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Abstract: Because of its high strength, energy reduction, and low environmental impact, researchers
have encouraged considering alkali-activated slag concrete (AASC) as a potential alternative to
conventional concrete. In this study, the impact of mix design parameters on the durability of AASC,
made with ground granulated blast furnace slag and activated with different alkaline solutions
(NaOH, KOH, and Na2SiO3) immersed up to six months in a hydrochloric acid bath with pH = 3,
has been investigated. A total of 13 mix designs were made in a way that, in addition to the type of
alkaline solution, considered three other parameters, namely the molarity of alkaline solutions, the
weight ratio of alkaline solutions to slag, and the weight ratio of alkaline solutions to sodium silicate.
Visual inspections displayed that the AASC samples almost remained intact after exposure to an
HCl acid solution with pH = 3 for up to 6 months, while the OPC sample experienced deleterious
deterioration. The results clearly show that AASC outperformed OPC concrete when it comes to
durability in an HCl acid solution. The strength reduction and weight loss of AASC compared
with OPC concrete were approximately one-tenth and one-fifth, respectively. The AASC samples
containing potassium hydroxide showed a higher strength reduction and weight loss in the HCl acid
solution than the samples made with sodium hydroxide.

Keywords: alkali-activated concrete; slag; alkaline solution; hydrochloric acid

1. Introduction

Ordinary Portland cement (OPC) concrete has adverse impacts on the environment
because of its production, the release of huge quantities of CO2, and consuming a large
amount of energy [1]. Moreover, its durability is also a significant drawback, especially in
acidic environments [2,3]. Thus, researchers have always been searching to compensate for
OPC’s shortcomings and to reduce its environmental impact. An array of materials have
been suggested, one of which has extensive popularity is alkali-activated concrete [4–6].
In general, alkali-activated concrete is a mixture of an aluminosilicate precursor activated
with alkaline solutions [7,8]. Metakaolin, ground granulated blast furnace slag (GGBFS),
and fly ash are common aluminosilicate sources. Sodium hydroxide (NaOH), potassium
hydroxide (KOH), and sodium silicate (Na2SiO3) are the mainly used alkaline solutions,
where sodium silicate is in solution with NaOH and KOH. Ground granulated blast furnace
slag is a solid waste of steel production reported to have an acceptable performance in alkali-
activated concrete as an aluminosilicate source [9]. Alkali-activated slag concrete (AASC)
is an environmentally friendly product characterized by high percentages of alumina and
silica activated with alkaline solutions, which provides a possibility for the production of
cement-free concrete. AASC with relatively large amounts of silicon oxide and aluminum
oxide is considered a potential alternative to OPC concrete for non-structural concrete and
reinforced concrete structures [4,10,11].
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It is reported that AASC is environmentally friendly because of its lower greenhouse
emissions compared with OPC concrete, but it is also economically sustainable owing to its
lower energy consumption [12–14]. Because of its high final strength, energy reduction, and
low environmental impacts, researchers have encouraged considering AASC as a potential
alternative for conventional concrete, especially in the precast concrete industry [15,16],
while high shrinkage (3.3 times the OPC drying shrinkage as reported in [17]) and carbona-
tion are two major imperfections of AASC compared with conventional concrete. AASC
offers favorable properties, some of which include durability in aggressive and acidic
environments [4,17]. Numerous studies have been performed to investigate the diverse
characteristics of AASC, such as the mechanical properties [7,18–20], shrinkage [21,22],
carbonation [23,24], and elevated temperature endurance [25]. The main hydration product
of AASC is calcium aluminum silicate hydrate (C-A-S-H) gel, with a quite quick setting
time and a low Ca/Si ratio compared with OPC concrete [13,20].

Cities in the developing world face outstanding economic and human losses caused
by man-made or natural hazards, and the amount of loss is affected by the quality of the
preventive measures and emergency management [26,27]. Concrete can be subjected to an
acid attack in diverse circumstances. Conditions such as acid rain, acid river, sewerage,
and chemical facility are examples of acidic environments that can bring about irreparable
damage to concrete structures [28]. A few studies have been carried out to investigate
the durability of AASC in acetic acid, sulfuric acid, nitric acid, and phosphoric acid
environments [29–32]. Acid attack is a vital issue regarding concrete performance that
adversely affects concrete durability. AASC is reported to have superior durability in
acidic environments compared with conventional concrete. The main reasons for the high
durability are the low permeability and less calcium in its composition compared with
OPC concrete [29,32].

In an actual environment, the acid attack is not a pure acid, but often mixed acids.
For example, in acid rain, the acid attack on concrete contains a mixture of sulfuric acid,
nitric acid, and hydrochloric acid [33]. OPC concrete is alkaline and is susceptible to acidic
environments [3]. The equilibrium of the cement matrix is quickly disturbed when the
pH of the concrete pore solution drops. At pH values lower than 12.6, the first hydration
product that dissolves is calcium hydroxide (portlandite), which converts to a calcium
salt of the acid, hydrogels of silicium, aluminum, and ferric oxide [34]. The corrosion
rate of concrete after an acid attack is a complex process governed by the combination
of the dissolution, precipitation, and transport processes, as determined by the cement
chemical composition, paste matrix reactivity, aggregate reactivity, aggregate grading, and
concrete composition [35].

Hydrochloric (HCl) acid is a strong acid categorized as a mineral acid found in
municipal sewage, acid rain, and industrial effluent. HCl acid is utilized in the metal
industry as well as in the manufacture of fertilizers, dyes, and pigments, and the wastewater
from these industries can be very aggressive for concrete structures [36]. When OPC paste
comes in contact with HCl acid, calcium chloride (CaCl2) is produced [28]. CaCl2 is a
highly soluble salt that can be leached out and causes concrete deterioration [37]. It is
reported that the most important factor governing the corrosion rate in an acid attack on
cement-based materials is calcium salt solubility, and the second factor is acid strength [38].
HCl acid is considered an aggressive acid because of its highly soluble calcium salts and
dissociation ability [39]. In addition, the formation of Friedel’s salt, which is an expansive
product, accelerates concrete deterioration [34].

A few studies have investigated the durability of AASC in HCl acid attack [40,41]. It
has been reported that AASC has a better durability compared with conventional concrete
in aggressive environments [42]. Thunuguntla et al. investigated the effect of mix design
parameters on the mechanical and durability properties of AASC in three different acidic
environments, including hydrochloric acid solution, and NaOH was considered the only
alkaline solution. Eight different mix designs were formulated for the tests. The results
showed that the NaOH concentration was found to be the most influential parameter on the
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mechanical strength and durability characteristics of AASC [41]. Molarity and type of alka-
line solutions are two vital elements in the mix design of AASC [43]. There is no denying
that variability in the chemical composition of slag may impact its durability, and concretes
prepared using various slags may have different resistance in aggressive media [44].

In the literature, a limited number of studies focused on a systematic approach for
considering the effect of the mix design parameters of AASC on its performance and
durability in acidic environments. Concrete durability is a crucial property, as concrete
structures are required to sustain and endure throughout the entire service life acceptably.
In the vast majority of studies, the acid resistance of alkali-activated concrete with a fixed
mix design was studied. To fill this knowledge gap, an experimental study is required to
investigate the effect of the diverse mix design parameters on the durability and mechanical
properties of AASC exposed to an HCl acid solution. Thus, in this paper, the impact of mix
design parameters on the durability of AASC samples, made with GGBFS and activated
with different alkaline solutions (NaOH, KOH, and Na2SiO3) immersed up to six months
in a hydrochloric acid bath with pH = 3, has been investigated. As well as the type of
alkaline solution, three other parameters, including the molarity of alkaline solutions, the
weight ratio of alkaline solutions to slag, the weight ratio of alkaline solutions to sodium
silicate, were considered. OPC concrete samples were also made as a control mixture. The
XRF test measured the chemical compositions of the slag and Portland cement. For all
AASC and OPC concrete specimens, compressive strength reduction and weight loss were
monitored at predetermined intervals.

2. Materials and Methods

In this study, slag as a silica-aluminate precursor was used according to ASTM
C989M. The chemical compositions of GGBFS and Portland cement, based on the XRF
test, are presented in Table 1. Additionally, GGBFS specific gravity and Blaine fineness were
equal to 2.85 gr/cm3 and 400 m2/kg, respectively. The weight ratio of Al2O3/SiO2 and
CaO/SiO2, basicity coefficient (Kb = (CaO + MgO)/(SiO2 + Al2O3)), and hydration modu-
lus ((CaO + MgO + Al2O3)/SiO2) were equal to 0.447, 1.079, 0.916, and 1.77, respectively.

Table 1. Chemical compositions of GGBFS and Portland cement based on XRF test (wt.%).

CaO SiO2 Al2O3 MgO TiO2 MnO S K2O Fe2O3 NaO2 SO3 L.O.I *

GGBFS 36.52 38.35 10.88 8.77 1.48 1.25 1.21 0.93 0.52 0.49 - 0.26

Cement 63.50 21.50 5.10 2.30 - - - 0.93 3.80 - 2.00 0.70

* Loss of Ignition.

Alkaline solutions were added to the binder in liquid form. The alkaline solutions were
sodium hydroxide (NaOH), potassium hydroxide (KOH), and sodium silicate (Na2SiO3),
which had a SiO2/Na2O ratio equal to 2.5 (Na2O = 14%, SiO2 = 35%, and water = 51%).
The hydration process of alkali-activated slag is influenced by the sodium content and
silica module [45]. It should be stated that water glass (NaOH) and potassium hydroxide
(KOH) flakes were dissolved in water to make the solutions with a needed molarity based
on the mix design parameters. The mixing process was carried out using a mixer with 60 L
volume. Note that the preparation of the alkaline solution released heat, however, these
solutions were not added to the mixture right away after preparation. After preparation, it
took at least 5 min before being added to the final mixture. As a result, the temperature
almost reached the ambient temperature.

The physical properties of aggregates are presented in Table 2. The fine aggregates
were crushed sand. Sand equality and water absorption were measured in accordance
with ASTM D2419 and ASTM C128, respectively. Gravel (Crushed stone) with a maximum
aggregate size (MSA) of 19.5 mm was used as the coarse aggregates. The saturated surface
dry specific gravity and water absorption were measured as per ASTM C127. It should be
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noted that limestone aggregates were used because they are widely used in a majority of
projects in Iran. The grading of aggregates met the requirements of ASTM C33.

Table 2. Physical properties of aggregates.

Type of Aggregate Fineness Module Sand Equality SSD Specific Gravity
(gr/cm3)

Water Absorption
(%)

Fine 2.99 77 2.47 2.06
Course - - 2.59 0.76

The AASC mix proportions were selected based on previous studies [14,15]. As
mentioned before, the selected parameters included the alkaline solution type, the molarity
of alkaline solutions, the weight ratio of alkaline solutions to slag, and the weight ratio
of alkaline solutions to sodium silicate. A total of 13 mix designs were made in a way
that four selected parameters are considered, as shown in Table 3. It should be noted
that when a parameter (for example, NaOH molarity) was changed, the other mix design
parameters (such as NaOH/Na2SiO3, alkaline solution/slag, and alkaline solution type)
remained constant.

Table 3. AASC mix designs.

Mix Code Alkaline
Solution (Kg/m3)

Slag
(Kg/m3)

The Weight Ratio of NaOH
(KOH) to Na2SiO3

The Weight Ratio of
Alkaline Solution to Slag Molarity Type of Alkaline

Solution

N6041 158 394 1 0.4 6 NaOH
N6043 158 394 3 0.4 6 NaOH
N10041 158 394 1 0.4 10 NaOH
N10043 158 394 3 0.4 10 NaOH
N14041 158 394 1 0.4 14 NaOH
N14043 158 394 3 0.4 14 NaOH
N60404 158 394 0.4 0.4 6 NaOH

N100404 158 394 0.4 0.4 10 NaOH
N6061 207 345 1 0.6 6 NaOH
N10063 207 345 3 0.6 10 NaOH
K6041 158 394 1 0.4 6 KOH
K6043 158 394 3 0.4 6 KOH

K10043 158 394 3 0.4 10 KOH

To evaluate the acid resistance of the AASC mixes, samples were exposed to an HCl
acid bath with pH = 3. The pH was selected based on previous research [29,30,44,46]. The
ratio of water to solid materials was 0.50, and the weight percentage of the aggregates
in the mixture was 77%. To keep the workability of all of the AASC samples the same, a
naphthalene-based superplasticizer was used [14,15].

At first, the aggregates and slag were mixed for 3 min, then the alkaline solutions
were added. In the end, water and the admixture were added, and the mixture thoroughly
mixed for 5 min, followed by a rest for 1 min, and remixing for 3 min. Cube molds
(100 × 100 × 100 mm) were used to prepare the AASC samples. The prepared samples
were covered with plastic sheets to minimize water evaporation. They were kept at ambient
temperature (23 ± 2 Celsius) for 24 h, and were then taken out of molds and placed in
water baths for two weeks before immersion in acid solutions. The reason for selecting
this time is that, based on the compressive results, a majority of AASC specimens gained
nearly 80% of 180 days compressive strength in the first 14 days, as discussed in the
Results and Discussion section. To have a constant pH level in acid baths, the pH of the
container was measured continuously with a pH meter twice a week, and the HCl acid was
added as needed. Three replicate cubes from each mix design at predetermined interval
days (28, 90, 120, and 180 days) were used for the compressive strength tests and weight
loss measurements.

The compressive strength of the OPC concrete cubic samples (100 × 100 × 100 mm), as
a control mix, was 60 MPa at 28 days, and its water to cement ratio was 0.28. Furthermore,
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the same aggregates that were used in the AASC mixtures were also used in the OPC
samples. For mixing, first aggregate and cement were mixed for 3 min and then water was
gradually added to the mixture. Moreover, a polycarboxylate superplasticizer was used
to enhance the workability. After casting, OPC concrete specimens were kept at ambient
temperature (23 ± 2 Celsius) for 24 h, and then were taken out of molds and cured in water
for up to 28 days. Then, they were transferred to the HCl acid bath.

Because of the deficiency of a standard procedure for evaluating acid attacks on
concrete [29], the resistance to acid attacks on AASC and conventional concrete was tested
by immersion in an HCl acid bath as presented. Deterioration of specimens was tested by
compressive strength reduction and weight loss at predetermined intervals (28, 90, 120,
and 180 days after immersion in HCl acid bath) based on the procedure used by [29,44,46].
A reduction in strength or weight loss was calculated using following equation ((A–B)/A);
where A is the average compressive strength or weight of three cubic samples cured in
water, and B is the average compressive strength or weight of three cubic samples cured in
an HCl acid bath.

The process was as follows: after casting, the AASC samples were kept at ambient tem-
perature (23 ± 2 Celsius) for 24 h and were taken out of the cube molds and cured in water
for 14 days. Then, the specimens were taken out of the water, were kept at ambient temper-
ature for three hours, and were sandpapered on all six sides before weighing. Afterward,
they were immersed in HCl acid baths until the experiment time (90, 120, and 180 days).
The samples were weighed again after 3 h and after being sandpapered on all six sides.
The weight difference before and after immersion in the HCl acid solutions was calculated
as the weight loss. The compressive strength of the cubic samples was measured according
to EN 12390-3, and three cubes were tested at predetermined intervals. The companion
specimens, cured in potable water, were also tested to find the strength reduction.

3. Results and Discussion

In the following paragraphs, firstly, the compressive strength development of the
AASC cured in water is discussed. Then, the impacts of four mix design parameters on
the acid resistance of AASC exposed to an HCl acid solution are exploited. Finally, a
comparison between the results of this study and the reference OPC concrete is discussed.

3.1. Compressive Strength of AASC Samples before Acid Exposure

The compressive strength results of the OPC concrete and AASC specimens cured in
water for up to 180 days are shown in Figure 1. After 14 days of curing in water, most AASC
samples showed a high compressive strength, where more than 44 MPa is considerable.
This agrees well with previous findings [47], as reposted by [48], that AASC has a rapid
development of compressive strength at early ages [49]. Gruskovnjak et al. reported that
a faster strength development of ASSC compared with OPC is owed to a thin protective
layer that covers the unhydrated slag grain systems. In the OPC concrete, this layer is
considerably thicker, causing slower compressive strength growth [50]. Moreover, different
hydration products in the two systems can also be considered as another main reason for
the different strength development rates [12,13].

The results show that the mix design contains 10 M KOH, the weight ratio of the slag
to alkaline solution equals 0.4, and the weight ratio of KOH to Na2SiO3 equals 3 (Mix code:
K10043), which gained 86% of its 180 days compressive strength after 14 days. All three
mix designs made with KOH gained more than 60 MPa compressive strength after 14 days
of curing in water. Reddy et al. observed the same results [51]. It can be argued that
KOH is a stronger alkaline solution than NaOH, and when it comes in contact with slag, a
very rapid reaction happens, leading to gaining a considerable percentage of compressive
strength at early ages.
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Figure 1. Compressive strength of AASC samples (100 × 100 × 100 mm) cured in water before
exposure to HCl acid.

At 28 days, the lowest and highest compressive strength were 46.2 and 73.7 MPa
related to N10063 and K6041, respectively. According to the literature, when the NaOH or
KOH molarities are increased and the other parameters are the same, a higher compressive
strength is achieved for all ages [52]. This can be related to the higher alkalinity of the AASC
brought about by the increase in molarity, leading to the formation of more hydration
products [49,53]. Fang et al. reported that the increase of NaOH from 10 to 12 led to a 23%
increase in compressive strength [54]. The concentration of alkaline solutions increased
the reaction rates and thus led to a higher compressive strength. Aliabdo et al. used 10 M,
12 M, and 14 M NaOH solutions, and reported an increase in molarity that significantly
impacted the compressive strength at the age of 28 days [7].

3.2. Effect of Mix Design Parameters on Performance in Acid Attack

The HCl acid attack mechanism on AASC is a reaction between calcium-based com-
pounds in the concrete paste and a solution of hydrogen chloride. This reaction initiates
the formation of highly soluble calcium salt (CaCl2). Visual inspections show that AASC
samples were almost intact after exposure to HCl acid solution for up to 6 months, while
the OPC sample experienced a deleterious deterioration, as shown in Figure 2. Although
this comparison proved that AASC is superior to OPC in resisting HCl acid attack, other
conducted tests also confirmed this observation, as discussed in the following sections.
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3.2.1. Type of Alkaline Activator

Numerous studies investigated AASC durability [29,31,44,55] and the correlation
between the durability and microstructural characteristics [56] containing NaOH as an
alkaline activator. Potassium hydroxide (KOH) has always been a potential alternative
for sodium hydroxide (NaOH) in alkali-activated concrete [12]. In this study, two alkaline
solutions were used, caustic soda (NaOH) and potassium hydroxide. KOH is a stronger
alkaline solution than NaOH [57], and its price is at least two times greater than NaOH. It is
reported that alkali-activated materials activated by KOH have acceptable mechanical and
durability properties [46,58–60]. As shown in Figure 3, replacing KOH with caustic soda
when other mix design parameters remained the same resulted in more strength reduction,
especially after 120 and 180 days of exposure to the acid solution.
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Figure 3. Compressive strength reduction of AASC with different alkaline activators immersed in an
HCl acid solution.

Based on the results, the AASC samples made with KOH immersed in HCl acid for six
months showed at least a 30% increase in strength reduction compared with the specimens
made with NaOH. The obtained results showed that a progressive compressive strength
reduction was observed with an increase in exposure time for all of the mixes. Figure 3
shows that N6043 experienced roughly a 5% strength reduction after 180 days of immersion
in HCl acid. However, by replacing KOH (K6043), the strength reduction was about 13%
at the same age. The cause of the unsatisfying performance lies in how KOH reacts to
slag [61]. When potassium hydroxide reacts with slag, the reaction is rapid, creating a
structure with countless tiny unfilled holes and a less homogeneous microstructure [61].
When this porous structure exposes aggressive environments such as an acid solution, the
acid expands in the pores, causing concrete deterioration and strength reduction [62].

Thus, because of the undesirable compressive strength and costly prices of KOH
compared with NaOH, its application does not have technical justification or financial
benefits. A limited number of studies have been conducted on the effect of acid attack
on alkali-activated slag concrete made with KOH. Bakharev reported that alkali-activated
concreted made with fly ash and activated by KOH resulted in a larger pore diameter,
which deleteriously impacted the concrete durability in the sulfuric acid solution [46]. The
compressive strength reduction of the reference OPC concrete is reported in Section 4, and
a comparison between the OPC and AASC results is also discussed.
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Figure 4 shows the effect of the four selected mix design parameters on the weight
loss of AASC samples immersed in HCl solutions for up to 180 days. Figure 4a indicates
that when KOH replaced NaOH, weight loss increased approximately 67% after 180 days
of immersion in an HCl acid bath. Hence, the replacement of KOH caused adverse effects
on the durability of AASC. The results indicated that KOH replacement increased the
weight loss of the AASC specimens by 100%, 123%, and 67% on days 90, 120, and 180,
respectively. To explain this observation, as discussed before, it can be argued that KOH
rapidly reacts with slag and creates a less homogeneous microstructure with countless
tiny unfilled holes. This weak microstructure allows acid agents to penetrate the AASC
structure and deteriorate bonds [61]. Hence, it seems unsatisfying to replace NaOH as
a common activator with a reasonable price with KOH when the durability of AASC
matters. The effect of other parameters (as shown in Figure 4) will be discussed in the
corresponding section.
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(d) weight ratio of the alkaline solution to slag.

3.2.2. Sodium Hydroxide Molarity

One of the principal mix design parameters that can tremendously affect the alkali-
activated slag concrete characteristics is the molarity of the alkaline solutions [41]. Figure 5
shows the compressive strength reduction of the AASC samples with different molarities
immersed in an HCl acid solution for up to six months. In Figure 5a, the weight ratio
of NaOH/Na2SiO3 equals 1, and in Figure 5b, the ratio is 3. Regardless of the NaOH to
Na2SiO3 ratio, an increase in the NaOH concentration led to more strength reduction at
all ages. Therefore, AASC samples containing less molarity of caustic soda had a superior
performance in the HCl acid environment. Therefore, although a higher NaOH molarity
led to a higher compressive strength for the AASC cured in water, the acid resistance of the
AASC improved when the lower molarity of NaOH was used. Thunuguntla investigated
the durability of AASC using 1 M and 8 M NaOH in contact with HCl, H2SO4, and HNO3
for up to 56 days. The loss of compressive strength for the specimens immersed in HCl
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acid was about 1 to 4% that is very little. He concluded that AASC provides outstanding
resistance to all of the acid solutions used here compared with OPC [41].
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Figure 5a,b shows that the NaOH/Na2SiO3 ratio directly affects the influent of NaOH
molarity. In Figure 5a, the AASC samples exposed to HCl acid for 180 days lost around
7% of their compressive strength, but the strength reduction was approximately 12% in
Figure 5b. The underlying reason is that the sodium hydroxide amount was higher, and in
the NaOH/Na2SiO3 ratio it equaled 3. The higher sodium hydroxide molarity increased
the reaction rate between the slag and alkaline solutions, creating AASC with irregular
microstructures and causing more deterioration in acid attacks. After 180 days of exposure
to the acid, when the sodium hydroxide molarity changed from 6 to 14, the strength
reduction increased by approximately 71% (Figure 5a) and 140% (Figure 5b).

Figure 4b shows the weight loss reduction of the AASC samples with NaOH concen-
trations of 6 M, 10 M, and 14 M. The results indicated that an increase in NaOH molarity
led to a decrease in weight loss. The main reason for this is that when the NaOH molarity
increased from 6 to 14, the alkalinity of the concrete increased. It should be noted that AASC
samples made with 14 M NaOH had a dark green color compared with the specimens
made with a lower molarity, which had a pale green color. The mix design, which had the
highest concentration (14 M), experienced 55% less weight loss than the AASC samples
with the lowest molarity (6 M) after six months of exposure to the HCl acid solution.

3.2.3. Weight Ratio of Sodium Hydroxide to Sodium Silicate

In a majority of investigations, two combined alkaline solutions were used. Sodium hy-
droxide and sodium silicate are the two most used alkaline activators in the literature [44,52,63].
Thus, the weight ratio of these two alkaline solutions can be an influential parameter when
AASC mix design is to be selected. In this study, three ratios, 0.4, 1, and 3, were used. The
effect of the ratio of NaOH/Na2SiO3 on the strength reduction was evaluated when the
other parameters were the same. Figure 6a,b shows the strength reduction when the NaOH
molarities were 6 and 10, respectively. Regardless of the concentration of the sodium hy-
droxide solution, the highest strength reduction occurred when the NaOH/Na2SiO3 ratio
equaled 3 at all ages. In addition, when the ratio increased from 1 to 3, strength reduction
at 180 days rose approximately 23% and 16% for 6 M and 10 M NaOH, respectively. To
explain this phenomenon, it can be said that the lower NaOH/Na2SiO3 ratio means the
more sodium silicate in the paste, which is a great source of Si, enhancing the production
of the C-S-H (or C-A-S-H) gel and providing a denser AASC. Therefore, when the ratio
was one, the AASC samples showed a better performance after acid attacks in the long run.
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It should be noted that when it comes to workability, the lowest ratio (NaOH/Na2SiO3 = 0.4)
adversely affects the workability of the fresh concrete. Concrete workability is an indispens-
able part of concrete production and implementation. It should be taken into consideration
when the mix design parameters are selected. The impact of the ratio of NaOH/Na2SiO3
on ASSC weight loss is shown in Figure 4c. It can be concluded from Figure 4c that an
increase in the ratio of NaOH/Na2SiO3 from 0.4 to 3 caused the escalation of weight
loss. After six months of immersion of AASC samples in the HCl acid solution, weight
loss for NaOH/Na2SiO3 = 3 became more than two times greater than the specimens
with NaOH/Na2SiO3 = 0.4. The principal reason is that the higher ratio of NaOH/Si2O3
decreased the sodium silicate content, which is an excellent source of Si in the concrete
paste. Si is an essential constituent for the production of C-(A)-S-H gel in alkali-activated
slag concrete.

3.2.4. Weight Ratio of Alkaline Solution to Slag

In the OPC concrete, the water to cement ratio is a critical parameter, especially when
it comes to durability. The weight ratio of the alkaline solution to slag has a critical role in
the properties and performance of the alkali-activated materials [41]. Limited studies have
evaluated the impacts of this essential parameter on AASC durability. In most studies, a
ratio of alkaline solution to slag was selected in a range of 0.4 to 0.6 [29,41,44,63,64]. When
the ratio increased from 0.4 to 0.6, the quantity of alkaline solution in the concrete increased,
and a lower amount of slag existed in the mixture as paste. In this study, two weight ratios
of the alkaline solutions to slag were used, 0.4 and 0.6.

Figure 7 shows the impact of the weight ratio of the alkaline solution to slag on the
strength reduction of AASC specimens exposed to HCl acid solutions for up to 6 months.
Figure 7a shows that altering the weight ratio of the alkaline solution to slag from 0.4 to 0.6
led to nearly 10% more strength reduction for the AASC specimens subjected to HCl acid
solution for six months. Likewise, for 10 M NaOH and NaOH/Na2SiO3 = 3 (Figure 7b),
more alkaline solution caused nearly 29% more strength reduction. In Figure 7a,b, the
AASC samples with a ratio of 0.4 had the lowest strength reduction at all ages. The
fundamental reason is that the higher ratio of alkaline solution to slag reduced the adequate
amount of slag and paste in the mixture. A definite amount of alkaline solutions is needed
to activate the entire volume of slag in the mixture, thus up to that volume, the presence of
an alkaline solution enhanced the mechanical properties of AASC [64]. The same results
are observed in [41], where an increase in paste content led to an enhancement of acid
attack for AASC mixes.
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In addition, the alkaline solutions consisted of a considerable amount of water. Hence,
when the ratio of the alkaline solution to slag increased, extra alkaline solutions created
countless capillary pores, which could develop a poor structure, inferior performance, and
deterioration in acid attacks [64]. The findings of this study pointed out that more alkaline
solutions initially, with a ratio of 0.6, resulted in a lower resistance in acid attack, and a
fewer alkaline solutions, with a ratio of 0.4, led to a better performance of AASC after
exposure to the acid.

Figure 4d shows the weight loss percentage under the influence of the weight ratio
of alkaline solutions to slag. The ratio did not significantly affect the weight loss after 90
and 120 days of immersion of the AASC samples in HCl acid. When the ratio of alkaline
solutions to slag changed from 0.4 to 0.6 after 180 days, the weight loss reduction increased
by about 20%. As discussed above, when the weight ratio of the alkaline solutions to slag
increased, an excessive amount of alkaline solutions consisting of a substantial amount
of water in the AASC mixture would be available, which could negatively affect the
performance of AASC for a long time. As reported in [41], the weight loss of AASC tended
to decrease when the solution to binder ratio increased. The main reason is that more paste
in the structure reduced the voids and ingress of acid agents.

4. Comparison of OPC Concrete and AASC in HCl Acid Solution

In this section, the performance of OPC concrete is presented and compared with
AASC in an HCl acid solution. As stated before, alkali-activated materials show acceptable
mechanical properties and durability in acidic media [65,66]. Nevertheless, when acid
attacks OPC concrete, calcium components, especially calcium hydroxide, hydrated calcium
silicate, and hydrated calcium aluminate, convert into calcium salts, leading to deterioration
and cracking [3].

As presented in Figure 8a, the strength reduction of OPC concrete after six months of
immersion in HCl acid was approximately 38%. However, the minimum and maximum
strength reductions of AASC samples with the same exposure time to HCl acid for all of the
mix designs were 4% and 12.6%, respectively. In other words, the minimum and maximum
AASC strength reductions were one-tenth and one-third of OPC concrete, respectively. This
means a well-designed alkali-activated slag concrete has a superior performance when it
comes to strength reduction. Accordingly, a concrete structure or element erected by OPC
concrete that deteriorated after two years due to acid attacks would acceptably work for at
least 20 years, if built by AASC with well-selected mix design parameters.
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The weight loss of the OPC concrete was 3.76% after 180 days of immersion in an
HCl acid solution, as shown in Figure 8b. Nonetheless, the minimum weight loss for the
AASC samples was 0.79%. This means that the weight loss of AASC was nearly one-fifth of
the OPC concrete. The better performance of AASC could be attributed to several factors.
The main factor is the different structures between the two concretes. It is reported that
AASC has a calcium (aluminate) silicate (C-(A)-S-H) hydrate structure similar to the OPC
hydration products, but with a lower ratio of Ca/Si compared with OPC concrete [49]. The
chemical and physical characteristics of slag (Na2O content in NaOH and silicate module
(SiO2/Na2O) in Na2SiO3) are other factors that can negatively or positively impact the
durability of AASC [49]. In this study, the amount of CaO in the slag (Table 1) was about
half of the CaO amount in the Portland cement. Hence, AASC samples have lower calcium
components in their composition, leading to a better performance in acid attacks.

The obtained results of the weight loss reduction test are in agreement with the
literature. Torgal et al. reported a 2.6% average weight loss for AASC specimens after
exposure to three acid solutions (HCl, H2SO4, and HNO3) for 28 days, which was less
than half of the observed weight loss for OPC concrete [67]. Bakharev stated 1.15% and
12.43% weight loss for alkali active concrete made with fly ash activated by NaOH and
Na2SiO3 after 60 days of exposure to acetic acid and sulfuric acid solutions, respectively [46].
Munn et al. investigated the weight loss for OPC and alkali-activated concrete made with
fly ash and activated by NaOH and Na2SiO3. He reported a 40.9% weight loss for OPC
concrete after a month of exposure to a 10% sulfuric acid solution, and 5.2% weight loss for
alkali-activated concrete after two months of exposure to 10% sulfuric acid [68].

5. Conclusions

This study investigated the effects of four mix design parameters on the durability of
alkali-activated slag concrete in an HCl acid solution. Having a clear understanding of the
mix design parameters of alkali-activated slag concrete when there is no standard design
procedure method can help researchers develop and design AASC efficiently. The results
showed that AASC outperforms OPC concrete when it comes to durability in an HCl
acid solution. The AASC samples contained potassium hydroxide as an alkaline activator,
and showed a higher strength reduction and weight loss in the HCl acid solution than
the samples made with sodium hydroxide. The lower molarity of the sodium hydroxide
caused a superior performance of AASC in acid attacks. Moreover, the AASC samples with
NaOH/Na2SiO3 = 1 compared with the samples with a ratio equal to three had an accept-
able performance after acid attacks. While it might seem that the more alkaline solution
would bring about a superior performance in an HCl solution, the results pointed out that
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when the weight ratio of the alkali solution to slag increased from 0.4 to 0.6, the strength
reduction and weight loss increased. Furthermore, for a well-designed mixture, strength
reduction and weight loss of AASC compared with OPC concrete were approximately
one-tenth and one-fifth, respectively.
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