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Abstract
Let C be a complex projective smooth curve and W a symplectic vector bundle of rank 2n
over C . The Lagrangian Quot scheme LQ−e(W ) parameterizes subsheaves of rank n and
degree −e which are isotropic with respect to the symplectic form. We prove that LQ−e(W )

is irreducible and generically smooth of the expected dimension for all large e, and that a
generic element is saturated and stable.

1 Introduction

LetC be a smooth algebraic curve of genus g ≥ 0 overC. A vector bundleW overC is called
symplectic if there exists a nondegenerate skew-symmetric bilinear form ω : W ⊗ W → L
for some line bundle L . Such an ω is called an L-valued symplectic form. A subsheaf E of
W is called isotropic if ω|E⊗E = 0. By linear algebra, a symplectic bundle has even rank 2n
and any isotropic subsheaf has rank at most n. An isotropic subbundle (resp., subsheaf) of
rank n is called a Lagrangian subbundle (resp., Lagrangian subsheaf ). For information on
semistability and moduli of symplectic bundles, see [1].

For vector bundles, Popa and Roth proved the following result on the irreducibility of
Quot schemes.

Theorem 1.1 ([16, Theorem6.4]) For any vector bundle V overC, there is an integer d(V , k)
such that for all d ≥ d(V , k), the Quot scheme Quotk,d(V ) of quotient sheaves of V of rank
k and degree d is irreducible.
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As a corollary, they showed that for sufficiently large d , the Quot scheme Quotk,d(V ) is
generically smooth of the expected dimension, and a general point ofQuotk,d(V ) corresponds
to an extension 0 → E → V → V /E → 0 where E and V /E are stable vector bundles. A
significant feature of this theorem is that it holds for an arbitrary bundle V , with no assumption
of generality or semistability.

The main goal of the present paper is to obtain the analogous result for Lagrangian Quot
schemes of symplectic bundles (Theorem 4.1). One may try to argue as in [16], but one vital
step does not appear to adapt in an obvious way: Given a symplectic bundle W of rank 2n
and for a fixed vector bundle E of rank n, the space parameterizing Lagrangian subsheaves
E ⊂ W is a locally closed subset of PH0(C,Hom(E,W )), whose irreducibility seems
difficult to decide. This is discussed further at the beginning of § 4.

We take instead a different approach: We exploit the geometry of symplectic extensions,
together with deformation arguments, as developed in [4] and [11]. In particular, Proposi-
tion 4.14 uses a geometric interpretation for the statement that a nonsaturated Lagrangian
subsheaf can be deformed to a subbundle. The connection between extensions and geometry
is provided by principal parts, and is developed in § 3 and § 4.3. This provides an alternative
language to Čech cohomology for bundle extensions over curves, and makes transparent the
link between the geometric and cohomological properties of the extensions.

We remark that the same argument applies to the vector bundle case, and we expect that
similar results can be obtained by these methods for other principal bundles.

In [3], we use the main result in this paper to solve the problem of counting maximal
Lagrangian subbundles of symplectic bundles, as Holla [12] used the irreducibility of Quot
schemes to count maximal subbundles of vector bundles. Also we expect that an effective
version of the irreducibility result for semistable bundles would yield an effective base free-
ness (or very ampleness) result on the generalized theta divisors on the moduli of symplectic
bundles, as in [16, § 8] for vector bundles. We note that Theorem 4.1 does not give an
effective bound on e but only the existence of a bound, due to the existence statement in
Proposition 4.4. It would be nice to have an effective and reasonably small uniform bound
for semistable symplectic bundles.

In another direction; several techniques in the present paper have also been used in [2] to
study isotropic Quot schemes associated to bundles with orthogonal structure.

Notation

Throughout, C denotes a complex projective smooth curve of genus g ≥ 0. If W is a vector
bundle over C and E ⊂ W a locally free subsheaf, we denote by E the saturation, which is
a vector subbundle of W .

2 Lagrangian Quot schemes

In this section, we define the Lagrangian Quot scheme of a symplectic bundle and study its
tangent spaces.

Given a vector bundle V over C , the Quot scheme Quotk,d(V ) parameterizes quotient
sheaves of V of rank k and degree d; alternatively, subsheaves of V of rank rk V − k and
degree deg V − d . LetW be a bundle of rank 2n which carries an L-valued symplectic form,
where deg L = �. Then from the induced isomorphismW ∼= W ∗ ⊗ L , we have degW = n�.
Wedenote by LQ−e(W ) the sublocus ofQuotn,e+n�(W ) consisting ofLagrangian subsheaves
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of degree −e and call it a Lagrangian Quot scheme. The choice of notation “LQ−e” reflects
the fact that we will most often consider points of Lagrangian Quot schemes as subsheaves
rather than as quotients.

Remark 2.1 Note that LQ−e(W ) ↪→ Quotn,e+n�(W ) depends on the choice of symplectic
form ω. However, by [8, Remarque, p. 130], if ω and ω′ are two symplectic forms onW then
there exists a bundle automorphism ι of W such that ι∗ω′ = ω. Then F 	→ ι(F) induces an
isomorphism LQ−e(W , ω)

∼−→ LQ−e(W , ω′). In view of this, we shall abuse notation and
write simply LQ−e(W ).

We recall some other important notions: For each integer e and each x ∈ C we have the
evaluation map evex : Quotn,e+n�(W ) ��� Gr(n,W |x ) which sends a subsheaf E to the fiber
E |x , when this is defined. Also, let LG(W ) be the Lagrangian Grassmannian bundle of W ,
that is, the subfibration of Gr(n,W ) whose fiber at x ∈ C is the Lagrangian Grassmannian
LG(W |x ).
Lemma 2.2 Let W be an L-valued symplectic bundle of rank 2n as above. If g ≥ 2 and
e ≥ n(g−1−�)

2 , then the locus LQ−e(W ) is a nonempty closed subset of Quotn,e+n�(W ).

Proof By [4, Theorem 1.4 and Remark 3.6], any symplectic bundle has a Lagrangian sub-

bundle of degree −e0 for some e0 ≥
⌈
n(g−1−�)

2

⌉
. For e > e0, we can take an elementary

transformation of the Lagrangian subbundle of degree −e0 to get a Lagrangian subsheaf of
degree −e. This proves the nonemptyness.

For the closedness: Write Indet(evex ) for the indeterminacy locus of evex :

Indet(evex ) = {[E → W ] ∈ Quotn,e+n�(W ) : E is not saturated at x},
which is a closed subset of Quotn,e+n�(W ). It is easy to see that

LQ−e(W ) =
⋂
x∈C

(
(evex )

−1 (LG(W |x )) ∪ Indet(evex )
)
.

As LG(W |x ) is closed in Gr(n,W |x ), we see that LQ−e(W ) is closed. �

Remark 2.3 The genus assumption g ≥ 2 is imposed to get the sharp bound e ≥ n(g−1−�)

2 for
nonemptyness of LQ−e(W ). This bound is proven in [4] for g ≥ 2, but for the case g = 0
or 1, we still have an existence of a bound to guarantee the nonemptyness of LQ−e(W ).

We denote by LQ−e(W )◦ the open sublocus of LQ−e(W ) corresponding to vector bundle
quotients. The following is a generalization of [5, Lemma 4.3].

Proposition 2.4 Assume that LQ−e(W )◦ is nonempty. Let [ j : E → W ] be a point of
LQ−e(W )◦.
(a) Every irreducible component of LQ−e(W )◦ has dimension at least

χ(C, L ⊗ Sym2E∗) = n(n + 1)

2
(� − g + 1) + (n + 1)e.

(b) The Zariski tangent space of LQ−e(W )◦ at [ j : E → W ] is given by

Tj LQ−e(W )◦ ∼= H0(C, L ⊗ Sym2E∗).

(c) If h1
(
C, L ⊗ Sym2E∗) = 0, then LQ−e(W )◦ is smooth and of dimension χ(C, L ⊗

Sym2E∗) at j .
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Proof (a) Let Z be an irreducible component of LQ−e(W )◦. Let [ j : E → W ] be a point of
Z contained in no other component. Let σ : C → LG(W ) be the section corresponding to the
subbundle [ j : E → W ]. Let P be the Hilbert polynomial of the subscheme σ(C) of LG(W )

and Y a component of HilbP (LG(W )) containing the point [σ(C)]. Write π : LG(W ) → C
for the projection. The normal bundle of σ(C) in LG(W ) is isomorphic to the restriction of
the vertical tangent bundle Tπ = Ker(dπ), which in turn is isomorphic to L ⊗ Sym2E∗.
Hence by the deformation theory of Hilbert schemes, we have

dim[σ(C)] Y ≥ χ
(
C, L ⊗ Sym2E∗) .

Since a general member of Y corresponds to a section of π , there is a rational map Y ���
LQ−e(W )◦ defined on a nonempty open subset. As [σ(C)] is mapped to j , the image of
Y lies inside Z . Clearly the map Y ��� Z is generically injective, so we see that dim Z ≥
χ
(
C, L ⊗ Sym2E∗).
(b) Let α : E → W/E ∼= E∗ ⊗ L represent a tangent vector to the Quot scheme

Quotn,e+n�(W ) at [ j : E → W ]. For each x ∈ C , the section α defines an element
α(x) ∈ Tj(E |x )Gr(n,W |x ), and the deformation preserves isotropy of E if and only if α(x)
is tangent to the subvariety LG(W |x ) ⊂ Gr(n,W |x ) for all x .

The result now follows from the following description of the tangent space of the
Lagrangian Grassmannian:

Tj(E |x )LG(W |x ) = (L ⊗ Sym2E∗) |x ⊂ (
L ⊗ E∗ ⊗ E∗) |x = Tj(E |x )Gr(n,W |x ).

(c) By (a) and (b), if h1
(
C, L ⊗ Sym2E∗) = 0 then

dim Tj LQ−e(W )◦ = χ
(
C, L ⊗ Sym2E∗) ≤ dim j LQ−e(W )◦.

Thus we have equality and LQ−e(W )◦ is smooth at j . �


3 Symplectic extensions

If F is a Lagrangian subbundle of a symplectic bundleW , then there is a short exact sequence
0 → F → W → F∗ ⊗ L → 0. An extension induced by a symplectic structure in this
way will be called a symplectic extension. In this section, we recall or prove some facts on
symplectic extensions which we will need later.

Recall that any locally free sheaf V on C has a flasque resolution

0 → V → Rat (V ) → Prin (V ) → 0,

where Rat (V ) = V ⊗OC Rat (OC ) is the sheaf of sections of V with finitely many poles,
and Prin (V ) = Rat (V )/V is the sheaf of principal parts with values in V . Taking global
sections, we have a sequence of Abelian groups

0 → H0(C, V ) → Rat (V ) → Prin(V ) → H1(C, V ) → 0. (3.1)

The support of a principal part p ∈ Prin(V ) is the subscheme of C defined by the annihilator
of p in OC . If Supp(p) is a divisor D := 
m

i=1di xi , then p is a global section of V (D)/V .
Abusing notation, p can be represented by a finite sum

v1

zd11
+ · · · + vm

zdmm
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where zi is a local parameter at xi for 1 ≤ i ≤ m, and vi is a local section of V near xi . Note

that the principal part p is determined by the images of the vi in Vxi /
(
mdi

xi · Vxi

)
.

For β ∈ Rat (V ), we denote by β the principal part β mod H0(C, V ). If p ∈ Prin(V ),
we write [p] for the associated class in H1(C, V ).

3.1 Symmetric principal parts and symplectic extensions

Let F be any bundle of rank n. The sheaf L−1 ⊗ F ⊗ F has a natural involution exchanging
the factors of F . The transpose t p of a principal part p ∈ Prin(L−1 ⊗ F ⊗ F) is defined
to be the image of p under this involution. Then p is symmetric if t p = p, or equivalently
p ∈ Prin(L−1 ⊗ Sym2F). Note that this is stronger than the condition [t p] = [p] in
H1(C, L−1 ⊗ F ⊗ F).

Now any p ∈ Prin(L−1 ⊗ F ⊗ F) defines naturally an OC -module map F∗ ⊗ L →
Prin (F), which we also denote p. Suppose p is a symmetric principal part in Prin(L−1 ⊗
Sym2F). Following [15, Chapter 6], we define a sheaf Wp by

Wp(U ) := {( f , ϕ) ∈ Rat (F)(U ) ⊕ (F∗ ⊗ L)(U ) : f = p(ϕ)} (3.2)

for each open set U ⊆ C . It is not hard to see that this is an extension of F∗ ⊗ L by F .
Now there is a canonical pairing 〈 , 〉 : Rat (F) ⊕ Rat (F∗ ⊗ L) → Rat (L). By an easy

computation (see the proof of [11, Criterion 2.1] for a more general case), the standard
symplectic form on Rat (F) ⊕ Rat (F∗ ⊗ L) defined on sections by

ω (( f1, φ1), ( f2, φ2)) = 〈 f2, φ1〉 − 〈 f1, φ2〉 (3.3)

restricts to a regular symplectic form on Wp with respect to which the subsheaf F is
Lagrangian. This shows that for each symmetric principal part p ∈ Prin(L−1 ⊗ Sym2F)

there is a naturally associated symplectic extension of F∗ ⊗ L by F . We now give a refine-
ment of [11, Criterion 2.1], showing that every symplectic extension can be put into this
form.

Lemma 3.1 Let W be any symplectic bundle and F ⊂ W a Lagrangian subbundle.

(a) There is an isomorphismof symplectic bundles ι : W ∼−→ Wp for some symmetric principal
part p ∈ Prin(L−1 ⊗ Sym2F) such that ι(F) is the natural copy Wp ∩ Rat (F) of F in
Wp, which is given over each open set U ⊆ C by {( f , 0) : f ∈ F(U )}.

(b) The class of the extension 0 → F → Wp → F∗ ⊗ L → 0 in H1(C, L−1 ⊗ Sym2F)

coincides with [p].
Proof (a) As much of this proof is computational, we outline the main steps and leave the
details to the interested reader.

Since F is isotropic, W is an extension 0 → F → W → F∗ ⊗ L → 0. By [10, Lemma
3.1]1, there exists p′ ∈ Prin(L−1 ⊗ F ⊗ F) such that the sheaf of sections of W is given by

U 	→ Wp′(U ) = {
( f , φ) ∈ Rat (F)(U ) ⊕ (F∗ ⊗ L)(U ) : p′(φ) = f

}
. (3.4)

Using the facts that F is isotropic and the form is antisymmetric and nondegenerate, one
shows that there exist A ∈ Aut (F) and B ∈ Rat (L−1⊗∧2F) such that the given symplectic
form ω′ on the sheaf Wp′ is given by

ω′(( f1, φ1), ( f2, φ2)) = 〈A( f2), φ1〉 − 〈A( f1), (φ2)〉 + 〈B(φ2), φ1〉 (3.5)

1 This is unpublished, but it is the obvious generalization of the rank two case treated in [15, Lemma 6.5].

123



D. Cheong et al.

Using in addition that the restriction of ω′ to Wp′ is regular, one shows that

Ap′ − t
(Ap′) + B =

(
Ap′ + B

2

)
− t

(
Ap′ + B

2

)
= 0 ∈ Prin(L−1 ⊗ F ⊗ F).

Hence p := Ap′ + 1
2 B is a symmetric principal part.

Let now Wp be defined as in (3.2). As mentioned above, the form ω in (3.3) restricts to a
regular symplectic form on Wp . A tedious but elementary calculation shows that

( f ′, φ′) 	→
(
A( f ′) + B

2
(φ′), φ′

)

defines an isomorphism ι : Wp′
∼−→ Wp satisfying ι∗ω = ω′ and mapping F ⊂ Wp′ to

F ⊂ Wp .
Part (b) is proven exactly as for extensions of line bundles in [15, Lemma 6.6]. �


3.2 Lagrangian subbundles in reference to a fixed symplectic extension

From (3.2), we obtain a splitting Rat (W ) = Rat (F) ⊕Rat (F∗ ⊗ L). This is a vector space
of dimension rk (W ) over the field K (C) of rational functions on C . If β ∈ Rat (Hom(F∗ ⊗
L, F)), we write �β for the graph of the induced map of K (C)-vector spaces Rat (F∗ ⊗
L) → Rat (F). Abusing notation, we also denote by �β the associated sub-OC -module of
Rat (F) ⊕ Rat (F∗ ⊗ L).

Moreover, if F and G are subsheaves of a sheaf H , we write F ∩ G for the presheaf
U 	→ F(U ) ∩ G(U ). As this is the kernel of the composed maps F → H → H/G and
G → H → H/F , in fact it is a sheaf.

Proposition 3.2 Let p ∈ Prin(L−1 ⊗ Sym2F) be any symmetric principal part. Let Wp be
as in (3.2).

(a) There is a bijection between the K (C)-vector space Rat
(
L−1 ⊗ Sym2F

)
and the set

of Lagrangian subbundles E ⊂ Wp with rk (E ∩ F) = 0. The bijection is given by
β 	→ �β ∩ Wp. The inverse map sends a Lagrangian subbundle E to the uniquely
determined β ∈ Rat (L−1 ⊗ Sym2F) satisfying Rat (E) = �β .

(b) If E = �β ∩ Wp then projection to F∗ ⊗ L gives an isomorphism of sheaves

E
∼−→ Ker

(
(p − β) : F∗ ⊗ L → Prin (F)

)
. Note that

[
p − β

] = [p] is the class of
the symplectic extension δ(Wp) ∈ H1(C, L−1 ⊗ Sym2F).

(c) For a fixed p − β ∈ Prin(L−1 ⊗ Sym2F), the set of Lagrangian subbundles �β ′ ∩ Wp

with β ′ = β is a torsor over H0(C, L−1 ⊗ Sym2F). In particular, it is nonempty.

Proof Parts (a) and (b) follow from [11, Theorem 3.3 (i) and (iii)]. Note that as the symplectic
form on W is given by (3.3), the α referred to in [11] is zero.

Part (c) is a slight generalization of [11, Corollary 3.5]. From the description (3.2), we see
that (β(φ), φ) ∈ �β(U ) belongs to Wp(U ) if and only if φ ∈ Ker(p − β)(U ), so �β ∩ Wp

is a lifting of Ker(p − β). By part (a), it is isotropic and saturated.
Moreover, under the bijection in (a) the set of liftings �β ′ ∩ Wp with β ′ = β is in

canonical bijection with the set of β ′ such that β ′ = β. By (3.1), this is a torsor over
H0(C, L−1 ⊗ Sym2F). �
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Remark 3.3 In part (c) above, we characterize different liftings of Ker(q) for a fixed q ∈
Prin(L−1 ⊗ Sym2F) with δ(W ) = [q]. More generally, there can exist also distinct β, β ′
with p − β �= p − β ′ such that Ker(p − β) = Ker(p − β ′) as subsheaves of F∗ ⊗ L .
Such β and β ′ correspond to distinct liftings E ↪→ W . We shall study this phenomenon in
Lemma 3.6.

We now give a slight refinement of Lemma 3.1, essentially allowing us to choose conve-
nient coordinates on W .

Lemma 3.4 Let F and E be Lagrangian subbundles of W such that rk (F ∩ E) = 0. Then
there exists a symmetric principal part p0 ∈ Prin(L−1 ⊗ Sym2F) and an isomorphism of

symplectic bundles ι : W ∼−→ Wp0 , such that

ι(E) = �0 ∩ Wp0 = 0 ⊕ Ker(p0),

where �0 = 0 ⊕ Rat (F∗ ⊗ L) is the graph of the zero map Rat (F∗ ⊗ L) → Rat (F).

Proof From Lemma 3.1 and Proposition 3.2, we may assume that W is an extension

0 → F → Wp → F∗ ⊗ L → 0

for a symmetric p ∈ Prin(L−1 ⊗ F ⊗ F), and that

E = �β ∩ Wp ∼= Ker(p − β)

for some β ∈ Rat (L−1 ⊗ Sym2F). Then ( f , φ) 	→ ( f − β(φ), φ) defines an isomorphism
ι : Wp

∼−→ Wp−β sending E = �β ∩ Wp to �0 ∩ Wp−β . Set p0 := p − β. If ω and ω0 are
the standard symplectic forms (3.3) on Wp and Wp0 respectively, then an easy computation
using the symmetry of β shows that ι∗ω0 = ω. �

Remark 3.5 Apropos Lemma 3.4 and (3.2): As Ker(p0) is only a subsheaf of F∗ ⊗ L , it
may be of interest to indicate how it lifts to a saturated subsheaf, or a subbundle of Wp0 . For
simplicity, suppose L = OC and Im (p0) ∼= Cx , so p0 is represented by η1⊗η1

z where z is a
local parameter at x on a neighborhood U and η1 is some regular section of F |U which is
nonzero at x .

Complete η1 to a frame {ηi } for F on U and let {φi } be the dual frame for F∗. Then the
principal part p0(φ1) ∈ Prin (F)(U ) is represented by

η1 ⊗ η1

z
(φ1) = 〈η1, φ1〉 · η1

z
= η1

z
.

Hence in view of (3.2), a frame for Wp on U is given by

(η1, 0), . . . , (ηn, 0),

(
η1

z
, φ1

)
, (0, φ2), . . . , (0, φn). (3.6)

Now a frame over U for the subsheaf 0 ⊕ Ker(p0) of Wp0 is given by

(0, z · φ1), (0, φ2), . . . , (0, φn). (3.7)

Writing (0, z · φ1) in terms of the frame (3.6), we have

(0, z · φ1) = z ·
(

η1

z
, φ1

)
− (η1, 0).

From thiswe see that the images of (3.7) inWp|x are independent.Hence 0⊕Ker(p0) ↪→ Wp0
is a vector bundle inclusion at x . This computation also shows that the intersection of the
subbundles �0 ∩ Wp0 and F at x is the line spanned by η1(x) in F |x . �
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3.3 Isotropic liftings of an elementary transformation

Let W be a symplectic extension 0 → F → Wp → F∗ ⊗ L → 0, and let 0 → E
γ−→

F∗ ⊗ L → τ → 0 be an elementary transformation where τ is some torsion sheaf. Assume
that there is a lifting j : E → W . By Proposition 3.2, there exists a rational map β : Rat (F∗⊗
L) → Rat (F) such that E ⊆ �β ∩ Wp ∼= Ker(p − β). The following result, generalizing
Proposition 3.2 (c), provides the main idea to “linearize” the space of Lagrangian subsheaves
of W which respects the fixed symplectic extension and elementary transformation.

Lemma 3.6 The set of liftings of γ : E → F∗ ⊗ L to Lagrangian subsheaves of W = Wp is
a torsor over H0

(
C,Hom(E, F) ∩ Rat (L−1 ⊗ Sym2F)

)
.

Before starting the proof, let us indicate how the intersection of Hom(E, F) and Rat (L−1 ⊗
Sym2F) is well defined. Since L−1 ⊗ F

tγ−→ E∗ is an elementary transformation, E∗ is a
subsheaf of Rat (L−1 ⊗ F). Hence Hom(E, F) = E∗ ⊗ F and Rat (L−1 ⊗Sym2F) are both
sub-OC -modules of Rat (L−1 ⊗ F ⊗ F).

Proof Suppose that j1 : E → W and j2 : E → W are two liftings of γ to Lagrangian
subsheaves. Then the saturations ji (E) are Lagrangian subbundles. By Proposition 3.2 (a),
there exist uniquely defined β1, β2 ∈ Rat (L−1 ⊗ Sym2F) such that for i = 1, 2 the map
ji : E → Wp is given by

v 	→ (βi (v), γ (v)) ∈ Wp ⊂ Rat (F) ⊕ (F∗ ⊗ L).

Then we calculate

j1(v) − j2(v) = (β1(v), γ (v)) − (β2(v), γ (v)) = ((β1 − β2)(v), 0).

Hence j1 − j2 defines an element of H0
(
C,Hom(E, F) ∩ Rat (L−1 ⊗ Sym2F)

)
.

Conversely, suppose v 	→ (β(v), γ (v)) is a lifting of γ as above. If α ∈ Rat (L−1 ⊗
Sym2F) is regular on γ (E) ⊂ F , then v 	→ (β(v) + α(v), γ (v)) uniquely determines
another rank n subsheaf of Wp lifting γ (E). Since β + α is symmetric, by Proposition 3.2
(a), this subsheaf is isotropic. �


Motivated by Lemma 3.6, we make a definition.

Definition 3.7 Let 0 → E
γ−→ F∗ ⊗ L → τ → 0 be as above. From L−1 ⊗ F

tγ−→ E∗
we deduce an inclusion L−1 ⊗ F ⊗ F → E∗ ⊗ F . We define Sγ to be the saturation of
L−1 ⊗ Sym2F in E∗ ⊗ F .

Note that Sγ depends only on γ , not on an extension 0 → F → W → F∗ ⊗ L → 0.

Lemma 3.8

(a) There is an exact sequence 0 → L−1 ⊗Sym2F → Sγ → τ1 → 0, where τ1 is a torsion
sheaf. In particular, Sγ is locally free of rank 1

2n(n+1) and degree deg(L−1⊗Sym2F)+
deg(τ1).

(b) There is an exact sequence 0 → Sγ → L ⊗ Sym2E∗ → τ2 → 0, where τ2 is a torsion
sheaf.

(c) Suppose that τ is isomorphic to OD for a reduced divisor D. Then τ1 is isomorphic to
τ . In particular, in this case deg(Sγ ) = deg(L−1 ⊗ Sym2F) + deg(τ ).
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Proof (a) This follows from the definition of Sγ .
(b) Consider the following diagram (which is not exact), where the horizontal arrows are

induced by tγ .

L−1 ⊗ Sym2F Sγ (Sym2E∗) ⊗ L

L−1 ⊗ F ⊗ F E∗ ⊗ F E∗ ⊗ E∗ ⊗ L

As the horizontal arrows are isomorphisms at the generic point, we obtain (b).
(c) If τ ∼= OD for a reduced divisor D, then we have also

E∗
tγ (L−1 ⊗ F)

∼= OD .

At each x ∈ D, a local basis for E∗ ⊂ Rat (L−1 ⊗ F) is given by

λ ⊗ η1

z
, λ ⊗ η2, . . . , λ ⊗ ηn,

where {η1, . . . , ηn} is a suitable local basis of F and λ a local generator of L−1, and z is a
local parameter at x . Then a local basis of E∗ ⊗ F is given by

{
λ ⊗ η1 ⊗ ηk

z
: 1 ≤ k ≤ n

}
∪
{
λ ⊗ ηm ⊗ ηk : 2 ≤ m ≤ n;

1 ≤ k ≤ n

}
.

Thus a local basis of Sγ is given by
{

λ ⊗ η1 ⊗ η1

z

}
∪
{
1

2
(λ ⊗ ηk ⊗ ηm + λ ⊗ ηm ⊗ ηk) : 1 ≤ k,m ≤ n;

(m, k) �= (1, 1)

}
.

Therefore, in this case τ1 is a sum of torsion sheaves of degree 1, each supported at one of
the points x ∈ D. The statement follows. �

Remark 3.9 Lemma 3.8 (c) is false if τ1 is not of the formOD for a reduced D. For example,
suppose that L = OC and τ = Ox ⊕ Ox , so E∗ is spanned near x by η1

z ,
η2
z , η3, . . . , ηn for

suitable ηi . Then Sγ is spanned near x by

η1 ⊗ η1

z
,

η1 ⊗ η2 + η2 ⊗ η2

z
,

η2 ⊗ η2

z
,

1
2 (ηi ⊗ η j + η j ⊗ ηi ) : 1 ≤ i ≤ j ≤ n;
(i, j) /∈ {(1, 1), (1, 2), (2, 2)}.

Thus τ1 = O⊕3
x � τ .

3.4 Geometry in extension spaces

Let F → C be a bundle of rank n, and consider the scroll π : PF → C . Throughout this
subsection, we shall assume that h1(C, L−1 ⊗ Sym2F) �= 0.

By Serre duality and the projection formula, there is an isomorphism

PH1(C, L−1 ⊗ Sym2F)
∼−→ |OPF (2) ⊗ π∗(KC L)|∗.

Thus we obtain a natural map ψ : PF ��� PH1(C, L−1 ⊗ Sym2F) with nondegenerate
image.
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We shall use an explicit description of ψ , given in [4, § 2]. For each x ∈ C , there is a
sheaf sequence

0 → L−1 ⊗ Sym2F → L−1(x) ⊗ Sym2F → L−1(x) ⊗ Sym2F

L−1 ⊗ Sym2F
→ 0. (3.8)

Taking global sections, the associated long exact sequence is a subsequence of (3.1) for
V = L−1 ⊗ Sym2F . The following is easy to check by explicit computation.

Lemma 3.10 The mapψ can be identified fiberwise with the projectivization of the cobound-
ary map in the associated long exact sequence of (3.8), restricted to the image of the Segre
embedding PF |x ↪→ P(L−1 ⊗ Sym2F)|x . In particular, the image of η ∈ PF |x is defined
by the cohomology class of a principal part of the form λ⊗η⊗η

z , where z is a local parameter

at x and λ a local generator of L−1.

Remark 3.11 Although we do not use this fact, we mention that ψ is an embedding if F
is stable and deg(F) < n( �

2 − 1) (see [4, Lemma 2.6] for the case where L = OC ). The
important property of ψ for us will be that the image is nondegenerate. This is central to
Proposition 4.14.

Now let η1, . . . , ηt be points of PF |x1 , . . . , F |xt for distinct x1, . . . , xt ∈ C , and γ : E →
F∗ ⊗ L be the corresponding elementary transformation. Let Sγ be as in Definition 3.7.

Lemma 3.12 We have h1(C, Sγ ) = 0 if and only if the points ψ(η1), . . . , ψ(ηt ) span
PH1(C, L−1 ⊗ Sym2F).

Proof The proof of Lemma 3.8 (c) shows that Sγ is an elementary transformation

0 −→ L−1 ⊗ Sym2F −→ Sγ −→
t⊕

k=1

C · λk ⊗ ηk ⊗ ηk

zk
−→ 0,

where the zk and λk are defined analogously as in Lemma 3.8 (c). In view of Lemma 3.10,
the lemma follows from the associated long exact sequence

0 −→ H0(C, L−1 ⊗ Sym2F) −→ H0(C, Sγ ) −→ C
t

−→ H1(C, L−1 ⊗ Sym2F) −→ H1(C, Sγ ) −→ 0. (3.9)

�

Remark 3.13 Suppose that h0(C, L−1 ⊗ Sym2F) = 0. By exactness of (3.9), we see that
H0(C, Sγ ) is the vector space of linear relations of the points ψ(ηk) in PH1(C, L−1 ⊗
Sym2F).

4 Irreducibility of Lagrangian Quot schemes

Let W be an L-valued symplectic bundle of rank 2n, where deg L = �. In general, the
Lagrangian Quot schemes LQ−e(W ) can be reducible, and also there may be irreducible
components whose points all correspond to non-saturated subsheaves. In this section, we
shall prove the following theorem, showing that for sufficiently large e, these phenomena
disappear.
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Theorem 4.1 Let W be an arbitrary L-valued symplectic bundle over C. Then there exists an
integer e(W ) such that for e ≥ e(W ), the Lagrangian Quot scheme LQ−e(W ) is irreducible
and generically smooth of dimension (n + 1)e + 1

2n(n + 1)(� − g + 1), and a general point
of LQ−e(W ) corresponds to a Lagrangian subbundle. Moreover, when g ≥ 2, a sufficiently
general point of LQ−e(W ) defines a stable vector bundle.

Remark 4.2 Recall that LQ−e(W )◦ denotes the open sublocus of LQ−e(W ) corresponding to
vector bundle quotients. Theorem 4.1 shows in particular, for large e, that LQ−e(W ) is a com-
pactification of LQ−e(W )◦ which is in fact the closure of LQ−e(W )◦ in Quotn,e+n�(W ).
Other compactifications of LQ−e(W )◦ have also been studied; more generally, general-
izations of Quot schemes to principal G-bundles: Hilbert schemes of sections of LG(W )

as in [14] and moduli of stable maps to LG(W ) as in [13] and [16]. One attractive fea-
ture of LQ−e(W ) is that it naturally supports a universal family of sheaves, inherited from
Quotn,e+n�(W ).

Before embarking on the proof of Theorem 4.1, let us compare our approach with the
proof of the analogous statement for Quotn,e+n�(W ) in [16]. Replacing the Grassmannian
bundle Gr(n, V ) with the Lagrangian Grassmannian bundle LG(W ), the argument of [16, §
3] shows the dimension bound

dim LQ−e(W ) ≤
(
n + 1

2

)
+ (n + 1)(e − e0)

where −e0 is the degree of a maximal Lagrangian subbundle of W . However, the following
difficulty arises.

If V and E are vector bundles of rank N and n respectively with n < N , then sheaf injec-
tions E → V are parameterized by an open subset of the linear space H0(C,Hom(E, V )).
One can then construct the irreducible space of stable rank n subsheaves of V as in [16, Propo-
sition 6.1]. However, for a symplectic bundle W , isotropic subsheaves [ j : E → W ] define
a locally closed subset of H0(C,Hom(E,W )). This seems to be a nonlinear subvariety, for
which there is no guarantee of irreducibility.

To overcome this difficulty, we introduce a collection of auxiliary Lagrangian subbundles
F ofW . Itwill emerge in viewofLemma3.6 thatLagrangian subsheaves canbeparameterized
in a linear way if one also records how they are related to a fixed such F .

We proceed to the first ingredient of the proof, which is a result on the evaluation maps
evex : LQ−e(W )◦ → LG(W |x ).

4.1 Surjectivity of evaluationmaps

Recall that if F → B × C is a family of objects over C , we denote by Fb the restriction
F |{b}×C . Let W → B × C be a family of bundles of rank r ≥ 2 and degree w param-
eterized by an irreducible base B. For each integer d , we have the relative Quot scheme
Quotr−1,w+d(W) → B parameterizing invertible subsheaves of degree −d of the Wb.

Lemma 4.3 LetW be as above. Then there exists an integerm0(W) such that for d ≥ m0(W),
the evaluation map evdx : Quotr−1,w+d(Wb)

◦ → PWb|x is surjective for all (b, x) ∈ B ×C.

Proof Fix p ∈ C , and let OC (p) be the corresponding effective line bundle of degree 1 on
C . By a semicontinuity argument, there is an integer m0 = m0(W) such that
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• for all d ≥ m0 and for all b ∈ B, the evaluation map on sections

φd : H0(C,Wb(dp)) ⊗ OC −→ Wb(dp)

is a surjective bundle map, and
• no Wb(dp) admits a trivial quotient bundle.

Thus the evaluation map Quotr−1,w+d(Wb) ��� Wb|x is surjective for all d and all (b, x).
We now show that the restriction to the locus Quotr−1,w−d(Wb)

◦ of saturated subsheaves is
surjective for all b.

Choose a generating subspace V ⊆ H0(C,Wb(dp)) of dimension r + 1. Let ψ : C →
PV be the map sending x to the point defined by the one-dimensional subspace V ∩
H0(C,Wb(dp − x)).

Now if ψ(C) is contained in a P
r−1 ⊂ PV , then the set

{s ∈ V : s has a zero} =
⋃
y∈C

(
V ∩ H0(C,Wb(dp − y))

)

is contained in an r -dimensional subspace V ′ ⊂ V . Let W ′ be the subbundle generated
by V ′. As V ′ contains a one-dimensional space of sections vanishing at any given point,
rk (W ′) = r −1. Then any one-dimensional subspace of V complementary to V ′ generates a
trivial line subbundle ofWb(dp) intersectingW ′ everywhere in zero. ThusWb(dp) contains a
trivial direct summand. But this is excluded by our choice of d . Henceψ(C) is nondegenerate
in PV .

Now let λ be any line inWb|x . Write Vλ := φ−1
d (λ). As PVλ is a P

1 in PV , by the previous
paragraph PVλ ∩ψ(C) is a finite set (containing ψ(x)). Any s ∈ Vλ not lying over this finite
set is a nowhere vanishing section of Wb(dp) which spans λ at x . The lemma follows. �

Proposition 4.4 Let W → B × C be a family of L-valued symplectic bundles of rank 2n
parameterized by an irreducible base B. Then there exists an integer f0(W) such that if
f ≥ f0(W), then for all (b, x) ∈ B ×C, the evaluation map LQ− f (Wb)

◦ → LG(Wb|x ) is
surjective.

Proof We shall prove the lemma by induction on n. If rk (W) = 2 then, as any line subbundle
is isotropic, it suffices to set f0(W) = m0(W) as in Lemma 4.3.

Now suppose 2n ≥ 4. Set m0 = m0(W) as in Lemma 4.3 and consider the relative Quot
scheme and universal line bundle

P → Quotr−1,w+m0(W)◦ × C → B × C

parameterizing degree−m0 line subbundles of all theWb. As any line subbundle is isotropic,
P⊥/P is a family of L-valued symplectic bundles of rank 2n − 2 parameterized by the
total space of Quotr−1,w+m0(W)◦ → B. Since Quotr−1,w+m0(W)◦ is quasi-projective
over B, it has finitely many irreducible components. By induction, we may assume there
exists an integer f0(P⊥/P) such that for any b ∈ B and any P ∈ Quotr−1,w+m0(Wb)

◦, if
a ≥ f0(P⊥/P) then the evaluation map

LQ−a(P
⊥/P)◦ → LG

(
P⊥/P

)
|x

is surjective for all x ∈ C .
Now we return to the original familyW → B ×C . For any (b, x), let � be a Lagrangian

subspace of a fiber Wb|x . Choose any line λ ⊂ �. By Lemma 4.3, we may choose a line
subbundle P ⊂ Wb of degree −m0 with P|x = λ. Then �/λ is a Lagrangian subspace of
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(P⊥/P)|x . By the previous paragraph, for any a ≥ f0(P⊥/P) we may assume there exists
Ẽ ∈ LQ−a(P⊥/P)◦ such that Ẽ |x = �/λ. The inverse image of Ẽ in Wb is a Lagrangian
subbundle E of Wb of degree deg(Ẽ) + deg(P) = −a − m0 satisfying E |x = �. Setting
f0(W) = m0 + f0(P⊥/P), we have proven the proposition. �


4.2 Proof of Theorem 4.1

Fix now an arbitrary L-valued symplectic bundle W of rank 2n ≥ 2. We write f0 for f0(W )

as defined in Proposition 4.4, where W is regarded as a family with one element. We now
introduce the “auxiliary” Lagrangian subbundles F mentioned at the start of § 4.

Definition 4.5 Let F be a Lagrangian subbundle of W . We define

Qe
F := {E ∈ LQ−e(W ) : rk (E ∩ F) = 0}.

Remark 4.6

(a) In view of the exact sequence 0 → F → W → F∗ ⊗ L → 0, if E ∈ Qe
F , then E

is an elementary transformation of F∗ ⊗ L . Therefore, Qe
F is nonempty only if e ≥

deg(F) − n�.
(b) For any Lagrangian subsheaf F ⊂ W and any e ≥ f0(W ), by Proposition 4.4 we can

find [ j : E → W ] ∈ LQ−e(W )◦ such that E |x ∩F |x = 0 for some and hence for general
x ∈ C . Thus for any Lagrangian subbundle F and any e ≥ f0(W ), the locus Qe

F contains
a component whose general member is saturated.

(c) Clearly Qe
F is open in all components of LQ−e(W ), although it may be empty in some.

In what follows, we shall always assume the “auxiliary” bundles F have degree
− f0(W ) =: − f0. This will give the best bound e(W ) in Theorem 4.1 available with these
methods.

Proposition 4.7

(a) Any Lagrangian subsheaf E ⊂ W belongs to Qe
F for some Lagrangian subbundle F of

degree − f0, where deg(E) = −e. In particular, for any e, as F varies in LQ− f0(W )◦
the loci Qe

F form an open covering of LQ−e(W ).
(b) Suppose now that e ≥ f0. Then for F, F ′ ∈ LQ− f0(W )◦, the intersection Qe

F ∩ Qe
F ′ is

nonempty.

Proof (a) Let E be any Lagrangian subsheaf of W . By Proposition 4.4, we can find a
Lagrangian subbundle F of degree − f0 intersecting E |x in zero at some x ∈ C . Thus
[E → W ] belongs to Qe

F , where deg(E) = −e.
(b) We must find a Lagrangian subsheaf E of degree −e intersecting both F and F ′

generically in rank zero. For some x ∈ C , choose � ∈ LG(W |x ) intersecting both F |x and
F ′|x in zero. As by hypothesis e ≥ f0, by Proposition 4.4we can find a Lagrangian subbundle
E of degree −e satisfying E |x = �. Then [E → W ] is a point of Qe

F ∩ Qe
F ′ . �


Next, for any bundle G, we denote by Elmt (G) the Quot scheme Quot0,t (G) param-
eterizing torsion quotients of degree t ; that is, elementary transformations G ′ ⊂ G with
deg(G/G ′) = t .
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Now let F be any degree − f0 Lagrangian subbundle of W . For any e, given an element
[ j : E → W ] of Qe

F , by composing with the surjection W → W
F = F∗ ⊗ L we get an

elementary transformation j̃ : E → F∗ ⊗ L . The association j 	→ j̃ defines a morphism

� : Qe
F → Elme+ f0+n�(F∗ ⊗ L).

We now study a certain subset of Qe
F with some desirable properties. To ease notation, we

set t = t(e) := e + f0 + n�.

Definition 4.8 For each F as above, let (Qe
F )◦ be the subset of Qe

F of subsheaves [ j : E →
W ] such that

(i) E is saturated in W ; that is, j is a vector bundle injection;
(ii) The torsion sheaf (F∗ ⊗ L)/ j̃(E) ∈ Elmt (F∗ ⊗ L) is of the form OD for a reduced

divisor D ∈ C (t); and
(iii) h1(C, S j̃ ) = 0.

Remark 4.9

(a) Note that conditions (ii) and (iii) depend only on the map j̃ : E → F∗ ⊗ L , and not a
priori on W .

(b) A point [ j : E → W ] ∈ Qe
F satisfies (ii) if and only if j̃ belongs to the open subset

Ured := {[γ : E → F∗ ⊗ L] : (det γ ) reduced in C (t)} ⊂ Elmt (F∗ ⊗ L)

(compare with [6, § 2]). Furthermore, one can construct a family S → Ured × C of
elementary transformations of Sym2F ⊗ L−1 such that S|{ j̃}×C

∼= S j̃ for each j̃ ∈ Ured.

By the semicontinuity theorem, the locus of j̃ satisfying condition (iii) is an open subset
of Ured. Therefore, conditions (ii) and (iii) together define an open subset of Qe

F . As
condition (i) is open in Qe

F , it follows that (Q
e
F )◦ is open in Qe

F .
(c) If h1(C, L−1 ⊗ Sym2F) = 0 then (iii) follows from Lemma 3.8 (a). Otherwise, by

Lemma 3.12, if
[
j̃ : E → F∗ ⊗ L

]
satisfies (ii), then (iii) is equivalent to the points

η1, . . . , ηt ∈ PF corresponding to the elementary transformation E ⊂ F∗ ⊗ L spanning
PH1(C, L−1 ⊗ Sym2F).

Remark 4.10 In view of conditions (ii) and (iii) and (3.9), the locus (Qe
F )◦ is nonempty only

if f0 + n� + e ≥ h1(C, L−1 ⊗ Sym2F). By Riemann–Roch, this becomes

e ≥ n f0 + n(n + 1)

2
(g − 1) + n(n − 1)

2
� + h0(C, L−1 ⊗ Sym2F).

Now for any F ⊂ W we have h0(C, L−1 ⊗ Sym2F) ≤ h0(C, L−1 ⊗ Sym2W ). In order to
obtain later a bound which will apply to (Qe

F )◦ for all F , in what follows, we shall always
assume that

e ≥ e1(W ) := n f0 + n(n + 1)

2
(g − 1) + n(n − 1)

2
� + h0(C, L−1 ⊗ Sym2W ) + 1.

(4.1)

(The final +1 term is required for technical reasons in Proposition 4.14.)

Proposition 4.11 For any [ j : E → W ] ∈ (Qe
F )◦, the following holds.

(a) We have h1(C, L ⊗ Sym2E∗) = 0.
(b) The locus (Qe

F )◦ is smooth and of the expected dimension χ(C, L ⊗ Sym2E∗) at E.
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Proof By definition of (Qe
F )◦, the subsheaf j(E) is saturated in W . From Lemma 3.8 (b)

it follows that H1(C, L ⊗ Sym2E∗) is a quotient of H1(C, S j̃ ). As the latter is zero by
definition of (Qe

F )◦, we obtain statement (a). Part (b) now follows from Proposition 2.4 (c).
�


Proposition 4.12 Let X be a nonempty irreducible component of (Qe
F )◦. Then for t = e +

f0 + n�, the map � : X → Elmt (F∗ ⊗ L) is dominant and has irreducible fibers.

Proof For any [ j : E → W ] ∈ X , by Proposition 4.11, we have

dim(X) = χ
(
C, L ⊗ Sym2E∗) .

Moreover, by Lemma 3.6, the fiber �−1
(
j̃
)
is an open subset of a torsor over H0(C, S j̃ ).

Hence it is irreducible, and of dimension h0(C, S j̃ ). As h1(C, S j̃ ) = 0 by definition of

(Qe
F )◦, in fact dim(�−1( j̃)) = χ(C, S j̃ ). Thus �(X) has dimension at least

χ
(
C, L ⊗ Sym2E∗)− χ(C, S j̃ ) = deg(L ⊗ Sym2E∗) − deg(S j̃ ),

the last equality using Lemma 3.8 (b). Now by definition of (Qe
F )◦, the torsion sheaf (F∗ ⊗

L)/ j̃(E) is of the form OD for a reduced D ∈ C (t). Using Lemma 3.8 (c), we compute that

deg
(
L ⊗ Sym2E∗)− deg(S j̃ ) = nt,

which is exactly dim Elmt (F∗ ⊗ L). Therefore, �(X) is dense in Elmt (F∗ ⊗ L) as the
latter is irreducible. �

Proposition 4.13 For any F ∈ LQ− f0(W )◦, the locus (Qe

F )◦ is irreducible.

Proof Suppose X1 and X2 were distinct irreducible components of (Qe
F )◦. By Proposi-

tion 4.12, the restriction of � to either component is dominant with irreducible fibers of
dimension χ(C, S j̃ ) for any [ j : E → W ] ∈ (Qe

F )◦. But by Lemma 3.6 the fiber of the
whole map � : (Qe

F )◦ → Elmt (F∗ ⊗ L) is an open subset of a principal homogeneous
space for H0(C, S j̃ ). Therefore, X1 and X2 would have to intersect along a dense subset of a
generic fiber. But this would contradict the smoothness of (Qe

F )◦ proven in Proposition 4.11.
Thus (Qe

F )◦ is irreducible. �

The following key result shows the density of the well-behaved sublocus (Qe

F )◦ ⊂ Qe
F

for sufficiently large e.

Proposition 4.14 Let e1(W ) be as defined in (4.1). For e ≥ e1(W ), the locus (Qe
F )◦ is

nonempty and dense in Qe
F .

As the proof of this proposition is somewhat involved, we postpone it to § 4.3. The
following is immediate from Propositions 4.13 and 4.14.

Corollary 4.15 For e ≥ e1(W ), the locus Qe
F is nonempty and irreducible.

Now we can prove Theorem 4.1.

Proof of Theorem 4.1 By Proposition 4.7 (a), the loci Qe
F are nonempty and cover LQ−e(W ).

By Corollary 4.15, for e ≥ e1(W ), each Qe
F is dense in exactly one component of LQ−e(W ).

By Proposition 4.7 (b), if e ≥ f0(W ), this must be the same component for all F . Therefore,
LQ−e(W ) has only one irreducible component.
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Furthermore, by Proposition 4.14, each (Qe
F )◦ is in fact dense in LQ−e(W ). Hence, a

general point of LQ−e(W ) represents a vector subbundle, and by Proposition 4.11 is smooth.
Finally, we show that general E ∈ LQ−e(W ) is stable as a vector bundle. For fixed

F ∈ LQ− f0(W )◦, if t = e + f0 + n� ≥ n2(g − 1) + 1, then a general stable bundle
E of degree −e occurs as an elementary transformation of F∗ ⊗ L . By Proposition 4.12,
if we assume that e ≥ max{e1(W ), n2(g − 1) + 1 − f0 − n�} then a general element of
Elmt (F∗ ⊗ L) lifts to W . Hence, since LQ−e(W ) is irreducible, a general E ∈ LQ−e(W )

is a stable vector bundle.
In summary, setting

e(W ) = max{ f0(W ), e1(W ), n2(g − 1) + 1 − f0(W ) − n�},
we obtain Theorem 4.1. �


In analogy with [16, Proposition 6.3], Theorem 4.1 implies immediately the following:

Corollary 4.16 If g ≥ 2, then every symplectic bundle W of rank 2n ≥ 2 can be fitted into a
symplectic extension 0 → E → W → E∗ ⊗ L → 0 where E is a stable bundle.

4.3 Proof of Proposition 4.14

We shall prove Proposition 4.14 by showing that for any [E → W ] ∈ Qe
F \ (Qe

F )◦, there
exists a one-parameter deformation of E in Qe

F of which a general member belongs to
(Qe

F )◦. As Zariski closed sets are analytically closed, it will suffice to construct an analytic
deformation. We shall use principal parts to construct this deformation explicitly. The proof
will be given in § 4.3.5, after we assemble some results on families of principal parts and
extensions. It will be convenient to work in slightly greater generality than in § 3.1.

4.3.1 Families of principal parts and extensions

For any d ≥ 0, there is a vector bundle Td(V ) over the symmetric product C (d) with fiber
H0(C, V (D)|D) at D ∈ C (d). The total space of Td(V ) parameterizes pairs (p, D) where
D ∈ C (d) and p ∈ Prin(V ) has poles bounded by D.

Remark 4.17 Note that for d ≥ 1 the map Td(V ) → Prin(V ) is not injective everywhere, as
for d ′ < d there are infinitely many inclusions Td ′(V ) ↪→ Td(V ). More precisely, for any
effective D1 of degree d − d ′, the canonical inclusion V ↪→ V (D1) defines an inclusion
Td ′(V ) ↪→ Td(V ).

Now let F1 and F2 be bundles overC , and suppose that V is a subbundle of Hom(F2, F1).
Let � : Td(V ) × C → C be the projection, and let �d be the pullback to Td(V ) × C of the
universal divisor on C (d) × C . There is a natural map

P : �∗F2 → �∗F1(�d)|�d

of sheaves over Td(V ) × C whose restriction to (p, D) × C is identified with p : F2 →
F1(D)|D . Notice that P factorizes into the composition �∗F2 → �∗F2|�d →
�∗F1(�d)|�d .

Using P , we can globalize the construction (3.2) to a “Poincaré bundle” over Td(V )×C .
Let ρ : �∗F1(�d) → �∗F1(�d)|�d be the restriction map, which may be viewed as a
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“globalized principal part” map. LetW ⊂ �∗F1(�d)⊕�∗F2 be the subsheaf given on open
subsets U ⊆ Td(V ) × C by

W(U ) = {( f1, f2) ∈ (�∗F1(�d) ⊕ �∗F2
)
(U ) : P( f2) = ρ( f1)}. (4.2)

It is not hard to see that this is an extension of �∗F2 by �∗F1.
We can construct a family of V -valued principal parts parameterized by a scheme or

analytic space S by giving a map p : S → Td(V ) for some d . For s ∈ S, we write (ps, Ds)

or simply ps for the image in H0
(
C, V (Ds)|Ds

) ⊂ Td(V ) of the point s ∈ S.
Set �S := (p × IdC )∗�d , and let π : S × C → C be the projection. By functoriality of

pullback, we have the map

pS := (p × IdC )∗P : π∗F2 → π∗F1(�S)|�S ,

and an extension 0 → π∗F1 → WS → π∗F2 → 0 given on open sets U ⊆ S × C by

WS(U ) = {( f1, f2) ∈ (π∗F1(�S) ⊕ π∗F2
)
(U ) : pS( f2) = ρS( f2)}, (4.3)

where ρS is the natural map π∗F1(�S) → π∗F1(�S)|�S . We shall now study functoriality
properties of WS .

Proposition 4.18 Let S be a scheme and p : S → Td(V ) a family of principal parts. Then
(p × IdC )∗W coincides with the extension WS defined above. In particular, for each s ∈ S,
by Lemma 3.1 (b) we have

δ
(
W|(ps ,Ds )×C

) = [ps] ∈ H1(C, V ).

Proof By construction, the sheaf W constructed in (4.2) fits into the exact sequence

0 → W → π∗F1(�d) ⊕ π∗F2
(−ρ)⊕P−−−−−→ π∗F1(�d)|�d → 0. (4.4)

Now π∗F1(�d)|�d is flat over Td(V ), as the restriction to any (p, D) × C is the torsion
sheaf V (D) ⊗ OD , which has Hilbert polynomial d · rk (V ). Therefore, by Lemma 4.19
below, the pullback of (4.4) remains exact after the base change S×C → Td(V )×C . Hence
(p × IdC )∗W coincides with the extension WS defined above. �

Lemma 4.19 Let X → Z and Y → Z bemorphisms, and letφ : X×Z Y → X the projection.
Let 0 → F1 → F2 → F3 → 0 be an exact sequence of OX -modules where F3 is flat over
Z. Then the sequence 0 → φ∗F1 → φ∗F2 → φ∗F3 → 0 is exact over X ×Z Y .

Proof The sheaf sequence 0 → φ∗F1 → φ∗F2 → φ∗F3 → 0 is exact if and only if for all
(x, y) ∈ X ×Z Y , the sequence of stalks 0 → (F1)x → (F2)x → (F3)x → 0 remains exact
after tensoring with OX ,x ⊗OZ ,z OY ,y , where x and y lie over z ∈ Z . We shall prove a more
general statement.

Let C → A and C → B be ring homomorphisms. Let 0 → F1 → F2 → F3 → 0 be an
exact sequence of A-modules, where F3 is flat over C . Consider the sequence

0 → F1 ⊗A (A ⊗C B) → F2 ⊗A (A ⊗C B) → F3 ⊗A (A ⊗C B) → 0.

As for any A-module M we have M ⊗A (A ⊗C B) ∼= M ⊗C B, the above sequence is
identified with

0 → F1 ⊗C B → F2 ⊗C B → F3 ⊗C B → 0.

As F3 is flat over C , we have TorC1 (F3, B) = 0, so this sequence is exact.
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Now we obtain the desired statement by setting Fi = (Fi )x for 1 ≤ i ≤ 3 and

A = OX ,x and B = OY ,y and C = OZ ,z .

�

Next, we discuss lifting of elementary transformations in families. Let π : S × C → C

be the projection. To a family of principal parts p : S → Td(V ) we can also associate the
torsion free sheaf

Ker
(
pS : π∗F2 → π∗F1(�S)

) ⊆ π∗F2.

Note that in general this does not coincide with (p×IdC )∗Ker(P). The following generalizes
the statement on saturatedness proven in [11, Theorem 3.3 (i)] (see also Proposition 3.2).

Proposition 4.20 The inclusion Ker(pS) → π∗F2 lifts to WS, and the image is a saturated
subsheaf ES ⊂ WS.

Proof There is a natural composed map

WS → π∗F1(�S) ⊕ π∗F2 → π∗F1(�S)

where the second map is the projection. The kernel of this map is a subsheaf ES ofWS given
over open sets U ⊆ S × C by

ES(U ) = {( f1, f2) ∈ (π∗F1(�S) ⊕ π∗F2
)
(U ) : f1 = 0 and pS( f2) = 0},

which clearly is isomorphic to Ker(pS)(U ). As WS/ES injects into the torsion free sheaf
π∗F1(�S), it follows that ES is saturated in WS . �

Remark 4.21 We are grateful to the referee for supplying the arguments of Propositions 4.18
and 4.20, and for pointing out several mistakes in our original argument.

4.3.2 General principal parts

We shall now construct explicit families of principal parts with useful properties. Let V be
a vector bundle over C . A principal part p ∈ Prin(V ) will be called general if it can be
represented by a sum

m∑
i=1

σi

zi
(4.5)

where z1, . . . , zm are local parameters at distinct points x1, . . . , xm of C respectively, and σi
is a local section of V which is nonzero at xi . If h1(C, V ) �= 0, then by an argument similar

to that in Lemma 3.10, the cohomology class
[

σi
zi

]
defines the image of the point σi (xi ) in

ψ(PV ) ⊆ PH1(C, V ).
We recall that a finite set of points x1, . . . , xr ∈ C

N+1 (resp., PN ) is said to be in general
position if for 1 ≤ k ≤ r , the span of any k of the xi has dimension min{k, N + 1} (resp.,
min{k − 1, N }).

In what follows, Y will denote a nonempty closed subfibration of PV → C which is
Zariski locally trivial, and Ŷ ⊂ V the relative cone over Y , which is a Zariski locally trivial
closed subfibration of V invariant under fiberwise scalar multiplication.
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Definition 4.22 We shall say that p ∈ Prin(V ) is a general Ŷ -valued principal part if the
following conditions are satisfied.

• p is general in the sense of (4.5).
• For each i , the value σi (xi ) lies in Ŷ |xi .
• If h1(C, V ) �= 0, then the classes

[
σi
zi

]
are in general position in H1(C, V ).

Note that we do not directly define “Ŷ -valued principal parts”, but only “general Ŷ -valued
principal parts”.

In the case of interest to us, V = L−1 ⊗ Sym2F and Y is the relative Segre embedding
PF ↪→ PSym2F . However, the proofs in this more general setting are identical and cover
other interesting situations, and are in fact notationally less cumbersome.

4.3.3 Deforming to general principal parts

Lemma 4.23 Let V and Y be as above. If h1(C, V ) �= 0, then assume moreover that ψ(Y ) is
nondegenerate in PH1(C, V ), and in particular not contained in the indeterminacy locus of
ψ . Let p ∈ Prin(V ) be a principal part which can be represented by a sum

∑m
i=1

σi
zdi

, where

each zi is a local parameter at a point xi ∈ C and σi is a local section of the subfibration Ŷ
with σi (xi ) �= 0 ∈ Ŷ |xi ⊆ V |xi . Then there exists an analytic family of principal parts

pS ∈ H0 (S × C, π∗V (�S)|�S

)

parameterized by an open disk S around 0 ∈ C, where deg(�s) = ∑m
i=1 di =: d for all

s ∈ S, and such that p0 = p and ps is a general Ŷ -valued principal part in the sense of
Definition 4.22 for s �= 0.

Note that the xi in the above statement need not be distinct.

Proof We follow the approach of [4, § 2]. Choose d =∑m
i=1 di distinct complex numbers

τi, j : 1 ≤ i ≤ m, 1 ≤ j ≤ di .

Let S be a disk around 0 ∈ C. For each s ∈ S, let ps be the principal part

m∑
i=1

σi

(zi − sτi,1) · · · (zi − sτi,di )
.

Clearly p0 = p, while for s �= 0 the support of ps consists of
∑m

i=1 di = d distinct points.
If h1(C, V ) = 0 then we are done.

Otherwise; using partial fraction decomposition, we see that for s �= 0 we have

ps =
∑
i, j

ρi, j

s

σi

(zi − sτi, j )

for nonzero scalars ρi, j (note that this sum has a removable discontinuity at s = 0). Hence,
to complete the proof we must show that for s �= 0, the cohomology classes

[
σi

zi − sτi, j

]
: 1 ≤ i ≤ m, 1 ≤ j ≤ di (4.6)

are in general position, possibly after shrinking S.
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By hypothesis, the representative σi is a section of the subfibration Ŷ ⊆ V over some
Zariski neighborhood Ui of xi . Thus it defines a quasiprojective algebraic curve σi (Ui ) in
the total space of Ŷ , and also in Y ⊆ PV . Consider the image Ci ⊆ PH1(C, V ) of this curve
via the map ψ : PV ��� PH1(C, V ). We claim that the representative σi may be changed if
necessary such that Ci is nondegenerate in PH1(C, V ).

To see this; firstly, recall that the principal part p is determined by the values σi mod mdi
xi ·

Vxi . Shrinking Ui , we may assume that Ŷ |Ui is trivial. Since Ui and the fiber of Ŷ may be
assumed to be affine, and since by hypothesis ψ(Y ) is nondegenerate in PH1(C, V ), we can
if necessary replace σi with another section σ ′

i of Ŷ |Ui with σ ′
i ≡ σi mod mxi · Vxi such

that the image C ′
i ⊂ PH1(C, V ) of σ ′

i (Ui ) is nondegenerate.
SinceCi is nondegenerate, clearly so is the image inCi of any open analytic neighborhood

of xi inUi . By construction, the classes (4.6) lie inside a union of such nondegenerate analytic
curves in PH1(C, V ). Thus, shrinking S if necessary, we can assume that these classes are
in general position for s �= 0. �


4.3.4 Different representatives for a fixed cohomology class

Let p = ∑m
i=1

σi

z
di
i

be as in the previous subsubsection, and consider again the deformation

pS constructed in Lemma 4.23. We shall now show that if we add more points of PY , we can
construct a further deformation p′

S of p such that p′
s is a general Y -valued principal part for

s �= 0, and in addition [p′
s] ≡ [p] ∈ H1(C, V ).

For any r ≥ 1, choose nonzero y1, . . . , yr ∈ Ŷ lying over distinct points u1, . . . , ur of C
respectively. For 1 ≤ k ≤ r , let νk be a section of Ŷ near u1 such that νk(uk) = yk . For each
k, let wk be a local parameter at uk . By Lemma 3.10, if h1(C, V ) �= 0 then the cohomology

class
[

νk
wk

]
defines the image of yk in ψ(Y ) ⊆ ψ(PV ) ⊆ PH1(C, V ).

Let p and pS be as above. Since ψ(Y ) ⊆ ψ(PV ) is nondegenerate in PH1(C, V ), after
perturbing the yk if necessary, by Lemma 4.23 we may assume that for each s �= 0, the d + r
cohomology classes

[
σi

zi − sτi, j

]
: 1 ≤ i ≤ m; 1 ≤ j ≤ di and

[
νk

wk

]
: 1 ≤ k ≤ r (4.7)

are in general position.
We shall require the following easy lemma, whose proof is left to the reader.

Lemma 4.24 Let H be a vector space. Suppose t ≥ dim(H) + 1, and let v1, . . . , vt ∈ H
be in general position. Then any element of H can be written as a linear combination of
v1, . . . , vt in which every coefficient is nonzero. �

Lemma 4.25 Assume d + r > h1(C, V ). Let p and pS and ν1

w1
, . . . , νr

wr
be as above. Then

there exist nowhere zero analytic functions ai, j (s) and bk(s) on S such that the family of
principal parts

p′
s := ps +

m∑
i=1

di∑
j=1

s · ai, j (s) · σi

zi − sτi, j
+

r∑
k=1

s · bk(s) · νk

wk

satisfies [p′
s ] ≡ [p] for all s ∈ S, and for s �= 0, the principal part p′

s is general Ŷ -valued
in the sense of Definition 4.22.
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Proof We define a map � : S × C
d+r → S × H1(C, V ) of affine bundles over S, by

�
(
s, (ai, j : 1 ≤ i ≤ m; 1 ≤ j ≤ di ), (bk : 1 ≤ k ≤ r)

)

=
⎛
⎝s, [ps] +

∑
i, j

s · ai, j
[

σi

z − sτi, j

]
+

r∑
k=1

s · bk
[

νk

wk

]⎞
⎠ .

For s = 0, this is the constant map C
d+r → H1(C, V ) with value [p0] = [p]. On the

other hand, if s �= 0 then �|s is surjective, since the classes (4.7) are nonzero and in general
position. Therefore, since d + r > h1(C, V ), by Lemma 4.24 we can choose nowhere zero
analytic functions ai, j (s) and bk(s) such that

�
(
s, (ai, j (s) : 1 ≤ i ≤ m; 1 ≤ j ≤ di ), (bk(s) : 1 ≤ k ≤ r)

) ≡ [p]
for all s ∈ S. Hence, defining the family of principal parts p′

S by

p′
s := ps +

m∑
i=1

di∑
j=1

s · ai, j (s) · σi

zi − sτi, j
+

r∑
k=1

s · bk(s) · νk

wk
,

the lemma follows. �


4.3.5 Proof of Proposition 4.14

Let E be a point of Qe
F \(Qe

F )◦. We shall prove Proposition 4.14 by showing that there exists
a deformation ES of E in Qe

F parameterized by a neighborhood S of 0 in C, which satisfies
(ES)0 = E and (ES)s ∈ (Qe

F )◦ for s �= 0.
The saturation E of E is a Lagrangian subbundle ofW of degree−ē ≥ −e. By Lemma 3.4,

we may assume that W is an extension 0 → F → Wp0 → F∗ ⊗ L → 0 as in (3.2) for
some principal part p0 ∈ Prin(L−1 ⊗ Sym2F) such that E = �0 ∩ Wp0

∼= Ker(p0). By
the proof of [4, Lemma 2.7] (essentially a diagonalization procedure for symmetric matrices
over OC ), the principal part p0 can be represented by

m∑
i=1

λi ⊗ ηi ⊗ ηi

zdii

where zi is a local parameter at a point xi ∈ C and λi a generator for L−1 near xi , and ηi is a
suitable section of F nonzero near xi ; and moreover if xi1 = · · · = xih then ηi1 , . . . , ηih are
independent at xi1 . Furthermore, as E = Ker(p0), we have

m∑
i=1

di = deg(F∗ ⊗ L) − deg(E) = f0 + n� + ē.

If ē �= e, then since rk (E ∩F) = 0, the image of Elme−ē(E) → LQ−e(W ) is completely
contained in Qe

F . As Elm
ē−e(E) is irreducible, if a general point belongs to the closure of

(Qe
F )◦ in Qe

F , then in fact every point does. Therefore, if E is nonsaturated, we may assume
that E is general in Elme−ē(E) in the sense that

E/E ∼=
e−ē⊕
k=1

Ouk ,
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for e − ē distinct and general points uk ∈ C lying outside Supp(p0). Thus for 1 ≤ k ≤
e − ē, there exists a local coordinate wk centered at uk and local sections ζk and μk of F
and L−1 respectively which are nonzero at uk , such that the element [E → F∗ ⊗ L] ∈
Elm f0+n�+e(F∗ ⊗ L) satisfies

E = Ker(p0) ∩ Ker

(
e−ē∑
k=1

μk ⊗ ζk ⊗ ζk

wk

)
= Ker

(
p0 +

e−ē∑
k=1

μk ⊗ ζk ⊗ ζk

wk

)
.

Here, as usual, we view the principal parts as OC -linear maps F∗ ⊗ L → Prin (F).
We now specialize the results of the previous subsections to the present situation. Set

F1 = F and F2 = F∗ ⊗ L , and V = L−1 ⊗ Sym2F . Let Y be the relative Segre embedding
PF ↪→ PSym2F , and set σi = λi ⊗ ηi ⊗ ηi and νk = μk ⊗ ζk ⊗ ζk . Also, d = ē + f0 + n�

and r = e − ē, so d + r = e + f0 + n�.
Continuing with this input, for each s ∈ S, we set

p′
s :=

m∑
i=1

λi ⊗ ηi ⊗ ηi

(zi − sτi,1) · · · (zi − sτi,di )
+

m∑
i=1

di∑
j=1

s · ai, j (s) · λi ⊗ ηi ⊗ ηi

zi − sτi, j

+
r∑

k=1

s · bk(s) · μk ⊗ ζk ⊗ ζk

wk
,

precisely as constructed in Lemma 4.25. (Note that if ē = e, then the last sum does not
appear.) This defines an analytic map p′ : S → Td+r (L−1 ⊗Sym2F). We construct a family
of extensionsWS as in (4.3), except that as S is only a complex manifold, we defineWS(U )

for U open in the analytic topology on S × C . However, considering the inclusion of each
point s ↪→ Td+r (L−1⊗Sym2F) in turn, we see by Lemma 4.25 and Proposition 4.18 that the
extension Wps is isomorphic to W = Wp0 for all s ∈ S. Therefore, replacing S if necessary
by a smaller neighborhood of 0 inC, wemay assume thatWS ∼= π∗W , whereπ : S×C → C
is the projection.

Next, as each p′
s is symmetric, by [11, Criterion 2.1] we see as before that the standard

symplectic form (3.3) restricts to a symplectic structure on each Wp′
s
. Furthermore, by an

argument similar to that in Proposition 4.20, the sheaf

Ker
(
p′
S : π∗(F∗ ⊗ L) → π∗F(�S)

) ⊂ π∗(F∗ ⊗ L)

lifts to an analytic subsheaf ES of π∗W . As ES is contained in the subsheaf

π∗(F∗ ⊗ L) ∩ WS ⊂ π∗F(�S) ⊕ π∗(F∗ ⊗ L)

and F∗ ⊗ L is isotropic with respect to the symplectic structure (3.3), in particular each (ES)s
is isotropic in W . As C is projective, by the GAGA principle the restriction (ES)s admits an
algebraic structure for each s. Thus we obtain an analytic map S → LQ−e(W ).

We now make the following claim.

(I) For s �= 0, we have (ES)s = Ker(p′
s).

(II) (ES)0 = E .

By (I), using Proposition 3.2 (c) or Proposition 4.20, for s �= 0 the subsheaf (ES)s is
saturated inWS |s×C ∼= Wps

∼= W . By construction of ps , it also has properties (ii) and (iii).
Hence for s �= 0, the sheaf (ES)s defines a point of (Qe

F )◦. By (II), we conclude that ES is
a deformation of [E → W ] in Qe

F , satisfying (ES)0 = E and [(ES)s → W ] ∈ (Qe
F )◦ for
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s �= 0. This shows that (Qe
F )◦ is dense in Qe

F , as desired.

It remains to prove the claim. We shall do this in the special case where m = 2 and
x1 = x2, and d1 = d2 = 2, and r = 1, and assuming also that L = OC . The general case
is only notationally more complicated. (Note that in general, one expects x1, . . . , xm to be
distinct, but by assuming x1 = x2 here, the example illustrates all relevant aspects which can
arise in the most general case.) In this case, pS is represented by a rational section of the
form

(1 + s · a1(s)) · η1 ⊗ η1

(z1 − sτ1,1)(z1 − sτ1,2)

+(1 + s · a2(s)) · η2 ⊗ η2

(z1 − sτ2,1)(z1 − sτ2,2)
+ s · b1(s) · ζ1 ⊗ ζ1

w1
, (4.8)

We shall describe the sheaves ES ∼= Ker(p′
S) and (ES)s ∼= Ker(p′

s) using analytic trivial-
izations. Let us make some definitions.

• Let U ⊂ C be an open disk around x1 = x2. Shrinking U if necessary, we may assume
that the function z1 : U → C is injective and that for each (i, j) and for each s, the
function z1 − sτi, j has exactly one zero in U . We denote this zero by xi, j (s).

• Let U ′ be a disk around u1 not intersecting U .
• LetU0 be an open subset ofC intersecting each ofU andU ′ in an annulus not containing

x1 = x2 or u1. Shrinking S, we may assume that U0 does not contain xi, j (s) for any i ,
j or s.

• Complete η1, η2 to a frame η1, η2, . . . , ηn for F over U . Let φ1, . . . , φn be a frame for
F∗ over U such that φ�(η�′) = δ�,�′ , where δ�,�′ is the Kronecker delta.

• Let ϕ1, . . . , ϕn be a frame for F∗ over U ′ satisfying ζ1(ϕ�) = δ1,�.
• Define Ũ := S ×U = π−1(U ), and Ũ ′ and Ũ0 similarly.

Let us now fix s ∈ S and compute the sheaf Ker(p′
s) ⊂ F∗ over C . (We shall describe

Ker(p′
s) as a subsheaf of F

∗, but it can be embedded inWp′
s
as in the example in Remark 3.5.)

Over U0, the sheaves F∗ and Ker(p′
s) coincide for all s. Inspecting the expression (4.8) we

see that a frame for Ker
(
p′
s

)
over U is given by

(z − sτ1,1)(z − sτ1,2) · φ1, (z − sτ2,1)(z − sτ2,2) · φ2, φ3, . . . , φn . (4.9)

Over the remaining open set U ′, for s �= 0 a frame for Ker(p′
s) is given by

w1 · ϕ, ϕ2, . . . , ϕn, (4.10)

whereas if s = 0, then Ker(p′
0) is trivial over U

′.
We proceed now to compute Ker(p′

S) ⊂ π∗F∗ over S × C , which we will then restrict
to {s} × C and compare with Ker(p′

s). The frames above for F∗|U and F∗|U ′ pull back to
frames for π∗F∗ over Ũ and Ũ ′ respectively. Abusing notation, we also denote these frames
by φ1, . . . , φn and ϕ1, . . . , ϕn .

Let h1φ1 + h2φ2 + · · · + hnφn be a section of π∗F∗ over Ũ , where the h� are analytic
functions on Ũ . Then

p′
S

(
n∑

�=1

h�φ�

)

is represented by the rational section of π∗F over Ũ given by

h1 · (1 + s · a1(s))
(z1 − sτ1,1)(z1 − sτ1,2)

· η1 + h2(1 + s · a2(s))
(z1 − sτ2,1)(z1 − sτ2,2)

· η2.

123



D. Cheong et al.

This is regular at all (s, x) ∈ Ũ if and only if for � = 1, 2 we have

h� · (1 + s · a�(s)) = (z1 − sτ�,1)(z1 − sτ�,2) · γ�

for some analytic function γ� on Ũ . For j = 1, 2, clearly (z1 − sτ�, j ) is irreducible and does
not divide 1 + s · a�(s). As Ũ is a polycylinder, by [7, p. 10] the ring of analytic functions
on Ũ is a UFD. Therefore, (z1 − sτ�,1)(z1 − sτ�,2) divides h�. It follows that a frame for
Ker(p′

S) over Ũ is given by

(z1 − sτ1,1)(z1 − sτ1,2) · φ1, (z1 − sτ2,1)(z1 − sτ2,2) · φ2, . . . , φn . (4.11)

By a similar argument, a frame for Ker(p′
S) over Ũ

′ is given by

w1 · ϕ1, ϕ2, . . . , ϕn . (4.12)

A key point is that this is independent of s.
For a fixed s �= 0, comparing (4.9) with (4.11) and (4.10) with (4.12), we see that Ker(p′

S)s
and Ker(p′

s) coincide. This gives part (I) of the claim. As for s = 0: By (4.11) and (4.12)
and since x1 �= u1, we see that

Ker(p′
S)0 = Ker(p0) ∩ Ker

(
ζ1 ⊗ ζ1

w1

)
= E,

so we obtain part (II). �


Remark 4.26 The deformation p′
S is most naturally understood from the point of view

of secant geometry. For simplicity, assume again that L = OC and ψ : PF ���
PH1(C,Sym2F) is generically an embedding and that E ⊂ F∗ is a general elementary trans-
formation corresponding to e + f > h1(C,Sym2F) general points of PF . By [4, Lemma
2.10 (i)], if E is nonsaturated inW then δ(W ) lies on the secant spanned by (ē+ f ) < (e+ f )
of these points.Moving inside the family p′

s corresponds to perturbing the linear combination
of the points defining δ(W ) to be nonzero at all e + f points, so as to obtain a principal part
with support a reduced divisor of degree exactly e + f , so defining a saturated isotropic
subsheaf of degree −e.

Acknowledgements Our very sincere thanks go to the referee for extremely careful reading and for two
wonderfully detailed and informative reports which corrected many errors and greatly improved the paper,
as well as our own understanding. The first and second authors were supported by Basic Science Research
Programs through the National Research Foundation of Korea (NRF) funded by the Ministry of Education
(NRF-2016R1A6A3A11930321 and NRF-2017R1D1A1B03034277 respectively). The third author sincerely
thanks Konkuk University, Hanyang University and the Korea Institute for Advanced Study for financial
support and hospitality.

Funding Open access funding provided by OsloMet - Oslo Metropolitan University.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


Irreducibility of Lagrangian Quot schemes…

References

1. Biswas, I., Gómez, F., Tomás, L.: Hecke correspondence for symplectic bundles with application to the
Picard bundles. Int. J. Math. 17(1), 45–63 (2006)

2. Cheong, D., Choe, I., Hitching, G.H.: Isotropic Quot schemes of orthogonal bundles over a curve. Int. J.
Math. (2021). https://doi.org/10.1142/S0129167X21500476

3. Cheong, D., Choe, I., Hitching, G.H.: Counting Lagrangian subbundles over an algebraic curve. J. Geom.
Phys. 167, 5 (2021). https://doi.org/10.1016/j.geomphys.2021.104288

4. Choe, I., Hitching, G.H.: Lagrangian subbundles of symplectic vector bundles over a curve. Math. Proc.
Camb. Phil. Soc. 153, 193–214 (2012)

5. Choe, I., Hitching, G.H.: A stratification on the moduli spaces of symplectic and orthogonal bundles over
a curve. Int. J. Math. 25, 1450047 (2014). https://doi.org/10.1142/S0129167C14500475

6. Gangopadhay, C., Sebastian, R.: Fundamental group schemes of some Quot schemes on a smooth pro-
jective curve. J. Algebra 562, 290–305 (2020)

7. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)
8. Grothendieck, A.: Sur la classification des fibrés holomorphes sur la sphère de Riemann. Am. J. Math.

79, 121–138 (1957)
9. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, p. 52. Springer, Berlin (1977)

10. Hitching, G.H.: Moduli of symplectic bundles over curves. Ph. D. thesis, University of Durham, England
(2005)

11. Hitching, G.H.: Subbundles of symplectic and orthogonal vector bundles over curves. Math. Nachr.
280(13–14), 1510–1517 (2007)

12. Holla, Y.I.: Counting maximal subbundles via Gromov-Witten invariants. Math. Ann. 328(1–2), 121–133
(2004)

13. Holla, Y.I.: Parabolic reductions of principal bundles. arXiv:math.AG/0204219 (2019)
14. Holla, Y.I., Narasimhan, M.S.: A generalisation of Nagata’s theorem on ruled surfaces. Compos. Math.

127(3), 321–332 (2001)
15. Kempf, G.: Abelian integrals. Monografías del Instituto de Matemáticas, 13. México: Universidad

Nacional Autónoma de México. VII (1983)
16. Popa, M., Roth, M.: Stable maps and Quot schemes. Invent. Math. 152(3), 625–663 (2003)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1142/S0129167X21500476
https://doi.org/10.1016/j.geomphys.2021.104288
https://doi.org/10.1142/S0129167C14500475
http://arxiv.org/abs/math.AG/0204219

	Irreducibility of Lagrangian Quot schemes over an algebraic curve
	Abstract
	1 Introduction
	Notation

	2 Lagrangian Quot schemes
	3 Symplectic extensions
	3.1 Symmetric principal parts and symplectic extensions
	3.2 Lagrangian subbundles in reference to a fixed symplectic extension
	3.3 Isotropic liftings of an elementary transformation
	3.4 Geometry in extension spaces

	4 Irreducibility of Lagrangian Quot schemes
	4.1 Surjectivity of evaluation maps
	4.2 Proof of Theorem 4.1
	4.3 Proof of Proposition 4.14
	4.3.1 Families of principal parts and extensions
	4.3.2 General principal parts
	4.3.3 Deforming to general principal parts
	4.3.4 Different representatives for a fixed cohomology class
	4.3.5 Proof of Proposition 4.14


	Acknowledgements
	References




