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Sammendrag 
 

Denne oppgaven undersøker sammenhengen mellom volatilitetsprognoser og en porteføljes 

ytelse. Målet er å bruke stiliserte fakta om avkastning på finansielle eiendeler for å forbedre 

nøyaktigheten av volatilitetsprognoser og se om bedre prognoser forbedrer porteføljevalg – 

og ytelse. GARCH-modeller brukes til å forutsi volatilitet over en rullende periode på 1.008 

handelsdager (4 år). Volatilitetsprognosene brukes til å konstruere Markowitz mean-variance 

optimale porteføljer ved å maksimere porteføljens Sharpe Ratio. Vi finner at evnen til å 

forutsi volatilitet er knyttet til porteføljens ytelse. Strategiene som forutsier volatiliteten med 

høyeste nøyaktighet, presterer bedre enn de andre porteføljene når det gjelder kumulativ 

avkastning og standardavvik for avkastningen. 

 

 

 

Abstract 
 

This thesis investigates the relationship between volatility forecasting and portfolio 

performance. The aim is to use stylized facts about financial asset returns to improve the 

accuracy of volatility forecasts and see if better forecasts can improve portfolio selection – 

and performance. GARCH type models are used in order to forecast volatility over a rolling 

period of 1,008 trading days (4 years). The volatility forecasts are used to construct 

Markowitz mean-variance optimal portfolios by maximizing the Sharpe Ratio of the 

portfolios. We find that the ability to forecast volatility is linked with portfolio performance. 

The strategies that are able to forecast the volatilities with highest accuracy outperforms the 

other strategies in terms of cumulative returns and standard deviation of the returns.  
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1. Introduction 
 

In this thesis we will look at the relationship between volatility forecasting and 

portfolio performance. To make better volatility forecasts we will investigate some 

stylized facts about financial asset returns in order to make better assumptions about 

the distribution and behavior of these returns. This is done in section 2. 

Section 3 present the methodology of our study. We look at how we can construct 

optimal portfolios, to do this we use the Markowitz mean-variance criterion by 

maximizing the Sharpe ratio of the portfolios. We present different volatility models, 

mainly models in the GARCH family, and how we will carry out the analysis. 

Section 4 gives an overview of the data, this consists of the price on the S&P 500 

Index, the prices on ten different stocks, and the 3-Month Treasury Bill rate. 

In Section 5 we look at the results of our study and evaluate the performance of the 

different strategies in terms of cumulative returns, standard deviation of returns, and 

their ability to forecast volatility. The results in section 5 are concluded in section 6. 

 

1.1 Research Question 
  

• “Can we use stylized facts about financial asset returns to make better volatility 

forecasts?” 

• “Is there a relationship between volatility forecasting and portfolio performance?” 

  

Our aim is to investigate if we can improve portfolio selection by making better 

volatility forecasts. It is not to find the “best” model for volatility forecasting. 

 

2. Stylized Facts About Financial Asset Returns 

 

2.1 Definition of Returns 
 

 If the price of an asset at time 𝑡 is 𝑝!, then the continuously compounded return is: 
 

 𝑟! = ln '	 "!
"!"#

	) = ln(	𝑝!) − ln(	𝑝!#$)																																																																																		(1) 
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2.2 Stylized Fact 1 
 

Non-Normality: 
 

One of the most frequently made assumption in finance is that returns of financial 

assets are normally distributed. Almost every financial textbook makes this 

assumption because the normal distribution can be described by its first two moments, 

the mean and the standard deviation. Thus, the normal distribution is a lot easier to 

work with compared to other more complex distributions. 

 

Nevertheless, the returns of financial assets usually do not follow a normal 

distribution. Figure 1 shows the distribution of the daily returns on the SP 500 Index 

between 02/01/1990 – 31/12/2019 and the corresponding normal distribution. As we 

can see from the figure the returns on the SP 500 are more centered around the mean 

and have fatter tails (leptokurtic) compared to a normal distribution with the same 

mean and the same standard deviation. The distribution also skews a little to the left. 

Returns of financial assets usually follow this type of distribution, which resembles 

more of a student t than a normal distribution (Franke, Härdle and Hafner 2008, 227). 

 

Figure 2 shows the Normal Q-Q Plot of the SP 500 Index returns. The figure 

compares the theoretical quantile of the normal distribution to the sample quantile of 

the returns. If the returns where normally distributed the circles would be aligned with 

the blue line, as we can see this is not the case. 

 

Another way to check for normality in financial asset returns is to calculate the 

statistical moments of the returns. In order to check for normality, we need the third 

and fourth moments of the distribution, namely the skewness and the kurtosis. The 

skew tells us whether the distribution is leaning towards higher or lower values, and 

the kurtosis tells us something about the shape of the distribution. 
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Figure 1 
 

 
 

 

Figure 2 
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To test for normality, we use the Jarque-Bera Test: 

 

𝐽𝐵 = 𝑇 1
𝑠𝑘𝑒𝑤%

6 +
(𝑘𝑢𝑟𝑡 − 3)%

24 <																																																																												(2) 

 

The test statistics, 𝐽𝐵, is 𝜒% distributed with two degrees of freedom. 

The null hypothesis is that the sample is derived from a normal distribution (Brooks 

2014, 209-210). 

 

Table 1 shows that the null hypothesis is rejected for all the stocks we will use to 

construct our portfolios. 

 

 
 

 

 

 

Table 1: Test of Normality 

Ticker Mean Std. Skew. Kurt. JB Stat. p - value 

MMM 0.0581% 1.1416% -0.5010 4.4137 1288.0 0.0000 

VZ 0.0455% 1.0257% -0.1117 1.4384 133.2 0.0000 

NEE 0.0688% 1.0384% -0.2250 2.8246 514.4 0.0000 

PM 0.0462% 1.0822% 0.0095 3.8290 921.8 0.0000 

GE 0.0499% 1.3044% 0.2634 5.1431 1680.6 0.0000 

AMT 0.0537% 1.3159% -0.4368 3.7954 953.7 0.0000 

TGT 0.0231% 1.2767% -0.3378 5.0089 1606.2 0.0000 

AMD 0.0231% 3.6087% 0.8035 15.2854 14852.7 0.0000 

MO 0.0861% 0.9920% -0.4577 2.3126 389.0 0.0000 

CCI 0.0524% 1.2566% -0.0809 3.0631 591.6 0.0000 
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2.3 Stylized Fact 2 
 

Volatility Clustering: 
 

In order to know how risky a financial asset is, we need to quantify the risk in one 

way or the other. The most used method to quantify risk in financial assets is to 

estimate the standard deviation of a sample of the financial asset returns. This is a 

very useful way to estimate risk in financial assets, however, the sample standard 

deviation is a sample average and assumes that the volatility of the returns is constant 

over time. 

 

Figure 3 shows the daily returns on the S&P 500 Index from 02/01/1990 – 

31/12/2019. We clearly see that there are periods with higher volatility and other 

periods with lower volatility. This is called volatility clustering and is common for 

most financial assets (Franke, Härdle and Hafner 2008, 228). 

 

 

Figure 3 
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2.4 Stylized Fact 3 
 

Absence of Autocorrelation in Returns: 
 

The autocorrelation is a measure of how a time series is correlated with its own lags. 

If there exists high autocorrelation between a series of returns and its previous lags, 

then it would be possible to predict the returns of the series in the next time period. 

This would be very useful if we want to make money in financial markets, however, 

this is unfortunately not the case. For most financial assets there exist no significant 

autocorrelation between returns and its previous lags. Thus, there is no predictive 

information in previous returns. Even though there exists little or no predictive 

information in previous lags it does not mean that we cannot model the mean in order 

to make better portfolio decisions (Franke, Härdle and Hafner 2008, 228). 

 

Figure 4 shows the autocorrelation between the returns on the S&P 500 Index and its 

previous 50 lags. As we clearly see there is no significant correlation between the 

returns and previous lags. The first autocorrelation is the autocorrelation with zero 

lags, which is the series correlated with itself and is obviously equal to one. 

 

Figure 4 
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2.5 Stylized Fact 4 
 

Small and Decreasing Autocorrelation in Squared and Absolute Returns: 
 

Unlike with returns of financial assets, we see autocorrelation in squared and absolute 

returns of financial assets. By squaring or taking the absolute value of returns we 

convert the negative returns into positive values. The variance of the returns is defined 

as the squared deviation from the mean and the standard deviation of returns are 

defined as the square root of the variance. The squared and absolute return for a 

specific day (or week, month etc.) are good proxies for the variance and the standard 

deviation. This means that autocorrelation in squared and absolute returns is an 

indicator that there is autocorrelation in volatility of returns (Franke, Härdle and 

Hafner 2008, 228). 

 

As we see in Figure 5 and Figure 6, the squared – and absolute returns shows small 

and decreasing autocorrelation. This means that volatilities are correlated with 

previous lags, days with high volatility is followed by days with high volatility, and 

days with low volatility is followed by days with low volatility. This is the same as 

we saw in Stylized Fact 2 (volatility clustering). 

 

Figure 5 
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Figure 6 

 
2.6 Stylized Fact 5 
  

 Leverage Effect: 
 

We have already seen that the distribution of financial asset returns is usually not 

normally distributed. But is it still symmetrical around the mean? Most of the time the 

distribution of returns is skewed to the left which means that negative returns are 

more likely than positive returns. This is called the leverage effect and refers to the 

tendency of returns to be negatively correlated with volatility. The negative 

correlation comes from the fact that when stock prices fall the debt/equity ratio 

increases, which is associated with higher risk (Franke, Härdle and Hafner 2008, 252). 

 

Figure 7 displays the price, returns and rolling volatility of the S&P 500 Index 

between 02/01/1990 – 31/12/2019. We see that the volatility is high when prices 

rapidly increase or decrease, but the volatility is much higher in periods when prices 

go down, compared to when prices go up. This is evidence of the leverage effect. 
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Figure 7 

 

 
 

3. Methodology 
 

We will use the stylized facts about financial asset returns to try to improve our 

portfolio selection process. When we know the statistical attributes of financial asset 

returns, we can use this to model the expected return and the volatility of the 

individual assets. Our main focus will be on modelling the volatility, and we will try 

to forecast the volatility in the future in order to construct optimal portfolios. 

 

3.1 Portfolio Optimization 
 

The motivation for investing in a portfolio of risky assets, rather than investing in a 

single risky asset, is that we can remove some of the risk while keeping the same 

expected return. This is possible because different risky assets have different sources 

of risk, and as long as the correlation between the risky assets returns is less than one, 

we have diversification effects when combining the risky assets in a portfolio. 
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3.1.1 Mean – Variance Efficient Frontier 
 

We will use the mean-variance criterion in order to construct the optimal portfolio for 

a set of risky assets. The selection of portfolios is based on the means and variances of 

the risky assets returns. The optimal portfolio is the portfolio that gives the highest 

expected return for a given level of variance or standard deviation (risk), or the 

portfolio that gives the lowest variance or standard deviation, for a given level of 

expected return. If we assume that all investors are able to lend and borrow at a risk-

free rate of return, then, there exist one single optimal portfolio for all investors. 

 

The analytical technique for deriving the feasible set of risky assets was developed by 

Harry Markowitz (1952). By assigning different weights between zero and one (sum 

of alle weights must be equal to one) to the risky assets in a portfolio we can construct 

the feasible set of the risky assets. The feasible set is all the portfolios that we can 

construct given the assets available. In order to derive the feasible set, we need the 

expected returns, variances and/or standard deviations of the different portfolios. 

 

The expected return of a portfolio consisting of 𝑀 risky assets is: 

 

𝐸(𝑟&) = @𝑤'

(

'	*	$

𝐸(𝑟')																																																																																																															(3) 

 

𝐸(𝑟&) = 𝒘𝑻𝑬(𝒓)																																																																																																																							(4) 

 

The variance of a portfolio consisting of 𝑀 risky assets is: 

 

𝜎&% = @(𝑤')%
(

'	*	$

	𝑉𝑎𝑟(𝑟')	GHIHJ
,$$

+ 2@ @ 𝑤'𝑤- 	𝐶𝑜𝑣N𝑟' , 𝑟-P	GHHIHHJ
,$%

(

-*'.$

(

'*$

																																																(5) 

 

𝜎&% = 𝒘𝑻𝑺𝒘																																																																																																																																(6) 
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The standard deviation of a portfolio consisting of 𝑀 risky assets is: 

 

𝜎& = S𝜎&%																																																																																																																																			(7) 

 

𝜎& = U𝒘𝑻𝑺𝒘																																																																																																																												(8) 

 

• 𝒘 is an 𝑀 × 1 vector of weights 
 

• 𝑬(𝒓) is an 𝑀 × 1 vector of expected returns 
 

• 𝑺 is an 𝑀 ×𝑀 variance-covariance matrix 

 

We can plot the standard deviations against the expected returns of the different 

portfolios to form the risk-return feasible set (see Figure 8). 

 

Figure 8 
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3.1.2 Optimal Portfolio 
 

The part of the graph in Figure 8 that connects all the northwesternmost portfolios is 

called the efficient frontier. The efficient frontier is the set of portfolios that offers the 

highest expected return for each level of portfolio standard deviation. 

The optimal portfolio is the portfolio on the efficient frontier with the highest Sharpe 

ratio. The Sharpe ratio, Θ, was first proposed by William Sharpe (1966) and is the 

ratio of excess expected return per unit of standard deviation (risk). 

 

The portfolio optimization problem can be written: 

 

max
/

Θ =
𝐸(𝑟&) − 𝑟0

𝜎&
																																																																																																																(9) 

 

max
/

Θ =
𝒘𝑻𝑬(𝒓) − 𝑟0
√𝒘𝑻𝑺𝒘	

																																																																																																									(10) 

 

 where 

 

@𝑤' = 1
(

'	*	$

, no	short:										𝑤' ≥ 0, 𝑖 = 1,…	,𝑀 

 

In order to find the portfolio weights that maximizes the Sharpe ratio we use a method 

called “Monte Carlo Simulation” (Raychaudhuri 2008) to generate 100,000 random 

portfolios that satisfies the weight conditions of the portfolio optimization problem. 

The risk-return feasible set in Figure 8 is generated this way. The portfolio with the 

weights that generate the highest Sharpe ratio is our solution for the optimization 

problem. 

 

If investors are able to lend or borrow at the risk-free rate of return, the optimal 

portfolio in Figure 8 is the optimal portfolio for all investors. Risk averse investors 

will invest some of their funds in the optimal risky portfolio and the rest at the risk-

free rate. Risk seeking investors will borrow extra funds at the risk-free rate and 

invest all their funds in the optimal risky portfolio. In this way, all investors can 
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achieve the same Sharpe ratio for any level of risk. This is the optimal capital 

allocation line (CAL). In the optimization problem in (9) and (10) we have three 

inputs: the expected return – and the standard deviation of the portfolio, and the risk-

free rate. The risk-free rate is given, while the expected return and the standard 

deviation of the portfolio are estimates. In order to find the optimal risky portfolio, we 

need accurate estimates of the expected returns and the standard deviations of returns 

of the risky assets in the portfolio. 

 

3.2 Equally Weighted Portfolio 
 

To evaluate the performance of the different portfolios we would like to compare 

them to a benchmark portfolio. For the benchmark portfolio we will use an equally 

weighted portfolio, or a so called “naïve” portfolio strategy where we assign equal 

weights to all the assets in the portfolio. It is called naïve because we make no 

assumptions about the risky assets prior to assigning the weights. 

 

The portfolio specifications can be written: 

 

𝐸(𝑟12&) = 𝒘𝑻𝑬(𝒓)																																																																																																															(11) 

 

𝜎12& = U𝒘𝑻𝑺𝒘																																																																																																																					(12) 

 

𝑤' =
1
𝑀	,																				@ 𝑤' = 1

(

'	*	$

 

 

3.3 Sample Optimal Portfolio 
 

The most common and easiest way to estimate expected returns, variance of returns 

and covariance between returns is the sample estimates. These are average numbers 

and are assumed to be constant over time. Since these estimates are not conditional on 

time, they are called unconditional estimates. The estimate for the expected returns is 

the sample mean, the estimate for the variance of returns is the sample variance, and 

the estimate for the covariance between returns is the sample covariance. These 

estimates are defined below. 
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 Sample mean: 
 

𝐸(𝑟') =
1
𝑁@𝑟',!

4

!*$

																																																																																																																			(13) 

 

 Sample variance: 
 

𝑉𝑎𝑟(𝑟') =
1

𝑁 − 1@'𝑟',! − 𝐸(𝑟'))
%

4

!*$

																																																																																	(14) 

 

 Sample covariance: 
 

𝐶𝑜𝑣N𝑟' , 𝑟-P =
1

𝑁 − 1@'𝑟',! − 𝐸(𝑟'))
4

!*$

'𝑟-,! − 𝐸N𝑟-P)																																																				(15) 

 

After calculating the sample estimates we have all we need in order to solve the 

portfolio optimization problem. The problem can be written: 

 

max
/

Θ =
𝐸(𝑟56&) − 𝑟0

𝜎56&
																																																																																																										(16) 

 

𝐸(𝑟56&) = 𝒘𝑻𝑬(𝒓)																																																																																																																(17) 

 

𝜎56& = U𝒘𝑻𝑺𝒘																																																																																																																						(18) 

 

• 𝒘 is an 𝑀 × 1 vector of weights 
 

• 𝑬(𝒓) is an 𝑀 × 1 vector of sample means 
 

• 𝑺 is an 𝑀 ×𝑀 sample variance-covariance matrix 
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3.4 Conditional Estimates 
 

In the sample portfolio optimization problem, we use the unconditional estimates for 

the expected return, variance, and covariance, which are constant over time. As we 

have showed in stylized facts about financial asset returns (2.2 – 2.6) this is not 

necessarily the case, especially for the variance. The variance tends to cluster with 

periods of high volatility and periods with low volatility. What we want to do is to 

model the asset returns in order to get more precise estimates. These models are time 

dependent, which means that the estimates are conditional on time, hence, they are 

called conditional estimates (Brooks 2014, 288-289, 431). 

 

The returns can be modeled as: 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

	
		𝑟! = 𝜇 + 𝐴𝑅𝑀𝐴!#$ + 𝜀!

	
𝜀! = 𝑧!Uℎ!

	
𝑧! ≈ (𝑖. 𝑖. 𝑑. )

	
ℎ! = 𝐺𝐴𝑅𝐶𝐻!#$

	

																																																																																																(19) 

 

• 𝑟! is the conditional return at time 𝑡 
 

• 𝜇 is the unconditional mean 
 

• 𝑧! are the standardized residuals 
 

• ℎ! is the conditional variance at time 𝑡 
 

• 𝐴𝑅𝑀𝐴!#$ is some sort of ARMA process 
 

• 𝐺𝐴𝑅𝐶𝐻!#$ is some sort of GARCH process 

  

In (19) the returns are assumed to be following some sort of autoregressive moving 

average (ARMA) process. If we model the returns without an ARMA process, then 

𝐴𝑅𝑀𝐴!#$ is equal to zero and the model is reduced to: 

 



 16 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

	
		𝑟! = 𝜇 + 𝜀!

	
𝜀! = 𝑧!Uℎ!

	
𝑧! ≈ (𝑖. 𝑖. 𝑑. )

	
ℎ! = 𝐺𝐴𝑅𝐶𝐻!#$

	

																																																																																																																		(20) 

 

3.5 ARMA Process in Financial Returns 
  

As we have seen in stylized fact 3 (2.4), there tends to be low autocorrelation in the 

lags of financial asset returns, so there is probably little (if any) predictive information 

in previous lags of the returns. Even if there is little predictive information in previous 

lags, it is not unusual to model the returns with some sort of autoregressive moving 

average (ARMA) process. The ARMA process models the returns on previous lags, 𝑝,  

of the returns (𝑟!#') and the previous lags, 𝑞, of the error term (𝜀!#'). The order of 

lags must be specified before estimating the model. 

 

The ARMA (𝑝, 𝑞) process can be written: 

 

𝑟! =@𝜙'

"

'*$

𝑟!#' +@𝜃'

7

'*$

𝜀!#' + 𝜀!																																																																																						(21) 

 

The estimation of the parameters 𝜙 and 𝜃 of the specified model can be done using 

OLS (ordinary least squares) or maximum likelihood estimation (Brooks 2014, 273). 

 

To find the order of (𝑝, 𝑞)	that gives us the “best” ARMA model for explaining our 

sample of data, we use something called information criterion. 

Two of the most famous information criteria are the Akaike Information Criteria 

(AIC) and Bayes Information Criteria (BIC): 

  

𝐴𝐼𝐶 = −2 ln 𝐿 + 2𝑘																																																																																																														(22) 

 

𝐵𝐼𝐶 = −2 ln 𝐿 +𝑘 ln 𝑇																																																																																																								(23) 
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• 𝐿 is the maximized value of the log-likelihood function 
 

• 𝑘 is the number of free parameters in the model 
 

• 𝑇 is the number of observations 

 

The best model is the one with the lowest AIC or the model with lowest BIC. 

The AIC has a tendency to choose models with too many lags. BIC on the other hand 

punishes complexity and will usually deliver a model with lower lags than the AIC. 

When we check the AIC and BIC for the ten different stocks we have chosen for our 

analysis, we see that there is some evidence of ARMA processes in the returns. 

 

Table 2 
 

      
 

The AIC suggests some lags in some of the stocks, while the BIC suggests one 𝑝 lag 

in two of the stocks. Since the AIC has a tendency to choose models with too many 

lags, the BIC suggests very few lags, and our main focus is to model the volatility, we 

will assume that all the stocks follow an ARMA(0,0) process. 
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3.6 Univariate Volatility Models 
 

The most popular volatility models used in finance are the volatility models in the 

autoregressive conditionally heteroscedastic (ARCH) family. The ARCH model was 

first developed by Robert Engle (1982). Under the ARCH model the autocorrelation 

in volatility is modeled by allowing the conditional variance of the error term to be 

dependent on the previous value of the squared error. 

 

The ARCH model can be written: 

 

ℎ! = 𝛼8 +@𝛼'𝜀!#'%

7

'*$

																																																																																																													(24) 

 

 where 

 

 𝑞 ≥ 0,										𝛼8 > 0,										𝛼' ≥ 0,										𝑖 = 1,… , 𝑞  

 

3.6.1 The GARCH Model 
 

Later Tim Bollerslev (1986) developed a generalized version of Engle’s ARCH 

model, namely the generalized autoregressive conditionally heteroscedastic (GARCH) 

model. The ARCH model works well in order to model the volatility in returns of 

financial assets, but a drawback of the ARCH model is that in order to capture all of 

the dependence in the conditional variance the order of lags might become very large. 

Bollerslev solved this by allowing the conditional variance to be dependent upon 

previous own lags. The GARCH model has this nice property that it usually needs 

few lags of 𝑝 and 𝑞 in order to model the conditional volatility quite well. Hansen and 

Lunde (2005) found no evidence that the GARCH model in its simplest form, the 

GARCH(1, 1), was inferior in forecasting out of sample volatility in DM-$ exchange 

rate, when compared to 229 other ARCH-type models. 
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The GARCH model can be written: 

  

ℎ! = 𝛼8 +@𝛼'𝜀!#'%

7

'*$

+@𝛽-ℎ!#'

"

'*$

																																																																																					(25) 

 

where 
 

 𝑝 ≥ 0,										𝑞 ≥ 0 

 

 𝛼8 > 0,										𝛼' ≥ 0,										𝛽- ≥ 0 

 

The parameters 𝛼8, 𝛼', and 𝛽' in the GARCH model are estimated using maximum 

likelihood estimation (see Appendix A). 

 

3.6.2 Distribution of Errors 
 

As already mentioned, a common assumption in finance is that financial asset returns 

are normally distributed. Returns are usually leptokurtic and resembles more of a 

student t distribution. We can take this into account in the maximum likelihood 

estimation of the GARCH model parameters (see Appendix A). 

 

3.6.3 The GJR-GARCH Model 
 

In section 2.6 we saw that financial asset returns tends to be negatively correlated 

with volatility, if this is the case then we would like to incorporate this in our model. 

The GJR-GARCH was introduced by Lawrence Glosten, Ravi Jagannathan and David 

Runkle (1993) and is a simple extension of the linear GARCH model. The model 

allows us to model any asymmetries (leverage effect) that may be present in financial 

asset returns. 
 

The GJR-GARCH model can be written: 

 

ℎ! = 𝛼8 +@𝛼'𝜀!#'%

7

'*$

+@𝛽'ℎ!#'

"

'*$

+@𝛾'𝜀!#'% 𝐼!#'

9

'*$

																																																							(26) 
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where 
 

 𝐼!#' = 1					if					𝜀!#' < 0,										𝐼!#' = 0					if					𝜀!#' ≥ 0 

  

In the GJR-GARCH model 𝐼!#' is a dummy variable that is equal to 1 if 𝜀!#' is 

positive and 0 if 𝜀!#' is negative. For a leverage effect we will have 𝛾' > 0. 

 

3.6.4 Order of GARCH Model 
 

To find the order of (𝑝, 𝑜, 𝑞) that gives us the “best” GARCH model for our data, we 

could use the information criterion which we used to find the (𝑝, 𝑞) order of the 

“best” ARMA model in section 3.5. The problem with using information criterion like 

AIC and BIC is that they return the order of the “best” model based on the sample we 

have provided. They are in-sample performance estimates and there is no guarantee 

that the “best” model in-sample is the “best” model out-of-sample. 

Another problem is that the order of (𝑝, 𝑜, 𝑞) can vary given the sample we calculate 

the AIC and BIC from. Since we want to forecast the volatility for 1,008 trading days, 

we would have to calculate the AIC and BIC for 1,008 samples in order to update our 

model with new information. 

 

Table 3 displays the order of the “best” model based on the first sample (03/01/2011 – 

29/1272016) in our rolling forecast origin (section 3.8) for the 10 stocks we have 

chosen. We have calculated the AIC and BIC for the GARCH with normally 

distributed errors, the GARCH model with t distributed errors, and the GJR-GARCH 

with t distributed errors. 

 

Instead of making any assumptions of what the “best” model will be in the future we 

will model the volatility with several different orders of (𝑝, 𝑜, 𝑞): 
 

• GARCH(1,1) 
 

• GARCH(2,2) 
 

• GJR-GARCH(1,1,1) 
 

• GJR-GARCH(2,1,2) 
 

• GJR-GARCH(2,2,2) 
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Table 3 
 
 

   
 

   
 

   
 

 

 

 



 22 

Table 4 gives an overview of the strategies will use to construct our portfolios. 

 

 
 

3.7 Multivariate GARCH Models 
 

Multivariate GARCH models use the conditional estimates of univariate GARCH 

models to form a multivariate model. The first multivariate GARCH model, the 

constant conditional correlation (CCC) GARCH model, was introduced by Tim 

Bollerslev (1990). Later Robert Engle (2002) developed a more complex version of 

Bollerslev’s CCC GARCH model, namely the dynamic conditional correlation (DCC) 

GARCH model. The CCC GARCH model assumes that the correlation matrix is 

constant over time, while the DCC GARCH assumes that the correlation matrix is not 

constant over time. For our analysis we will focus on the CCC GARCH model. 

 

 

 

Table 4: Strategy Overview 

Strategy 
Univariate 
GARCH 

Multivariate 
GARCH 

Error 
Distribution 

1. Passive (S&P 500) -  -  -  

2. Equally Weighted -  -  -  

3. Sample Weighted -  -  -  

4. GARCH (1,1) (N) GARCH (1,1) CCC – GARCH Normal 

5. GARCH (1,1) (t) GARCH (1,1) CCC – GARCH Student t 

6. GJR-GARCH (1,1,1) (t) GJR-GARCH (1,1,1) CCC – GARCH Student t 

7. GARCH (2,2) (N) GARCH (2,2) CCC – GARCH Normal 

8. GARCH (2,2) (t) GARCH (2,2) CCC – GARCH Student t 

9. GJR-GARCH (2,1,2) (t) GJR-GARCH (2,1,2) CCC – GARCH Student t 

10. GJR-GARCH (2,2,2) (t) GJR-GARCH (2,2,2) CCC – GARCH Student t 
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3.7.1 The CCC-GARCH Model 
 

As stated above the CCC GARCH model assumes that the correlations matrix, 𝐑, is 

constant over time when estimating the model. 

 

The CCC-GARCH model can be written:  

 

𝐫! = 𝐂𝐫!#$ + 𝝐!																																																																																																																						(27) 

 

𝝐! = 𝐇!
$ %⁄ 𝒗! 

 

𝐇! = 𝐃!
$ %⁄ 𝐑𝐃!

$ %⁄ 																																																																																																																				(28) 

 

𝐃! = �	

ℎ$$,! 0 ⋯ 0
0 ℎ%%,! ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ℎ'',!

	� 

 

𝐑 = �	

1 𝜌$% ⋯ 𝜌$'
𝜌%$ 1 ⋯ 𝜌%'
⋮ ⋮ ⋱ ⋮
𝜌'$ 𝜌'% ⋯ 1

	� 

 

𝐇! =

⎝

⎛	

ℎ$$,! ℎ$%,! ⋯ ℎ$-,!
ℎ%$,! ℎ%%,! ⋯ ℎ%-,!
⋮ ⋮ ⋱ ⋮

ℎ'$,! ℎ'%,! ⋯ ℎ'',!

	

⎠

⎞ 

 

ℎ'-,! = 𝜌'-Nℎ'',!ℎ--,!P
$
%; 																																																																																																									(29) 

  

• 𝐫! is an 𝑀 × 1 vector of returns 
 

• 𝐂 is an 𝑀 × 𝑘 matrix of model parameters 
 

• 𝐫!#$ is an 𝑀 × 1 vector of lagged returns 
 

• 𝒗! is an 𝑀 × 1 vector of normal (or student t), independent, and identically 

distributed innovations 
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• 𝐃! is a diagonal matrix of conditional univariate variances 
 

• 𝐑 is a matrix of time-invariant unconditional correlations of the standardized 

residuals 
 

• 𝐇! is the forecast of the variance-covariance matrix 
 

• ℎ'-,! is the conditional covariance between the returns of asset 𝑖 and 𝑗 
 

• ℎ'',! is the conditional variance of the returns of asset 𝑖 
 

• 𝜌'- is the correlation between the returns of asset 𝑖 and 𝑗 

 

The estimates of the parameters in the CCC-GARCH model are estimated with 

maximum likelihood estimation (see Appendix A). 

 

3.8 Rolling Forecast Origin 
 

We want to forecast the volatility and variance-covariance matrix of ten different 

stocks for 1,008 trading days in order in order to construct optimal portfolios. 

Forecasting something that is going to happen tomorrow sounds like a difficult task, 

forecasting something that is going to happen in four years’ time sounds impossible, 

and it probably is. 

 

We will use a rolling forecast origin; we forecast the volatility and variance-

covariance matrix one day ahead. When we know what really happened that day, we 

use this information and update our model to forecast the volatility and the variance-

covariance matrix for the next day after that. We repeat this every day in order to 

update our model to make, hopefully, better forecasts. 

 

Figure 9 shows how the rolling forecast origin works. We forecast one day ahead, the 

next day we include the new information from that day and drop the information from 

the first day of our sample. Next day we repeat the same procedure (Tashman 2000). 
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Figure 9 
 

 

 
 

 

3.9 Evaluation of Volatility Forecasts 
 

One way to evaluate the different portfolio strategies we have chosen is to look at the 

cumulative portfolio returns over the investment period. This gives us a picture of 

how the portfolio have performed in terms of actual returns but can be misleading if 

we want to generalize our findings to other financial assets and other time periods. 

This is because we treat the returns as random variables and the best strategy in terms 

of returns for some financial assets in one period, does not necessarily mean that this 

is the best strategy for other financial assets in other time periods. In other words, 

maybe we were just lucky when we constructed the portfolios. 

 

Since the mean – variance portfolio optimization relies heavily on the estimates or 

forecasts of the volatility of the financial assets we would like to see if there is any 

relationship between how accurate we can forecast the volatility and the performance 

of the portfolio. If the strategy that produces the highest portfolio returns also 

forecasted the volatility with most accuracy, we would have more confidence that this 

strategy is a good strategy for other financial assets in other time periods as well. 

 

To evaluate the volatility forecast we use the root mean squared error (RMSE) of the 

predicted values compared to the actual values. 
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The RMSE can be written:  

 

𝑅𝑀𝑆𝐸 = �∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑' − 𝐴𝑐𝑡𝑢𝑎𝑙')%4
'*$ 	

𝑁 																																																							(30) 

 

The predicted values are our forecasts of the volatility. Since volatility is not directly 

observable, we do not know what the actual volatility is. Thankfully, there exists 

proxies which we can use to represent the actual volatility for a specific time period. 

The most used proxy for the variance of returns is the squared returns and for the 

standard deviation the absolute returns. Even though these measures can be quite 

noisy, argued by Hansen and Lunde (2005), they are accessible and easy to calculate 

when we use returns over a longer time period (days, weeks, months etc.). 

 

To evaluate the volatility forecasts we can write (30) as: 

 

𝑅𝑀𝑆𝐸(𝑣𝑎𝑟) = �∑ (ℎ' − 𝑟'%)%4
'*$ 	

𝑁 																																																																																					(31) 

 

𝑅𝑀𝑆𝐸(𝑠𝑡𝑑) = �∑ NUℎ' − |𝑟'|P
%4

'*$ 	
𝑁 																																																																																	(32) 

 

The strategy with the lowest 𝑅𝑀𝑆𝐸 is the strategy that was able to forecast the 

volatility with highest accuracy over the investment period. 

 

3.10 Recap 
 

Construct Markowitz mean-variance optimal portfolios: 
 

• Consisting of 10 stocks 
 

• Maximize Sharpe Ratio 
 

• No short selling 
 

• Unconditional mean 
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• Forecasts of univariate volatility 
 

• Forecasts of multivariate variance-covariance matrix 
 

• Rolling forecast for 1,008 trading days 
 

• The optimization problem can be written: 

 

max
/

Θ =
𝜇 − 𝑟0
Uℎ!.$

																																																																																																								(33) 

 

max
/

Θ =
𝒘𝑻𝝁 − 𝑟0
U𝒘𝑻𝐇𝒕.𝟏𝒘	

																																																																																													(34) 

 

  where 

 

@𝑤' = 1
(

'	*	$

,												𝑤' ≥ 0, 𝑖 = 1,…	,𝑀 

 

• Evaluate volatility forecasts 

 

4. Data 
 

The data set consists of the price of the S&P 500 Index, the 3-Month Treasury Bill: 

Secondary Market Rate, and the prices of ten stocks, which all are included in the 

S&P 500. The data for the S&P 500 consists of 7,812 observations (02/01/1990 – 

31/12/2020), where 7,558 observations (02/01/1990 – 31/12/2019) are used to 

demonstrate the stylized facts of financial asset returns, and 1,009 observations 

(29/12/2016 – 31/12/2020) are used as proxy for the passive investment strategy. 

The data for the 3-Month Treasury Bill consists of 1,008 observations (28/12/2016 – 

30/12/2020) and is used as the risk-free rate in the mean-variance portfolio 

optimization problem. For the ten stocks the estimation sample spans from 

02/01/2011 – 28/12/2016 (1,509 observations) and the out-of-sample rolling 

forecasting period spans from 29/12/2016 – 31/12/2020 (1,009 observations). 
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The data for the S&P 500 and the ten stocks are downloaded from Yahoo Finance. 

The data for the 3-Month Treasury Bill is downloaded from the Federal Reserve 

Economic Data (FRED). Table 5 gives an overview of the ten stocks. 

 

 
 

Table 5: Data Overview 

Company Name Ticker Sector Industry 
Estimation 

Sample 
Forecasting 

Sample 

3M MMM Industrials 
Specialty Industrial 

Machinery 

02/01/2011 
- 

28/12/2016 

29/12/2016 
- 

31/12/2020 

Verizon 

Communications 
VZ 

Communication 

Services 
Telecom Services 

02/01/2011 
- 

28/12/2016 

29/12/2016 
- 

31/12/2020 

NextEra Energy NEE Utilities 
Industry Utilities – 

Regulated Electric 

02/01/2011 
- 

28/12/2016 

29/12/2016 
- 

31/12/2020 

Phillip Morris 

International 
PM 

Consumer 

Defensive 
Tobacco 

02/01/2011 
- 

28/12/2016 

29/12/2016 
- 

31/12/2020 

General Electric GE Industrials 
Specialty Industrial 

Machinery 

02/01/2011 
- 

28/12/2016 

29/12/2016 
- 

31/12/2020 

American Tower AMT Real Estate REIT – Specialty 
02/01/2011 

- 
28/12/2016 

29/12/2016 
- 

31/12/2020 

Target TGT 
Consumer 

Defensive 
Discount Stores 

02/01/2011 
- 

28/12/2016 

29/12/2016 
- 

31/12/2020 

Advanced Micro 

Devices 
AMD Technology Semiconductors 

02/01/2011 
- 

28/12/2016 

29/12/2016 
- 

31/12/2020 

Altria Group MO 
Consumer 

Defensive 
Tobacco 

02/01/2011 
- 

28/12/2016 

29/12/2016 
- 

31/12/2020 

Crown Castle 

International 
CCI Real Estate REIT – Specialty 

02/01/2011 
- 

28/12/2016 

29/12/2016 
- 

31/12/2020 
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5. Results 
 

Table 6 displays the performance in terms of returns for the ten different strategies 

over the 1,008 trading days. It contains the mean, standard deviation, minimum, 

maximum, cumulative, minimum cumulative, and maximum cumulative. 

In terms of cumulative returns, we see that the passive and the equally weighted 

strategy performed quite similarly. The sample weighted strategy outperformed the 

passive and the equally weighted strategies, while all the GARCH strategies 

outperformed the passive, equally weighted, and the sample weighted strategies. The 

GARCH(1,1) and GARCH(2,2) with student t distributed errors performed almost 

identically and outperformed all the other strategies. 

In terms of standard deviation (risk) the passive and equally weighted strategies 

performed best, the sample weighted strategy performed the worst, and all the 

GARCH strategies performed quite similarly. 

 

 
 

Table 6: Strategy Performance 

Strategy Mean Std. Min. Max. Cum. 
Min. 

Cum. 

Max. 

Cum. 

1. Passive (S&P 500) 0.0509% 1.2976% -12.77% 8.97% 53.26% -6.24% 53.26% 

2. Equally Weighted 0.0490% 1.2502% -10.77% 8.30% 51.41% -6.49% 52.15% 

3. Sample Weighted 0.0668% 1.4164% -12.69% 10.07% 77.04% -2.22% 77.04% 

4. GARCH (1,1) (N) 0.0815% 1.3821% -13.34% 9.43% 106.42% -0.72% 106.42% 

5. GARCH (1,1) (t) 0.0850% 1.3726% -13.34% 9.30% 113.89% -0.65% 113.89% 

6. GJR-GARCH (1,1,1) (t) 0.0803% 1.3817% -13.42% 9.31% 103.86% -0.65% 103.86% 

7. GARCH (2,2) (N) 0.0776% 1.3814% -13.37% 9.30% 98.45% -0.73% 98.45% 

8. GARCH (2,2) (t) 0.0849% 1.3717% -13.24% 9.39% 113.75% -0.65% 113.75% 

9. GJR-GARCH (2,1,2) (t) 0.0821% 1.3826% -13.46% 9.53% 107.44% -0.65% 107.44% 

10. GJR-GARCH (2,2,2) (t) 0.0812% 1.3841% -13.30% 9.56% 105.53% -0.69% 105.53% 
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Figure 10 displays how the cumulative returns evolved over the 1,008 trading days for 

the passive, equally weighted, and sample weighted strategies. 

 

Figure 10 
 

 

 

Figure 11 displays how the cumulative returns evolved over the 1,008 trading days for 

the sample weighted strategy, and the GARCH strategies with order (1,1) and 

(1,1,1). It also shows a subplot of the daily returns on the S&P 500 (market) for the 

same time period. We see that the portfolios perform quite similarly in the first six 

months of 2017, but as time passes and periods of higher volatility emerge all the 

GARCH strategies outperform the sample weighted strategy. 

 

Figure 12 displays how the cumulative returns evolved over the 1,008 trading days for 

the sample weighted strategy, and the GARCH strategies with order (2,2), (2,1,2) 

and (2,2,2). It also shows a subplot of the daily returns of the S&P 500. Figure 12 

shows the same pattern as Figure 11, the sample weighted strategy is outperformed by 

all the GARCH strategies from mid 2017 and onwards. 
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Figure 11 
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Figure 12 
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Figure 13 
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Figure 13 displays how the cumulative returns evolved over the 1,008 trading days for 

the passive, equally weighted, sample weighted, and the two GARCH strategies that 

performed the best, GARCH(1,1)(t) and GARCH(2,2)(t). It also shows a subplot of 

the daily returns of the S&P 500. The two GARCH strategies performed almost 

identically with the GARCH(2,2)(t) a little bit ahead before the COVID-19 pandemic 

broke out in February of 2020, but the GARCH(1,1)(t) catches up during the 

pandemic and end up a couple of basis points ahead at the end of the year. 

 

As we pointed out in section 3.9, we would like to see if there in any relationship 

between how accurately a strategy can forecast volatility and the cumulative returns 

of the strategy. Table 7 and Table 8 displays the RMSE of the variance and the RMSE 

of the standard deviation for the univariate GARCH models for the individual stocks. 

We see that different models performed best for different stocks, but the 

GARCH(2,2)(t) did not perform best for any of the stocks. 

 

What is more interesting to investigate is how the different strategies were able to 

forecast the volatility. Since we chose the same order for all the stocks in each 

strategy, the univariate RMSE is not very informative. Instead, we want to look at the 

RMSE for each strategy and compare this to the cumulative returns and the standard 

deviation of the given strategy.  

 

Table 9 displays the RMSE of the variance and the RMSE of the standard deviation of 

the different strategies. As we clearly see the two strategies that performed the best in 

terms of cumulative returns and standard deviation also has the lowest RMSE for 

variance and RMSE for standard deviation. The sample weighted strategy performed 

the worst in terms of cumulative returns and standard deviation and also has the 

highest RMSE for variance and RMSE for standard deviation. 

 

Figure 14 shows how the estimated volatility for the sample weighted strategy fits 

with the absolute daily returns of the sample weighted strategy. 

 

Figure 15 shows how the forecasted volatility for the GARCH(2,2)(t) strategy fits 

with the absolute daily returns of the GARCH(2,2)(t) strategy. 
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Figure 14 

 

 

Table 9: Volatility Forecasts 

Strategy 
RMSE 

(Variance) 

RMSE 
(Standard Deviation) 

Standard 

Deviation 

Cumulative 

Returns 

3. Sample Weighted 0.0009586 0.01116 1.4164% 77.04% 

4. GARCH (1,1) (N) 0.0008841 0.009161 1.3821% 106.42% 

5. GARCH (1,1) (t) 0.0008776 0.009094 1.3726% 113.89% 

6. GJR-GARCH (1,1,1) (t) 0.0009059 0.009125 1.3817% 103.86% 

7. GARCH (2,2) (N) 0.0008807 0.009179 1.3814% 98.45% 

8. GARCH (2,2) (t) 0.0008654 0.009070 1.3717% 113.75% 

9. GJR-GARCH (2,1,2) (t) 0.0009103 0.009154 1.3826% 107.44% 

10. GJR-GARCH (2,2,2) (t) 0.0009065 0.009151 1.3841% 105.53% 
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Figure 15 

 

6. Conclusions 
 

The aim with our analysis was to see if we could use stylized facts about financial 

asset returns to improve volatility forecasts, and if there were any relationship 

between volatility forecasting and portfolio performance. We compared a passive, 

equally weighted, and sample weighted strategy with different GARCH model 

strategies. We saw that all the GARCH model strategies outperformed the passive and 

equally weighted in terms of cumulative returns, but the passive and equally weighted 

was less risky than the GARCH strategies. Compared with the sample weighted 

strategy the GARCH strategies outperformed this strategy both in terms of cumulative 

returns and risk. Of the GARCH strategies the GARCH(1,1) and GARCH(2,2) with t 

distributed errors performed the best. When we look at the relationship between 

volatility forecasting and portfolio performance, we see that the strategies that 

provided the most accurate volatility forecast also performed best in terms of 

cumulative returns and risk. We saw that the GARCH strategies with t distributed 

errors was able to forecast the volatility with more accuracy than the other GARCH 

strategies. Based on our analysis we have seen that we can improve volatility 

forecasts using stylized facts about financial asset returns and that there is a 

relationship between volatility forecasting and portfolio performance. 
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Appendix A 

 

Parameter Estimation Using Maximum Likelihood 
 

With maximum likelihood estimation the parameter values in the model are chosen by 

finding the most likely values of the parameters given the actual data. This is done by 

forming a likelihood function. The likelihood function is a multiplicative function of the 

actual data and is difficult to maximize, this can be solved by taking its logarithm in order to 

turn the likelihood function into a log likelihood function, which is an additive function of the 

data (Stock, Watson 2020, 405-406). 

 

The log-likelihood function is: 

 

@𝑙!

>

!*$

 

 

Univariate GARCH Normal Distributed Errors 

 

𝜖!	~	𝑁(0, ℎ!) 

 

𝑙! = −
1
2 ln

(2𝜋ℎ!) +
𝜖!%

ℎ!
¢																																																																																																																	(35) 

 

 

Univariate GARCH t Distributed Errors 

 

𝜖!	~	𝑡(df) 

 

𝑙! = ln Γ ¥
df + 1
2 ¦ − ln Γ ¥

df
2 ¦ −

1
2 §
{(df − 2)𝜋ℎ!} + (df + 1) ln  1 +
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df > 2 
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CCC GARCH Multivariate Normal Distribution 

 

𝑙! = −0.5𝑚 log(2𝜋) − 0.5 log{det(𝐑)} − log®detN𝐃!
$ %⁄ P¯ − 0.5𝝐°!𝐑#$𝝐°!? 																												(37) 

  

𝝐°!? = 𝐃!
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CCC GARCH Multivariate t Distribution 
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2 log
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										−0.5 log{det(𝐑)} − log®detN𝐃!
$ %⁄ P¯ −

df + 𝑚
2 log 11 +

𝝐°!𝐑#$𝝐°!?

df − 2 <																													(38) 

 

𝝐°!? = 𝐃!
#$ %⁄ 𝝐! 

 

𝝐! = 𝐫! − 𝐂𝐫!#$ 

 

df > 2 

 

 



 41 

Appendix B 
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