis is a method for systematically identifying, or-
ganizing and offering insight into patterns of meanings (themes) across a dataset [5]. 
We started by using thematic analysis to comb through our empirical data seeking 
themes and creating thematic codes that came across as interesting and relevant to the 
research question. Examples of themes that emerged were block-based programming, 
collaboration, and programming integrated in the subjects.  

Interaction Analysis. Next, we selected empirical data extracts that reflected the 
themes we wanted to focus on in detail and used interaction analysis to scrutinize the 
utterances [15]. Interaction analysis is a method for empirical investigation of social 
interaction between humans and the objects in their environment, including speech, 
non-verbal actions and the use of artefacts [15].  

5 Data and Analysis 

In this section, we present empirical data that illustrates how the pupils used blocks to 
experiment and explore a subject area topic within mathematics, biology and physics. 
Each section is divided into four subsections: 1) contextualizing the extract, 2) raw data 
(informants’ voices), 3) technology object (software and hardware being composed) 
and 4) discursive object (a sequence of utterances advancing the groups’ common un-
derstanding). The transcript notations we used include these symbols: ((text)) partici-
pants’ actions, [text] researchers’ clarifying comments, (.) long pause in interaction and 
… pause in interaction. During all the data extracts one of the pupils shared his/her 
screen so that the other pupils could see what he/she was working on. 
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5.1 Verbal Data Extract 1: Simulating a Die 

Contextualizing the data extract: In the first data extract, the pupils discussed the task 
of the first assignment, which was to determine how to use the Microbit as a die as part 
of an exercise related to probability in mathematics. Olivia was sharing her screen. 

Table 3. Simulating a die 

Turn Person Utterance Analytic Concepts 
1.1 Sophia It’s just like…  Can the Microbit be used as a die? Argumen- 

tation base 
1.2 Olivia Nothing more than that?  
1.3 Sophia No, that’s all! ...  
1.4 Olivia Should we try making a die then, or what? Negotiation 
1.5 Liam Okay. Mm. We could actually just do what we did 

earlier. 
Example (idea  
reuse); 

1.6 Olivia Like… On [Microbit] shake… ((pics purple block 
from pallet)) Then... 

Design unit (1) 

1.7 Liam Then you can add “show number”… ((Olivia picks 
blue block and puts inside the purple block)) and a... 
And maths of course. ((Olivia goes to the maths pal-
let and searches)) Then we have a random number 
((Olivia finds the “pick random” block set to default 
values 0 and 10)) from 1 to 6 or 1 to 10 ((Liam sees 
the number 10)), but 1 to 6 ((Olivia changes the 
value from 10 to 6 in the innermost block)). And this 
should work like a die. 

Rule; Information 
sharing;  
Design unit (3) 

1.8 Olivia ((Tests Microbit by clicking the “shake” button 5 
times)) It works! ((tone of voice is happy)) 

Design unit (4); 
Group cognition 

Figure 2. Visual artefacts for extract 1: A program composed of four design units that simulates 
a die when the user clicks the shake button. Left: Code after turn 1.7. Right: Output of program.  

Extract 1 illustrates what we mean by two trajectories of participation: technology 
object development (Microbit and its code) and discursive object development (collab-
orative learning conversation). We show how these objects develop in next paragraphs. 
 Technology Object: When developing the program code, Liam told Olivia what code 
blocks to choose and she put three design units into the configuration shown in Figure 
2 (left image). MakeCode automated the task of creating a syntactically correct program 
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with the “snap” operation (domain general rule). Liam explained the name of two 
nested blocks of importance for domain knowledge, “show number” and “pick random” 
(domain specific rules). Olivia changed the default numbers to match the features of a 
die (ranging from one to six), using another domain-specific rule. Finally, Olivia tested 
whether the simulated die worked, now consisting of four design units, as shown in 
Figure 2 (left and right). It is clear that the pupils did not meet any big challenges cre-
ating the code, but they revealed great joy of accomplishment based on tone of voice. 
 Discursive Object: The main aim of the tasks was to learn domain knowledge as part 
of their group work, in this case probability and random numbers. In collaborative 
learning, an essential part of the process is that individual group members share infor-
mation in order to demonstrate shared understanding [26]. Sophia thought the problem 
was easy and stated the common task (argumentation base). Olivia reformatted the task 
into a question for the group to start their collaborative inquiry. Liam suggested that 
they could reuse the code they had used in a previous assignment and Olivia shared her 
MakeCode screen. Olivia talked with Liam while she composed the program. Important 
information was shared and negotiated by the two group members, such as when Liam 
stated that the block “show number” should show a random number from 1 to 6, anal-
ogous to throwing dice, thus connecting with domain knowledge. In turn 1.7, Olivia 
said “It works,” referring to the shared visual artifact, a simulated die using Microbit 
(Figure 2, right image), which indicated that Liam and Olivia, and perhaps Sophia, had 
collaboratively created shared knowledge. 

5.2 Verbal Data Extract 2: Programming the Microbit to Print Gene Codes 

Contextualizing the extract: This extract is part of a biology topic wherein the pupils 
were given the task to print out 15 random gene codes. Felix shared his screen so the 
other group members could see his coding process, but only Matheo engaged with him. 

Table 4. Programming gene sequences 

Turn Person Utterance Analytic Concepts 
2.1 Felix Okay, we’re supposed to make a random sequence 

of 15 [genes]. ((Places the blue “on start” block. Sets 
a variable “text-list,” to include an array. Modifies 
values in the array block to A, T, C, G.)) 

Design unit (3);  
Information sharing 

2.2 Felix [After 1 minute of group negotiating the nature of 
the task] Just try to… or? Yes, we’ll try. Should we 
take [this block]? ((Felix picks a new top-level pur-
ple input block and places below start block; places 
a green loop block inside and sets parameter to 15; 
places a blue output text block inside)) … Mmmm… 
Yes. ((puts a variable “list” block as output, initial-
ized with a “random value” block.)) 

Negotiation; 
Design unit (3+6); 
Rule 

2.3 Matheo This whole thing about genes and stuff is quite cool.  Design unit (10); 
Rule; 
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2.4 Felix Yes, it’s really fun.   
2.5 Matheo Hang on, I’m writing [code]… There, wait Felix, 

I’m still making… Felix, I think I also did it, but the 
thing is, if you go back to what you had [code]... 

Design unit (10) 

2.6 Felix Mm ((Both pupils are working out their code sepa-
rately.)) 

 

2.7 Matheo Ehmm then I have… or, you’re using the join thing 
[block].  

Information sharing 

2.8 Felix Oh, it’s not really necessary… it’s just…  
2.9 Matheo What does it do? Does it just make them [the blocks] 

stick together, like follow each other? 
Negotiation 

2.10 Felix Yeah, actually, I don't think you need it. ((Starts to 
reflect in his own code.)) 

 

2.11 Matheo Yeah Group cognition 
2.12 Felix No, you could really just have used (.) ((Tries to un-

derstand the construct.)) 
 

2.13 Matheo I just wrote [coded] show string…  
2.14 Felix Yes, that is really all you need to do.  
2.15 Matheo Then I don’t get those hyphens [to space out the let-

ters output the Microbit] - I just get “ding ding ding” 
[the gene letters are written out one after the other 
without hyphens]. 

Rule 

2.16 Felix Eh, yeah, yeah, because you don’t really need… 
Yes, he [the teacher] just had hyphens in his code, I 
think. But you don’t really need the hyphens. 

Information sharing 
 

2.17 Matheo Yeah, but can you try running it [the code]? May I 
see what it looks like? 

Group cognition 

2.18 Felix With this? ((Referring to the join block with the hy-
phen.)) 

 

2.19 Matheo Umm, yes.  
2.20 Felix It just goes like this. ((Points to Microbit simula-

tion)) It just takes forever. 
Design unit (11) 

 

  
Figure 3. Visual artefact table for Extract 2: The program composed of 11 design units displays 
a random sequence of 15 letter gene codes (here two letters, C & G, are shown in three snapshots). 
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Technology Object: In turn 2.2, Felix shared his screen and started the task by com-
bining blocks in order to write out the letters A, T, C, and G (abbreviations of the four 
basic building blocks in an organism’s DNA) by initializing an array block. He contin-
ued to create the program by searching for blocks to combine the letters randomly. At 
10 blocks, he indicated that he had finished by asking: “Does it work now?” (Turn 2.4). 
The other pupils had worked with their own code, and in Turn 2.7, Matheo asked Felix 
if he really needed the “join block” because it was not used (or may have had an error). 
Felix pondered the question, agreed, and changed his code. This illustrates how the 
pupils helped each other to create the code, despite working on separate versions locally 
with one being shared as a technology object to talk about.  
 Discursive Object: When Felix started to create the program as shown in the previ-
ous paragraph and Matheo said that he found this way of working “quite cool” (Turn 
2.3), it can be interpreted that the pupils perceived their main focus as the science 
course, using programming as a tool toward learning science. The two boys agreed that 
a certain block was not needed after some negotiation, with the effect that shared un-
derstanding (group cognition) was achieved after first establishing a shared understand-
ing of the code. The utterances in Turns 2.17‒2.20 can be interpreted as a collaborative 
learning process in which group cognition emerged [25]. Shared understanding was 
achieved during Turns 2.15-20 (producing 15 gene codes as a random combination of 
the four basic DNA letters) when Felix elaborated that this could be accomplished by 
using hyphens between the letters, a point emphasized by the teacher in a previous lec-
ture. This achievement was visualized in the program execution in Turn 2.20. 

5.3 Verbal Data Extract 3: Microbit as a Burglar Alarm 

Contextualizing the extract: This extract is part of a physics topic wherein the pupils 
were given the task to program the Microbit to be used as a burglar alarm. When doing 
this, the children were asked to use aluminum foil and connect it to the Microbit to 
explore how it conducts electricity. The extract below is from an end-of-class summing 
up session in which the pupils were invited by the teacher to present their projects. 

Table 3. Microbit as a Burglar Alarm. 

Turn Person Utterance Analytic Concepts 
3.1 Teacher Ok, so what are you up to? Scaffolding 
3.2 David Yeah, so, we, we have a more practical idea. We 

really just took the same program we made earlier 
and modified it, so really when… 

Example (code  
reuse) 

3.3 Teacher Can you show us? Scaffolding 
3.4 David Yes, it’s a very simple program. There, this is our 

program ((shares screen)). Very simple. 
Design unit (3) 

3.5 Teacher But how… I’m eager to hear how you stopped it 
from [ringing]… 

Scaffolding 

3.6 David Since we have connected this buzzer, and sort of if 
both of the connectors to the buzzer are connected 

Rule 
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to the aluminum it will stop ringing. So, what we 
did on my door was, I put the aluminum sort of 
right next to it [door end] so when you open [the 
door], it moves away from the aluminum and then 
it starts ringing. 

3.7 Teacher So basically—the connection from the Microbit to 
the buzzer is cut in two, is that what you did? 

Scaffolding 

3.8 David Sort of. We took a ((looks at door)).  
3.9 Teacher Can you film it [with the webcam]?  
3.10 David It’s stuck to my door now. Umm, yes, I’ll just turn 

around the camera. I’ll stop sharing [the computer 
screen]. Here you see it—we’ve named it “Tacky-
Mech,” and it starts ringing when it’s not in con-
tact with the aluminum ((buzzer sound))) and 
when it comes back again it stops ((buzzer stops 
ringing)). 

Design unit (3 soft-
ware and 4 hard-
ware); 
Rule;  
Group cognition 

 

  
Figure 4. Visual artefact table for Extract 3: The code to the left reads signals from the Microbit 
to the right (attached to the door), which triggers a buzzer when two aluminum cords are not in 
contact. 

Technology Object: David volunteered to show the solution that he created with a 
peer when prompted by the teacher. He started with three code blocks from a previous 
exercise. The code worked by sending a ring-signal to the buzzer when the door was 
opened. David stated that when the buzzer was connected to the aluminum, the burglar 
alarm would stop ringing. This is one example of a rule in the design environment, that 
is, aluminum as electrical conductor. Based on the code alone (Figure 4, left image), 
one may get the impression that the alarm will ring “forever.” David said that the alarm 
would ring only when the door was opened as this would break the electrical circuit. In 
Figure 4, we see David’s code (left) and the set-up of the Microbit with the buzzer taped 
to the door (right). This extract is interesting as it is an example of how the pupil used 
the Microbit as an integrated element of particle physics (electricity) by using alumi-
num as a conductor in a practical application.  

Discursive Object: The teacher prompted the knowledge building that occurred in 
this conversation four times, by asking questions and scaffolding the pupils’ learning 
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process [12]. In response, David explained what he and his peer did in steps that grad-
ually led to group cognition, sharing information about “a more practical idea” (Turn 
3.2), with negotiation that led to a “very simple program,” (Turn 3.4) and finally shared 
understanding of basic circuitry and program logic (understanding why buzzer “starts 
ringing when it’s not in contact with the aluminum”). The latter (Turn 3.10), is an ex-
ample of group cognition, as they named their hack “TackyMech.” An essential element 
in group cognition is when multiple people build on each other's statements and partic-
ipate in coherent interactions to achieve something beyond their individual efforts [25]. 
In Extract 3, the interactions were scaffolded by the teacher to achieve group cognition. 
The teacher asked questions about what the burglar alarm looked like and how it 
worked, and the pupil explained and reflected upon the process. These questions 
brought the technology objects into focus. 

In sum, in the data we have shown, we identified two types of “objects” that increase 
in complexity: technology objects increase in the number of design units, that is, parts 
that can be combined in different ways [10], whereas discursive objects increase in 
level abstraction, from personal to shared perspectives [25, 26]. Both are important and 
interdependent. 

6 Discussion and Conclusions 

The research question asked in this study was: What characterizes block-based pro-
gramming as an explorative design space to learn STEM topics in an online collabora-
tive setting? We have addressed the question by analyzing three examples in Section 5, 
using an analytical framework obtained from theories in EUD and CSCL. Application 
of the framework led to the following empirical results:  

• Block-based programming in a collaborative context. 
• Block-based programming as part of a domain-oriented design environment reduces 

the gap between the problem domain and the human-computer interface. 
• Block-based programming can be integrated in school subjects. 
• Block-based programming as explorative design method for solving domain specific 

tasks. 
 
  Block-based programming in a collaborative context. Our unit of analysis was the 
group. However, the programs created by the group members were made locally (each 
pupil had their own MakeCode environment and the physical components kit). To 
bridge the gap between individual artefacts and group work, we draw on CSCL. Col-
laborative learning is the discursive element of the analysis, including key collaborative 
processes such as “sharing information,” “negotiation” and “group cognition” [25, 26]. 

Block-based programming to reduce the semantic gap. The main aim of a DODE is 
to move the human-computer interface from resembling interaction with a program-
ming language to interacting with higher-level abstractions, which ends with the prob-
lem domains [10]. Our empirical findings turn this model upside-down, starting with 
the problem domain as given by an assignment and ending with individual technology 
objects and collaboratively-created knowledge (group cognition). For example, in data 
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Extract 1, the domain-specific context was mathematics and the problem to be solved 
was basic understanding of probability (random numbers), which was materialized in 
the MakeCode/Microbit die. 
 Block-based programming can be integrated in school subjects. We found across 
the three examples that pupils could solve the tasks without advanced programming 
knowledge. We believe a reason for this is the intuitiveness of block-based program-
ming and the automation of programming language syntax. Our findings indicate that 
pupils, if not explicitly taught programming knowledge, would choose blocks accord-
ing to color, shape and parameters [8]. The use-modify-create model [16] suggested in 
the literature applied to the programming part in the three examples, but it did not apply 
to collaborative learning because it failed to consider domain orientation outside pro-
gramming. To consider arbitrary (STEM) subject domains, the model could be prefixed 
with “concepts,” whereby one or more domain specific concepts are introduced by a 
teacher before the pupils start programming with, for example, use-modify-create. 

Block-based programming as exploratory method for solving domain specific tasks. 
Our data illustrates how programming can be used as a method for collaborative learn-
ing of school subjects in math and science (STEM) topics. Our research indicates a 
method to learn STEM subjects. In Extract 3, we see how a pupil solved a physics task 
by combining knowledge of metal conductivity and programming physical objects. The 
programming serves as an intermediate stage between the mastery of a curricular goal 
in physics and the actual physical objects. This can be understood in two ways (bottom 
up and top down): 1) the physical objects served as stepping-stones to gradually under-
stand the higher-level physics concepts through the medium of programming or 2) the 
concepts as first taught were then “lowered” to a more concrete level of abstraction by 
hands-on exploration to ground the concepts. In the creation of a burglar alarm, we 
observed both top-down and bottom-up understanding at work, which varied among 
the groups according to preferences in following teachers’ instructions (top down) ver-
sus doing interesting things themselves (bottom up).  

A dilemma of integrating programming as part of the subjects is that the teachers 
need to split their time in two, that is, teaching and scaffolding the subject and program-
ming. We observed this phenomenon from the point of view of the pupils learning ac-
tivities by identifying two types of artefacts that developed in parallel during the group 
work: 1) technical objects and 2) discursive objects. These objects developed in differ-
ent directions as one is concrete and the other abstract (design complexity in the number 
of building blocks vs. abstraction of knowledge in terms of the degree of shared under-
standing held by a group). The design complexity and abstraction of knowledge devel-
oped as the teachers gave the pupils tasks involving physical objects related to domain 
specific topics, and followed it up by scaffolding. 

The usefulness of EUD can be assessed according to access, flexibility and purpose. 
Our empirical studies of block-based programming combine the three criteria. We have 
leveraged previous work in EUD by low-threshold interfaces supporting component-
based design [21, 27] and previous research in high-ceiling block-based programming 
environments [23, 24]. We contributed by combining access and flexibility with a pur-
pose beyond interest by connecting block-based programming with domain-specific 



15 

learning activities [10]. Further work includes increasing the accessibility of computa-
tional tools and materials by defining them within the same programmable design en-
vironment, such as Minecraft, in which specific program constructs can be taught by 
practical problem solving in the immersive game environment. For educational appli-
cations, the use-modify-create model [16] can benefit an initial phase of setting a goal.  

Finally, we have developed a new conceptual framework for analyzing collaborative 
learning in block-based programming by combining concepts from domain-oriented 
design environments (DODEs) and computer supported collaborative learning (CSCL) 
based on group cognition. We have named the new analytical framework design-based 
collaborative learning (DBCL), providing a set of analytic concepts to be used as an 
observation protocol in empirical research. Further research will harness the protocol. 
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