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Abstract.  Air pollution has received much attention in recent years, especially 

in the most densely populated areas. Sources of air pollution include factory 

emissions, vehicle emissions, building sites, wildfires, wood-burning devices, 

and coal power plants. Common and dangerous air pollutants include nitrogen 

dioxide (NO2), ozone (O3), carbon dioxide (CO2), particulate matter 10 (PM 10) 

and particulate matter 2.5 (PM 2.5). This study focused on PM 2.5 because it has 

an aerodynamic diameter less than or equal to 2.5 μm. The small size of this 

pollutant makes it easily inhaled by humans and may end up deep in the lungs or 

even the bloodstream. Such pollutants can trigger health problems such as 

asthma, respiratory inflammation, reduced lung function and lung cancer. The 

purpose of this work was to forecast the next hour of PM 2.5 based on air pollu-

tion concentrations and meteorological conditions. The approach also uses sta-

tion location data to cluster the area and to determine the neighboring areas of 

each station. Forecasting is based on the Long Short-Term Memory (LSTM). The 

result shows that the proposed approach can effectively forecast the next hour of 

PM 2.5 pollution. 

Keywords:  Air Pollution; PM 2.5; Forecasting; Long Short-Term Memory 

(LSTM). 

1 Introduction 

Air pollution has received much attention in recent years, especially in densely popu-

lated areas. The American Lung Association [1] estimated that nearly 134 million peo-

ple in the US, that is, over 40 % of the population, are at risk of disease and premature 

death because of air pollution. Bad outdoor air quality caused an estimated 4.2 million 

premature deaths in 2016. According to the World Health Organization [2] about 90 

percent of premature deaths due to poor air quality occurred in low GDP per capita 

countries. Indoor smoke is an ongoing health threat to the 3 billion people who cook 

and heat their homes by burning biomass, kerosene, and coal. Examples of common 
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pollutants include soot, smoke, mold, pollen, nitrogen dioxide (NO2), ozone (O3), car-

bon dioxide (CO2), particulate matter 10 (PM 10), and particulate matter 2.5 (PM 2.5). 

High concentrations of such substances may cause health problem to people in the af-

fected area. Researchers have unearthed many health effects which are believed to be 

associated with exposure to air pollution. Effects caused by air pollution include res-

piratory diseases (including asthma and reduced lung function), cardiovascular dis-

eases, cancers, and adverse pregnancy outcomes (such as preterm birth). 

Throughout history, there has been many tragedies caused by air pollution resulting 

in diseases and deaths. Some of the worst tragedies caused by air pollution during the 

19th century includes The Donora Smog of 1948 (Pennsylvania), The Great Smog of 

1952 (London), The 1983 Melbourne dust storm and The 1997 Southeast Asian haze. 

The Donora Smog affected almost half of the population of Donora, killed 20 people 

and caused respiratory problems for 6000 people [3]. The Great Smog of London 

caused reduced visibility and even penetrated indoor areas. At least 4000 people were 

killed, and many more become ill [4]. Causes of air pollution includes factory emis-

sions, vehicle emissions, building construction, wildfires, wood-burning devices, and 

coal-fired power plants. 

One of the most dangerous air pollutants includes particulate matter 2.5 (PM 2.5). 

PM 2.5 is one of the primary indicators of air pollution because it affects more people 

than any other pollutant. PM 2.5 has an aerodynamic diameter of 2.5 μm or less. Com-

mon components of PM include sulfate, nitrates, sodium chloride, ammonia, mineral 

dust, black carbon, and water. High concentrations of PM is related to human health as 

it can easily be inhaled by humans and thereby affect the respiratory system and the 

cardiovascular system, and even damage the blood and nervous system and ultimately 

may cause death [7]. 

As PM 2.5 cause several diseases the Environment Protection Agencies (EPA) of 

several countries around the world are monitoring and forecasting PM 2.5. Prediction 

is important to issue early pollution warnings, for decision making and pollution con-

trol, thereby improving the life quality of the population. Traditional techniques and 

artificial intelligence (AI) techniques have both been applied to forecast PM 2.5. Math-

ematical and statistical techniques are used for traditional PM 2.5 forecasting in which 

a physical model was designed, and then data was calculated using mathematical dif-

ferential equations. However, the traditional techniques have several shortcomings such 

as difficulties of processing large data sizes, long computation time and limited accu-

racy and inability to predict extreme points. However, with the advancement in tech-

nology, many researchers moved from mathematical and statistical techniques to com-

putational techniques and AI techniques. AI techniques can overcome some of the chal-

lenges faced by the traditional techniques. Specific approaches include artificial neural 

network (ANN), machine learning, and deep learning. 

This study focused on forecasting PM 2.5 concentrations using AI techniques 

based on air pollutants (NO2, CO, and O3,) and meteorological conditions (wind speed, 

wind direction, and rain) in each area and its neighboring areas. Air pollutants and me-

teorological conditions such as wind from neighboring areas are needed because PM 

2.5 is a tiny particle that is easily carried by the wind from one area to other areas. This 

study used two datasets from the EPA of Taiwan. The first dataset is a station location 
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dataset consisting of longitude and latitude of each station. The second dataset is an air 

pollution dataset consisting of air pollutant measurements and meteorological observa-

tions. 

2 Related work 

Researchers and EPAs around the world have focused on air pollution, especially PM 

2.5 concentrations. The research attention is in line with the public concern about the 

dangers of air pollution, especially PM 2.5 concentrations. PM 2.5 has received more 

attention than other air pollutants as it can easily be inhaled and cause many health 

problems. Researchers and the governments of many countries have deployed many 

systems to forecast PM 2.5 concentrations to be able to issue early PM 2.5 concentration 

warnings. Several engines and system architectures have been proposed for forecasting 

air pollution, especially PM 2.5 concentrations. 

Ganesh et al. [5] focused on forecasting air quality index, not air pollutant concen-

trations such as PM 2.5, PM 10, CO, and O3. They presented different regression mod-

els such as Support Vector Regression (SVR) and linear models such as multiple linear 

regression consisting of stochastic gradient descent, mini-batch gradient descent, and 

gradient descent to forecast air quality index based on air pollution index data. Shaban 

and Rezk [6] collected air quality data wirelessly from monitoring motes that were 

equipped with an array of gaseous and meteorological sensors. They focused on the 

monitoring system and the forecasting module. They investigated three machine learn-

ing models, namely Support Vector Machine (SVM), M5P model tree, and ANN. 

Gu, Qiao and Lin [7] proposed a heuristic recurrent air quality predictor to infer air 

quality using SVR. The authors forecasted air pollution using air pollutant concentra-

tions and the meteorological conditions in the local area. The authors compared the 

proposed approach to three popular predictors (Voukantsis, Vlachogianni, and Ka-

boodvandpour). Meteorological condition and air pollutant data were also used by Tsai, 

Zheng and Cheng [8]. Recurrent Neural Network (RNN) with Long Short-Term 

Memory (LSTM) was proposed by the authors as an approach to forecast PM 2.5 con-

centrations. Oprea, Mihalache and Popescu [9] tried to compare two computational in-

telligence techniques, namely ANNs and adaptive neuro-fuzzy inference system 

(ANFIS) to forecast PM 2.5 concentrations based on air pollutant concentrations and 

meteorological conditions. 

Utilizing the data of surface meteorological observation and air pollution PM 2.5 

concentrations in Wuhan City was conducted by Chen, Qin and Zhou [10]. They used 

multiple regression analysis and back-propagation neural network to develop an air 

pollution PM 2.5 index forecasting model. According to previous research we know 

that air pollutant concentrations correlates with meteorological conditions. The wind 

can carry small particles including PM 2.5 that has a size of 2.5 μm from one area to 

another. It can also affect PM 2.5 concentrations in other areas. Therefore,  the condi-

tions in neighboring areas is also important as an indicator for forecasting PM 2.5 con-

centrations. 
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3 Proposed approach 

The proposed approach involves two primary processes to forecast PM 2.5 concentra-

tions. The first process involves selecting neighboring areas of each station. The second 

process involves making a PM 2.5 forecasting model. The system framework for the 

PM 2.5 forecasting is shown in Fig. 1. 

 

 

Fig. 1. System framework for PM 2.5 forecasting. 

3.1 Data 

Our study relied on two datasets (station location dataset and air pollution dataset) from 

67 stations in Taiwan that were collected by the EPA in Taiwan. The station location 

dataset was used for selecting neighboring areas. The air pollution dataset was used for 

building the PM 2.5 forecasting model. The air pollution dataset contains hourly data 

in 6 years from 2012 to 2017. The data were divided into training data, validation data 

and testing data with ratios of 4: 1: 1, respectively. Training and validation data were 

used to build the PM 2.5 forecasting model. Testing data were used to measure the 

quality of the PM 2.5 forecasting model. To forecast the next hour of PM 2.5 concen-

trations, this study used three-hour window of observations. 

3.2 Selecting Neighboring Areas 

This phase involves determining the neighboring areas of each station. The flowchart 

of this process is shown in Fig. 2. First, the data is normalized using min-max normal-

ization. Next, the data is clustered using the X-means method. Finally, the neighboring 

areas of each station is selected using the radius of each station using the Euclidean 

distance. However, using clustering results from only the locations which have a closer 

distance are not selected as neighboring areas if such stations lie on the edge of a cluster. 

To overcome this issue, we determined neighboring areas based on the radius of each 

station as shows in Fig. 3. The radii were determined as follows: 
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1. Based on the clustering result, the distance is calculated using Euclidean distance (1) 

between the station and the center cluster of each cluster: 

 
=
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EU (a,b) is the distance between vector a and vector b, where vector a is the location 

station coordinate and vector b is the cluster center coordinate. 

2. The mean distance of all clusters is calculated based on the result from step 1. 

 

Fig. 2. Selecting neighboring areas. 

3. To determine neighboring areas of the station the cluster of the station is checked. 

4. The mean distance of the cluster is set as a radius of the station. 

5. The Euclidean distance between the station and other stations is calculated. Then, 
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If True, then the station is selected as the neighboring area. If False, the station 

is not selected as the neighboring area. 
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Fig. 3. Neighboring areas of the station based on radius. 

6. Steps 3 and 4 are repeated until neighboring areas of all stations are determined. 

3.3 PM 2.5 Forecasting Model 

A PM 2.5 forecasting model is applied to each station. Fig. 4 illustrates the process. 

First, mutual information of air pollutant dataset of each station is calculated. After that, 

the attributes of each station are selected based on the mutual information result by 

setting a threshold. The mutual information result is used for determining the attributes 

for the next step by setting a threshold. The threshold is based on the mean mutual 

information score of the attributes. 

 

Fig. 4. The PM 2.5 forecasting model. 

The threshold is determined using equation (3) 
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where avg_MI is the mutual information score mean of the attributes. The attributes 

that have a mutual information score equal to or above the threshold are selected. After 

that, neighboring areas determined in the previous steps are used. The selected attrib-

utes of the station combined with PM 2.5, PM 10, wind speed and the wind direction 

in neighboring areas. After combining the data, the data is normalized. Finally, the nor-

malized data is used as input to the Long Short-Term Memory (LSTM) for making PM 

2.5 forecasts. Our approach uses a one-to-one LSTM architecture. This architecture 

consists of one input, one LSTM layer, and one output. Inside the LSTM layer we used 

64 LSTM units and an Adam optimizer. Root mean square error was used as a loss 

function during training. To measure the quality of the PM 2.5 forecasting model, 

RMSE and MAE were used. The proposed LSTM structure is shown in Fig. 5.  

 

Fig. 5. Proposed LSTM structure. 

4 Experimental evaluation and results 

Fig. 6 shows the results of experiment with different learning rates. Figs. 6 (a-f) show 

learning rates of 0.005, 0.001, 0.0005, 0.0001, 0.00005 and 0.00001, respectively. 

These experiments used 150 iterations and 32 LSTM units. The air pollution dataset 

from the Annan measurement station was used for these experiments. These experi-

ments aimed to determine the effect when the learning rate decreases. 

Based on the results of the experiments with different learning rates, learning rates 

of 0.005, 0.001, and 0.0005 showed fluctuations in training loss and validation loss. On 

the other hand, learning rates of 0.0001, 0.00005, and 0.00001 exhibited stable training 

loss and validation loss even though the error is higher with a learning rate of 0.00001. 

This happens because, with a small learning rate, more iterations are needed to reach 

the optimal model. 
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Fig. 6. Training loss and validation loss with different learning rates 

Table 1. Mean RMSE and mean MAE of different LSTM units 

 Mean RMSE of 67 Stations Mean MAE of 67 Stations 

32 LSTM Units 4.2022 3.1421 

64 LSTM Units 4.1936 3.1309 

128 LSTM Units 4.2147 3.1588 

Table 1 shows the experiment with three different numbers of LSTM units (32 units, 

64 units and 128 units). A PM 2.5 forecasting model was built for each station and the 

quality of the model was based on the mean error of the results from the 67 stations. A 

learning rate of 0.00005 with 350 iterations was used. This experiment aimed to deter-

mine the effect of number of LSTM units on the model. The experiments showed that 

the LSTM model with 64 units yielded the best result based on the mean error of the 67 

stations with a mean RMSE of 4.1936 and MAE of 3.1309. But, several units in the 

LSTM model did not have any significant effects. This assessment was based on the 

limited reduction in errors. 

Also 350 iterations was used to forecast the next hour of PM 2.5 concentrations with 

a learning rate of 0.00005 and 64 LSTM units. The result is shown in Table 2. 
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Table 2. Mean RMSE and mean MAE of different number of data 

Input Data window Mean RMSE of 67 Stations Mean MAE of 67 Stations 

1-hour  4.4541 3.3472 

3-hours  4.1936 3.1309 

6-hours  4.2731 3.2019 

12-hours  4.1698 3.1117 

24-hours  4.1831 3.1202 

48-hours  4.1750 3.1348 

72-hours  4.1474 3.0973 

The 72-hour data window gave the best result with a mean RMSE of 4.1474 and 

mean MAE of 3.0973. However, more time was needed to train the model. Using a 3-

hour window of data to predict the next hour of PM 2.5 concentrations yielded a mean 

RMSE of 4.1936 and mean MAE of 3.1309. The difference of errors when using 3-

hour windows and 72-hour windows was 0.0462. Even though the difference was small, 

the processing time was very different. 

We also explored the use of data from neighboring areas. This experiment was con-

figured with 3-hour data windows, 350 iterations, 64 LSTM units and a learning rate of 

0.00005. The results are shown in Table 3. 

Table 3. Result of the model with neighbors and without neighbors 

 Mean RMSE of 67 Stations Mean MAE of 67 Stations 

With neighbors 4.1936 3.1309 

Without neighbors 4.3926 3.2466 

The results show that including data about the neighboring areas gave more benefi-

cial results than without data about neighboring areas. Clearly, air pollution in one area 

can affect neighboring areas. 

Finally, an experiment was conducted using only PM 2.5 data. This experiment was 

configured with a 3-hour data windows, 350 iterations, 64 LSTM units and a learning 

rate of 0.00005. The results are shown in Table 4. 

Table 4. Result of the model that only used PM 2.5 and other important attributes 

 Mean RMSE of 67 Stations Mean MAE of 67 Stations 

Use important attributes 4.1936 3.1309 

Only use PM 2.5 attributes 4.3709 3.2443 

The mean results of the 67 stations showed that the model which included the im-

portant attributes gave a better performance than the model that only used PM 2.5 at-

tributes. This means that other attributes such as meteorological conditions and other 

air pollutants played an important role in the PM 2.5 forecasts. 

The results of the 67 stations are shown in Table 5. These results show that Guanshan 

station achieved the best result with an RMSE of 1.9509 and a MAE of 1.3213. This 

was followed by Taitung and Cailiao stations with an RMSE of 2.3378 and 2.4441, 

respectively. Some of the stations exhibited higher error rates such as Linyuan station, 

Qianzhen station and Xiaogang station. Linyuan station yielded an RMSE of 9.1869 
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and a MAE of 6.4037. Qianzhen yielded an RMSE of 7.8106 and a MAE of 5.6956. 

These were followed by Xiaogang with an RMSE of 6.6636 and a MAE of 4.9729. 

Overall, the proposed method demonstrated good performance with a mean RMSE of 

4.1936 and a mean MAE of 3.1309. 

5 Conclusion 

PM 2.5 particles in the air can affect human health. The PM 2.5 concentration correlates 

with other pollutants and meteorological conditions in neighboring areas as PM 2.5 is 

easily carried by the wind from one area to another. 

This study used air pollutant concentrations and meteorological conditions to make 

one-hour forecasts of PM 2.5 concentrations. Neighboring areas are determined based 

on station location clustering using X-means clustering. Then, we calculated the radius 

of each station based on the mean distance of each cluster. LSTM was applied as a 

forecasting engine to make one-hour PM 2.5 concentration forecasts. 

Table 5. Station results 

Station RMSE MAE Station RMSE MAE 

Annan 4.2382 3.2652 Puli 3.2002 2.3662 

Banqiao 3.0229 2.3447 Puzi 4.3750 3.3637 

Cailiao 2.4441 1.8586 Qianjin 5.4130 4.1601 

Changhua 5.4659 4.2174 Qianzhen 7.8106 5.6956 

Chaozhou 6.5018 4.7824 Qiaotou 3.4655 2.5891 

Chiayi 5.9012 4.5605 Renwu 5.0395 3.8873 

Dali 4.5240 3.4289 Shalu 4.0696 2.9086 

Daliao 4.1197 3.1172 Shanhua 5.0095 3.8823 

Dayuan 4.1146 3.0850 Shilin 3.4324 2.6421 

Dongshan 4.2207 3.0046 Sinyin 4.7020 3.5364 

Douliu 5.6606 4.3191 Songshan 4.0920 3.0924 

Erlin 4.5393 3.3183 Tainan 4.5315 3.4037 

Fengshan 5.1525 3.8981 Taitung 2.3378 1.7630 

Fengyuan 4.6981 3.6365 Taixi 4.4863 3.0750 

Fuxing 4.1323 3.0565 Taoyuan 3.9041 3.0017 

Guanshan 1.9509 1.3213 Toufen 3.0393 2.1690 

Guanyin 4.2012 3.0137 Tucheng 2.5527 1.9375 

Guting 3.3802 2.5774 Wanhua 3.8678 3.0053 

Hengchun 2.9969 2.1382 Wanli 2.9183 2.0894 

Hsinchu 2.9843 2.1693 Xianxi 3.4886 2.5272 

Hualian 2.7852 2.1597 Xiaogang 6.6636 4.9729 

Hukou 3.6707 2.7523 Xindian 3.1038 2.2755 

Jilong 4.5794 3.0979 Xingang 4.5044 3.3591 

Linkou 3.3532 2.4243 Xinzhuang 2.5083 1.9533 

Linyuan 9.1869 6.4073 Xitun 3.8740 3.0217 
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Longtan 3.7045 2.9059 Xizhi 2.5024 1.8857 

Lunbei 4.7674 3.5696 Yonghe 2.8041 2.1042 

Mailiao 4.1385 2.9405 Zhongli 4.1864 3.1976 

Meinong 4.7848 3.5040 Zhongming 4.1473 3.2268 

Miaoli 4.5506 2.9245 Zhongshan 3.8098 2.9349 

Nantou 3.4589 2.4960 Zhudong 3.4594 2.6179 

Nanzi 5.4725 4.1397 Zhushan 4.2792 3.3270 

Pingtung 5.0589 3.8742 Zuoying 5.6663 4.3459 

Pingzhen 3.9752 3.1446 Mean 4.1936 3.1309 

Experimental results demonstrated that the proposed approach could effectively 

make one-hour PM 2.5 concentration forecast for 67 stations. The model achieved a 

RMSE of 1.9509 and a MAE of 1.3213 for Guanshan station. The overall result also 

showed a relatively low mean RMSE and MAE for the 67 stations all around Taiwan. 

The mean RMSE was 4.1936 and the mean MAE was 3.1309. 
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