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Abstract 
We test the predictive power of Twitter message volume on realized volatility in a panel of 22 

companies from S&P 100. The relationship is tested using OLS regression, with Newey-West 

standard errors. The forecasting ability of the two best performing Twitter variables is tested 

in models inspired by the Heterogenous Autoregressive model of Realized Volatility. We 

employ the Two-Scales Estimator (TSE) to achieve more precise estimates of realized 

volatility. TSE takes advantage of high-frequency return data, while simultaneously 

correcting for microstructure noise. 

 

Findings indicate a relationship between Twitter message volume and realized volatility, 

made most explicit by employing variables that only contain messages accumulated outside of 

trading hours. Twitter messages containing cashtags were found to hold greater predictive 

power compared to messages containing company name mentions. However, a model 

containing both Twitter variables were superior in terms of forecasting ability. Company 

name messages were found to explain systematic risk, while cashtag messages were found to 

explain idiosyncratic risk. 

 

 

 
 

 

 

 

 

 

 
 



 II 

Preface 
The basis for this research was our interest in studying the value of social media content as a 
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with our interest in risk management, we quickly turned our gaze towards volatility modeling. 

The importance of volatility modeling is illustrated by how often we encounter crisis in the 
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1 Introduction 
Since the early 2000s, social media and blogging have skyrocketed in popularity and become 

global phenomena. Because of this, we now have more information available to us than ever 

before in terms of ideas and opinions. Our digital property is in high demand, and many are 

eagerly data mining social media sites to uncover valuable information that may be used for 

commercial purposes. Sites like Twitter, with an estimated monthly user base of 330 million 

(Twitter Inc, 2019a, p. 5), is a popular microblogging website that is utilized for this. Using a 

few lines of code, one can gain access to Twitter’s free application programming interface 

(API) that contains vast amounts of information about users and their messages. Due to its 

short message system, low cost of extraction, substantive user base and posting frequency, 

Twitter has also become a valuable data source for academic purposes. 

 

Many people, including investors, use Twitter to stay updated on news and trends, and to 

share opinions on certain topics. In the context of behavioral finance, Twitter provides useful 

insight to communication that affects investor behavior and how it relates to markets. This 

recent field of study, where the effect of microblogging on stock markets is measured, use 

social media data from sites like Twitter to predict variables such as return, volatility and 

trading volume.  

 

Daily volatility modeling has in recent years been greatly improved by the development of 

robust estimators that harness the power of high-frequency intraday data. Volatility 

forecasting has many applications in the field of finance, including security pricing and 

hedging, market making and risk management. Earlier works regarding volatility modeling 

and forecasting, with the inclusion of social media data, show promising results. A paper from 

Antweiler and Frank (2004) tried to predict market volatility using messages from stock 

message boards. Results suggested that stock messages had predictive power and that they 

could help forecast volatility both daily and within the trading day, using two different 

volatility models. Similarly, Dimpfl and Jank (2016) tried to predict the Dow Jones realized 

volatility by adding internet search queries of its name to an autoregressive volatility model. 

They found evidence that the inclusion of search queries improved the forecasting ability of 

the model, and that there existed a relationship between search queries from the previous day 

and realized volatility on the subsequent day. 
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In regard to Twitter, Sprenger et al. (2014), Tafti et al. (2016) and Oliveira et al. (2013) all 

found a link between posting volume and trading volume, which could lend support to the 

argument that a relationship between volatility and Twitter exists, because of how liquidity 

affects volatility. However, Oliveira et al. (2017) put this into question, as a more 

comprehensive and robust model failed to prove that Twitter message volume could improve 

volatility forecasts significantly. They did find a connection between posting volume and 

trading volume, but only in conjunction with sentiment indicators. Further, they conclude that 

the complimentary value of different internet data sources is unclear, and that other 

combinations might provide better financial predictions. Another recent study conducted, by 

Behrendt and Schmidt (2018), estimated intraday volatility for a panel consisting of 

companies from the Dow Jones Industrial Average. While some co-movements between 

Twitter message volume, sentiment and volatility were found, they conclude that high-

frequency data from Twitter is not useful when forecasting intraday volatility. 

 

Approaching volatility modeling with a daily perspective, we employ the Heterogenous 

Autoregressive model of Realized Volatility (HAR-RV) (Corsi, 2009) in a panel data setup.  

To achieve more precise estimates of realized volatility, we apply the Two-Scales Estimator 

(Zhang et al., 2005) with high-frequency 1-minute return data. This provides the foundational 

framework for our analysis. For a panel consisting of 22 randomly selected companies from 

S&P 100, we gather Twitter message volume for cashtag and company name mentions to 

create attention indicators. To our knowledge, our study is the first of its kind to employ the 

HAR-RV model with panel data, in conjunction with Twitter message volume, to model daily 

volatility. Our two main objectives with this paper are: to study the effect of attention on 

volatility, using Twitter message volume accumulated prior to trading hours, and use Twitter 

data to improve volatility forecasts. We formalize these objectives into three hypotheses: 

 

Hypothesis 1: Changes in company attention on Twitter, measured by message volume 

related to company stock accumulated prior to trading hours, is associated with changes in 

volatility. 

 

Hypothesis 2: Changes in company attention on Twitter, measured by message volume 

related to the company in general accumulated prior to trading hours, is associated with 

changes in volatility. 
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Hypothesis 3: Company attention can be utilized to improve the forecasting ability of 

volatility models. 

 

The remaining sections of this paper are organized as follows. Section 2 outlines relevant 

volatility theory and data, including a presentation of the HAR-RV model from Corsi (2009), 

as well as detailed information regarding our chosen volatility estimator, and sample statistics. 

Section 3 describes relevant Twitter theory, our data collection process, variable selection, as 

well as qualitative and quantitative assessments of the sample. Section 4 connects volatility 

and Twitter in the panel we employ for our empirical study, and presents the baseline HAR-

RV model for performance comparison. Section 5 describes our empirical approach, where 

we specify our models and tests. Section 6 contains results and discussion, where we test our 

hypotheses and discuss our findings. Section 7 concludes.  
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2 Volatility 
In this section, we will introduce the HAR-RV model (Corsi, 2009). First, we must look at the 

framework that the model is derived from, and how to measure realized volatility. 

 

2.1 Theory 
In a review paper on realized volatility by McAleer and Medeiros (2008), and similarly in 

Corsi (2009) and Andersen et al. (2001), integrated variance on day ! is defined as the integral 

of the instantaneous variance of the one-day interval [! − 1%	, !] of a continuous time 

diffusion process for the logarithmic prices of an asset:  
 

 
)*+ = - ./(1)%1

+

+345

 (1) 

 

Although processes behind asset prices are assumed to be continuous, the financial markets 

are inherently discrete. Asset prices change due to transactions occurring in time intervals that 

are not of equal length, therefore, the underlying integrated volatility of asset returns is 

unobservable. However, Andersen et al. (2001, p. 42) showed that integrated volatility can be 

estimated by the realized volatility measure: “By sampling intraday returns sufficiently 

frequently, the realized volatility can be made arbitrarily close to the underlying integrated 

volatility, the integral of instantaneous volatility over the interval of interest, which is a 

natural volatility measure.” 

 

Realized volatility on day ! is defined as the square root of the sum of intraday squared log 

returns: 
 

 

6*+ = 78 9+,:/
;34

:<4

 (2) 

 

where M is the number of equally spaced observations of intraday prices, and 9+,: is the 

continuously compounded return for the time interval =>, > + 4
;
@ for day ! (Corsi, 2009). 
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Furthermore, Andersen et al. (2003) showed that a simple vector autoregressive realized 

volatility model systematically outperformed other volatility models, like GARCH and 

FIEGARCH, in out-of-sample forecasting. Realized volatility provides a more precise 

estimate of the current volatility because it makes use of valuable intraday information. A 

superior estimate of today’s volatility should yield a superior forecast of tomorrow’s 

volatility, they argue. 

 

2.1.1 HAR-RV 
HAR-RV is motivated by the work of Müller, et al. (1993) on the Heterogenous Market 

Hypothesis. Müller, et al. looked at the properties of volatility and proposed the Heterogenous 

Market Hypothesis. The hypothesis is characterized by different market actors having 

heterogenous time horizons, trading frequences and reactions to news, and they are even 

likely to settle at different prices. Corsi (2009) simplified these characterics to three types of 

traders, each generating a different volatility component; short-term traders with daily or 

higher trading frequency, medium-term traders who rebalance weekly and long-term 

participants with horizons of one-month or more. Motivated by this hypothesis and empiricial 

findings revealing volatility cascades, he proposed a volatility cascade time series model with 

three heterogeneous components: 

 

 6*+A45
(5) = B + C(5)6*+

(5) + C(D)6*+
(D) + C(E)6*+

(E) + 1+A45 (3) 

 

Where 6*+
(5) is the daily realized volatility measure,  

 

 
6*+

(D) =
1
5
	86*:

(5)
+3G

:<+

 (4) 

and  

 
6*+

(E) =
1
22

8 6*:
(5)

+3/4

:<+

 (5) 

 

The model was estimated by standard OLS regression, using Newey-West standard errors to 

account for the possibility of serial correlation (Corsi, 2009). 
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HAR-RV is not formally a long-memory model, but Corsi (2009) showed that simulated 

autocorrelations of daily realized volatilities, over a 600-year period, yielded the long memory 

property that was desired. In forecasts of one day, one week and two weeks ahead, the HAR-

RV model performed well in-sample and out-of-sample. It outperformed the simple AR(1) 

and AR(3) regressions, and was comparable to ARFIMA (Corsi, 2009). These initial 

performance results have later been supported by the work of Ma et al. (2014). In Model 

Confidence Set tests, comparing the out-of-sample forecast performance of several high-

frequency volatility models, including ARFIMA-RV, HAR-RV outperformed the other 

models. 

 

2.1.2 Microstructure noise 
An issue several researchers have faced and discussed, including Corsi (2009) and Andersen 

et al. (2001), is the presence of microstructure noise in the realized volatility measure. In a 

frictionless and continuous financial market, ultimately, the highest possible data frequency 

would give the most precise estimates and forecasting ability. However, the presence of 

microstructure effects such as nonsynchronous trading effects, bid-ask spreads, discrete price 

observations and intraday periodic volatility patterns make this impossible (Andersen & 

Bollerslev, 1998). The effect of noise on the estimator of realized volatility depends on the 

sampling scheme, and at what frequency it is sampled. 

 

Corsi (2009) employs the Zhang et al. (2005) estimator, known as the Two-Scales Estimator 

(TSE). This is most appropriate for higher frequency data, such as tick-by-tick data (1 s 

sampling), i.e. a sample size of 23 400 observations per day. TSE takes advantage of the fact 

that e.g. 5-minute returns starting at 09:30 can be calculated using intervals 09:30-09:35, 

09:35-09:40 and so on, or 09:31-09:36, 09:36-09:41 and so on. Hence, one can create I 

subsets with 5-minute log returns starting at 09:30 (J = 1), 09:31 (J = 2), …, 09:34 (J =

5 = I), calculate the realized variance for each subset and compute the arithmetic mean. This 

estimate is then adjusted by a noise factor, which exploits that the full sample realized 

variance measure is an estimator for the variance of microstructure noise, assuming that noise 

observations are independent and identically distributed. See Table 9-1 in Appendix 1 for 

visualization of the example. TSE is specified in equation (6): 
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KLM = 6*N9+

OPQRS	T+	QU. =
1
I
86*N9+W
X

4

−
YZ+
Y+
6*N9+

(QUU) (6) 

 

Where Y+ is the number of observations in the full sample, YZ+ =
R[3XA4

X
 and	6*N9+ =

∑ 9+,:/;34
:<] .  

 

A refinement, see equation (7), is suggested by Aït-Sahalia et al. (2011) for sample sizes 

smaller than those from tick-by-tick data, and this estimator is unbiased to a higher degree 

than equation (6):  
 

 
6*N9+^ï`3abcbdeb	f`	bd. = g	1 −

YZ+
Y+
	h
34

6*N9+
OPQRS	T+	QU. (7) 

 

A popular way of dealing with microstructure noise is to use sparse sampling, i.e. sampling at 

arbitrary lower frequencies, like 5, 10, 15 or 30 minutes. This is used by Andersen et al. 

(2001, 2003). It was shown in Andersen and Bollerslev (1998), that 5-minute frequency is 

high enough to reduce measurement error, but low enough to avoid major microstructure 

noise bias.  

 

2.2 Data 
The measure of daily realized volatility is the fundamental measure from which all other 

volatility variables in our data set are calculated, and is the dependent variable in our analysis. 

The raw stock price data is collected in two parts, due to availability issues. The first part 

contains 5-minute frequency price data from December 3rd 2019 to January 5th 2020. The 

second part contains 1-minute frequency price data in the interval January 6th to April 3rd 

2020. Although there are observations in the raw stock price data outside of trading hours, 

these observations are infrequent and the transaction volume is relatively low. Therefore, any 

observations outside of trading hours are discarded. So, for the 5-minute and 1-minute 

frequencies, the full trading day market data contains 79 and 391 observations of the 

continuously compounded return for each stock, respectively. All market data is obtained 

from Thomson Reuters Eikon. 
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As shown in Table 2-1, there are some missing price observations in the raw, 1-minute 

frequency data. From a total of 541 926 price realizations, 1 610 observations are missing. 1 

350 are missing due to market wide trading halts that affected all 22 stocks. 237 are missing 

first trading-minute observations, where the previous price observation is no longer than 30 

minutes earlier. The remaining 23, mainly consist of single observations and at most four 

consecutive observations. 

 
Table 2-1 Missing observations in 1-minute frequency data 

Description of missing observations Quantity % of total observations 

Missing due to market wide trading halts            1 350  0,249 % 

First trading minute               237  0,044 % 

Other                 23  0,004 % 

Total missing within trading hours            1 610  0,297 % 

 

 

To ensure that our formulas are applied consistently throughout the data, we assume that any 

missing observations arise from one of two things: either no trading activity or no change in 

price. Therefore, we simply use the previous price observation in any calculations involving a 

missing observation. 

 

2.2.1 Two-Scales Estimator 
Using TSE, we calculate the daily observation of realized volatility from the 1-minute 

frequency data. We make the assumption that 1-minute frequency is sufficiently frequent to 

ensure that the full sample realized variance is an estimator of the variance of microstructure 

noise. We also use the small sample refinement suggested by Aït-Sahalia et al. (2011) to 

reduce any bias arising from this assumption.  

 

We create I = 10 subsets with 10-minute log-return intervals. The first subset, J = 1, starts 

at 09:30 when trading hours start. The first log return is calculated at 09:40 and the final log 

return at 16:00, when trading hours close. The remaining 9 subsets, J = [	2	, 10	], start at 

09:30 +	(J − 1)	j>Yk!lm. The first log return is calculated at 09:40 +	(J − 1) and the final 

log return at 15:50 +	(J − 1). Hence, subset 10 starts at 09:39 and stops at 15:59, which 

means that it fails to account for the full trading day. To avoid underestimating the daily 
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volatility in subset [	2	, 10	], we also calculate the log return from 09:30 to 09:30 +	(J − 1) 

and from 15:50 +	(J − 1) to 16:00. This way we ensure that the volatility measure from all 

subsets are calculated over the same 6,5-hour time period. 

 

We create the remaining two variables, 6*+
(D) and 6*+

(E), needed to estimate the HAR-RV 

model using equation (4) and equation (5). To create 6*+
(D) and 6*+

(E) for the first 

observation in the data set, January 6th, observations of daily realized volatility dating back to 

December 27th and December 3rd is needed, respectively. Therefore, we make use of the 5-

minute frequency data. The daily realized volatility from December 3rd to January 5th are 

calculated using equation (2). Although the presence of microstructure noise and 

measurement error are likely to be higher in these estimates, compared to estimates using 

TSE, we propose that it is appropriate to use these estimates to create 6*+
(D) and 6*+

(E). We 

believe the alternative, reducing the sample by 22 trading days, to yield a less precise model 

estimation. Assuming that microstructure noise and measurement errors are independent and 

identically distributed, with mean equal to zero, the volatility estimates averaged over 5 and 

22 days should be sufficiently accurate.  

 

2.2.2 Summary statistics 
In Table 2-2, we present summary statistics for our realized volatility variables. We see that 

the means for all three variables are relatively high, considering that the sample consists of 22 

companies from S&P 100. As seen in Figure 2-1, there is a large spike in the timeline due to 

the effect of Covid-19 on financial markets, which is pulling the means upward. However, the 

median of Rvola is 1,7 %, which is considerably lower.  

 
Table 2-2 Summary statistics for volatility variables 

Variable name Description Observations Mean Std. Dev 5% 50% 95% 

Rvola  Realized volatility            1 386  2,7 % 2,3 % 0,7 % 1,7 % 7,6 % 

Rvolawk 6*+
(D)            1 386  2,6 % 2,2 % 0,8 % 1,4 % 7,0 % 

Rvolamt 6*+
(E)            1 386  1,9 % 1,4 % 0,8 % 1,2 % 5,0 % 
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Figure 2-1 shows the daily observations of realized volatility for each stock over time. The 

effect of Covid-19, from February 24th, creates a large spike in the latter part of our sample. 

Controlling for time fixed effects, or market volatility, is therefore important in the analysis of 

this data set. Removing cross-sectional means and running a Levin-Lin-Chu test (Levin et al., 

2002), we can reject that realized volatility exhibits a unit root on at least a 0,1 % level, see 

Table 9-2 in Appendix 2. We can also see a large outlier on February 5th. This is Biogen Inc., 

with a realized volatility estimate of 15,24 %. Biogen opened at $285,63 and closed at 

$332,87 per share. 

 
Figure 2-1 Realized volatility over time period
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3 Twitter 
In this section, we present arguments in favor of Twitter as a predictor of financial data, as 

well as detailed information about our suggested attention indicators. Further, we outline the 

data collection process, and present all Twitter variables used to perform analysis. 

 

3.1 Theory 
Several arguments can be made in favor of Twitter as a data source. Twitter is the most 

popular microblogging site, hosting many influential people and organizations with broad 

followings. In line with similar sites, it allows users to react to events and interact with other 

users through a short message system. Compared to traditional mediums, e.g. internet 

message boards, Twitter allows for more real-time conversation that responds quickly to 

news, making intricate analysis between social media and events in financial markets more 

interesting. Further, the messages have an upper limit of 140 to 280 characters, depending on 

region, and the brevity of the messages require users to be more concise, as well as making 

data processing more manageable. Moreover, its free API permits access to an extensive 

library of messages that are easy to extract, as opposed to traditional research instruments that 

are costly to develop. Lastly, filtering messages using searchable operators and keywords, 

make it easy to navigate and find data. Our study takes advantage of these features and 

utilizes cashtag and company name mentions to create attention indicators. 

 

3.1.1 Cashtags 
Cashtag is a searchable operator on Twitter that comprises the dollar symbol followed by the 

company ticker symbol, e.g. $MSFT, which relates to specific company stock. The selection 

and filtering of messages using cashtags permits analysis of individual stocks, and could also 

mitigate noise in the data set by excluding messages that are less related to markets and 

market participants. An introductory study by Hentschel and Alonso (2014) looked at how 

widespread the application of cashtags were and how they conveyed financial information on 

Twitter. Their findings suggested that messages containing cashtags were associated with 

financial activity, as some stock prices were found to correlate with spikes in cashtag message 

volume. Moreover, cashtags have been crucial to understanding the impact of Twitter 

sentiment on markets. Studies from Sprenger et al. (2014) and Oliveira et al. (2017) both 

found messages containing cashtags to be valuable for predicting market variables. 
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3.1.2 Company names 
The selection of messages using company names, e.g. Cisco Systems, pertains to any 

information regarding a company. In contrast to cashtags, variables relying on these messages 

may be prone to larger measurement errors, as people refer to companies in multiple different 

ways. However, they may still contain valuable information that is overlooked if only 

cashtags are applied. In order to capture the most relevant messages, and increase precision, 

endings for company names that have Corp, Inc and Co in them are omitted, as they are likely 

excluded from conversations on Twitter. 

 

3.1.3 On the issue of spam messages 
A common issue with Twitter messages is the presence of spam. Hentschel and Alonso 

(2014) stress the importance of separating spam messages from legitimate user messages, and 

further show that some companies are prone to spam. An inherent property of Twitter’s free 

search API, is that it emphasizes relevance over completeness. Although Twitter fails to 

provide an official elaboration on this, a study conducted by Thelwall (2015) indicate that 

most messages of importance are returned, even if the samples are incomplete. Further, he 

argues that excluded messages are unlikely to be problematic for research purposes, as most 

of the removed messages from his sample were either duplicates or had spam characteristics. 

We recognize that spam presents an issue for any study that relies on Twitter data, however, 

our decision to use the free search API is a conscious effort to reduce this problem, due to its 

inherent filtering properties.  

 

3.2 Data 
Twitter’s free search API searches against a sampling of published messages in the last seven 

days. Our searches were executed using rtweet, a community developed R application listed 

on Twitter’s developer page. rtweet enables users to access the API endpoints, using the 

programming language of R instead of HTTP and JSON. The standard search API has a rate 

limit of 18 000 messages every 15 min and per request. Using rtweet, we were able to 

circumvent this limit by enabling the option to retry on rate limit. This ensures that any halted 

searches continue after the rate limit resets.  

 

For each of the 22 stocks in the data set, searches were conducted on a weekly basis. We ran 

searches for messages containing the company specific cashtag, collecting messages from the 
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last 7 days. The same searches were done for messages containing the company name. In 

total, the data set includes Twitter messages spanning from January 5th to April 2nd 2020.  

 

We create three variables from each of the two collections of Twitter messages by calculating 

the message volume for each stock in specific time intervals, see Table 3-1. First, we calculate 

the daily volume from 00:00 to 23:59, in variables we label Ct for messages containing 

cashtags, and Nm for company name. Although volume is low during the night, Ct and Nm 

forgo any messages in the hours leading up to market openings. Therefore, we create two 24-

hour variables that accumulate messages from 09:30 on day ! − 1, until just before the market 

opens at 09:29 on day !. We label these variables Ct-24h and Nm-24h. However, relevant 

market information on Twitter posted during trading hours might already be reflected in 

volatility the same day. Thus, we create two variables that capture all messages from market 

closings at 16:00 on day ! − 1, until just before the market opens at 09:29 on day !. We label 

these variables Ct-17,5h and Nm-17,5h. 

 

3.2.1 Summary statistics 
Table 3-1 presents summary statistics for Twitter variables. 

 
Table 3-1 Summary statistics for Twitter variables 

Variable name Description Observations* Mean Std. Dev 

Cashtag      

  Ct  Full day message volume: 00:00 - 23:59  1 892 111,4 148,9 

  Ct-24h 
 Message volume 24 hours prior to trade 

opening: 09:30(t - 1) - 09:29  
1 936 114,0 147,5 

  Ct-17,5h 
 Message volume since trading closed yesterday: 

16:00(t - 1) - 09:29  
1 936 64,2 88,3 

Company name       

  Nm  Full day message volume: 00:00 - 23:59  1 890 604,4 1 587,3 

  Nm-24h 
 Message volume 24 hours prior to trade 

opening: 09:30(t - 1) - 09:29  
1 932 606,4 1 574,4 

  Nm-17,5h 
 Message volume since trading closed yesterday: 

16:00(t - 1) - 09:29  
1 933 394,4 1 139,4 

* Differing number of observations are due to missing messages from February 27th 12:00 to February 28th 02:00 

because of scheduling error and for keyword search “Bank of America” there are no messages prior to January 8th 

16:00 due to an unknown error. 
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As we see in Table 3-1, there is a big difference in mean volume and standard deviation for 

cashtag and company name searches. Furthermore, an increase in company name characters 

are associated with lower message volumes, as evidenced by a correlation coefficient of -0,28 

between number of characters and mean volume for each company name search. This 

indicates that longer names are more likely to be abbreviated when microblogging.  

 

3.2.2 Non-business days 
Autoregressive models of volatility rely on lags of volatility, and specifically the first lag in 

the HAR-RV model. When estimating volatility following non-business days, we use the 

volatility measure from the previous trading day. However, this is not a suitable solution for 

Twitter, as information continues to spread throughout weekends and non-business days. We 

propose two candidate solutions: aggregating message volume over non-business days, or 

using the previous day message volume regardless of whether trading occurred on this day. 

This produces Table 3-2, with variables that aggregate volume for non-business days and 

forwards them to the next business day. 

 
Table 3-2 Summary statistics for Twitter variables aggregating non-business days 

Variable name Description Observations* Mean Std. Dev 

Cashtag   
   

  Ct-sumred  cashtag variable + sumred  1 298 130,8 166,4 

  Ct-24h-sumred Ct-24h + sumred 1 342 160,1 205,3 

  Ct-17,5h-sumred Ct-17,5h + sumred 1 342 95,4 136,6 

Company name   
   

  Nm-sumred name + sumred 1 297 693,0 1 821,2 

  Nm-24h-sumred Nm-24h + sumred 1 339 855,5 2 055,6 

  Nm-17,5h-sumred Nm-17,5h + sumred 1 340 585,1 1 544,4 

            

* The reduction in observations from Table 3-1 is due to the removal of non-business day observations 
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4 The panel 
To study the empirical relationship between stock market data and Twitter messaging data, 

and the forecasting ability of Twitter message volume for the next day volatility of stock 

returns, we have created a panel consisting of a random sample of 22 stocks from the 100 

largest publicly listed corporations in the US. The population in mind for this paper is the 

corporations listed on the S&P 100. However, this study could be externally valid for similar 

populations where Twitter is widely used. We narrow down to a limited population because 

Twitter’s standard search API prohibits historical searches beyond the last seven days. As 

such, there is a constraint on the amount of observations per company in this paper, which 

could threaten the significance of our estimators. It is also likely that our data contains some 

form of noise or measurement error. Therefore, we chose a population which has some of the 

most liquid stocks in the world, and where Twitter is widely used. Usage in the US accounted 

for 20% of “Monetizable Daily Active Usage” on Twitter in 2019 (Twitter Inc, 2019b, p. 1). 

 

4.1 Panel summary statistics 
Table 4-1 presents summary statistics for each of the 22 companies regarding central 

tendencies of volatility, and the distribution of message volume for our selected search words 

and cashtags. Comparing the means of realized volatility and Twitter message volume for 

each company, the figures suggest no obvious relationship between the means. Kinder 

Morgan has the highest mean volatility, yet mean Ct and mean Nm is in the bottom 15th and 

25th percentile, respectively. Meanwhile, Costco Wholesale has the lowest mean volatility, a 

mean Ct in the top 25th percentile and mean Nm in the bottom 10th percentile. Although this 

needs to be considered more carefully, the differences in means indicate that changes in the 

variables might be more interesting than absolute levels. Also, a qualitative assessment in 

choice of search words might have produced different means, e.g. “Cisco” instead of “Cisco 

Systems”, “Costco” instead of “Costco Wholesale”.  
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Table 4-1 Panel summary statistics 

Company name* Cashtag 
Mean 

Ct 

Mean 

Nm 

Mean 

Rvola 

Median 

Rvola 

American Express $AXP 58 1143 2,9 % 1,6 % 

Bank of America $BAC 215 1774 2,8 % 1,3 % 

Biogen $BIIB 102 683 3,1 % 2,1 % 

Bristol-Myers Squibb $BMY 86 75 2,4 % 1,6 % 

Cisco Systems $CSCO 102 77 2,6 % 1,4 % 

Costco Wholesale $COST 176 37 2,0 % 1,3 % 

Danaher $DHR 25 63 2,5 % 1,6 % 

Emerson Electric $EMR 14 49 3,0 % 1,7 % 

General Dynamics $GD 29 128 2,6 % 1,4 % 

Gilead Sciences $GILD 354 393 2,8 % 2,4 % 

Johnson & Johnson $JNJ 176 428 2,2 % 1,2 % 

JPMorgan Chase $JPM 276 580 2,7 % 1,5 % 

Kinder Morgan $KMI 28 65 3,2 % 1,2 % 

Eli Lilly $LLY 65 388 2,5 % 1,4 % 

Lockheed Martin $LMT 87 867 2,6 % 1,6 % 

Medtronic $MDT 45 1195 2,5 % 1,4 % 

Qualcomm $QCOM 134 1353 3,0 % 2,2 % 

Thermo Fisher Scientific $TMO 28 364 2,6 % 2,0 % 

Union Pacific $UNP 29 88 2,8 % 1,7 % 

Walgreens Boots Alliance $WBA 51 17 3,0 % 1,7 % 

Wells Fargo $WFC 136 3133 2,8 % 1,4 % 

Exxon Mobil $XOM 235 422 3,0 % 1,6 % 

            

* Company name here refers to the search words used, not the actual name of the company. 

 

In the analysis and results, we use scaled variables in the regression models to ease readability 

of coefficients. All volatility variables will be scaled by a factor of 100, and now represent 

percentage points. All Twitter variables will be scaled by a factor of 1/100, and now represent 

message volume measured in hundreds. 
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4.2 Specifying the HAR-RV model with panel data 
The HAR-RV model, as proposed by Corsi (2009), used a time series framework where the 

model estimated the specific properties of a single financial instrument. The data set 

employed in this analysis is a panel consisting of 22 stocks, which demands different 

considerations than in a single entity model.  

 

First, we take a look at the HAR-RV model in a panel data setup with entity fixed effects: 

 

 6*:,+A45
(5) = C]

(5) + C(5)6*:,+
(5) + C(D)6*:,+

(D) + C(E)6*:,+
(E) + n: + k:,+A45 (8) 

 

Where > represents each entity, n: is a collection of dummy variables representing the entity 

fixed effects and k:,+A45 is the error term. In this context, the entity fixed effects control for 

inherent differences in volatility across stocks that remain constant over time. Together with 

the constant C]
(5), n: allows the long term volatility estimate to vary across stocks. 

 

In Table 4-2, we present the OLS regression results from estimating the HAR-RV model on a 

panel of 22 entities, using Newey-West standard errors of order 5. Note that the dummy for 

each entity is not included in the table, instead the joint F-statistic is provided. L1.Rvola 

represents the first lag of Rvola. The model overall appears to be a good fit, but the monthly 

volatility variable is estimated to have a negative coefficient. This is counterintuitive. Due to 

the well-known long memory properties of volatility, we would expect all lagged components 

of volatility to have positive coefficients. Furthermore, the volatility measure is an absolute 

measure of risk. Hence, we would expect the model to always predict positive values. Upon 

closer inspection, the model also suffers from multicollinearity issues. Furthermore, the entity 

fixed effects, n:, are not jointly significant with an F-stat equal to 0,17.  
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Table 4-2 Panel HAR-RV model regression 

Rvola   Coefficients 

     

L1.Rvola   0,427*** 

    (7,57) 

Rvolawk   0,639*** 

    (9,14) 

Rvolamt   -0,265*** 

    (-5,68) 

n:   - 

    (0,17) 

Constant   0,417** 

    (2,31) 

Observations   1342 

F-test   114,1 

p-value   9,00e-301 
t-statistics in parentheses and * p < 0.10, ** p < 0.05, *** p < 0.01, 	

Joint F-statistic for n: in brackets.  

 

We propose a transformation of the variables and create a new variable, Dwkmt. The new 

variable is the difference between the weekly and the monthly volatility components: 

 

 opJj! = 6*+
(D) − 6*+

(E) (9) 

 

The economic intuition behind this variable is that recent measures of volatility are a better 

predictor of volatility, so in a case where the difference between the average over the past 

week and the past month increases, the model should suggest an increase in realized volatility 

for the next day, and vice versa. 

 

Figure 4-1 is a visual comparison of Rvola, Rvolawk, Rvolamt and Dwkmt along the timeline 

of our sample. Rvolawk appears to be highly dependent of Rvola, but it responds slightly 

slower to large spikes in volatility. Rvolamt is even less responsive than Rvolawk. It appears 

to lag behind Rvola and Rvolawk, and is more important in setting the level of Rvola over a 
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longer time period. Dwkmt appears to be highly dependent of Rvolawk and responds 

similarly to spikes, but adjusts further down towards the end of a spike. Rvolamt and Dwkmt 

appear to respond conversely at the end of the spike, and the combination of these two appear 

to be a good fit. We compare these findings to the correlation matrix in Table 9-3, in 

Appendix 3, which confirms that Dwkmt is highly correlated with Rvolawk, with a 

coefficient equal to 0,77. Dwkmt is also correlated to Rvolamt, but less so, with a coefficient 

equal to 0,35. 

 
Figure 4-1 Studying Dwkmt 

 

Note that there is no vertical axis presented in this figure, only the co-movement  

between the four scattered clouds are of interest. 

 

We propose employing Dwkmt as a replacement for Rvolawk. With the inclusion of Dwkmt, 

we still make use of all the data and components of the HAR-RV model, but we estimate the 

weekly component jointly with the monthly component.  

 

rvolamt

rvolawk

rvola
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These alterations produce our baseline HAR-RV model, that will be applied and tested against 

when forecasting in hypothesis 3. The baseline HAR-RV model is specified in equation (10): 

 

 6*:,+A45
(5) = C]

(5) + C(5)q6*:,+
(5) − 6*ZZZZ:

(5)r + C(E)q6*:,+
(E) − 6*ZZZZ:

(E)r 	

+ C(D3E)q6*:,+
(D) − 6*:,+

(E)r + n: + k:,+A45 
(10) 

 

Where 6*ZZZZ:
(5) is the average L1.Rvola for entity >, and 6*ZZZZ:

(E) is the average Rvolamt for 

entity >.  

 

Table 4-3 presents our baseline HAR-RV model. Findings reveal that our new model 

specification is also a good fit, and that the proposed variable transformations reduce issues 

pertaining to multicollinearity and negative regressors.  

 
Table 4-3 Baseline HAR-RV model 

Rvola   Coefficients 

      

L1.Rvolac   0,427*** 

    (7,57) 

Rvolamtc   0,373*** 

    (7,74) 

Dwkmt   0,639*** 

    (9,14) 

n:   -*** 

    (3,58) 

Constant   2,421*** 

    (12,75) 

Observations 1342 

F-test   114,1 

Prob > F   0,000 

t-statistics in parentheses and * p < 0.10, ** p < 0.05, *** p < 0.01, 	
Joint F-statistic for n: in brackets. 
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Further, we find that Mean Variance Inflation Factor (VIF) for the three volatility variables 

has been reduced from 8,10 to 4,34. The new variable, Dwkmt, is significant and has a 

positive coefficient in accordance with the economic intuition explained earlier. Moreover, 

we find that centering L1.Rvola and Rvolamt, by subtracting their respective panel means, 

results in jointly significant entity fixed effects at a 0,1% level. Note that we add “c” to the 

variable name when centering. 

 

4.3 On the issue of heteroskedasticity, serial and cross-panel correlation 
It is well-known that volatility modeling encounters issues of heteroskedasticity and serially 

correlated residuals. Volatility has been shown to be both persistent and mean-reverting 

(Engle & Patton, 2007). These are features that Corsi (2009) seek to model with HAR-RV. 

Still, a Cumby-Huizinga test (Cumby & Huizinga, 1992) reveals that residuals from the 

baseline HAR-RV model, estimated with OLS, are serially correlated, see Table 9-4 in 

Appendix 4. All results from tests in subsection 4.3 can be found in Appendix 4. Graphical 

examination and a Breusch-Pagan test (Breusch & Pagan, 1979) reveal that residuals are 

heteroskedastic, see Figure 9-1 and Table 9-5. Therefore, standard errors in this paper are 

calculated using the Newey-West heteroskedasticity and autocorrelation consistent covariance 

matrix of order 5 (Newey & West, 1987). This is consistent with how standard errors are 

calculated in Corsi (2009) and Patton and Sheppard (2015).  

 

Applying the HAR-RV model in a panel data setup induces a third issue, namely cross-panel 

correlation. The daily measures of volatility in a panel of 22 stocks from the S&P 100 are 

likely to be highly dependent in the cross-section, as they all are affected by the same 

macroeconomic environment. A general cross section dependence test (Pesaran, 2004) 

(Pesaran, 2015) reveal that the residuals are correlated across panels, see Table 9-6. However, 

controlling for time fixed effects drastically reduces the correlation, but it does not remove 

dependence completely, see Table 9-7. So, in order to increase the validity of this paper’s 

findings, we conduct tests using bootstrapped standard errors, and sample from both entity 

and time clusters. See Table 9-8 and Table 9-9 for bootstrap results for the baseline HAR-RV 

model. 
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5 Empirical approach 
In this section, we outline the empirical approach used to test our hypotheses. 

 

5.1 Approach for H1 and H2 
Equation (11) to (13) specify the regression models applied to test H1 and H2, for each 

Twitter variable. We propose an approach in which we gradually introduce control variables 

to study the dynamics of the relationships. The variable [Kp>!!l9] is simply a placeholder for 

each Twitter variable. 

 

In the Fe model (11), we test the raw relationship between Twitter message volume and 

Rvola, only controlling for entity fixed effects: 

 

 6stuN:,+ = C] + C4[Kp>!!l9]:,+345 + n: + k:,+ (11) 

 

The HAR + Fe model (12) tests the relationship when we also control for variation explained 

by our baseline HAR-RV model: 

 

 6stuN:,+ = C] + C4[Kp>!!l9]:,+345 + C/v1. 6stuNB:,+345

+ Cw6stuNj!B:,+345 + CGopJj!:,+345 + n: + k:,+ 
(12) 

 

In the HAR + Fe + Te model (13), we also add time fixed effects, controlling for omitted 

variables that vary over time but are constant across entities, e.g. market volatility: 
 

 6stuN:,+ = C] + C4[Kp>!!l9]:,+345 + C/v1. 6stuNB:,+345

+ Cw6stuNj!B:,+345 + CGopJj!:,+345 + n: + x+ + k:,+ 
(13) 

 

To better visualize how Twitter variables relate to Rvola in time, we illustrate the relationship 

with timelines in Figure 5-1, Figure 5-2 and Figure 5-3. The timelines are illustrated with 

cashtag variables. However, name variables hold the same relationship to Rvola in time. 

Therefore, the timelines and reasoning that follow also apply to the equivalent name 

variables, e.g. L1.Nm is analogous to L1.Ct. 
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As we see in Figure 5-1, L1.Ct contains messages that are accumulated between 00:00 and 

23:59 the day previous to the dependent variable Rvola, regardless of whether ! − 1% is a 

business day or not. L1.Ct-sumred also accumulates messages over non-business days. 

 
Figure 5-1 Timeline L1.Ct and L1.Ct-sumred 

 
 

As we see in Figure 5-2, Ct-24h contains messages from the last 24 hours before trading starts 

on day !, regardless of whether ! − 1% is a business day or not. Ct-24h-sumred also 

accumulates messages over non-business days. 
 

Figure 5-2 Timeline Ct-24h and Ct-24h-sumred 

 
 

As we see in Figure 5-3, Ct-17,5h contains messages from the last 17,5 hours before trading 

starts on day !, regardless of whether ! − 1% is a business day or not. Ct-17,5h-sumred also 

accumulates messages back to 16:00 on the last business day. 

 
Figure 5-3 Timeline Ct-17,5h and Ct-17,5h-sumred 
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5.2 Approach for H3 
To test H3, we conduct both in-sample and pseudo out-of-sample forecasts. We base our 

choice of forecasting models on the performance of Twitter variables in H1 and H2. The best 

performing cashtag and name variable will be used in conjunction with our baseline HAR-RV 

model. 

 

The combination of a short sampling period, and the effect of Covid-19, presents a challenge 

in how we approach forecasting. Specifically, the magnitude of the Covid-19 related spike 

makes forecasts sensitive to subsample selection. Running a Chow test (Chow, 1960), we find 

a break in the time series on February 24th, with an F-stat equal to 40,52. Forecasting with 

time fixed effects is infeasible, therefore, we propose a solution in which we forecast using a 

dummy variable for the observed break on February 24th that interacts with each independent 

variable. This should ensure that forecasting performance is consistent throughout the sample.  

 

The full sample is divided into 13 subsamples; one for each calendar week. We estimate the 

models by creating a rolling window. For each iteration of the forecasting process, the rolling 

window excludes subsample > from the estimation process, then estimates the model, and 

finally, forecasts into the excluded subsample >. Thus, we can test each model’s performance 

on 13 candidate scenarios of realized volatility in ! + 1 to ! + 5.  

 

It is important to note that the rolling window does not fully exclude observations of Rvola 

from the estimation process. To estimate models containing HAR-RV consistently, 

observations of Rvola in the excluded subsample are included in Rvolawk and Rvolamt for 

subsequent estimates. For instance, if observations of Rvola at time ! − 1	are excluded from 

Rvolawk at time !, then we are not properly estimating the HAR-RV model at time ! + 1. 

Therefore, the observations of Rvola in the excluded subsample must be included in 

subsequent Rvolawk and Rvolamt calculations. Although this subsampling process gives rise 

to concerns about validity, due to issues regarding our sampling period, we believe this 

procedure will produce more robust forecasts than conventional methods of subsampling for 

this data set. 

 

The changing macroeconomic environment throughout our sample enables testing of Twitter 

variables’ forecasting performance under steady market conditions, and during a period of 
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turmoil. We group subsamples 1 to 7 into Period 1, and subsamples 8 to 13 into Period 2. The 

break date is the first trading day in subsample 8. In Figure 5-4, we visualize the two 

forecasting periods, illustrating the difference in volatility levels and spread between 

subsamples. Now, Period 1 is located before Covid-19 affects the US financial markets, while 

Period 2 is amid the Covid-19 crisis.  

 
Figure 5-4 Forecasting periods and subsamples 

 
 

To study the forecasting performance of our models, we adopt two loss functions that rely on 

standardized forecasting errors, see equation (14) and (15), and one that is widely accepted in 

the literature, see equation (16).  

 

Considering the work of Patton (2011) on robust loss functions for realized volatility, we 

employ the QLIKE measure, which is specified in equation (14):  

 

 
yv)IM =

1
z ∗ K

88
6*:,+A4/

|:,+A4/ − ln �
6*:,+A4/

|:,+A4/ Ä − 1
Å34

+

Ç

:

 (14) 

 

Where, |:,+A4 is the forecasted value of realized volatility for stock > at time ! + 1.  
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Further, we adopt mean absolute percentage error (MAPE) because it is less sensitive to 

outliers. MAPE is specified in equation (15): 

 

 
ÉÑÖM =

1
z ∗ K

88
Ü6*:,+A4 − |:,+A4Ü

|:,+A4

Å34

+

Ç

:

 (15) 

  

Finally, we employ root mean squared error (RMSE), which is specified in equation (16): 

 

 

6ÉLM = 7
1

z ∗ K
88á6*:,+A4 − |:,+A4à

/
Å34

+

Ç

:

 (16) 

 

All three measures will be averaged for Period 1 and Period 2, respectively, to study 

differences in performance for the two periods.  

 

Putting performance measures in a statistical context, we test differences in predictive 

accuracy using the Diebold-Mariano test, which tests whether differences in an arbitrary loss 

function from two competing forecasts are statistically significant (Diebold & Mariano, 

1995):  

 

 
oÉ:,â =

%̅:,â
.ã5Zå,ç

5
→z(0,1) (17) 

 

Where %̅:,â is the average difference in a loss function between model > and è, and .ã5Zå,ç is an 

estimator for the standard error of %̅:,â. We estimate the DM-statistic using bootstrap 

estimation with 5000 repetitions, similarly to the estimation used in the Model Confidence Set 

test (Hansen et al., 2011). 
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6 Results and discussion 
In this section, we present the results and corresponding discussion for hypothesis 1, 2 and 3. 

 

6.1 Hypothesis 1 
H1: Changes in company attention on Twitter, measured by message volume related to 

company stock accumulated prior to trading hours, is associated with changes in volatility. 

 

To test H1, we propose that cashtag variables are a suitable approximation of all messages 

related to company stock.  

 

6.1.1 Results 
In Table 6-1, we present results from regressions using the six cashtag variables as 

explanatory variables, in accordance with the approach explained in section 5.1. Note that the 

regression results only include the coefficients for cashtag variables, as these are the 

coefficients of interest. 

 

As is shown for Fe models, coefficients for cashtag variables are all positive values and 

significant on a 1 % level. However, none of the variables hold enough explanatory power in 

conjunction with entity fixed effects to produce significant model F-tests.  

 

In the HAR + Fe models, L1.Ct and L1.Ct-sumred are not significant. Ct-24h and Ct-24h-

sumred are both significant on a 5 % level and an increase of 100 messages is associated with 

approximately a 0,06 %-points increase in Rvola. Ct-17,5h and Ct-17,5h-sumred are 

significant on a 1 % level and an increase of 100 messages is associated with an increase in 

Rvola of approximately 0,14 and 0,09 %-points, respectively.  

 

HAR + Fe + Te models are consistently the best models in terms of F-stat, and the 

coefficients for L1.Ct, Ct-24h and Ct-17,5h all have higher t-stats than their “sumred” 

counterparts. L1.Ct is significant on a 5 % level, while both Ct-24h and Ct-17,5h are 

significant on a 1 % level. On average, controlling for time fixed effects induces a 17 % 

reduction in coefficients for Ct-24h, Ct-24h-sumred, Ct-17,5h and Ct-17,5h-sumred. 
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Table 6-1 Regression results for all cashtag variables 

Base   [Twitter] Coefficient t-stat F-stat 

            

Fe + L1.Ct 0,2454*** 3,55 0,93 

HAR + Fe + L1.Ct 0,0223 0,84 109,63 

HAR + Fe + Te + L1.Ct 0,0372** 2,02 174,57 

            

Fe + L1.Ct-sumred 0,2011*** 2,96 0,72 

HAR + Fe + L1.Ct-sumred 0,0268 1,00 109,81 

HAR + Fe + Te + L1.Ct-sumred 0,0286 1,63 174,24 

            

Fe + Ct-24h 0,2598*** 3,91 1,07 

HAR + Fe + Ct-24h 0,0649** 2,21 109,91 

HAR + Fe + Te + Ct-24h 0,0691*** 3,65 178,79 

            

Fe + Ct-24h-sumred 0,1695*** 3,42 0,84 

HAR + Fe + Ct-24h-sumred 0,0628** 2,56 110,36 

HAR + Fe + Te + Ct-24h-sumred 0,0433** 2,52 176,95 

            

Fe + Ct-17,5h 0,3237*** 3,32 0,82 

HAR + Fe + Ct-17,5h 0,1453*** 3,78 110,55 

HAR + Fe + Te + Ct-17,5h 0,1265*** 4,91 179,27 

            

Fe + Ct-17,5h-sumred 0,01648*** 2,60 0,60 

HAR + Fe + Ct-17,5h-sumred 0,0951*** 3,08 110,55 

HAR + Fe + Te + Ct-17,5h-sumred 0,0661*** 2,80 177,69 

            

Fe refers to entity fixed effects, Te refers to time fixed effects. F-stat refers to the entire model. 
 * p < 0.10, ** p < 0.05, *** p < 0.01 

 

Unsurprisingly, introducing HAR and time fixed effects have a large effect on the model F-

stat. The best model, in terms of F-stat and t-stat, is HAR + Fe + Te + Ct-17,5h. To test the 

robustness of this model, we run two bootstrap estimations with 1000 repetitions. The first 

bootstrap estimation is done by sampling from 22 entity clusters, i.e. 22 stocks. The observed 

coefficient for Ct-17,5h is equal to the initial estimation and it has a 95 % confidence interval 
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equal to [0,0558; 0,1972]. The second estimation is done by sampling from 61 time clusters. 

We again observe the same coefficient for Ct-17,5h, with a 95 % confidence interval equal to 
[0,0769; 0,1760]. Both estimations observe a coefficient that is statistically significant on at 

least a 0,1 % level. 

 

Excluding Fe models, models containing Ct-17,5h outperform the models containing Ct-24h, 

and further, Ct-24h outperform L1.Ct. 

 

6.1.2 Discussion 
Results from Table 6-1 indicate that cashtag variables are related to market activity, as nearly 

all models produce statistically significant coefficients. Our findings show that cashtag 

variables closer to Rvola in time are better predictors of volatility, as variables further from 

Rvola gradually lose statistical significance. Ct-17,5h is the variable closest to Rvola in time, 

and interestingly, the only variable containing messages that have not accumulated during 

trading hours. This implies that markets quickly absorb Twitter information, and assuming 

that markets are efficient, we would expect Twitter information accumulated at ! − 2% to 

already be reflected in volatility estimates for ! − 1%. Further, coefficients decrease slightly 

when we introduce time fixed effects, which could indicate that cashtag variables explain 

variation pertaining to the entire market. However, the variables remain statistically 

significant and keep their explanatory power. Surprisingly, this suggests that messages 

containing cashtags uniquely explain Rvola for our selection of companies, even if we control 

for market volatility. Due to Covid-19 affecting our data set, we would expect market trends 

alone to be a good predictor of Rvola. Therefore, we find it surprising that cashtag variables 

persistently remain statistically significant, even in an environment where Covid-19 carries a 

lot of explanatory weight.  

 

Our results give rise to questions about the informational content of cashtag messages, and the 

exact nature of the relationship between cashtags and markets. In the absence of sentiment 

data contained within these messages, we note that message volume could merely be a proxy 

for such data, and that sentiment could be a more precise predictor of volatility. Moreover, the 

information contained within cashtag messages may not be entirely unique, as it potentially 

mirrors information that is already conveyed through other media outlets. In which case, we 

would find that cashtag messages depict information arising from the media in general. 
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However, arriving at this conclusion would require further examination of the relationship, 

which is considered beyond the scope of this paper. Overall, our findings indicate that cashtag 

variables are associated with changes in volatility, and we find support in favor of H1. 

 

6.2 Hypothesis 2 
H2: Changes in company attention on Twitter, measured by message volume related to the 

company in general accumulated prior to trading hours, is associated with changes in 

volatility. 

 

To test H2, we propose that company name variables are a suitable approximation of all 

messages related to the company in general.  

 

6.2.1 Results 
Table 6-2 contains regression results with coefficients for name variables.  

 

We find that all Fe models produce significant coefficients for name variables on a 1 % level. 

However, the joint F-statistic reveal that none of the models are significant when the name 

variables are paired with entity fixed effects.  

 

Results for HAR + Fe models show that name variable coefficients remain significant, except 

for L1.Nm and L1.Nm-sumred. The best HAR + Fe model contains Nm-17,5h. The 

coefficient is significant on a 10 % level, and is associated with an approximate increase in 

Rvola of 0,007 %-points when message volume increases by 100.  

 

Interestingly, none of the HAR + Fe + Te models produce statistically significant name 

variables, and all coefficients turn negative. The change in polarity could indicate a spurious 

relationship between name variables and Rvola, as their coefficients are prone to change when 

additional control variables are introduced. In this case, time trends explain enough variation 

in Rvola to render name variables statistically insignificant, when paired with HAR and fixed 

effects.  

 

We note that HAR + Fe + Nm-17,5h is the best model with respect to all name variables, as it 

produces the highest t-statistic in conjunction with a significant model test. The F-statistic is 
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slightly lower than that of the models containing Nm-17,5h-sumred and Nm-24h-sumred, but 

not enough to affect overall assessment.  

 
Table 6-2 Regression results for all company name variables 

Base   [Twitter] Coefficient t-stat F-stat 

            

Fe + L1.Nm 0,0155*** 3,30 0,80 

HAR + Fe + L1.Nm 0,0027 1,16 112,68 

HAR + Fe + Te + L1.Nm -0,0006 -0,56 172,50 

            

Fe + L1.Nm-sumred 0,0146*** 3,45 0,84 

HAR + Fe + L1.Nm-sumred 0,0023 0,95 113,13 

HAR + Fe + Te + L1.Nm-sumred -0,0013 -1,07 171,96 

            

Fe + Nm-24h 0,0161*** 3,20 0,79 

HAR + Fe + Nm-24h 0,0046* 1,90 110,41 

HAR + Fe + Te + Nm-24h -0,0004 -0,32 172,79 

            

Fe + Nm-24h-sumred 0,0125*** 2,97 0,70 

HAR + Fe + Nm-24h-sumred 0,0036* 1,72 111,12 

HAR + Fe + Te + Nm-24h-sumred -0,0013 -1,28 172,14 

            

Fe + Nm-17,5h 0,0204*** 2,94 0,72 

HAR + Fe + Nm-17,5h 0,0067* 1,96 110,63 

HAR + Fe + Te + Nm-17,5h -0,0001 -0,07 173,99 

            

Fe + Nm-17,5h-sumred 0,0158*** 2,79 0,65 

HAR + Fe + Nm-17,5h-sumred 0,0048* 1,72 111,01 

HAR + Fe + Te + Nm-17,5h-sumred -0,0016 -1,11 173,35 

            

Fe refers to entity fixed effects, Te refers to time fixed effects. F-stat refers to the entire model. 
 * p < 0.10, ** p < 0.05, *** p < 0.01 
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To test the robustness of HAR + Fe + Nm-17,5h, we run bootstrap estimations of the model. 

Sampling from 22 entity clusters yields an observed coefficient for Nm-17,5h equal to the 

initial estimation, significant on a 5 % level, with a 95 % confidence interval equal to 
[0,0016; 0,0118]. When sampling from 61 time clusters, we again observe the same 

coefficient for Nm-17,5h, significant on a 10 % level, with a 95 % confidence interval equal 

to [−0,0003; 0,0137].  

 

6.2.2 Discussion 
Results from Table 6-2 reveal a trend where coefficients for name variables become less 

statistically significant as more control variables are introduced. Moreover, controlling for 

market volatility, through time fixed effects, renders all name variables insignificant. In 

accordance with our conclusion about cashtag variables, name variables that are closer to 

Rvola in time seem to have better predictive power. As opposed to cashtag variables, name 

variables are potentially subject to larger measurement error, as they might contain 

information that does not pertain to markets. In order to increase validity of such data, a 

subjective examination of popular terms for these companies would be necessary. We 

consider such an analysis to be beyond the scope of this paper and recognize that our 

systematic approach may inherently be flawed. However, we note that our own imposed 

assessments about search words could also introduce significant measurement errors, which 

could legitimize a systematic approach. Overall, the suggested name variables perform worse 

compared to cashtag variables. This could signal that our attention indicators are poorly 

specified, or simply that indicators relating to company name search words contain 

inadequate amounts of information relating to markets. Ultimately, we do not find name 

variables to carry unique explanatory power pertaining to volatility. Thus, we find insufficient 

evidence in support of H2. We note that controlling for time fixed effects is infeasible when 

attempting to predict future observations of volatility. Since name variables precede time 

fixed effects, they could still hold predictive power for volatility. Therefore, we continue to 

test H3 with our best performing name variable from H2. 

 

6.3 Hypothesis 3 
H3: Company attention can be utilized to improve the forecasting ability of volatility models. 
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To test H3, we propose our two best performing attention indicators derived from H1 and H2, 

Ct-17,5h and Nm-17,5h, in different combinations with the baseline model. Expanding upon 

previous correlation models, H3 will further examine the relationship between Twitter and 

volatility. To ease readability and manage space efficiently, we create short names for the 

models used in the forecasts: HAR + Fe (HAR), HAR + Fe + Ct-17,5h (HARct), HAR + Fe + 

Nm-17,5h (HARnm) and HAR + Fe + Ct-17,5h + Nm-17,5h (HARctnm). 

 

6.3.1 In-sample 
To conduct in-sample forecasting we estimate the models using the full sample, as portrayed 

in Table 6-3. Although differences vary, all three models improve upon the baseline model 

(HAR). Overall, the Ct-17,5h variable outperform Nm-17,5h, with HARct having a greater 

improvement in all performance measures compared to the baseline model. In terms of 

HARnm, the improvement from including Nm-17,5h appear negligible for MAPE and RMSE. 

However, the improvement of adding both Twitter variables seem to be greater than the sum 

of their parts, at least in terms of QLIKE and MAPE. 

 
Table 6-3 Full sample: In-sample one-day ahead forecasting performance 

Model QLIKE dQLIKE MAPE dMAPE RMSE dRMSE 

              

HAR 0,1934   23,42 %   0,992 %   

HARct 0,1824 1,10 % 22,84 % 0,57 % 0,985 % 0,008 % 

HARnm 0,1920 0,14 % 23,41 % 0,01 % 0,990 % 0,002 % 

HARctnm 0,1803 1,31 % 22,78 % 0,64 % 0,983 % 0,009 % 

              

Note: dQLIKE, dMAPE and dRMSE represent mean improvement from the baseline HAR-RV model in  

QLIKE, MAPE and RMSE, respectively. 
 

In Table 6-4, we present the in-sample forecasting performance for period 1. Overall, results 

closely resemble the full in-sample forecast, with Ct-17,5h being the main contributing 

variable. We also note that the improvements for both HARct and HARctnm are greater than 

their full sample equivalent. Interestingly, dMAPE for HARnm is negative, which suggests 

that Nm-17,5h in some cases might reduce forecasting performance. Yet, the combination of 

both Twitter variables still yields the greatest improvement in all performance measures. 
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Table 6-4 Period 1: In-sample one-day ahead forecasting performance 

Model QLIKE dQLIKE MAPE dMAPE RMSE dRMSE 

              

HAR 0,1991   23,42 %   0,359 %   

HARct 0,1803 1,88 % 22,45 % 0,96 % 0,341 % 0,018 % 

HARnm 0,1973 0,19 % 23,42 % -0,01 % 0,359 % 0,001 % 

HARctnm 0,1770 2,21 % 22,35 % 1,07 % 0,340 % 0,019 % 

              

Note: dQLIKE, dMAPE and dRMSE represent mean improvement from the baseline HAR-RV model in  

QLIKE, MAPE and RMSE, respectively. 

 

Table 6-5 presents the in-sample forecasting performance for period 2. Overall, performance 

measures indicate that Twitter variables carry less explanatory weight in period 2, compared 

to period 1, as improvements on the baseline model are more modest. To illustrate, we see 

that the largest improvement in QLIKE for period 2 is 0,28 %-points, compared to 2,20 %-

points from period 1. HARctnm is consistently the best performer in the in-sample forecast. 

Additionally, we note that the level of QLIKE and MAPE for HAR is very similar in both 

periods, which indicates that the model is well specified with a break.  

 
Table 6-5 Period 2: In-sample one-day ahead forecasting performance 

Model QLIKE dQLIKE MAPE dMAPE RMSE dRMSE 

              

HAR 0,1871   23,42 %   1,388 %   

HARct 0,1846 0,25 % 23,28 % 0,14 % 1,382 % 0,006 % 

HARnm 0,1863 0,08 % 23,39 % 0,03 % 1,386 % 0,002 % 

HARctnm 0,1840 0,31 % 23,25 % 0,17 % 1,380 % 0,008 % 

              
Note: dQLIKE, dMAPE and dRMSE represent mean improvement from the baseline HAR-RV model in  

QLIKE, MAPE and RMSE, respectively. 
 

6.3.2 Pseudo out-of-sample 
In Table 6-6, we present the one-day ahead out-of-sample forecasting results. We combine 

forecasts conducted for all 13 subsamples into a single panel time series to test the full 

sample. 
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Table 6-6 Full sample: Pseudo out-of-sample one-day ahead forecasting performance 

Model QLIKE dQLIKE DM MAPE dMAPE DM RMSE dRMSE DM 

                    

HAR 0,2460     26,26 %     1,125 %     

HARct 0,2348 1,11 %  2,09**  25,69 % 0,57 % 2,32** 1,118 % 0,007 % 2,42** 

HARnm 0,2432 0,27 % 1,88* 26,21 % 0,05 % 0,74 1,123 % 0,002 % 0,82 

HARctnm 0,2314 1,46 %  2,70***  25,59 % 0,67 % 2,67*** 1,117 % 0,008 % 2,35** 

                    

Note: dQLIKE, dMAPE and dRMSE represent mean improvement from the baseline HAR-RV model in 

QLIKE, MAPE and RMSE, respectively. DM represents the Diebold-Mariano test statistic for  

each dQLIKE, dMAPE and dRMSE, respectively. * p < 0.10, ** p < 0.05, *** p < 0.01 

 

The results in Table 6-6 reveal a similar trend to that which is described for the in-sample 

performance. Ct-17,5h is the main contributor to the forecasts, as illustrated by results for 

HARct. All improvements in performance measures for this model are statistically significant 

on a 5 % level. Similar to the full in-sample forecast, HARnm reveal modest improvements 

on the baseline model for all performance measures. Overall, HARctnm exhibits the lowest 

mean loss in all performance measures, and differences are statistically significant on a 1 % 

level for QLIKE and MAPE. 

 

In Table 6-7, we present the forecasting performance for period 1. Nearly all models 

significantly improve upon the baseline, however, there is no significant improvement in 

MAPE for HARnm. Again, Ct-17,5h appear to be the main contributing variable, as 

evidenced by HARct, while Nm-17,5h performs better in conjunction with Ct-17,5h. In terms 

of mean improvements, HARctnm is the best performing model for period 1. The 

improvements are all statistically significant on a 5 % level. Finally, we note that HARct and 

HARctnm exhibit a greater improvement in period 1, compared to the full out-of-sample 

forecast. 
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Table 6-7 Period 1: Pseudo out-of-sample one-day ahead forecasting performance 

Model QLIKE dQLIKE DM MAPE dMAPE DM RMSE dRMSE DM 

                    

HAR 0,2170     24,39 %     0,394 %     

HARct 0,2002 1,68 % 1,70* 23,59 % 0,80 % 1,78* 0,381 % 0,013 % 1,95* 

HARnm 0,2150 0,20 % 1,72* 24,41 % -0,02 % -0,28 0,392 % 0,001 % 1,72* 

HARctnm 0,1965 2,05 % 2,08** 23,49 % 0,90 % 1,98** 0,379 % 0,014 % 2,23** 

                    

Note: dQLIKE, dMAPE and dRMSE represent mean improvement from the baseline HAR-RV model in  

QLIKE, MAPE and RMSE, respectively. DM represents the Diebold-Mariano test statistic for  

each dQLIKE, dMAPE and dRMSE, respectively. * p < 0.10, ** p < 0.05, *** p < 0.01 
 

Table 6-8 presents the results from the out-of-sample forecast performance for period 2. As 

expected, the contribution of Twitter variables is smaller compared to period 1. For period 2, 

we see that both QLIKE and MAPE are generally higher than for period 1. We see that 

HARctnm is the best performing model for period 2, and improvements in forecasting ability 

for HARct and HARctnm are both statistically significant. Interestingly, the improvement for 

HARnm is not statistically significant for any performance measure. 

 
Table 6-8 Period 2: Pseudo out-of-sample one-day ahead forecasting performance 

Model QLIKE dQLIKE DM MAPE dMAPE DM RMSE dRMSE DM 

                    

HAR 0,2779     28,32 %     1,578 %     

HARct 0,2731 0,49 %  2,43**  28,00 % 0,32 % 2,45** 1,571 % 0,007 % 1,76* 

HARnm 0,2744 0,35 % 1,18 28,19 % 0,13 % 1,08 1,575 % 0,003 % 0,69 

HARctnm 0,2698 0,81 %  2,33**  27,90 % 0,42 % 2,39** 1,569 % 0,009 % 1,69* 

                    

Note: dQLIKE, dMAPE and dRMSE represent mean improvement from the baseline HAR-RV model in 

QLIKE, MAPE and RMSE, respectively. DM represents the Diebold-Mariano test statistic for  

each dQLIKE, dMAPE and dRMSE, respectively. * p < 0.10, ** p < 0.05, *** p < 0.01 
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6.3.3 Discussion 
The results in H3 yield some interesting findings. Overall, the results are consistent across in-

sample and out-of-sample forecasts. Analogous to results from H1 and H2, we find more 

evidence supporting the predictive power of the cashtag variable than the name variable. 

However, the combination of both Twitter variables consistently produces smaller mean 

losses. Crucially, we find the improvements from both models containing cashtags to be 

statistically significant in all out-of-sample tests. This is not the case for HARnm. As 

mentioned earlier, the company name variables are likely to contain more noise, and the 

erratic performance of HARnm across the out-of-sample tests seem to suggest the same. Yet, 

results from HARctnm indicate that Nm-17,5h does have merit. 

 

Ideally, we would estimate the models on a larger sample, as outliers from period 2 would be 

given less weight. Instead, we include a break to ensure more consistent forecasts throughout 

each period. Breaks could compromise the generalizability of forecast results, as it requires 

knowledge about the distribution from which the forecasted value is drawn. However, there is 

no statistically significant change in coefficients for Twitter variables after the inclusion of a 

break for period 2, see Table 9-10 in Appendix 5. Hence, the introduction of a break should 

prove unproblematic for the forecasting ability of Twitter, and any inference drawn from this.  

 

By testing forecasting performance for the chosen two periods, we can evaluate the models in 

both a stable environment and during a period of turmoil. Comparing MAPE and QLIKE 

losses in out-of-sample forecasts, we find that the overall forecasting is more precise in the 

stable period. When forecasting in a period of greater instability, one would expect lagged 

values of volatility to carry less explanatory weight. Hence, it is reasonable to think that the 

inclusion of exogenous variables, like Twitter variables, would yield a greater improvement in 

forecasting performance for period 2. This is consistent with findings for HARnm, although 

differences are not significant for period 2. Interestingly, the improvement in models 

containing cashtags are higher in period 1, which indicates that cashtags yield a greater 

improvement when forecasting in a stable environment. One possible explanation could be 

cross-panel correlation. As is well established, asset returns tend to become more correlated 

during periods of instability. This is also the case for our sample. If cashtags contain exclusive 

information relating to future realizations of volatility for a specific stock, it could be the case 

that this information is simply of less importance when stocks are so heavily affected by 

macroeconomic events. 
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Our findings reveal that the best performing model contain both Twitter variables, which is 

consistent for all out-of-sample forecasts. Interestingly, we find the correlation between Ct-

17,5h and Nm-17,5h to be low, ñ = 0,08, which could indicate that each variable carries 

some unique explanatory power. Fitted values and residuals from regressing Rvola on time 

and entity fixed effects reveal a stronger correlation between fitted values and Nm-17,5h, 

while Ct-17,5h correlates more strongly with the residuals, see Table 9-11 and Table 9-12 in 

Appendix 6. Hence, we infer that Nm-17,5h relates more to systematic risk, while Ct-17,5h 

carry unique explanatory power pertaining to idiosyncratic risk. While previous findings from 

H2 indicated that name variables carried less explanatory power for realized volatility, these 

results shed new light on the nature of this relationship. Overall, we find support in favor of 

H3, in that company attention indicators from Twitter are useful for improving volatility 

forecasts. Further, we argue that both of our suggested indicators should be applied, as their 

informational content differ. 
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7 Concluding remarks 
This paper provides evidence that changes in Twitter message volume is related to next-day 

changes in realized volatility, for 22 companies from S&P 100, and that the relationship can 

be expressed with attention indicators that rely on cashtags and search words for company 

names. In combination with an augmented HAR-RV model, we found variables containing 

aggregated message volume outside trading hours to be the best predictor of next day 

volatility. This suggests that Twitter information diffuses rapidly in markets, in line with the 

efficient market hypothesis. Further, using the best performing Twitter variables, we tested 

predictive ability by conducting forecasts and found that volatility is best predicted with a 

model containing both attention indicators. Overall, we found the predictive power of cashtag 

variables superior to that of name variables.  

 

Surprisingly, we established that each variable explained different variation pertaining to 

volatility. Cashtags were found to explain variation relating to the idiosyncratic component of 

volatility, while company names explained variation in the systematic component. To our 

knowledge, our study is the first of its kind to uncover these key features about Twitter 

variables. Further, our results bring about questions regarding underlying mechanisms that 

dictate the relationship between Twitter and volatility. Such questions should attempt to 

answer the possibility of a latent social phenomenon. While our results are promising, we 

expect future research to include tools like sentiment analysis, to fully grasp the informational 

value contained within Twitter messages, as well as thorough examinations of search words to 

yield better results for name variables. 

 

Due to Covid-19 and worldwide lockdowns, it is also possible that the usefulness of Twitter 

variables is exaggerated because of a general increase in user activity throughout our sample 

period. This would lead to artificially good predictors. To bypass these limitations, future 

research warrants a larger sample size, so that outlier events are given less weight in 

prediction models. Lastly, we suggest that more sophisticated spam-filtering is applied, as 

well as employing Twitter’s Enterprise API for higher fidelity data, in order to reduce 

measurement error. 
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9 Appendices 
This section contains complementary tables and figures for various chapters of this paper. 

 

9.1 Appendix 1 
 

Table 9-1 Two-Scales Estimator for an arbitrary asset on day t 
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= k16 − k11 
    

9+,:AG
(QUU)

= k16 − k15 

09:46 k17  
9+,:A/W</

= k17 − k12 
   

9+,:Aõ
(QUU)

= k17 − k16 

09:47 k18   
9+,:A/W<w

= k18 − k13 
  

9+,:Aú
(QUU)

= k18 − k17 

09:48 k19    
9+,:A/W<G

= k19 − k14 
 

9+,:Aù
(QUU)

= k19 − k18 

09:49 k20     
9+,:A/W<õ

= k20 − k15 

9+,:Aû
(QUU)

= k20 − k19 

09:50 k21 
9+,:A/W<4

= k21 − k16 
    

9+,:Aü
(QUU)

= k21 − k20 

: : : : : : : : 

  
6*N9+W<4

=8(9+,:W<4)/
:

 6*N9+W</ 6*N9+W<w 6*N9+W<G 6*N9+W<õ 
6*N9+

(QUU)

=8(9+,:
(QUU))/

:
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9.2 Appendix 2 
 

Table 9-2 Unit-root test for rvola 

Levin-Lin-Chu unit-root test for rvola       

            

H0: Panels contain unit roots  Number of panels  =    22   

H1: Panels are stationary Number of periods =    61   

            

AR parameter: Common Asymptotics: N/T -> 0   

Panel means: Included       

Time trend: Not included Cross-sectional means removed 

            

ADF regressions: 1,59 lags average (chosen by AIC) 

LR variance: Bartlett kernel, 12,00 lags average (chosen by LLC) 

            

    
 

Statistic   p-value 

            

 Unadjusted t 
 

 -16,7368     

 Adjusted t*          
 

-9,8333   0,0000 

 

 

9.3 Appendix 3 
 

Table 9-3 Correlation matrix 

  Rvola Rvolawk Rvolamt Dwkmt 

Rvola         1,00        

Rvolawk         0,85          1,00      

Rvolamt         0,66          0,87          1,00    

Dwkmt         0,75          0,77          0,35          1,00  
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9.4 Appendix 4 
 

Table 9-4 Serial correlation test 

Cumby-Huizinga test for autocorrelation on residuals from the baseline HAR-RV model  

            

  H0: disturbance is MA process up to order q     

  H1: serial correlation present at specified lags >q     

            

  H0: q=0 (serially uncorrelated)         |  H0: q=specified lag-1   

  H1: s.c. present at range specified    |  H1: s.c. present at lag specified 

            

    lags   |      chi2         df   p-val   | lag |      chi2       df   p-val   

            

   1 -  1  |      0.223       1    0.6364 |   1 |      0.223      1    0.6364   

   1 -  2  |      7.315       2    0.0258 |   2 |     11.289     1    0.0008   

   1 -  3  |     10.454      3    0.0151 |   3 |      4.659      1    0.0309   

   1 -  4  |     14.115      4    0.0069 |   4 |      3.643      1    0.0563   

   1 -  5  |     16.546      5    0.0054 |   5 |      3.194      1    0.0739   

            

  Test robust to heteroskedasticity       
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Figure 9-1 Graphical representation of residuals 

 
 

 
Table 9-5 Test for heteroskedastic residuals 

Breusch-Pagan test for heteroskedasticity on residuals from baseline HAR-RV  

        

H0: Constant variance     

Variables: Fitted values of rvola   

Chi2(1) Prob > chi2     

434,36 0,000     
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Table 9-6 Cross-panel correlation without controlling for time fixed effects 

Test for cross-section independence on residuals without time fixed effects 

          

CD-test p-value Average joint T mean ρ mean abs(ρ) 

67,33 0 61 0,57 0,57 

          

Notes: Under the null hypothesis of cross-section independence, CD ~ N(0,1) 

P-values close to zero indicate data are correlated across panel groups. 

 

 

 
Table 9-7 Cross-panel correlation with time fixed effects 

Test for cross-section independence on residuals with time fixed effects 

          

CD-test p-value Average joint T mean ρ mean abs(ρ) 

-4,213 0 61 -0,04 0,19 

          

Notes: Under the null hypothesis of cross-section independence, CD ~ N(0,1) 

P-values close to zero indicate data are correlated across panel groups. 
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Table 9-8 OLS regression with bootstrapped SEs from replications based on 22 clusters in entity 

rvola   
Observed  

coef. 

Bootstrap  

Std. Err. 
z P > | z | 

Normal-based 

95% conf. Interval 

                

L1.Rvolac   0,427*** 0,064 6,64 0,000 0,301 0,553 

Rvolamtc   0,373*** 0,056 6,66 0,000 0,264 0,483 

Dwkmt   0,638*** 0,082 7,80 0,000 0,478 0,799 

Constant   2,421*** 0,152 15,95 0,000 2,123 2,718 

                

                

n:   -   (83,74***) (0,000)     

Observations   1342           

Wald chi2(24)   3166,61           

Prob > chi2   0,000           

Joint Chi2-statistic for n: and corresponding p-value in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01 
 

 

 
Table 9-9 OLS regression with bootstrapped SEs from replications based on 61 clusters in time 

rvola   
Observed  

coef. 

Bootstrap  

Std. Err. 
z P > | z | 

Normal-based 

95% conf. Interval 

                

L1.Rvolac   0,427*** 0,107 3,98 0,000 0,217 0,637 

Rvolamtc   0,373*** 0,116 3,23 0,001 0,306 0,600 

Dwkmt   0,638*** 0,173 3,68 0,000 0,299 0,979 

Constant   2,421*** 0,160 15,14 0,000 2,107 2,734 

                

                

n:   -   (419,07***) (0,000)     

Observations   1342           

Wald chi2(24)   968,61           

Prob > chi2   0,000           

Joint Chi2-statistic for n: and corresponding p-value in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01 
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9.5 Appendix 5 
 

Table 9-10 Regression results: HARctnm with break 

rvola   Coef. 
Newey-West 

Std. Err. 
t P > | t | 95% conf. Interval 

                

L1.Rvolac   0,189*** 0,065 2,92 0,004 0,062 0,317 

Rvolamtc   0,376* 0,211 1,78 0,076 -0,039 0,790 

Dwkmt   0,036 0,098 0,37 0,715 -0,157 0,229 

Ct-17,5h   0,173*** 0,037 4,66 0,000 0,010 0,245 

Nm-17,5h   -0,002 0,004 -0,60 0,547 -0,009 0,005 

                

L1.Rvolac * Break   0,161** 0,075 2,16 0,031 0,015 0,308 

Rvolamtc * Break   -0,162 0,217 -0,74 0,457 -0,589 0,265 

Dwkmt * Break   0,590*** 0,114 5,16 0,000 0,366 0,815 

Ct-17,5h * Break -0,371 0,063 -0,59 0,558 -0,161 0,087 

Nm-17,5h * Break 0,007 0,006 1,20 0,231 -0,004 0,018 

Break   1,061*** 0,254 4,18 0,000 0,563 1,559 

                

Constant   1,799*** 0,338 5,320 0,000 1,136 2,463 

n:   -   (3,84) (0,000)     

Observations   1340           

Wald chi2(24)   128,93           

Prob > chi2   0,000           

Joint F-statistic for n: and corresponding p-value in brackets. * p < 0.10, ** p < 0.05, *** p < 0.01 
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9.6 Appendix 6 
Regression of Rvola on entity (n:) and time (x+) fixed effects described in equation (18). 

 

 6stuN:,+ = C] + n: + x+ + k:,+ (18) 

 

Fitted values (6stuN† :,+) and residuals (kã:,+) are saved and used in regression with Ct-17,5h 

and Nm-17,5h. 

 
Table 9-11 Regression of fitted values on Twitter variables  

6stuN† :,+   Coefficients 

      

Ct-17,5h   0,066 

    (1,09) 

Nm-17,5h   0,019*** 

    (3,91) 

      

Constant   2,588*** 

    (34,23) 

Observations   1340 

F-test   8,67 

Prob > F   0,002 

t-statistics in parentheses and * p < 0.10, ** p < 0.05, *** p < 0.01 
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Table 9-12 Regression of residuals on Twitter variables 

kã:,+   Coefficients 

      

Ct-17,5h   0,105*** 

    (4,78) 

Nm-17,5h   -0,001 

    (-0,71) 

      

Constant   -0,071*** 

    (-2,58) 

Observations   1340 

F-test   8,67 

Prob > F   0,002 

t-statistics in parentheses and * p < 0.10, ** p < 0.05, *** p < 0.01 

 


