
2

SmartIO: Zero-overhead Device Sharing through

PCIe Networking

JONAS MARKUSSEN and LARS BJØRLYKKE KRISTIANSEN, Dolphin Interconnect

Solutions, Norway

PÅL HALVORSEN, SimulaMet, Norway

HALVOR KIELLAND-GYRUD, Dolphin Interconnect Solutions, Norway

HÅKON KVALE STENSLAND, Simula Research Laboratory, Norway

CARSTEN GRIWODZ, University of Oslo, Norway

The large variety of compute-heavy and data-driven applications accelerate the need for a distributed I/O
solution that enables cost-effective scaling of resources between networked hosts. For example, in a cluster
system, different machines may have various devices available at different times, but moving workloads to
remote units over the network is often costly and introduces large overheads compared to accessing local
resources. To facilitate I/O disaggregation and device sharing among hosts connected using Peripheral Com-
ponent Interconnect Express (PCIe) non-transparent bridges, we present SmartIO. NVMes, GPUs, network
adapters, or any other standard PCIe device may be borrowed and accessed directly, as if they were local to the
remote machines. We provide capabilities beyond existing disaggregation solutions by combining traditional
I/O with distributed shared-memory functionality, allowing devices to become part of the same global address
space as cluster applications. Software is entirely removed from the data path, and simultaneous sharing of a
device among application processes running on remote hosts is enabled. Our experimental results show that
I/O devices can be shared with remote hosts, achieving native PCIe performance. Thus, compared to existing
device distribution mechanisms, SmartIO provides more efficient, low-cost resource sharing, increasing the
overall system performance.

CCS Concepts: • Computer systems organization → Distributed architectures; Cloud computing; •
Hardware→ Buses and high-speed links; • Software and its engineering→Distributed memory; Distributed

systems organizing principles; • Information systems→ Distributed storage;

Additional Key Words and Phrases: Resource sharing, composable infrastructure, I/O disaggregation, PCIe,
cluster architecture, Device Lending, NVMe, GPU, NTB, distributed I/O

J. Markussen is also with Simula Research Laboratory, Norway.
P. Halvorsen also with Oslo Metropolitan University, Norway.
H. K. Stensland is also with University of Oslo, Norway.
C. Griwodz is also with SimulaMet, Norway.
Authors’ addresses: J. Markussen, L. B. Kristiansen, and H. Kielland-Gyrud, Dolphin Interconnect Solutions AS, Nils
Hansens vei 13, 0667 Oslo, Norway; emails: {jonas, larsk, halvor}@dolphinics.com; P. Halvorsen, Simula Metropolitan,
Pilestredet 52, 0167 Oslo, Norway; email: paalh@simula.no; H. K. Stensland, Simula Research Laboratory, PO Box 134,
1325 Lysaker, Norway; email: haakonks@simula.no; C. Griwodz, Department of Informatics, University of Oslo, PO Box
1080, Blindern, 0316 Oslo, Norway; email: griff@ifi.uio.no.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2021 Copyright held by the owner/author(s).
0734-2071/2021/06-ART2
https://doi.org/10.1145/3462545

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3462545


2:2 J. Markussen et al.

ACM Reference format:

Jonas Markussen, Lars Bjørlykke Kristiansen, Pål Halvorsen, Halvor Kielland-Gyrud, Håkon Kvale Stensland,
and Carsten Griwodz. 2021. SmartIO: Zero-overhead Device Sharing through PCIe Networking. ACM Trans.

Comput. Syst. 38, 1-2, Article 2 (June 2021), 78 pages.
https://doi.org/10.1145/3462545

1 INTRODUCTION

High-performance computing workloads often have high requirements for I/O resources. For
example, many computing clusters rely on compute accelerators, such as graphics process-

ing units (GPUs) and field-programmable gate arrays (FPGAs), to increase the processing
speed. Moving data efficiently between networked nodes and onto such compute accelerators
has been a research challenge for decades. In recent years, we have also seen a convergence of
high-performance computing, big data, and machine learning research fields. This has led to new
demands to I/O performance where distributed, high-volume storage is becoming a requirement
for high-performance computing, while low latency networking and facilitating access to com-
pute accelerators have become cloud computing issues [16, 80, 84]. If I/O resources (devices) are
distributed scarcely among hosts, then cluster nodes with I/O resources may become bottlenecks
when a workload requires heavy computation on GPUs or fast access to storage. Contrarily, over-
provisioning nodes with resources may lead to devices becoming underutilized if the workload’s
demands are more sporadic. Heterogeneous workloads may even require widely different com-
positions of devices for individual nodes. Being able to share and dynamically partition devices
between nodes in a cluster leads to more efficient utilization, as I/O resources can be scaled up or
down based on current workload requirements.

In cloud computing environments, such dynamic scaling and resource partitioning is often han-
dled through virtualization. Virtual machine (VM) hypervisors may dynamically add virtual I/O
devices to VM instances on demand. It is even possible to temporarily suspend computation to
migrate VMs to hosts with more hardware resources, should the VM’s requirements exceed the
available local resources. However, resource virtualization may not be viable when the raw, bare-
metal I/O performance is required, for example in the case of GPU-intensive machine learning
workloads. In this regard, it is possible to “pass through” physical I/O devices to a VM guest using
an I/O Memory Management Unit (IOMMU). The IOMMU facilitates direct access to hard-
ware from the guest without compromising the virtualized environment. Although pass-through
allows physical hardware to be used with minimal software overhead, this technique suffers from
a lack of flexibility as the physical devices are tightly coupled with the hosts they are installed in.
Distributing VMs across hosts in the network in a way that maximizes resource utilization and
adapts dynamically to varying I/O requirements, without sacrificing the bare-metal performance
that pass-through provides, remains a challenge.

Another challenge is the networking technology itself. Many network adapters support zero-
copy of application memory from one system to another through remote direct memory access

(RDMA) [32]. RDMA is not only used in many distributed shared-memory cluster applications,
but is also frequently used for implementing resource disaggregation. Low-latency storage devices,
such as non-volatile memory express devices (NVMes), can be shared at the block-level in the
cluster. This is the case for NVMe over Fabrics (NVMe-oF) [29], where RDMA is used to provide
direct access and avoid going through the block-layer on the operating system (OS) on the
server. Similarly, the result of a GPU computation may be copied out of GPU memory and onto the
network directly using RDMA, without being copied to system memory first and going through
the network stack [91]. RDMA disaggregation is usually implemented as application-specific

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

https://doi.org/10.1145/3462545


SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:3

middleware. Although this often requires application software to use specific programming
models and semantics, such as message-passing, the benefit is that resources may be shared by
several hosts in the network. However, while RDMA allows data to be transferred efficiently
over the network, translation between the network protocol and the local I/O bus is unavoidable.
Compared to accessing a local device, this protocol translation incurs latency overheads that are
not insignificant.

Peripheral Component Interconnect Express (PCIe) is the most widely used standard for
connecting devices to a computer system. Although it was originally designed as a local I/O bus
connecting devices to the central processing unit (CPU) on a motherboard, extending the PCIe
bus out of a single computer and connecting several systems is made possible by using a spe-
cial type of device called non-transparent bridge (NTB). NTBs can be embedded as a CPU
feature [77, 95], but are more commonly implemented in PCIe switch chips [13, 82], allowing
independent computer systems to interconnect with plug-in host adapter cards and external ca-
bles [44, 50, 67, 69]. Unlike other interconnection technologies, solutions built with PCIe network-
ing allow resources to be accessed with very little performance overhead as no protocol translation
is required. However, while some disaggregation approaches using NTBs have been proposed in
the past [31, 89], these implementations present solutions where devices are owned by a dedicated
server. As distributing resources is generally only possible to hosts that are directly connected to
the same switch as this server, these approaches forgo the flexibility of fully distributed cluster
computing systems. Alternative PCIe-based solutions rely on additional virtualization functional-
ity in the PCIe switch chip hardware to partition the PCIe fabric and create virtual device trees for
each individual host [15, 51]. These solutions allow devices to be directly attached a switch rather
than a server. However, these solutions are only able to disaggregate resources at the device level.
Sharing the same device with multiple hosts either requires virtualization support in the device
itself, i.e., Single-Root I/O Virtualization (SR-IOV), or additional distribution methods, such as
RDMA.

To address these challenges, we present our SmartIO system for sharing resources and distribut-
ing devices in a heterogeneous, PCIe-interconnected cluster. Unlike existing solutions, our system
is able to provide sharing and disaggregation capabilities at multiple abstraction levels: distribut-
ing devices to physical hosts, distributing devices to VMs, and enabling disaggregation of devices
and memory in software. In addition, our SmartIO system is fully distributed. We avoid relying
on dedicated servers and instead allow all hosts to contribute their own local resources and access
remote resources, even at the same time. This blurs the distinction between remote and local re-
sources, and scaling out and increasing the overall I/O resource utilization in the system becomes
easier.

SmartIO is implemented on top of the inherent memory mapping capabilities of NTBs, allowing
cluster nodes to map parts of the address space in remote hosts. Our system effectively makes all
hosts, including their internal resources (both devices and memory), part of a common PCIe do-
main. Remote resources can be accessed directly over native PCIe, without requiring any software
in the data path or network protocol translation. Furthermore, by relying on PCIe shared-memory
techniques, SmartIO is able to abstract away the physical location of devices and memory resources.
Our implementation translates memory addresses between different address domains and resolves
paths through the PCIe network in a manner that is transparent to both application software and
device drivers. As all nodes may contribute their resources, and not only dedicated servers, our
SmartIO is able to provide optimizations based on resource locality and minimizing data move-
ment, without requiring the user to be aware of the underlying PCIe topology. This unlocks a new
potential in PCIe-connected cluster systems, as application software no longer needs to be written
with accessing remote resources in mind, but can be implemented as if resources are local.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:4 J. Markussen et al.

We have previously demonstrated how Device Lending allows devices to be dynamically as-
signed to different machines, making it possible for a system to access remote PCIe devices as if
they were locally installed [41]. We have also shown how our Device Lending method extends to
VMs by implementing a mediated device interface (MDEV), which facilitates pass-through of
remote PCIe devices to VMs running on any host in the cluster [48, 49]. Our new complete SmartIO
sharing solution does not only incorporate this earlier work, but greatly extends and supersedes
it. We have generalized the core components of our original Device Lending implementation, i.e.,
the mechanism that enables direct access over PCIe in a manner that is transparent to both device
and device driver, and have developed an entirely new application programming interface

(API). This new API provides device driver functionality to shared-memory cluster applications,
such as mapping shared memory regions for direct memory access (DMA) from the device and
memory-mapping device registers into application address space. By making device operation part
of distributed cluster applications and allowing devices to access shared memory regions using na-
tive DMA, it becomes possible to disaggregate devices in software. As such, our new API enables
simultaneous sharing of devices between software processes running on different hosts in the clus-
ter, in addition to device-level distribution capabilities provided by Device Lending and MDEV.

In short, SmartIO is a flexible framework for device distribution and resource sharing that en-
ables cost-effective scaling of resources between PCIe-networked hosts. The main contributions
of our work are listed as follows:

• We have incorporated our previous Device Lending method into our complete SmartIO so-
lution. NVMes, GPUs, network adapters, and any standard PCIe device can be distributed to
remote systems and used without any performance difference compared to local access. De-
vices appear as if they are dynamically hot-added to the system, and can be used by existing
application software and device drivers without requiring any modifications.
• SmartIO also includes our MDEV extension to Device Lending. This interface extends the

Linux Kernel-based Virtual Machine hypervisor (KVM). Our extension facilitates direct
access to remote physical devices for VM guests, allowing VMs to run on any host in the
network and use (remote) devices with bare-metal performance.
• We have created a new device-oriented API for writing device drivers as shared-memory

applications. This makes it possible to disaggregate devices in software, similarly to RDMA
disaggregation solutions. Unlike RDMA, however, resources are accessed over native PCIe,
which allows resources to be shared without introducing a performance penalty. Through
our API, device driver implementations may take full advantage of PCIe shared memory
capabilities, such as remote memory access and multicasting, without requiring awareness
of the PCIe topology and the different address domains of remote systems. This makes it
easier for application software to optimize data flow through the PCIe network.
• We have developed a prototype NVMe device driver using our new device-oriented API.

Although the Device Lending component of SmartIO makes it possible to use existing device
drivers, most device drivers are written in a way that assumes exclusive control over the
device. Using Device Lending alone, a device may only be used by a single host at the time.
To demonstrate software-enabled disaggregation, we have implemented a distributed NVMe
driver. As a proof of concept, we show a single NVMe device can be shared and operated by
30 cluster nodes simultaneously, without requiring SR-IOV. This driver also demonstrates
how multiple sharing aspects of our system may be combined, by disaggregating (remote)
GPU memory and enabling memory access optimizations.
• To prove that our solution enables zero-overhead sharing, we provide a comprehensive per-

formance evaluation covering all components of our SmartIO solution, including our earlier

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:5

Fig. 1. SmartIO allows the internal devices of hosts in the network to be shared with other hosts connected
to the same fabric. Nodes in a PCIe-networked cluster can contribute their internal devices to a shared device
pool, and borrow resources from that pool when needed.

Device Lending and MDEV work. We have performed entirely new experiments, using both
synthetic microbenchmarks and realistic large-scale workloads. Our experimental results
confirm that I/O devices can be distributed to, and shared with, remote hosts, without any
performance penalty beyond what is expected for longer PCIe paths. In fact, all our exper-
iments prove that remote devices can be used without any performance overhead compared
to local access in terms of latency and throughput.

The rest of this article is structured as follows: Section 2 gives a high-level overview of our Smar-
tIO system. Section 3 explains the basic building blocks of shared-memory networking with PCIe.
In Section 4, we detail our Device Lending method, and in Section 5, we explain how the original
Device Lending was enhanced with hypervisor support (MDEV). In Section 6, we describe our new
software API and use a distributed NVMe driver implementation as an example implementation.
We present our experimental results and extensive evaluation in Section 7, before we provide a
discussion of other aspects and considerations of our SmartIO solution in Section 8. Finally, we
put the work in the context of state of the art in Section 9, and conclude the article in Section 10.

2 SYSTEM OVERVIEW

Our SmartIO solution allows the local resources of a host, i.e., memory and devices, to be accessed
directly by remote hosts, over standard PCIe. SmartIO works for all standard PCIe devices. Individ-
ual device functions of multi-function devices may be distributed to different hosts in the network,
or to the same host should it require multiple resources. It is even possible to disaggregate a single
device (function) in software, and distribute it to multiple hosts.

As depicted in Figure 1, we can imagine this as hosts contributing their internal resources to
a pool of shared resources. Through a process of borrowing devices and releasing them when
they are no longer needed, it is possible to support a dynamic and composable I/O infrastructure
consisting of a combination of local and remote resources. Whether devices are actually local or
remote becomes irrelevant to the user, as SmartIO eliminates this distinction, both function and
performance wise. In other words, SmartIO is a solution for scaling out and using more hardware
resources than there are available in a single host.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:6 J. Markussen et al.

Fig. 2. We can create a heterogeneous PCIe cluster by interconnecting nodes (hosts) with external PCIe links
using adapter cards capable of non-transparent bridging (NTB). In such clusters, the CPUs as well as the
internal devices of each node are all attached to the same PCIe network fabric.

2.1 Motivation and Challenges

Due to its very low latency overhead and memory addressing properties, using PCIe as a high-
speed interconnection technology is a compelling alternative to traditional networking technolo-
gies [44, 50, 67]. However, because PCIe was originally designed as a local I/O bus, connecting
devices to the CPU on a motherboard, individual computer systems operate with different PCIe
address domains. Interconnecting systems using PCIe require translating memory transactions
from one address domain to another. The most common method of translating addresses is to use
NTBs [69, 82, 87]. Figure 2 illustrates how several computer systems may be interconnected in
a cluster, by implementing adapter cards and cluster switches with NTBs. The inherent memory
address translation capabilities of NTBs make it possible to map (parts of) the address space of
remote systems. More interesting, however, is the fact that in such PCIe networks, both CPUs and
internal PCIe devices are attached to the same, shared PCIe fabric.

Remote resources, such as memory and I/O devices, can be mapped into a local system and
accessed through the NTB. Similarly, a remote device capable of DMA may also use the NTB to
access local resources. This eliminates the need to use memory on the remote node as an inter-
mediate step when transferring data. As illustrated in Figure 3, software overhead can be avoided,
since all memory address translations can be done in NTB hardware.

However, setting up such NTB mappings requires awareness of the address space on the remote
system. When initiating DMA transfers, a device driver must use addresses that corresponds with

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:7

Fig. 3. Many disaggregation solutions have performance overheads, because they rely on middleware or
other forms of software facilitation on the remote system. Using SmartIO, remote hardware can be accessed
directly without any software in the critical path by setting up memory mappings over the NTB.

the remote device’s address space to enable a DMA-capable device to read or write across the
NTB. This greatly increases the programming complexity of device drivers. Therefore, our SmartIO
system provides a mechanism for using NTBs while remaining agnostic about the address space
in remote systems. The physical location of a resource, as well as the address space layout in the
host it is installed in, is entirely abstracted away.

Nevertheless, this abstraction gives rise to another challenge; a device driver that is unaware
that a device is remote may assume that the entire local address space can be reached by the device.
It is generally not possible to predict in advance which memory addresses a device driver may use,
yet NTB mappings must be in place before the device driver initiates DMA transfers. Deferring
mappings until the device driver initiates DMA would require synchronizing with the remote
system in the critical path, thus increasing the overall latency. A naive workaround is mapping
the entire memory for the device, but this solution does not scale for multiple hosts. SmartIO
solves this, and is able to prepare necessary memory-mappings in advance, without introducing
any communication overhead in the critical path.

2.2 Overall Design

Our system is composed of “borrowers” and “lenders.” A lender is a computer system that registers
one or more of its internal PCIe devices with SmartIO, allowing the devices to be distributed to and
used by remote hosts. A borrower is a system that is currently using such a device. While a device
only has one lender, namely, the computer system where it is physically installed, there can be
several borrowers using it simultaneously.1 SmartIO also makes it possible for a system to act as
both lender and borrower at the same time, lending out its own local devices and simultaneously
borrowing remote devices from other hosts.

Building PCIe networking into our system is a crucial part of our design, as it enables access
to remote resources with very low latency and extremely low computing overheads. The hard
separation between local and remote is blurred, with regard to both functionality and performance.
Furthermore, this design means that the implementation complexity of SmartIO lies in software.
SmartIO can be implemented for existing computer systems that are connected with NTBs, using
either on-board PCIe switch chips or plug-in adapter cards, in any network topology.

1Note that the term “borrower” is not always synonymous with the physical host using the device in every context, but
may refer to an individual software process or a VM.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:8 J. Markussen et al.

Fig. 4. SmartIO provides different interfaces that facilitate access to a remote resource. These interfaces
present an abstraction layer to application software and device drivers, providing a logical decoupling of
devices and which physical hosts they are installed in.

Figure 4 illustrates the different components of our system and how they fit together:

(1) Low-level NTB driver: Our SmartIO solution is built on top of NTB interconnection tech-
nology. The low-level NTB driver makes it possible to connect hosts over a PCIe network
fabric and set up memory-mappings on demand. Moreover, the NTB driver also enables in-
dividual systems to contribute parts (or “segments”) of their local memory to a cluster-wide,
distributed shared-memory space. Cluster applications may use the Software Infrastruc-

ture Shared-Memory Cluster Interconnect API (SISCI) [22] to manage local and remote
segments of memory and map them into the application’s local address space.

(2) Resource abstraction mechanism: SmartIO provides functionality for transparently
translating I/O addresses between different address domains, resolving paths in the clus-
ter, and dynamically setting up necessary NTB mappings for the borrowing system and
the device. This makes it possible to abstract away the location of the device, i.e., which
host machine it is installed in, in a manner that is transparent to both the device and the
software process using the device. With this abstraction, SmartIO can facilitate the use of
remote resources (both memory and devices) without requiring software to be aware of the
underlying, physical PCIe topology or the internal I/O address space layout of remote hosts.
SmartIO also supports setting up mappings between multiple devices, even when they re-
side in different lenders, allowing PCIe transactions between them to be routed along the
shortest path in the PCIe network (peer-to-peer).

(3) Device Lending: SmartIO incorporates our Device Lending method [41], which allows de-
vices to be time-shared among hosts in the PCIe network. By borrowing a device and insert-
ing it into the local device tree, the remote device appears to be hot-added to a local system.
Devices can, therefore, be dynamically added to the system, without requiring the borrowing
host to reboot. When the host performs configuration cycles and sets up memory mappings,
SmartIO is able to intercept this and inject resolved remote addresses. This allows existing
software to use our system without requiring any modifications or special adaptions; device
drivers, application software and even the OS can use the device as if it was locally installed.
While Device Lending only allows devices to be distributed to a single host at the time, it is
nevertheless highly suitable in the case where a device has a complex or proprietary device
driver, and using existing drivers is the only viable option for operating the device.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:9

(4) MDEV: Our MDEV extension to the KVM hypervisor [48, 49] facilitates pass-through of
borrowed devices to VMs running on the host. VM guests can access these devices directly
without breaking out of the memory isolation provided by the virtualization, even when the
devices are remote. This allows VMs to be distributed on different hosts in the cluster while
benefiting from the bare-metal performance of direct access to physical hardware.

(5) Device driver API: As an alternative to Device Lending and MDEV, our SmartIO solution
also provides a new device driver API extension for managing devices and developing dis-
tributed device drivers using cluster functionality. This new contribution extends the ex-
isting SISCI API with programming semantics for memory-mapping device registers and
making shared memory segments available for a DMA-capable device. Device operation
becomes part of the cluster application itself, allowing devices to access shared memory seg-
ments using native DMA. Furthermore, by relying on our SmartIO system to resolve memory
addresses between the individual address domains, a driver implementation does not need
to consider the system-local address space of the cluster node where the device is installed.
This greatly reduces the complexity of implementing distributed applications, as it becomes
possible for software to assume that resources are local, while taking full advantage of PCIe-
based shared memory capabilities. Using this API extension, devices may be disaggregated
at the software level and shared simultaneously between application processes running on
different remote hosts.

Finally, it should be noted that the design of our system enables sharing at multiple abstraction
levels. It is possible to combine the different interfaces of SmartIO. For example, using our API
extension, we can disaggregate the device memory of a remote GPU being borrowed with Device
Lending, even if it is managed by a proprietary device driver that is unaware that the device is
remote.

3 PCIE-INTERCONNECTED CLUSTERS

While there are several networking technologies that make it possible to build clusters of net-
worked computers, such as Infiniband, 100/200 Gigabit Ethernet, and Fibre Channel, PCIe is inter-
esting in that connecting multiple systems with PCIe will also connect their internal devices to the
same interconnection fabric. The idea of a unified bus for the inner components of a computer to
connect the devices with the other cluster machines, however, is not new. It was already imagined
for both ATM [72] and SCI [6]. Nevertheless, these ideas never got implemented, because neither
technology were picked up as an internal interconnection network for computers. In contrast, PCIe
is today the most widely adopted standard for connecting devices in a system [25].

The most common way of extending the PCIe bus out of a single system to connect several
systems to the same PCIe fabric, is by using special devices called NTBs [50, 67, 69, 87, 89]. By
implementing NTBs as a peripheral device, independent computer systems can interconnect with
plug-in adapter cards and external cables. Using such adapter cards and cluster switches with NTB-
capable ports, we have created a heterogeneous PCIe cluster, supporting up to 60 PCIe-networked
nodes.

3.1 PCIe Endpoints

PCIe is a high-speed serial computer expansion bus standard and uses point-to-point links, where
a link consists of 1 to 16 lanes. Each lane is a full-duplex serial connection. Data is striped across
multiple lanes, so broader links yield higher bandwidth. PCIe revision 3.1 (Gen3) [61] allows a
theoretical maximum bandwidth of 15.75 GB/s for an x16 link — approximately 13.8 GB/s of usable
throughput.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:10 J. Markussen et al.

Fig. 5. Example of a PCIe topology using an external link to connect an expansion chassis to a computer
system. The devices in the expansion chassis are part of the same PCIe tree as the internal devices, because
all downstream links (including the external cable) are transparent.

As illustrated in Figure 5, a PCIe domain is structured as a tree. At the top of the tree, we have
the “root ports,” acting as the connection between the PCIe fabric and the CPU. This forms what
is known as a “root complex.” Devices are the leaf nodes in the PCIe domain, and are known as
“endpoints” in PCIe terminology.

Some PCIe devices may support multiple functions, which appear to the system as a group
of distinct devices, each with a separate set of resources and device memory regions. The term
“device” actually refers to an individual function. An example of a multi-function device is a multi-
port Ethernet adapter, where individual ports can be implemented as separate functions, or a GPU
with a sound device, where the video controller appears as one device and the sound card as
another. It is also possible for a device to implement SR-IOV [62]. SR-IOV-capable devices appear to
the system to have multiple (virtual) functions. Note that our SmartIO system makes no distinction
between physical and virtual functions.

3.2 Address-based Routing

The defining feature of PCIe is that devices are mapped into the same address space as the CPU
and system memory, as depicted in Figure 6. Because this mapping exists, a CPU can read and
write to device memory the same way it would access system memory.2 Likewise, if a device is
capable of direct memory access (DMA), then it can read from and write to system memory. A
device may even access other devices on the fabric, as they too are mapped into the same address
space.

This mapping occurs when a system enumerates the PCIe tree and accesses the configuration
space of each device attached to the fabric. The configuration space contains a description of the
capabilities of the device, such as the device’s memory regions. The system will reserve a memory
address range for each of the device’s memory regions. The start addresses are then written to the
device’s Base Address Registers (BARs) in its configuration space, making the device aware of
the address space mapping. Therefore, the term “BAR” is synonymously used for device memory
regions, and a device may have up to six BARs.

Like other networking technologies, PCIe also uses a layered protocol. The physical layer
and data link layer are responsible for flow control, error correction and signal encoding. The
uppermost layer is called the transaction layer, and its responsibility includes forwarding memory
reads and writes as “transactions.” Such transactions are routed in the PCIe fabric based on their

2This is often referred to as memory-mapped I/O (MMIO).

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:11

Fig. 6. Device memory regions (BARs) are mapped into the same address space as system memory.

addresses. The transaction layer is also responsible for packet ordering, ensuring that memory
operations in PCIe are strictly ordered.3

In Figure 5, we also illustrate how the PCIe tree may be extended through the use of an ex-
pansion chassis. Devices in an expansion chassis are connected to the same root complex (CPU)
through a series of transparent switches. These switches form subtrees in the network. During the
enumeration, switch ports are assigned the combined address range of their downstream devices
(Figure 6). This allows memory transactions to be routed hierarchically in the PCIe tree where
memory transactions are forwarded either upstream or downstream based on the address. An in-
variant of this hierarchical routing is that memory accesses do not need to pass through the root,
but can be routed using the shortest path. This is referred to as “peer-to-peer” in PCIe terminol-
ogy. In Figure 5, the internal switch in the expansion chassis will have the combined downstream
address range of all three GPUs, allowing memory accesses to be routed directly between them.
Some PCIe switch chips also support multicasting, allowing memory writes to be replicated to
multiple selected ports in a single operation [61].

PCIe also uses message-signaled interrupts (MSI) instead of physical interrupt lines. MSI-
capable devices post a memory write to the CPU, using a specific address and payload assigned by
the system. The memory write is then interpreted by the CPU, which uses the payload and address
to raise an interrupt. MSI-X is an extension to MSI, allowing up to 2048 different interrupt vectors.
A benefit of this is that an MSI-X interrupt can target a specific CPU core on multi-core systems.
Additionally, separate MSI-X vectors can be used to indicate different types of events.

3.3 Non-transparent Bridging

As PCIe tree enumeration and address reservation is typically done during system start up, the ad-
dress space layout will vary from system to system. Different systems, or different root complexes,
will have independent address space layouts. Because of this, a PCIe domain has exactly one active
root complex at any point in time. Two independent CPUs are not allowed to coexist in the same
domain. However, by using an NTB implementation [44, 69, 82], two root complexes, meaning in-
dependent hosts, can be connected together over PCIe. Although not formally standardized, NTBs
are a widely adopted solution, and all NTB implementations have similar capabilities [87]. NTBs

3The PCIe standard also specifies optional support for relaxed ordering, but strict ordering is mandatory and used by
default.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:12 J. Markussen et al.

Fig. 7. Example of two independent PCIe root complexes connected together using an NTB. The link between
the two hosts is non-transparent, and the NTB translates addresses between the two domains. Host A has
mapped parts, or segments, of Host B’s memory through its local NTB, providing Host A with “windows”
into the remote system’s address space.

can be embedded as a CPU feature, such as Intel Xeon [77] and AMD Zeppelin [95], but are more
commonly implemented in PCIe switch chips [13, 82].

Figure 7 depicts two independent root complexes connected using NTB adapter cards with an
external PCIe cable. Despite the name, an NTB actually appears as a PCIe endpoint. Just like regular
endpoints, NTBs appear to have one or more memory regions, or BARs, that are reserved and
mapped by the system during the enumeration. However, instead of being backed by memory or
device registers, reads and writes to these memory regions will be forwarded from one side of
the NTB to the other, translating the memory addresses in the process. As these memory regions
appear to the system as any other memory-mapped device memory region, a local CPU can read
from or write to them as if it was local device memory.

Note that the address space associated with the NTB BAR may be too small to cover all sys-
tem memory of the remote system. While it is possible to adjust the BAR sizes and provide larger
ranges, many systems do not support support large device memory regions. However, NTB imple-
mentations also support dividing their range into “windows.” By using a different base offset per
NTB window, it is possible to map arbitrary ranges of the remote system’s address space. Such
offset mappings makes it is possible to map different parts of a remote system’s address space into
local address space. The far-side address of a mapping is stored in a look-up table, making the
address translation between the two domains very fast. However, the number of NTB windows is
limited by the number of entries in the look-up table.

The SISCI shared memory API [22] provides functionality for allocating linear “segments”
from a pool of contiguous memory pages that is reserved by the low-level NTB driver in ad-
vance. These linear segments can be “exported,” allowing remote hosts to map them through their
NTBs and access it as if it was local device memory. By allowing segments of their own local
memory to be mapped by remote hosts, individual nodes effectively contribute to a distributed
shared-memory architecture comprised of such memory segments. Multiple nodes may even map
the same memory segment. By using the SISCI API, these memory segments can be mapped
into the virtual address space used by application processes running on different nodes. This al-
lows distributed applications to read and write to shared memory segments as is if it was local
memory.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:13

Fig. 8. Device Lending: Using NTBs, it is possible to map the memory regions of a remote device so a local
CPU can access device registers. The remote system can in turn reverse-map local resources for the device,
making DMA and MSI possible. Device Lending injects a hot-added “shadow device” into the Linux kernel
device tree using these mappings, making remote device access transparent to both CPU and device.

4 DEVICE LENDING

By using an NTB, it is possible to map the device memory regions, or BARs, of a remote PCIe
device (see Figure 8). A local CPU can perform memory operations on a remote device, such as
reading from or writing to device registers. Conversely, it is also possible to map local resources
for a remote device, allowing it to access memory across the NTB. By making such mappings over
the NTB transparent to a device and its driver, it is possible to facilitate use of a device without the
system being aware that the device is actually remote. These mappings can be set up dynamically
while systems are running, making it possible to reassign devices to different systems without
rebooting.

Using this method, we have implemented Device Lending for an unmodified Linux kernel [41].
As illustrated in Figure 8, the implementation is composed of two parts, namely, a “lender,” allowing
a remote system to use its device, and the “borrower” using the device. In this section, we will
describe how we have implemented our Device Lending mechanism.

4.1 Shadow Device

In the Linux kernel, PCIe devices are represented with generic descriptors, providing device drivers
with a generic handle that corresponds to a device. This allows Linux to provide a unified interface
for functionality that is common for all PCIe devices, such as accessing a device’s configuration
space, setting up interrupt vectors, memory-mapping device memory and mapping buffers for
device DMA. When Linux boots, it enumerates the PCIe device tree as explained in Section 3.2,
and generates a corresponding tree of device descriptors.

However, it is possible to manipulate this descriptor tree in software, while the system is running.
By implementing our borrower component as part of the NTB driver, we can inject a virtual device,
or “shadow device,” that appears as an endpoint alongside the NTB for each borrowed device.
To Linux, it appears that a (virtual) device has been hot-added [67] to the local system, and it
will load any appropriate device drivers using our shadow device as the device handle. In other
words, the shadow device acts as a local handle to the remote, borrowed device. By mapping the
remote device’s memory regions through the local NTB and overriding the shadow device’s device

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:14 J. Markussen et al.

memory regions with these mappings, a local device driver may read and write directly to physical
device registers without being aware that the device is actually remote.

4.2 Intercepting Configuration Cycles

In order for a device to become aware of the memory addresses used for MSI interrupts, as ex-
plained in Section 3.2, the kernel must write these addresses to the device’s configuration space.
By setting the configuration space accessor functions on our shadow device, we can forward config-
uration space operations on the shadow device to the remote device in a manner that is transparent
to the device driver. However, such interrupts must be mapped over the NTB to trigger the correct
interrupt routine on the borrower.

As illustrated in Figure 8, we can prepare a mapping on the device-side NTB to the local interrupt
vector assigned by the kernel (“MSI window”). By using the configuration space accessor functions,
we can intercept specific configuration cycles and look for writes to the MSI offset, injecting the
device-side address of the MSI window mapping into the actual configuration space of the device.
This allows interrupts raised by the device to be routed across the NTB and trigger the correct
interrupt routines on the borrowing system, transparent to both device and its driver. Additionally,
intercepting configuration cycles also makes it possible to mask certain features for the borrower.
For example, we can mask legacy interrupts, which can not be mapped over the NTB, so that the
device driver will not attempt to use them.

4.3 DMA Window

In order for a device to access local resources using DMA, the lender must set up mappings through
the device-side NTB to local memory as illustrated in Figure 8. However, it is generally not possible
to know in advance which memory addresses a device driver might use for DMA transfers. The
pages used for DMA memory buffers may be scattered in physical memory, or an application or
device driver may initiate multiple transfers to different parts of memory. Dynamically setting up
mappings is not a feasible solution as it would require communication with the lender host and
introduce a communication overhead. Additionally, as the number of mappings through the NTB
is a finite resource, mapping individual memory pages scales rather poorly.

A naive solution is to make the lender to map the entire physical memory of the borrowing
system through the NTB. However, while this would make it possible to set up a single mapping
to the remote borrower, the address range of the NTB is not necessarily large enough, as mentioned
in Section 3.3; the window on the device-side NTB must be equal to (or larger) than the size of
physical memory on a borrowing system to cover the borrower’s entire RAM. Moreover, a lender
with multiple connected borrowers must potentially map all physical memory of every one of
them. In other words, the naive solution would severely limit the number of borrowers as device
memory requirements of the NTB itself would become too large.

Modern processor architectures implement an IOMMU, such as Intel’s VT-d [3]. The defining
feature of the IOMMU is the ability to remap DMA operations issued by a device [38], effectively
translating virtual I/O addresses to physical addresses. By using an IOMMU on the borrowing
systems, it is possible to remap scattered memory pages to a continuous range. Figure 9 shows
how we use the IOMMU on the borrower, allowing the lender to set up a single mapping through
the NTB in advance (“DMA window”). When the device driver calls the Linux DMA API to create or
map DMA buffers using the shadow device, we inject the device-side address of the DMA window
with the appropriate offset, and set up a local IOMMU mapping to the local memory specified
by the driver. The device driver passes our injected address to the device, completely unaware
that the address is actually a far-side I/O address. This allows the device to reach across the NTB,
transparent to both device and device driver.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:15

Fig. 9. DMA window: We use the local IOMMU in order create a single continuous memory range. This
allows us to conserve NTB resources by setting up a single mapping through the device-side NTB in order
for the remote device to reach local RAM. Adding and removing memory pages from the local IOMMU group
is inexpensive compared to actively communicating with the lender to set up mappings dynamically.

While our solution adds additional software when a device driver sets up DMA buffers, dynami-
cally adding and removing memory pages from a local IOMMU group has a relatively low overhead
compared to communicating with a remote host. Moreover, since mapping across the NTB is done
in advance, and all address translations between the different address domains are done in the NTB
and IOMMU hardware, our implementation achieves native PCIe performance in the data path.

Some PCIe devices, such as Nvidia GPUs, may have addressing limitations that make them un-
able to reach higher addresses of the 64-bit I/O address space. For such devices, it can be difficult
to configure large enough DMA windows, since the combined memory requirements of the DMA
windows must fit through the NTB BAR. Depending on the device memory requirements of down-
stream devices in the PCIe tree, configuring the NTB BAR size too large may force the system to
place the NTB at a high address (see Section 3.1). Because of this, our implementation also sup-
ports optionally using the IOMMU on the lender. By using the lender’s IOMMU, we can remap
NTB mappings from high to low addresses if it is necessary, similar to how the IOMMU can be
used to avoid so-called “bounce buffering” [52]. An additional benefit is that it also becomes pos-
sible to put borrowed devices in their own IOMMU address domains, isolated from other devices
in the system. This protects the lender system from any accidental address misconfiguration.

4.4 Shortest Path Routing

Some processing tasks may require the use of multiple devices, such as machine learning work-
loads that need several GPUs. Such workloads often transfer data from one device to another using
DMA, where a device reads from or writes to the memory regions (BARs) of other devices. As de-
scribed in Section 3.2, shortest path routing between such devices using peer-to-peer is possible
based on address ranges.

In the case of Device Lending, however, devices installed in different lender systems use different
address space domains. The local I/O address used by one host, i.e., the local address a borrower
uses to reach a remote device, is not the same address different host would use to reach the same
device. Furthermore, a lender may even use an entirely different NTB to reach the other device
than it would for reaching the borrower. In order for a borrowed device to reach another borrowed
device, we need a mechanism for resolving I/O addresses between the different domains.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:16 J. Markussen et al.

With the 4.9 version of the Linux kernel, functionality for setting up mappings between devices
to do peer-to-peer DMA between them was added to the device DMA API. By implementing these
functions for our injected shadow device, we are notified when a device driver is mapping the
device memory regions of another device, and we can inject our prepared mappings. We have
implemented the following method of resolving address domains in Device Lending, in order for
a borrowed device (the source) to reach another borrowed device (the target):

(1) Same lender: If the target is installed in the same host as the source, then setting up a
mapping is trivial. If the device-side IOMMU is disabled, then the lender simply returns its
local device-side I/O addresses of the BARs of the target. If the IOMMU is enabled, then the
lender additionally needs to set up IOMMU mappings, and returns the I/O virtual addresses.

(2) Local device: If the target is a device local to the borrower, i.e., residing within the borrowing
host, then the source’s lender set up DMA windows to the individual BARs of the target,
similar to how it has already mapped a DMA window to the borrower’s RAM. The lender
then returns the local device-side I/O addresses the source would use to reach through the
NTB to reach the the target’s BARs. This works for any device in the borrower, even local
devices that are not registered with our system. However, in this case, our only works for
setting up mappings for a remote device to a local device. The other way around is not
possible unless the local device is registered with our system, as we are unable to intercept
calls by the device driver without our virtual device handle (shadow device).

(3) Different lenders: If the target is a remote device, i.e., residing in a different lender host,
then the source’s lender creates DMA windows through the appropriate NTB to the target’s
lender. Note that this NTB may be different to the one used to reach the borrower. We then
return the local device-side I/O addresses the source’s lender would use to reach through the
NTB to the the target’ BARs.

The borrower, after resolving these lender-local I/O addresses, stores them along with its own
physical addresses to the BARs of the target. When the device driver using the source calls the
DMA API functions to map the BARs of the target for the source, the borrower is able to look up
the corresponding lender-local I/O addresses and use these. When the driver in turn initiates DMA,
it is completely unaware of the location of both the source and the target, and the source will be
able to access the target through the correct NTB. Figure 10 shows that the the source device can
reach the target device for all three scenarios. By resolving lender-local I/O addresses in advance,
we have enabled devices to directly access each other using peer-to-peer. In other words, we have
enabled device-to-device communication between remote devices with the lowest possible latency.

5 VM PASS-THROUGH USING MDEV

To provide I/O capabilities to a VM, a VM hypervisor may use emulated devices or paravirtual-
ization. Software-emulated devices appear to the VM guest as an I/O device, but all functionality
is handled in the VM implementation. Paravirtualized devices also offer device functionality in
software, but relies on facilitation by the hypervisor to use host resources. In many cases, paravir-
tualized devices are backed by actual hardware. However, emulation and paravirtualization may
not be viable options when bare-metal processing power is required.

In this regard, it is possible to to remap DMA and interrupts using an IOMMU. Similarly to
pages mapped by an MMU for individual processes, an IOMMU can group devices into IOMMU
domains. As each domain has its own individual mappings, members of an IOMMU domain conse-
quently have their own private virtual address space. Such a domain can be part of the virtualized
address space of a VM, enabling direct access to physical memory by the physical device, while
other devices and the rest of memory remain isolated. As such, the IOMMU provides a hardware

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:17

Fig. 10. Shortest path routing: By resolving addresses of device memory regions and preparing mappings
for them in advance, we can route device-to-device using the shortest path when a device driver initiates a
DMA transfer. Our solution covers all three scenarios: (1) when both devices are in the same lender, (2) when
the target device is in the borrower, and (3) when the target device resides in a different lender.

virtualization layer between I/O devices and the rest of the system. This allows a VM hypervisor
to facilitate direct access to the physical device from within the VM guest, without compromis-
ing the memory isolation provided by the virtualization. This facilitation is often referred to as
“pass-through.”

In this section, we explain how we have implemented support for such pass-through of remote
devices in our SmartIO system [48, 49]. We explain how we generalized the core functionality in
our Device Lending mechanism, providing us with the necessary software capabilities for imple-
menting a kernel-space interface for the hypervisor. By implementing functionality for dynami-
cally assigning remote devices to VMs, we have extended our device distribution mechanism to
support OSes other than Linux, such as Microsoft Windows.

5.1 Mediated Devices

On Linux, pass-through of devices is supported in the KVM hypervisor by using Virtual Function

I/O (VFIO) [37]. By implementing a VFIO interface for a device, KVM is able to use the IOMMU
and map I/O virtual addresses for the device to the same guest-physical address layout used by a
VM.

Intuitively, a solution for passing through remote devices to a VM would be for the host to
borrow a device, injecting the device into its local device tree, and then use VFIO. However, this
would not be feasible as VFIO requires that pass-through devices are placed in a separate IOMMU
domain per VM guest. As described in Section 4.3, Device Lending places all borrowed devices in
the same IOMMU domain to preserve mappings over the NTB. Additionally, pass-through requires
the entire guest-physical memory of a VM to be mapped for the device. We need a mechanism for
detecting, pinning and mapping the physical memory pages used by the VM instance, in order

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:18 J. Markussen et al.

for the device to be able to DMA to it. VFIO does not provide this mechanism, thus detecting the
presence of a VM and mapping its memory is not possible.

In the 4.10 version of the Linux kernel, an extension to VFIO called mediated device drivers

(MDEV) was introduced [33]. The MDEV extension introduces the concept of a physical parent
device having virtual child devices, allowing a host device driver to emulate multiple virtual de-
vices, while still allowing some direct access to hardware. In other words, MDEV facilitates a form
of paravirtualization that enables “SR-IOV in software.” Some operations on the virtual device,
such as configuration cycles and device resets, are trapped (handled) by the parent device driver
running on the host, allowing some hardware resources to be emulated while other resources are
accessed directly. In our case, using this MDEV interface provides us with a finer-grained control
over what the hypervisor and VM guest is attempting to do with the device.

Our implementation registers itself as an MDEV parent device driver for devices under the con-
trol of SmartIO. With Device Lending, a device would be exclusively borrowed by the physical host
for as long as it runs, regardless of whether any VM instances is using it or not. By implementing
functionality for borrowing and releasing device references without injecting them into the local
device tree, KVM is able to pass through the device to a VM without it being borrowed first. Only
when the VM guest boots up and resets the device, do we actually borrow the device. Similarly,
when the guest OS releases the device, either by shutting down or hot-removing the device, we
return it. Not only does this limit the lifetime of a borrowed device to when a VM is running and
using it, but it also makes it possible to hot-add a device to a live VM.

5.2 Mapping VM Memory for Device

Using Device Lending, we can react to calls to the DMA API on a shadow device to dynamically
add or remove pages from the local IOMMU domain. In contrast, we have no way of knowing
which addresses a device driver running in the guest may use for DMA. Therefore, the only option
is to map all of the guest-physical memory used by the VM for the device.

By using an MDEV parent device driver instead of VFIO, we are aware of a VM instance using
the device. However, while the MDEV interface provides us with a method of using KVM to
resolve guest-physical addresses to host-physical and pinning the physical memory pages used
by the VM instance, we know nothing about the memory layout of a VM instance or even when
memory has been allocated. Other implementations using MDEV implement virtual child devices,
each with their own set of emulated resources. For example, when a guest driver initiates DMA
transfers, the parent device driver is notified by trapping emulated device registers, and is able to
resolve addresses and pin the appropriate pages in memory just before initiating the DMA engine
on the physical device. Our implementation, however, is actually passing through the physical
device itself. In our case, the VM instance maps all of the physical device registers and accesses
the entire device directly. This means that without making assumptions about the type of device
being used and implementing virtual registers for it, we are not able to replicate this specific
behavior. This poses a challenge, as the memory used by the VM has not yet been allocated when
the virtual device is first picked up by a VM instance.

However, before a PCIe device can use DMA, it must be enabled in a device’s configuration
space.4 This allows us to defer mapping of VM memory until our implementation detects a config-
uration cycle enabling DMA. By then, we can assume that the memory used for the VM is allocated.
Even so, we still do not have any information about the address space layout. The naive solution
is to map the entire range from start to end. As depicted in Figure 11, this solution is wasteful as a

4Enabling the “Bus Master” bit in the command register enables DMA for a device.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:19

Fig. 11. Mapping VM memory for a device: The VM’s address space may be much larger than the actual
memory used by the guest. Only guest-physical memory needs to be mapped for a device.

Fig. 12. Pass-through of a remote device: By using IOMMUs on both sides of the NTB, it is possible to
map a remote device into a local VM guest’s address space. The borrower-side IOMMU provides continuous
memory ranges that can be mapped over the NTB, while the lender-side IOMMU is used to map the virtual
address space for the device, mirroring the guest-physical layout. We use two windows to map the VM’s
entire memory.

VM’s address space may be much larger than the guest-physical memory size, and not all of this
address space should be reachable by the device.

Instead, we can rely on an assumption: as the x86 architecture uses well-defined starting ad-
dresses for low and high memory, we can start at these guest-physical addresses and use KVM to
experimentally probe which address ranges resolves and which do not. This way, we are able to
both dynamically discover the memory layout of the VM and only map those ranges that should
be reachable by the device.

Figure 12 illustrates how a device is mapped into the address space of a VM. On the lender,
we use the IOMMU to create a virtual I/O address space that maps over the NTB, mirroring the
guest-physical memory layout. Because this mapping exists, a native device driver running in the
VM guest can initiate DMA transfers on the physical device using guest-physical addresses. On
the borrower, we use the IOMMU to provide continuous address ranges that are trivially mapped
over the NTB. Note that we create a separate DMA window for the low and high memory ranges,
allowing us to map the entire guest-physical memory, while being able to fit through the NTB
window.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:20 J. Markussen et al.

Fig. 13. Since IOMMUs introduce a virtual address space for devices, peer-to-peer transfers must be routed
through the root in order for the IOMMU to resolve virtual addresses to physical addresses. As a consequence,
shortest path routing is disrupted.

5.3 Peer-to-peer between Devices

Similarly to how guest-physical memory is mapped for a device, the guest-physical BARs of other
devices passed through to the same VM can also be mapped for a device. When the guest OS
enumerates its PCIe tree and write guest-physical addresses to a device’s configuration space, our
MDEV parent driver captures these addresses. For all other devices, we are able to set up I/O virtual
addresses that correspond to these guest-physical addresses using their lenders’ IOMMUs. Using
the same method described in Section 4.4, we are able to resolve which NTB adapter to map over
in order reach the device. This makes it possible to set up mappings between two or more devices
using our MDEV implementation, even when they reside in different hosts.

However, while this enables device-to-device access between the physical devices, shortest path
routing in the fabric is disrupted by the virtual address space. PCIe transactions must be routed
to the IOMMU to resolve I/O virtual addresses to physical addresses (Figure 13). PCI-SIG has de-
veloped an extension to the transaction layer that allows devices that have an understanding of
I/O virtual addresses to cache resolved addresses called Address Translation Service (ATS) [60].
However, ATS is not widely available as it requires hardware support in devices.

5.4 Relaying Interrupts

Similarly to VFIO pass-through, MDEV uses the eventfd API [36] to trigger interrupts in a VM
instance. When our MDEV parent device driver gets notified to set up an interrupt for a VM,
we register an interrupt request handler on the lender for the specified interrupt. Whenever the
device raises an interrupt, this interrupt request handler is invoked, which in turn notifies our
MDEV implementation. We can then use eventfd to signal that an interrupt has been raised to the
VM instance.

This method is not ideal, as the latency between a device raising an interrupt and the inter-
rupt routine being invoked within the VM increases. A latency reducing improvement would

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:21

be to use the same approach as bare-metal Device Lending, and map MSI and MSI-X interrupts
over the NTB. However, a benefit of the current implementation is that it allows us to enable
legacy interrupts for devices borrowed by a VM, something that is not supported for bare-metal
machines.

5.5 VM Migration

As our SmartIO system abstracts away device location, our MDEV implementation supports so-
called “cold migration.” It is possible to shutdown, migrate, and restart a VM on a different
host, while keeping the same passed-through physical devices. If the VM emulator supports it,
then it is also possible to hot-add and hot-remove devices to running VMs. Using such hot-
swap functionality, live migration could theoretically be possible by first removing all devices,
migrating, and then re-attaching them afterwards. However, since such a solution would tem-
porarily disrupt device I/O and force guest drivers to reset all devices, its usefulness would be
limited.

Supporting real hot-migration, remapping devices while they are in use without (or with mini-
mal) disruption, is something we wish to implement in future work. Not only would such a solution
require keeping memory consistent during the migration warm-up, but DMA transactions could
potentially be in-flight during the migration. A mechanism for re-routing transactions, without
violating the strict ordering required by PCIe, must be implemented, and will most likely require
hardware support that does not exist today.

6 DISTRIBUTED NVME DRIVER

By borrowing a device and inserting it into the local device tree, using either Device Lending or
passing the device through to a VM using our MDEV implementation, a device driver may use a
device as if it was locally installed. No adaptations are required to use the device, allowing device
drivers, OS, and application software to use the device without any modifications.

However, most PCIe device drivers are written in a way that assumes exclusive control over
the device. Consequently, a device may only be distributed to a single host at the time, preventing
others from accessing it while it is used. This can lead to poor utilization of device resources, as it
requires hosts to cooperatively time share a device, resetting it every time it is reassigned to a new
host. Some devices implement SR-IOV [62], making a single physical device to appear as multiple
virtual devices, allowing each virtual device to be distributed by Device Lending. Regardless, as SR-
IOV capability increases the complexity of hardware implementations, it is not widely available,
especially for low- to medium-end devices.

During the development of our MDEV implementation (Section 5), we isolated functionality
shared with Device Lending and were able to expose this to userspace applications. Effectively, this
makes it possible to write device drivers that enable simultaneous sharing and parallel operation
of single-function devices by distributing it to multiple hosts at the same time.

In this section, we present our proof-of-concept NVMe driver allowing sharing to multiple hosts
simultaneously. NVMe [55] is an interface specification for non-volatile storage controllers that
are attached to the PCIe bus, such as solid state flash memory drives (SSDs). Compared to
traditional spinning hard disks, where seek time and mechanical disk rotation cause significant
delay, these storage drives have lower latency and support parallel operations. This is reflected in
the design of NVMe, which supports this parallelism through the use of multiple I/O queues that
operate independently and avoiding any form of locking in the I/O submission path. By distributing
individual I/O queues, we demonstrate how a single NVMe storage drive may be shared among
multiple hosts and operated in parallel.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:22 J. Markussen et al.

6.1 Device Driver API

We have extended the SISCI API [22] with device-oriented semantics, exposing core SmartIO capa-
bilities through the same shared-memory API used to write cluster applications. In other words, by
exposing this functionality through the SISCI API, it becomes possible to implement device drivers
as part of the application. Integrating device operation into the application itself makes devices
and drivers become part of the same shared global address space as distributed shared-memory
applications.

As mentioned in Section 3.3, a userspace application may map “segments” of a remote system’s
memory into its own virtual address space using SISCI. Moreover, as we explained in Section 4.3,
we can set up mappings to such shared memory segments for a device as well (“DMA windows”).
Devices may use DMA to access shared-memory segments directly, without requiring RDMA. Sim-
ilarly, by exporting device BARs as shared memory segments, device memory regions may be
mapped by several nodes, effectively disaggregating device memory. Memory segments (both sys-
tem memory and device memory) are associated with devices, rather than with hosts. By providing
functionality for translating device-side physical addresses, as well as resolving the path through
the network between the device and shared memory segments, our API extension allows device
driver implementations to be agnostic about address spaces in different cluster nodes. As such,
these mechanisms alleviate some of the complexity of implementing distributed device drivers,
as software can be written in a way that does not need to consider whether resources are local
or remote. The same driver software can run on any node in the cluster, using any device in the
cluster, without requiring that the application is actually aware of the specific PCIe topology.

Specifically, the following functionality was added to SISCI:

• API functions for letting application processes borrow and return devices. Borrowing a de-
vice can either be exclusive, allowing only one borrower at the time, or non-exclusive, al-
lowing several borrowers simultaneously. It possible for a single application process to first
take an exclusive reference, to reset, initiate and prepare the device, before allowing other
processes in the cluster to borrow the device.
• Automatically exporting device memory regions (device BARs) as segments, allowing them

to be memory-mapped into the application process’ virtual address space. Additionally, by
exporting BARs as segments, it is possible to map them for other devices and set up shortest-
path routing.
• API functions for mapping SISCI segments on behalf of a device, effectively setting up DMA

windows over the device-side NTB (lender’s NTB). This allows the device to use native DMA
to read and write to shared memory segments. Segments can be either local or remote to the
device, and SmartIO will automatically resolve device-side physical addresses to (remote)
memory segments under the hood, allowing the same software to run on any cluster node
and remain agnostic about the specific address space layout in other hosts. Note that since
BARs of any device registered with SmartIO are automatically exported as SISCI segments,
we can map them for other devices as well.
• API functions for allocating SISCI segments using access pattern hinting. While the original

SISCI implementation only allows hosts to allocate segments in local system memory, we
have added functionality for letting SmartIO choose which host to allocate memory in based
on expected access patterns. By relying on hinting rather than actively specifying which host
to allocate memory in, we can consider memory locality without requiring awareness of the
physical PCIe topology. Note that as these segments are associated with a device rather
than cluster nodes, we retain the logical decoupling of machines and devices provided by
SmartIO.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:23

Fig. 14. NVMe avoids contention in the command submission and completion path by using parallel queues
that can be hosted anywhere in physical memory.

Perhaps the most obvious trade-off from using our API extension is that it requires implementing
a new device driver. Usually, implementing a driver from scratch entails a considerable engineer-
ing effort, and may not even be a viable option in most cases. After all, the main strength of both
our Device Lending mechanism and MDEV extension is that they do not require any modifica-
tions of existing device drivers. However, as using this API extension allows a device driver to be
implemented as part of cluster applications, it is potentially extremely useful for some application
domains. By implementing a driver using our API extension, devices can be disaggregated at the
software level, rather than at the PCIe device function level. Multiple application processes, run-
ning on different nodes, may share devices that do not support SR-IOV. Moreover, not only does
our API extension provide an interface for distributed device drivers, but it also becomes possible
to write device drivers that fully utilize PCIe shared-memory capabilities. For example, applica-
tions may use PCIe multicasting to stream data to several destinations in a single operation. It is
even possible to exploit memory locality to optimize data flow through the network.

6.2 Driver Implementation

By avoiding contention in command submission and completion paths and supporting up to 65,535
I/O queues per device, the NVMe standard [55] enables highly parallel operation. Figure 14(a) illus-
trates how NVMe utilizes a submission and completion queue mechanism. One or more submis-

sion queues (SQs) are paired with a completion queue (CQ), i.e., multiple SQs may be paired
with the same CQ. Commands posted to an SQ will be completed by an entry in the associated
CQ. Queues are implemented as ring-buffers, and are allocated in memory by the device driver
software as depicted in Figure 14(b). Each queue has its own dedicated doorbell register, avoiding

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:24 J. Markussen et al.

any contention. By allowing queues to operate in parallel, NVMe completely avoids locking and
other forms of synchronization between queues.

Figure 14(c) illustrates the basic operation of an NVMe device: The driver software places a
command, e.g., “read N blocks,” into an SQ. It then “rings” the associated SQ doorbell (by writing
the SQ tail pointer value). This notifies the NVMe device of how many new commands are ready
to be processed. The device fetches commands from SQ memory using DMA. After executing the
command, the drive writes a completion to the paired CQ, indicating the status of the operation.
The driver must poll CQ memory for new completions,5 and, as commands may be executed out of
order, the driver must keep track of command sequence numbers. Once completions are processed,
the driver notifies the NVMe device by updating the CQ doorbell (writing the CQ head pointer
value).

To configure I/O queues and manage the device, driver software must first “reset” the device.
This is done by clearing a control register on the NVMe controller and writing the base address of
the so-called “admin queues,” consisting of an admin SQ and an admin CQ. Whereas regular I/O
queues use an I/O command set, i.e., reading and writing blocks, the admin queues use a different
set of commands for managing the controller, e.g., creating and deleting I/O queues and retrieving
controller status.

Our driver implementation consists of a “manager” and one or more “clients,” running as
userspace software applications. The manager is responsible for initializing the NVMe device, con-
figuring admin queues and relaying admin commands on behalf of clients. A client is a userspace
process using one or more I/O queue pairs to read or write data from the NVMe device directly;
through using the SISCI API extension described in Section 6.1, the device can DMA directly to ap-
plication memory with minimal latency. Note that the device manager and clients in this instance
are not synonymous with the lender and borrowers. Any node in the cluster may run a manager
driver, and the same node may even run both a manager driver and client drivers.

Figure 15 illustrates how the driver implementation works. The manager, in this case running
on Borrower B, takes control over the NVMe device by using our SISCI SmartIO API extension
and borrowing the device. The device registers (NVMe BAR) are already exported as a memory
segment, allowing the manager to memory-map them into application address space. Also using
the API, the manager allocates a memory segment and maps it for the device (Segment B), re-
trieving the device-local I/O address (the address, as seen from the device). Finally, the manager
resets the NVMe device and sets up admin queues using the device-local I/O address with the ap-
propriate offsets. By having memory-mapped device registers, the manager may “ring” the queue
doorbell registers, notifying the device that an admin queue event has occurred. Similarly, as the
local memory segment is mapped for the device, the NVMe device is able to fetch commands and
post completions over the NTB.

A client driver also borrows the device using the API and memory-maps device registers. Addi-
tionally, it can allocate a local segment and map it for the device, retrieving the device-local I/O
address. By relaying admin commands using the manager, it can create SQs and CQs using the
device-local I/O address. As seen in Figure 15, Borrower A and Borrower C run client drivers and
have successfully requested I/O queues for themselves. With these in place, the NVMe device may
now be used for I/O, by multiple hosts in parallel. From the point of view of the device, the queues
are accessed just like they would be in local memory. In other words, our distributed driver imple-
mentation facilitate queue-level sharing of a non-SR-IOV NVMe device, enabling distributed I/O
with extremely low latency overhead.

5NVMe also supports using MSI/MSI-X interrupts to indicate CQ events, but our implementation relies on completion
polling alone.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:25

Fig. 15. Simultaneous sharing: The NVMe device can access queues residing in memory segments on differ-
ent hosts by mapping the segments for the device (DMA windows). Likewise, the borrowers must in turn
map the doorbell registers for their respective queues to notify the device about queue events. Each queue
has a dedicated register, avoiding any contention between borrowers.

6.3 Multipath Failover

An added benefit of using our SmartIO API extension is that it becomes possible for systems with
multiple NTB adapters to borrow the same device through different paths. In the case of our proof-
of-concept NVMe driver explained in Section 6.2, it becomes possible to set up redundant I/O
queues in advance, and set up mappings through different paths. If the primary path fails, then the
driver software may switch over to a backup queue.

Figure 16 illustrates how this is possible: the borrower maps the NVMe device BAR through
both its NTB adapters, providing it with two separate paths to the NVMe queue doorbell registers.
It can then set up two separate queue pairs in local memory, and by specifying which of the local
adapters it is using to reach the NVMe device, our SmartIO system will automatically resolve
which of the lender-side NTB adapters to configure DMA windows through. Having established
two separate paths, our NVMe driver then chooses one path as its primary path and the other for
backup. In the case of a link failure, our NVMe driver is notified either by NVMe I/O command
time-out events, or by the low-level NTB driver notifying the NVMe driver about a link event
affecting its mapped segments. Reads and writes to mappings that are inactive are terminated by

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:26 J. Markussen et al.

Fig. 16. Multipath failover: We can configure multiple NVMe queue pairs and mapping their memory for
the device through different NTB adapters. Similarly, we can also map doorbell registers through separate
adapters for the borrower. By having different paths for each I/O queue pair, we can continue operating the
NVMe even if one of the paths fail.

the local NTB adapter.6 Depending on the kind of failure, for example in the case of a cable being
yanked out and plugged back in again, the link may come back up again with mappings still valid.
In this case, our NVMe driver can resume using the old queue pair.

The link may become active again with invalid mappings. In the case of I/O queue pairs, this
is inconsequential as the NVMe standard supports deleting and creating I/O queues during oper-
ation; we can simply delete the old queues, set up new DMA windows and create new queues.
However, special care must be taken with regards to the admin queues as they cannot be deleted
and recreated without resetting the device and halting all operation. Because of this, we prefer run-
ning the manager driver (owning the admin queues) on the lender node. Even if a client’s path to
the manager is lost, it can have a backup communication path or can re-establish communication
if the path comes back up again, without requiring a reset of the device.

6.4 GPU Support

Many GPU-accelerated applications require fast access to storage. For example, the datasets in
big data and machine learning tasks can be hundreds of terabytes. As datasets’ size for typical
GPU workloads is only increasing, GPU applications become bounded by transfers between stor-
age and GPU. To overcome this, many GPUs permit peer-to-peer DMA to avoid unnecessary copies
via system memory [11]. For Nvidia GPUs, such peer-to-peer DMA with third-party devices is sup-
ported using GPUDirect [53]. Introduced in the 5.0 version of the CUDA API, memory allocated
on the GPU can be exposed through the GPU’s device memory regions. This allows third-party
devices, such as NVMe devices and network cards, to access GPU memory directly [70, 91]. Fig-
ure 17 illustrates the steps involved in reading from storage and loading data onto GPU memory
before launching a CUDA kernel7 on the GPU. The unnecessary steps of first having to read from
storage into system memory, and then copying the data to the GPU, as shown in Figure 17(a), can
be avoided. Instead, we can map GPU memory for the NVMe (using GPUDirect) and allow the
NVMe to access this memory directly using peer-to-peer DMA, as illustrated in Figure 17(b).

6Writes are simply dropped by the NTB. Read transactions will result in an unsupported request completion error, which
by convention sets all requested bytes to 0xFF’s.
7A software process running on a GPU is called a “kernel” in CUDA. This should not be confused with the OS kernel.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:27

Fig. 17. By exposing GPU memory through device memory regions (BARs), it is possible to read from storage
directly onto the GPU. This reduces the number of steps required for loading data in to GPU memory.

Fig. 18. Avoiding CPU synchronization: By hosting I/O queues in GPU memory and mapping doorbell reg-
isters for the GPU, a CUDA kernel running on the GPU can operate the NVMe without involving the CPU.

However, while the CUDA driver does a decent job with regard to pipelining and scheduling, ker-
nel launches are a costly operation from a computational point of view. A better approach would
be to avoid interleaving storage I/O and launches altogether, by allowing a long-running kernel
to initiate I/O instead. In version 8.0 of CUDA, additional support for registering device memory
with the CUDA driver was added to GPUDirect [90]. This feature makes it possible for CUDA
applications to use the GPU’s onboard DMA engine to access BARs of third-party devices. By
memory-mapping the NVMe’s BAR, and registering this memory with the CUDA driver, a CUDA
kernel can directly access doorbell registers. Similarly, the NVMe is able to fetch commands and
post completions to queues that are hosted in GPU memory by exporting GPU memory through
GPUDirect. Figure 18 depicts how both features of GPUDirect makes it possible to read from stor-
age directly without involving any software running on the CPU. By operating queues directly, a
long-running CUDA kernel can control the NVMe device itself. Loading and storing data can be

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:28 J. Markussen et al.

Fig. 19. By combining the SmartIO API extension and Device Lending, our NVMe driver supports direct ac-
cess to a remote NVMe from a borrowed GPU. To the CUDA driver running on the local system, both the
NVMe device and GPU appear local. Our SmartIO system injects necessary peer-to-peer mappings trans-
parently. Note that the GPU operates the NVMe independently; no CPU is needed to access storage.

initiated from the kernel running on the GPU, avoiding the CPU in the data path entirely. Not only
does this reduce the latency of loading data onto the GPU, as the kernel may simply batch up read
commands and initiate I/O on its own, but we also eliminate needing to schedule data copies from
RAM between costly kernel launches.

While controlling an NVMe device directly from a CUDA kernel is interesting in itself, it be-
comes particularly useful in the context of remote devices. Using our SmartIO API extension, our
NVMe driver implementation supports CUDA using GPUDirect, allowing queues and data to be
accessed directly in GPU memory and “ringing” queue doorbell registers from software on the
GPU. As our SmartIO system is aware of device memory regions and their BAR addresses, we
can set up such peer-to-peer mappings between remote devices in a manner that is transparent
for the CUDA driver. The NVMe may reside in the same host as the GPU, or a different host alto-
gether. Furthermore, the GPU itself may be remote to the host currently running the CUDA driver,
as depicted in Figure 19. By using Device Lending and inserting the borrowed GPU into the local
device tree, the CUDA application can launch kernels on a remote GPU. Since SmartIO resolves ad-
dresses between the different address spaces, the proprietary CUDA driver is completely unaware
that both NVMe and GPU are remote devices. To the application, and the local CUDA driver, de-
vice memory is available through virtual address pointers that is mapped by our API extension,
which are again passed to the GPU when the kernel is launched. This allows the kernel to operate
the (remote) NVMe device entirely independent, without involving CPUs or system RAM in the
data path at all.

6.5 Multicast

Some NTB-capable switch chips also support multicasting, as described in Section 3.2. Memory
writes to a multicast address are routed out on several switch ports. By reserving a continuous
address range and dividing it into equal sized “multicast groups,” the system can assign different

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:29

Fig. 20. Multicast support makes it possible for a single DMA operation to be replicated to multiple destina-
tions. It is possible to map multicast destination to system memory and device memory alike.

groups to different switch ports. Subsequently, it is possible to use different destinations for differ-
ent multicast groups.

However, not all devices support multicast. To overcome this, switches may use a “multicast
overlay BAR.” If a multicast write matches the overlay BAR on an outgoing switch port, then the
top part of the address is replaced with an overlay address. As such, the overlay BAR provides a
window into unicast address space for devices (endpoints) that do not support multicast natively.
For example, a multicast address may be mapped onto the BAR of a downstream device.

Figure 20 illustrates how we can use multicast to load data from storage to multiple destinations
in a single operation. Our SmartIO API extension allows setting up NTB mappings to multicast
addresses, allowing a single DMA write operation to be replicated by the switch chip hardware in
the cluster switches. When the multicast write reaches the egress NTB adapter, we use an overlay
BAR to map the address into anywhere in local address space as long as the destination memory is
linear. This makes it possible to set up mappings to either system memory or the BAR of a device,
for example GPU memory.

7 PERFORMANCE EVALUATION

The SmartIO system makes it possible to distribute PCIe devices in a PCIe-interconnected cluster.
Our implementation relies on several software and hardware components that enable access to
remote devices over the network. We have evaluated Device Lending and the MDEV extension in
our previous work, explaining performance differences as being caused by increased latency from
longer PCIe paths [48, 49]. However, by setting up the necessary memory-mappings in advance

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:30 J. Markussen et al.

and injecting these prepared mappings during use of the device as explained in Section 4.3, there
should not be any impact on performance. After all, we only rely on native PCIe in the critical path.
Although it may be extrapolated from our previous results that Device Lending and MDEV does
not cause any performance degradation, it is not concrete evidence. The assertion that our Smar-
tIO system has no performance overhead compared to local access warrants proper investigation,
something our previous evaluations partly lacked.

To remedy this, we present here an evaluation consisting of several, entirely new performance
experiments. These new experiments are designed to verify that our sharing techniques them-
selves do not add any performance penalty compared to local access. By comparing the perfor-
mance of using remote devices to using devices attached to a local PCIe bus, thus establishing a
“local baseline” for comparison, any overhead caused by our implementation should be revealed.
All parts comprising our SmartIO system is evaluated from multiple angles to verify that our so-
lution is in fact “zero-overhead.” Not only do we here revalidate our previous findings [48, 49],
but we also argue that this improved evaluation supersedes our previous work, as we present
updated performance results using more recent hardware. In addition, we present evaluations
on other parts of the system that have not been presented in earlier work, such as an isolated
latency analysis of our memory-mapping routines, and an evaluation of the shared-memory capa-
bilities of our new NVMe driver. In total, this gives a complete evaluation of the entire SmartIO
system.

We have organized the evaluation of the different components of our SmartIO system as follows:

• In Section 7.1, we perform a series of experiments comparing Device Lending to local con-
figurations, showing that our implementation does not cause any performance degradation
beyond what is expected for deeper PCIe device trees. Additionally, we prove the capabil-
ity of running unmodified software and device drivers, by using standard benchmarking
applications and native device drivers.
• In Section 7.2, we evaluate the usefulness of Device Lending for realistic workloads by

presenting the performance of an image classification application implemented for Keras
and Tensorflow [1, 2]. By training a convolutional neural network using several remote
devices from different hosts, we prove the capability of Device Lending for scaling heavy
workloads.
• We evaluate our MDEV implementation in Section 7.3, where we pass-through physical

GPUs to a VM guest and benchmark DMA performance. We are able to demonstrate that
our implementation achieves the same performance as bare-metal configurations.
• Experiments using our distributed NVMe driver are presented in Section 7.4. We demon-

strate the flexibility of shared-memory clustering and our distributed device driver API by
demonstrating how memory locality can be fully exploited to reduce latency. Additionally,
we prove the latency benefit of using PCIe networking by comparing our implementation
to a state-of-the-art NVMe-oF implementation using InfiniBand RDMA.

Note that throughout our evaluation, we have used different software versions for the differ-
ent experiments, such as different Linux distributions and CUDA installations. This is to fully
demonstrate that our SmartIO system is not limited to a specific Linux version, but works for a
wide variety of distributions and software versions, including older versions. We make a point
of using standard and unmodified benchmarking software for our tests. Furthermore, while we
relied mostly on GPUs in our previous evaluations, we present here results using GPUs, network
adapters, and NVMe devices to show that we can share any standard PCIe device. This has the
added benefit of demonstrating several sharing scenarios for a range of applications, which are

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:31

made possible by our SmartIO solution. For each set of experiments, we explicitly state what kind
of hardware and software is used in the configuration.

7.1 Device Lending

Our previous Device Lending evaluations focused on investigating how the increased latency from
longer PCIe paths affects performance with regard to increased DMA latency and decreased link
utilization [48, 49]. In the past, we have argued that this difference in performance is very small
when compared to other device distribution mechanisms, such as RDMA. While it may be extrap-
olated from our results that our implementation does not cause any performance degradation, it is
not sufficient evidence by itself that the performance difference is only caused by additional switch
chips in the PCIe paths.

Device Lending makes it is possible for application software on a local system to use remote
devices without requiring any modifications to device drivers, or even the OS. Comparing the
performance of using remote devices to a local baseline can be done by creating local PCIe device
trees that are as similar to to the Device Lending scenarios as possible, since all other conditions
are the same. We have performed a series of new experiments comparing Device Lending scenarios
to local performance using a BP-457-ATX PCIe expansion chassis, to create PCIe paths with the
same number of switch chips (or “hops”) for both local and remote topologies.

7.1.1 Latency Tests. To prepare a DMA transfer, memory must be mapped for a device. This
involves locking pages in memory so they are not swapped out and resolving their I/O addresses.
For reading from block device, i.e., a storage device, the Linux block-layer pin the pages used by a
memory buffer and create a scatter/gather list containing the physical addresses of the buffer. This
list is then passed to the device driver, which in turns iterates the list and resolves I/O addresses by
using the Linux DMA API. If the IOMMU is enabled, then the same API is used to set up IOMMU
mappings for the device. The driver can then use these I/O addresses and initiate DMA transfers.

As explained in Section 4.3, by inserting a shadow device into the local PCIe tree, our De-
vice Lending mechanism has a “hook” in the DMA API. When the device driver calls the DMA API
using the shadow device, we can calculate offsets and inject corresponding I/O addresses that map
over the device-side NTB. This allows us to prepare mappings over the NTB in advance (“DMA
windows”), and no communication between the lender and borrower is required. However, the
software routine that calculates offsets may still have an impact on performance, particularly in
the case of device drivers that frequently maps and unmaps memory for a device.

To measure any performance impact of our mapping routine, we have used the Flexible I/O

tester (FIO) [9]. FIO is a widely used userspace application for benchmarking the performance of
storage devices, such as NVMe devices. By configuring FIO to perform reads and using the sync
engine, FIO opens a file descriptor to the block-device setting the O_DIRECT and O_SYNC options.
This combination of options allows Linux to perform zero-copy reads from storage, bypassing
the block-cache and forcing the block-layer and NVMe driver to map and unmap the userspace
buffer for every single read operation. In other words, this FIO benchmark configuration forces
our mapping routine to be invoked as part of the critical path.

Figure 21 shows the hardware topologies for our test scenarios:

• Local Baseline, shown in Figure 21(a): An expansion chassis connected to a local host run-
ning CentOS 7, using the 3.10 version of the kernel and the built-in NVMe driver. We are
running FIO version 3.7 as available from the CentOS 7 software repositories.
The expansion chassis is connected to the upstream host through One Stop Systems HIB68-
x16 target adapter cards. These adapters use the same Broadcom PEX8733 switch chip used

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:32 J. Markussen et al.

Fig. 21. We benchmark our Device Lending driver software by using an NVMe benchmark that calls our
mapping code in the critical path (FIO). By using an expansion chassis, the NVMe device is the same number
of hops away from the CPU currently using it for both the Local Baseline comparison and Device Lending.
The only difference is whether the switch chip is configured in transparent or NTB mode.

in the Dolphin PXH830 NTB adapters.8 By placing the NVMe device in an expansion chassis,
we were able to create a similar PCIe path for both test scenarios. Additonally, the IOMMU
was disabled, to make the configuration comparable to Device Lending described below.
• Device Lending, shown in Figure 21(b): Two are connected together in a back-to-back topol-

ogy, using Dolphin PXH830 adapter cards and external PCIe cables Both hosts are running
CentOS 7 with the 3.10 kernel, and the local system running the benchmark has borrowed
the remote NVMe and inserted it into the local PCIe tree and using the in-kernel NVMe
driver. The IOMMU on the borrower is disabled, and we have configured the the DMA win-
dow size large enough to map the entire memory of the borrowing system. By disabling the
IOMMU on the borrower, we make sure that the only latency overhead is our own mapping
routine. The same expansion chassis configuration as in the local baseline is used, and by

8While it is possible to configure the PXH830 adapter cards in transparent mode rather than NTB mode, the One Stop
Systems expansion chassis used in our tests uses a non-standard connector pin for the PCIe clock signal. In lieu of the
possibility of putting the PXH830 in transparent mode, we therefore use HIB68-x16 adapters.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:33

disabling the IOMMU on the lender, PCIe transactions are routed peer-to-peer as illustrated.
This ensures that the NVMe device is the same number of switch chips away from the CPU
currently using it, making the configuration comparable to the local baseline configuration
described above. The only difference is whether the switch chip in the adapter cards is con-
figured in transparent or non-transparent mode (NTB).9

In both scenarios, FIO was configured to perform 8,192 reads per run, each read is a page-sized
(4 kB) chunk at an offset generated by a pseudo-random generator. As FIO reuses the same buffer
for every read call, we ran FIO several times and concatenated the results. In addition, we reloaded
the NVMe driver between each fourth run to force the system to use different memory locations for
the internal I/O command queues. Moreover, we also rebooted the system between each eighth run
of FIO to ensure that the results were the same across multiple system reboots. In short, for both
scenarios, we had 10 reboots, 2 reloads of the NVMe driver per reboot, 4 FIO runs per driver reload,
and 8,192 read operations per run. As the purpose of this test is not to benchmark the performance
of the NVMe device, but rather a potential overhead of our Device Lending mechanism, the NVMe
drive we have used is a prototype RAM disk with an NVMe controller from PMC-Sierra. This is to
avoid any effects caused by prefetching and caching that modern SSDs are capable of.

Figure 21(c) shows the latency distribution of read operations for both using a local NVMe device
(Local Baseline) and when accessing a remote NVMe device using Device Lending. Although the
purpose of the test is simply to compare Device Lending to local access, it is interesting to note
that the distributions have distinctive “spikes” occurring at regular intervals. We suspect that these
spikes may be caused by a combination of task scheduling in the kernel and interrupt aggregation
by the NVMe device. We see that the two distributions overlap, and the medians differ with 23 ns.
Considering the spread of the distribution, this is not statistically significant. We argue that this
demonstrates that there is no significant difference in performance for local and remote.

7.1.2 Throughput Tests. As mentioned in Section 4, it is not feasible for a lender to map the
entire memory of multiple borrowers in a cluster. This would potentially require setting the NTB
BAR size larger than what system limitations permits. Furthermore, not all devices support high
I/O addresses, and such devices would be unable reach the higher address offsets of the NTB for
large DMA windows. To overcome this, our implementation uses the IOMMU on the borrower
instead. By using the borrower-side IOMMU, we can create continuous address ranges using pre-
determined I/O addresses. These continuous ranges are trivially mapped by the device-side NTB
(DMA windows) and can be done in advance. However, this requires dynamically adding memory
pages to the IOMMU domain when the device driver is preparing DMA buffers. Our implemen-
tation must also make sure to not choose virtual I/O addresses that risk thrashing the IOMMU
translation look-aside buffer [7].

By performing large DMA transfers, we saturate the PCIe links with DMA traffic and also stress
system memory. This allows us to investigate if there is any performance difference between using
a local device or a borrowed, remote device for high-throughput workloads. Any overhead caused
by our IOMMU support would show as a noticeable performance difference in the achieved mem-
ory throughput. Figure 22 shows the hardware topologies used in our tests:

• Local Baseline, shown in Figure 22(a): A local system using a local Nvidia Quadro P4000
GPU in an expansion chassis. As with the NVMe tests, we use an expansion chassis to
make the PCIe path similar to the Device Lending scenario. The IOMMU on the local

9Since an NVMe read operation involves a register write, several DMA transactions and interrupts, comparing similar
hardware topologies would also reveal any latency overhead in the address translation mechanism of the NTBs as well.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:34 J. Markussen et al.

Fig. 22. By performing large DMA transfers, any overhead in the critical path would have been revealed as
a difference in performance. As performance is the same for Device Lending and the Local Baseline, this is
not the case, and the performance is indeed similar.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:35

CPU is enabled, and the Linux kernel decides IOMMU mappings. This makes the scenario
comparable to the Device Lending scenario below.
• Device Lending, shown in Figure 22(b): Two hosts connected back-to-back using Dolphin

PXH830 NTB adapter cards, one host is borrowing the Quadro P4000 GPU. The IOMMU
on the lender host is disabled, to enable DMA transfers to be routed shortest path over the
NTB in the expansion chassis, making this scenario comparable to the Local Baseline. Since
the GPU used in our tests is unable to reach high I/O addresses, mapping the entire memory
of the borrower is not possible. Because of this, we configured the NTB BAR size to 1 GB.
This is small enough for the system to place the NTB at low addresses during the PCIe bus
enumeration described in Section 3.1. Since the IOMMU on the borrower is enabled, we can
detect any overhead in how we use the IOMMU compared to the Local Baseline.

We installed version 10.1 of CUDA (418.39 version of the Nvidia driver), and the systems are
running Ubuntu 18.04.2 with the 4.15 version of the kernel. We used the bandwidthTest program
to create the workload. This CUDA program uses the GPU’s on-board DMA engine to copy data
between GPU memory and system memory, and is included in the CUDA Toolkit sample pro-
grams [54]. For both scenarios, we configured bandwidthTest to initiate 1,000 DMA writes to sys-
tem memory, and 1,000 DMA reads from system memory. We repeated this for sizes from 4 kB to
128 MB, to reveal any trends in increased transfer sizes.

Figure 22(c) depicts the results of our test, with DMA writes in the top row and DMA reads in
the bottom row. The different transfer sizes are plotted along the X-axis. The left column depicts
the median of 1,000 runs. To show that even the distribution of measurements are similar for lo-
cal and remote, we depict the min–max distance of the reported throughput samples on the right
column. Since the Nvidia driver actively trains down the PCIe link to conserve power consump-
tion, we enabled persistence mode on the GPU. However, this was not enough to entirely avoid
that the GPU’s DMA engine takes some time to “warm up” caches on the GPU. Because of this,
measurements below the 0.1th percentile are marked as outliers. The throughput for Local Base-
line and Back-to-Back scenarios overlap almost perfectly, which should be interpreted as a strong
indication that our Device Lending implementation does not introduce any overhead compared
to local performance. Finally, we also observe a strange effect for DMA reads where the achieved
throughput for Device Lending appears to overtake local performance. This “boost” is statistically
significant, as can be seen in the min–max plot. We do not fully understand what causes this effect,
but we suspect that it may be caused by different IOMMU mappings for the Local Baseline and De-
vice Lending scenarios, since they are decided by the kernel and our implementation, respectively.

7.1.3 Longer PCIe Paths. PCIe transactions are either posted or non-posted operations, meaning
that some transactions require a completion to be sent back. DMA reads are requests that require a
completion with data. As such, reads are affected by the number of hops in the data path between
requester and completer; the longer the path, the higher the request-completion latency becomes.
In addition, the PCIe data link layer uses a credit-based flow control algorithm. The number of
requests in flight is limited by how many uncompleted transactions a PCIe requester is able to
keep open. Since it is not allowed to send more than the maximum payload size at the time,10

a requester may need to split requests into several transactions. Longer paths can therefore re-
duce DMA performance, as the link becomes underutilized when the distance between device and
memory increases.

10The maximum payload size for a device is configured by the system. While it can be configured individually for each
device, it is usually configured to be the same for all devices in the PCIe tree due to several practical reasons, and is most
commonly set to 128, 256, or 512 bytes.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:36 J. Markussen et al.

Fig. 23. By increasing the distance with a single hop, we are able to determine the impact of longer PCIe
paths on DMA performance. DMA reads are particularly affected by the decreased link utilization.

We used the bandwidthTest program described in Section 7.1.2 and a borrowed, remote Nvidia
Quadro P4000 GPU. Figure 23 shows the topologies used to evaluate the performance impact of
increased PCIe paths. By increasing the distance between device and memory with an additional
hop, namely, the Microsemi PM8536 PFX switch used internally in the MSX824 cluster switch, we
can compare the performance to the Back-to-Back scenario. The hosts are running Ubuntu 18.02.2
with the 4.15 version of the Linux kernel. As with our previous tests, we used CUDA version
10.1.

Figure 23(c) shows the results of our test. As expected, the additional hop in the Cluster Switch
scenario affects DMA performance. We can see that smaller writes are affected by the increased
latency through the switch, because even small differences in delay impact the time it takes for
transactions with data to arrive. However, this additional latency becomes less significant for larger

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:37

writes, as the number of transactions in flight increases. We see that the throughput converges
towards the Back-to-Back performance for transfers larger than 512 kB.

DMA reads suffer noticeably from the increased distance. Unlike writes, which are posted trans-
actions, the number of read requests simultaneously being held open is limited. Moreover, PCIe
allows a completer to respond with less data at the time than is actually requested. For example, a
read requesting 512 bytes may terminate with 2 completions containing 256 bytes each, rather than
a single completion with all 512 bytes. This depends on the maximum payload size and maximum
read request size, configured by the system. Since the time before completions arrive increases be-
cause of the longer distance between the GPU and system memory, the link becomes underutilized
as there are fewer transactions in flight. We observe this as a drop in the measured throughput, as
seen on the right-hand plot in Figure 23(c).

7.1.4 Peer-to-peer: Local vs. Remote. In addition to enabling access to individual remote devices,
Device Lending also supports creating groups of arbitrary devices and enabling direct peer-to-peer
access between them (shortest-path routing). To show that the address resolving method described
in Section 4.4 enables shortest-path routing and to demonstrate that relying on the borrower-
side IOMMU does not disrupt peer-to-peer transactions on the lender, we have performed DMA
throughput and latency tests using two Nvidia Quadro P4000 GPUs. The borrower uses CUDA
10.1 with the 418.39 version of the Nvidia driver, and both borrower and lender run Ubuntu
18.04.2 with the 4.15 version of the Linux kernel. The configurations of the tests are shown in
Figure 24:

• Local Baseline, shown in Figure 24(a): A local system using two local GPUs in an expansion
chassis. We have disabled the IOMMU on the local CPU, to enable shortest path routing
within the expansion chassis.
• Device Lending, shown in Figure 24(b): Two hosts connected together using Dolphin

PXH830 NTB adapter cards. Note that we also use a Dolphin MXS824 PCIe cluster switch in
this test. Even though the switch increases the distance between CPU and two GPUs, it does
not matter in this test; we only measure traffic between the two GPUs. The IOMMU on the
lender is disabled to allow shortest path routing. Since the GPUs used in our tests are unable
to reach high I/O addresses, we configured the DMA window size to 1 GB and enabled the
IOMMU on the borrower.

Figure 24(c) shows the result of using the CUDA bandwidthTest program to copy memory from
one GPU to the other using the first GPU’s on-board DMA engine. For each transfer size, we
configured bandwidthTest to do 1,000 transfers. On the left, we show the median throughput, and
we show the distribution as a min–max distance on the right. Note that GPU memory latency
varies significantly more than RAM (as seen in Figure 22).

Using the same topologies as depicted in Figure 24, we have also measured the latency of DMA
writes between the two GPUs. We developed a small CUDA program to measure peer-to-peer
latency, as depicted in Figure 25(a). One GPU is tasked with increasing a counter, writing it to the
other GPU’s memory and waiting for an acknowledgement. The other GPU waits for the counter
to increase by one, and acknowledges the received counter by writing it back to the first GPU.
The whole round-trip is measured by recording the current GPU clock cycle and dividing it by
the clock frequency. We call the elapsed time of one cycle of DMA transfers back and forth the
ping–pong latency. For getting the clock cycles, we use the clock64() function. We measured that
calling this function takes around 32 ns on the P4000 GPUs. We also measured that reading from
the local memory pointer takes around 15 ns. While this skews the results somewhat, we argue
that the skew should be identical for both scenarios.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:38 J. Markussen et al.

Fig. 24. Peer-to-peer throughput: We demonstrate that our Device Lending implementation supports short-
est path routing by comparing peer-to-peer DMA performance. The IOMMU on the borrowing system does
not affect traffic between borrowed devices.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:39

Fig. 25. Peer-to-peer latency: by implementing a ping-pong program in CUDA, we can measure the latency
of DMA writes between two GPUs. One GPU writes a 4-byte message to the other GPU’s memory, before
waiting for an acknowledgement and recording the time before and after (ping). The other GPU waits for
the message and sends an acknowledgement back (pong).

Figure 25(b) shows the latency distributions for the Local Baseline and Device Lending scenar-
ios for 100,000 ping-pong iterations each. As the distribution has three distinct “steps,” with no
measurements falling in between, we present it as a set of percentiles rather than a histogram.
We see that the distributions of throughput and latency measurements are similar for both sce-
narios, proving that there is no difference between local and remote. From this, we can conclude
that our implementation supports shortest-path routing between two devices, without adding any
overhead in the critical path.

7.1.5 Peer-to-peer: Multiple Lenders. As described in Section 4.4, our Device Lending imple-
mentation also supports shortest-path routing between devices even when they reside in different
lender systems. By composing a PCIe infrastructure consisting of devices spread out over multiple
hosts in the cluster, the PCIe device tree unavoidably becomes deeper. While this can potentially
increase resource utilization significantly, we need to evaluate the performance impact of moving
resources further away as each additional hop in the data path will slightly increase the latency.

By using the same peer-to-peer benchmarks described in the previous section, we have evalu-
ated the impact of moving one of the GPUs to a third host. Figure 26 illustrates the topologies of
our comparison tests:

• Same Lender, shown in Figure 26(a): Using two GPUs from the same lender. As we estab-
lished in the previous section, this scenario is similar to a local system using local devices.
• Different Lenders, shown in Figure 26(b): Using two GPUs from different lenders. DMA

transactions have to traverse four additional hops (NTB, cluster switch, NTB, internal
switch) compared to the baseline. We expect the additional latency to manifest itself as an
observable performance difference when compared to the Same Lender scenario:

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:40 J. Markussen et al.

Fig. 26. Peer-to-peer throughput: We evaluate the impact of increasing the distance between the devices.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:41

Fig. 27. Peer-to-peer latency: using a ping–pong CUDA program, we measure the latency of DMA writes
between two GPUs residing in different hosts. While the additional hops increase the ping–pong latency,
this is expected for longer PCIe paths.

— The PEX8733 switch chip used in the PXH830 NTB adapters specifies that up to 132 ns
may be added to a transaction in worst-case [13].

— The internal PEX8796 chip used internally in the expansion chassis can add up to 150 ns
to transactions in worst case [14].

— Experiments in our lab show that the PM8536 PFX chip used internally in the MXS824
cluster switch adds an average latency of around 170 ns.

All hosts are running Ubuntu 18.04.2 with the 4.15 version of the Linux kernel. As before, the
borrower is using CUDA 10.1 with the corresponding 418.39 version of the Nvidia CUDA driver.

Figure 26(c) shows the result of running the CUDA bandwidthTest program, copying memory
from one GPU to the other using the on-board DMA engine with different transfer sizes. Fig-
ure 27(b) show the ping–pong latency using the CUDA program we described earlier. While we
observe that the additional distance affects the measured throughput and back-and-forth latency,
this difference is less than the worst case. This is a strong indicating that our implementation does
not add any additional latency beyond what we expect from the hardware. We argue that the added
latency from increasing the distance between GPUs is a reasonable trade-off with regards to in-
creasing device utilization. It is also possible to optimize for data movement by borrowing devices
that are physically close to each other in terms of number of hops, thus minimizing the distance
between them. Finally, we can observe that when conditions are comparable, i.e., the PCIe path
is similar, the performance is the same. We argue that this demonstrates that our Device Lending
implementation does not add any overhead. After all, the speed of electrons through the silicone
of the hardware is beyond the scope of our implementation.

7.1.6 Sharing SR-IOV Devices. As mentioned in Section 3.1, the term “device” actually refers
to individual PCIe endpoints, or rather device functions. Some devices may implement SR-IOV,
allowing a single device to virtualize multiple device functions in hardware. Each virtual function
appears to the system as a separate device function with its own resources. Since our SmartIO

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:42 J. Markussen et al.

system does not make any distinction between physical and virtual functions, it is possible to
disaggregate an SR-IOV device and assign a virtual function to a remote host (without any per-
formance penalty) the same way SmartIO distributes physical functions. Therefore, we have con-
ducted experiments using a Mellanox ConnectX-5 100 Gigabit Ethernet adapter, which supports
up to 1024 virtual functions [81]. Each virtual function implements a (virtual) Ethernet controller.
By generating high network throughput and comparing the performance of a virtual function to
the performance of the physical function, for both a local system and a remote system using De-
vice Lending, we argue that this will reveal any hidden performance overheads caused by our
implementation that could affect hardware virtualization.

To create network workload and generate network traffic, we have used the iperf2 tool. This tool
is widely used for measuring network performance, and is available on most Linux distributions.
iperf2 supports creating TCP data streams between a client, running on a local host, and a server,
running on a remote host. The client writes as much data to the TCP stream as it is able to, and the
server reads from the stream.11 In this respect, TCP is designed to provide a reliable data stream
over a lossy IP network where the kernel is involved in encapsulating raw data into TCP segments
and IP packets, managing transmission and receive buffers, handling retransmissions and flow
control, and network congestion avoidance—all of which require CPU time. Therefore, to fully
saturate a 100 Gigabit link without becoming CPU-bound, iperf2 supports spawning dedicated
threads for each individual TCP connection on both the server and the client. Each individual
thread can run on its own CPU core.

Figure 28 depicts the configuration used in these tests, where the client connects to the server
running on the receiver host:

• Local Baseline, shown in Figure 28(a): A local system using its local network adapter to
connect to the dedicated Receiver Host, running the iperf2 server. The iperf2 client is running
on the local CPU. We ran one test using the adapter’s physical function and one test using
one of the adapter’s virtual functions, to rule out any performance overhead caused by the
virtualization.
• Device Lending, shown in Figure 28(b): A borrower using a remote network adapter to

connect to the dedicated Receiver Host. As with our Local Baseline tests, we borrowed first
the physical function and then the virtual function, to rule out any performance difference.

All hosts run Ubuntu 18.04 with the 4.15 version of the Linux kernel, using the in-kernel Mellanox
Ethernet driver. To compare apples to apples, we have disabled the IOMMU on both lender and
borrower, as well as on the receiver host. In all cases, the iperf2 client runs for a duration of
five minutes, writing to the TCP streams and reports the throughput every half-second. The client
and the server were configured to use four parallel connections, and, consequently, using four
threads each. We relied on the default kernel scheduler to schedule threads on different CPU cores.
We also experimented with various network related settings in the kernel, such as increasing buffer
sizes and using alternative TCP congestion control mechanisms. Additionally, we tried different
offloading mechanisms supported by the adapter. However, besides setting the Ethernet maximum
transfer unit to 9,000 bytes (“jumbo frames”), the default 4.15 kernel settings and disabling all forms
of offloading provided highest throughput.

Figure 28(c) shows the throughput measurements of our comparison, with performance for a
physical function shown on the left (PF), and performance for a virtual function on the right (VF).
Note that while it is common to describe network performance in terms of Gigabits, we have

11The behavior of iperf2 is perhaps counter-intuitive. In most client/server applications, the client will typically request
data from the server rather than the server acting as a receiver. We have used the same terminology as the program uses.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:43

Fig. 28. TCP throughput comparison: We compare the achieved throughput for a client/server application.

plotted performance in terms Gigabytes to be consistent throughout this article. By comparing
the performance of these functions being used locally (Local Baseline) and remote (Device Lend-
ing), we prove that accessing a borrowed virtual function does not introduce any performance
overhead. Additionally, we also observe that for the Mellanox adapter used in this experiment,
there is no measurable difference when using a virtual function compared to using a physical
function.

Moreover, multiple hosts can share the same device by distributing individual virtual functions.
Since most SR-IOV-capable devices support several virtual functions, this becomes highly useful

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:44 J. Markussen et al.

Fig. 29. Two hosts using the same SR-IOV-capable network adapter simultaneously.

with regard to our SmartIO system. To demonstrate this, we have performed an additional test
where the lender and the borrower share the same sender-side network adapter simultaneously,
to transmit data to the receiving server. Figure 29(a) shows the topology of this multi-host sharing
test. We configured two virtual functions for the network adapter and assigned them to the two
hosts: One function is used locally by the lender, and we run an iperf2 client on the lender with
two parallel connections (threads) to the iperf2 server (Client on Lender). The other function is
used simultaneously by the borrower, and we run an iperf2 client on the borrower as well, also
using two threads (Client on Borrower).

Figure 29(b) shows the results of our multi-host test, where we have plotted the reported
throughput for both clients. The server’s reported received data rate, which is the combined rate of
the two clients, is also shown. While throughput for the two clients fluctuate a little, they approach
the same throughput over time (as can also be seen by comparing the mean throughput). This is
expected behavior for TCP streams, as they alternate between increasing transmission rate in an
attempt to estimate the available network bandwidth, and backing off when they exceed their fair
share of the total capacity.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:45

Finally, it should also be mentioned that sharing the Mellanox network adapter does not only
provide connectivity to the receiver host for both lender and borrower, but it also becomes possible
for the lender and borrower to establish IP connections to each other as well. In a larger PCIe cluster,
this could be useful for IP network applications that could communicate with each other, using
only a single network adapter and without sending a single packet out on the Ethernet link.

7.2 Scaling Heavy Workloads

Another method of demonstrating that there is no hidden overhead in our Device Lending imple-
mentation, is investigating how it behaves under stress. It might be the case that there are small
overheads caused by the implementation that only become visible when the system is under heavy
load. Because of this, we have also designed an experiment using a realistic GPU-intensive machine
learning workload, to prove that Device Lending is a solution for composable and disaggregated
PCIe infrastructure suitable for real-world applications.

Our workload is a typical convolutional neural network training using the Python machine
learning framework Keras [1]. Keras is a high level framework that wraps different lower level
machine learning frameworks. In our case, Keras uses Tensorflow [2] as its back-end. Keras also
allows multiple GPUs to work together, by replicating the machine learning model being trained
on each of the GPUs, and splitting the model’s inputs into “sub-batches” and distributing them
on the GPUs. When the GPUs are done, the sub-batches are concatenated on the CPU into one
batch. This introduces quasi-linear speed-up. We used Python 3.6 and Keras 2.2.4, running on
Ubuntu 16.04 (4.9 kernel) with CUDA 9.0 and cuDNN 7.1 in our tests.

We wrote a program that trains available models in Keras on given datasets with given hyperpa-
rameters using transfer learning [57]. In our case, we use a VGG19 [76] model that is pre-trained
on the ImageNet dataset [20], and the model was re-trained using an 8-classes image dataset of
the gastroaintestinal tract called Kvasir [30, 63, 64] to perform disease classification [65].

We measure the runtime of 12 epochs of the model training on two Nvidia P4000 GPUs as
well as loading images from storage and writing the results back using an Intel Optane P4800X
NVMe device. While 12 epochs may not give the statistical significance needed for reliable machine
learning results, we are only interested in system performance. Both GPUs and the NVMe were
used in all scenarios. Figure 30 shows the scenarios and results of our experiment:

• Local Devices, shown in Figure 30(a): A local system using both GPUs and the NVMe device
locally. This scenario serves as our baseline comparison. The IOMMU is disabled, to allow
peer-to-peer transactions between the GPUs.
• Single Lender (not depicted): A borrowing system connected back-to-back and accessing

all three devices remotely. The number of hops in the path is similar to the Local Devices
scenario. The IOMMU on the lender is disabled, while it is enabled on the borrower to shrink
the DMA window size down to 1 GB. We can see from the results in Figure 30(c) that this
scenario achieves approximately the same epoch runtimes as the local comparison scenario,
demonstrating that there is no hidden overhead in our Device Lending implementation.
• Two Lenders, shown in Figure 30(b): A borrowing system accessing devices from two sepa-

rate lenders. The IOMMU on the borrower is enabled, while it is disabled on both lenders. As
the GPUs reside in different hosts, the path between them increases. This appears to slightly
affect the epoch runtimes, as seen in Figure 30(c).

Our machine learning workload proves it is possible to use Device Lending for realistic
workloads in a PCIe cluster, dynamically creating configurations of both local and remote devices
and accessing them without any performance penalty beyond what is expected for longer PCIe
paths. We argue that this effectively demonstrates the capacity of our implementation for creating

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:46 J. Markussen et al.

Fig. 30. Scaling heavy workloads: We demonstrate the usability of SmartIO for composable and disaggre-
gated PCIe infrastructure, by comparing the performance of running a GPU-intensive machine learning
workload on a local system using local devices to Device Lending using remote devices. As data is moved
between the GPUs, the increased distance between them affects the total runtime. However, we can see that
when the devices reside in the same host, our Device Lending implementation does not add any measurable
overhead.

a disaggregated PCIe infrastructure that supports dynamic scaling of devices that are distributed
in the cluster.

7.3 VM Pass-through with MDEV

While VFIO pass-through enables direct access to local physical devices from a VM guest, our
MDEV pass-through mechanism enables direct access to remote devices. However, our MDEV ex-
tension to KVM requires the use of an IOMMU on the lender to map the device into the same guest-
physical address space as the VM as explained in Section 5.2. This effectively disables shortest-path
routing in the fabric, as transactions must be forwarded through the CPU on the lender in order
for the IOMMU to resolve virtual addresses to physical addresses. Intuitively, we expect this to
cause some performance degradation.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:47

7.3.1 IOMMU Performance Penalty. Processor designs are complex and often not well-
documented, making it difficult to determine what exactly happens with memory transactions
in progress once they leave the PCIe root complex and enter the CPU. Memory transactions may
be buffered while awaiting IOMMU translations, or the IOMMU may need to perform a multi-level
table look up for resolving addresses.

To distinguish between overhead caused by our software implementation and any overhead
caused by the hardware address virtualization, we compare the performance of the MDEV im-
plementation to bare-metal performance using Device Lending. As described in Section 4.3, De-
vice Lending includes optional IOMMU support allowing us to isolate the performance penalty
of enabling the IOMMU. As such, this establishes a baseline we can compare our MDEV imple-
mentation with. Note that our exhaustive evaluations of Device Lending presented in Section 7.1
demonstrate that the Device Lending mechanism does not add any performance overhead com-
pared to native access. Therefore, we argue that Device Lending a valid bare-metal comparison to
our MDEV implementation to reveal any overhead caused by MDEV.

Two hosts are connected back-to-back with Dolphin PXH830 NTB adapters, and we use the
same One Stop Systems expansion chassis as our previous tests. We installed an Nvidia Tesla K40c
GPU alongside the NTB adapter in the chassis. The expansion chassis is connected upstream using
Dolphin MXH832 host and MXH833 target transparent adapters. By turning the IOMMU on the
lender on and off, we are able to compare the performance difference of address virtualization on
peer-to-peer DMA transfers over the NTB. By using the expansion chassis, we are able to create
a worst-case scenario for enabling the IOMMU, as the distance between the devices and the CPU
increases. Figure 31(a) depicts the three scenarios compared in this evaluation:

• Bare-metal No-IOMMU, where we use Device Lending to facilitate direct access to the
remote GPU. The IOMMU on the lender is turned off to enable shortest-path routing within
the expansion chassis. Since the GPU is unable to reach high I/O addresses, we enabled
the borrower-side IOMMU and configured the DMA window size to 512 MB. We also made
sure that the bandwidthTest program ran with the same CPU core affinity as the local NTB
adapter.
• Bare-metal IOMMU is similar to the No-IOMMU scenario in every way, except that lender-

side IOMMU is enabled. By using the lender’s IOMMU, we are able to configure larger DMA
windows while still setting up mappings over the NTB for the GPU using low addresses.
Note that since we are using the expansion chassis, this becomes the aforementioned worst-
case scenario for Device Lending; all transactions must be routed towards the lender’s CPU
so that the IOMMU can resolve virtual I/O addresses. As with the No-IOMMU scenario, we
made sure to run the bandwidthTest program with the same CPU core affinity as the local
adapter.
• MDEV: We also installed Qemu 2.10.1 on the local host and configured it to use the KVM

hypervisor. Using our MDEV extension to KVM, we borrow and “pass through” the GPU to
the VM guest, enabling direct hardware access to the guest driver. The VM was configured to
have 4 GB memory, and we used 2 MB “huge pages” on the host. Our MDEV implementation
probes the VM for low and high guest physical memory dynamically, and sets up respective
DMA windows. Because of this, we need to configure the NTB BAR size to be larger than
the VM memory. Finally, we also made sure that Qemu ran with the same CPU core affinity
as the local NTB adapter.

We installed Ubuntu 16.04 with the 4.10 version of the Linux kernel on both machines, as well
as the guest OS in the VM. Although Device Lending is currently only supported on Linux, any
guest OS would have been possible, including Microsoft Windows. However, we chose to use

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:48 J. Markussen et al.

same version of Linux as both host and guest OS, to run as similar software as possible in all
scenarios. CUDA version 9 was installed on the local host and in the VM guest. We used the
bandwidthTest program described in Section 7.1, to measure the throughput of DMA writes and
DMA reads to system memory using the GPU’s own on-board DMA engine. As with our previous
evaluations, bandwidthTest was configured to do 1,000 iterations for each transfer size from 4 kB to
128 MB.

Figure 31(b) shows the median DMA read and write throughput for all three scenarios. We
observe that the throughput drops significantly when the IOMMU is enabled, particularly for reads
(drops from 10.2 GB/s to just a little over 1.5 GB/s. There are two primary reasons for this significant
performance drop:

(1) Reads suffer particularly from the increased distance, as addresses are routed through the
lender’s CPU twice per transaction; the first time in order for the IOMMU to translate the
addresses of the read requests, and the second time for completions with the requested data.

(2) By using a PCIe tracer, similar in concept to that of network packet tracers, we were able to
investigate what the actual transactions look like on the fabric. By first using the tracer in the
GPU slot, and then in the lender-side NTB slot, we were able to observe that the transactions
are modified by the Intel Xeon CPU used in our test; the GPU requests 256 bytes per request,
but each request is emitted as 4 × 64 byte requests on the other side of the IOMMU. As the
CPU is only able to keep a limited number of non-posted requests open at the same time,
splitting up read requests into multiple smaller requests leads to very poor link utilization.

Regardless, by comparing the bare-metal scenario with the IOMMU enabled to MDEV, we
observe that the performance of DMA transfers is almost identical for both scenarios. While the
performance drops because of the increased paths and IOMMU address translation, our results
indicate that our MDEV implementation does not add any overhead on top of the hardware
virtualization.

7.3.2 Pass-through Comparison. We have also repeated the same peer-to-peer benchmarks de-
scribed in Section 7.1 using VMs. By using the peer-to-peer benchmarks to measure throughput
and latency between two GPUs, we are able to compare our MDEV extension using remote devices
to “normal” VFIO pass-through on a local system.

Figure 32 shows the topologies used in our comparison evaluation:

• Local VFIO, shown in Figure 32(a): A Qemu 2.10.1 instance running on a local system using
the KVM hypervisor. By using VFIO, we pass-through two local Nvidia Tesla K40c GPUs. The
local IOMMU is enabled, in order for KVM to map the devices into the same guest-physical
address space as the VM. The guest OS is Ubuntu 6.04 with the 4.10 version of the Linux
kernel, and we are using CUDA version 9. The host OS is Fedora 29 using the 4.18 version
of the kernel.
• MDEV, shown in Figure 32(b): A Qemu 2.10.1 instance using the KVM hypervisor and our

MDEV extension to borrow and pass-through two remote GPUs from the lender. We used
the same OS image for the VM as the VFIO scenario, and Fedora 29 on the hosts. The lender’s
IOMMU is enabled, as is required by MDEV.
• Bare-metal, shown in Figure 32(b): We also include a bare-metal baseline, running band-

widthTest natively on a bare-metal machine using Device Lending. Two remote GPUs are
borrowed by a bare-metal machine. The bare-metal borrower machine boots the same OS
image as we used for our VMs. On the lender, we ran Fedora 29. The lender’s IOMMU is
enabled, to make the data path comparable to MDEV.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:49

Fig. 31. IOMMU performance penalty: By using the IOMMU on the lender, shortest path routing is
disrupted.

Both VM instances were configured with 4 GB memory, and we enabled 2 MB huge pages on the
host. We also set the CPU affinity to be the same as the local adapter in both the bare-metal and
MDEV scenarios.

Like before, we configured bandwidthTest to copy memory from one GPU to another using
transfer sizes from 4 kB to 128 MB. Figure 33(a) shows the median throughput (left) and throughput
distribution as a min–max distance (right). Each transfer size is repeated 1,000 times, and we have
marked measurements below the 0.2th percentile as outliers. We observe that the local VFIO pass-
through scenario reports a slightly higher throughput than both our MDEV implementation and
the bare-metal comparison(!) for smaller transfer sizes.

In order for the GPU to notify the host driver that the DMA transfer is complete, it relies on
interrupts. The bandwidthTest program measures throughput by initiating a memory copy (DMA
transfer) and recording the time elapsed until the transfer is complete. As KVM uses a different
mechanism for notifying the VM guest about an interrupt for VFIO pass-through devices than our
MDEV implementation, we speculate that interrupts raised by VFIO pass-through devices may
cause KVM to briefly suspend the execution of Qemu to handle the interrupt and signal eventfd
events. This would in turn would affect timing measurements by software running in the VM.
However, as the measured throughput converge for all three scenarios when the transfer size
increases, this suspected measurement discrepancy seems to become less significant.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:50 J. Markussen et al.

Fig. 32. Peer-to-peer topologies: We compare the measured throughput and latency between two GPUs
passed through to a VM using local VFIO pass-through to using our MDEV pass-through of remote devices.
Note that we have also included a configuration using bare-metal Device Lending.

Figure 33(c) shows the distribution ping–pong latency measurements using the CUDA program
we described in Section 7.1.4, where two GPUs writes a counter back and forth to each other’s mem-
ory. The maximum measurement for MDEV appears to be an outlier, so we have annotated the
99.99th percentiles instead. The distributions for MDEV and bare-metal are similar, indicating that
our MDEV implementation does not add any additional overhead beyond hardware virtualization.
Unlike the bandwidthTest program, which uses device interrupts for synchronizing timing mea-
surements, the ping–pong measurements use elapsed clock cycle for recording time (as described
in Section 7.1.4). With this method, it appears that the strange effect where VFIO performs bet-
ter than bare-metal is not present, which strengthens our suspicion that it is related to delivering
interrupts to the VM.

7.4 Distributed NVMe Driver Evaluation

Our Device Lending and MDEV extension make it possible for a local device driver to operate
a remote device in a manner that is fully transparent to both device and driver. This is possi-
ble as we prepare memory mappings in advance and inject addresses that map over the respec-
tive NTBs. However, as the physical memory allocated by a device driver or a VM instance is
outside of our control, we are forced to map all of local memory for a remote device. As we
have seen in Sections 7.1.4 and 7.1.5, increasing the distance PCIe transactions has to travel has

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:51

Fig. 33. Peer-to-peer evaluation: Using the same bandwidthTest and ping–pong CUDA programs as previ-
ous evaluations, we measure both throughput and latency of DMA writes between two GPUs. Our MDEV
implementation does not add any overhead compared to bare-metal.

an impact on performance. Particularly non-posted transactions, such as reads, are affected by
longer distance between requester and completer. In other words, increasing the distance between
the borrower and the device will negatively impact performance, as the distance between the
device and the memory it accesses also increases.

However, a programmer can fully exploit shared memory capabilities in PCIe clusters by using
the SISCI API [22]. Local memory may be exported for other nodes, and remote memory can be
mapped for the local application. It is even possible for a node to allocate memory buffers on local
devices, such as GPUDirect-capable GPUs, and other nodes to map this memory through their
own NTBs.

Our SmartIO device driver extension to SISCI aims to combine the best of both worlds. Device
drivers can remain agnostic about the local address space in the node where the device physically
resides as our SmartIO system resolves local I/O addresses. Simultaneously, drivers may fully

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:52 J. Markussen et al.

exploiting shared memory capabilities of the PCIe network by building on top of the existing
SISCI functionality. The trade-off is that existing device drivers must be modified or rewritten
to use this new API extension. In an attempt to make the case for why this trade-off might be
worthwhile, we have evaluated the latency benefit our proof-of-concept distributed NVMe driver.

7.4.1 Optimizing Data Access Patterns. We outlined our userspace NVMe driver implementa-
tion using the SmartIO SISCI API extension in Section 6. Not only are we able to assign individual
queues to different nodes, but we are also able use GPUDirect-capable GPUs to host queues in GPU
memory as explained in Section 6.4. Since it is possible to combine the SmartIO API extension with
borrowed GPUs (using Device Lending), we can design truly elastic workloads. Any type of (lin-
ear) memory, such as RAM or device memory, may be exported and made available for a cluster
application, whether it runs on a CPU, a GPU, or another PCIe computing accelerator—or even a
combination of CPUs, GPUs, and accelerators.

To avoid reading over long distances in the cluster, we can use this flexibility to facilitate moving
data around in the cluster by using a “push” strategy instead. The NVMe standard does not have
any restrictions regarding memory locations for paired queues; from the NVMe device’s point of
view, any address it can use DMA to is potentially a valid queue memory location. This means that
we can allocate an SQ in memory close to the device, while allocating the associated CQ in memory
close to the CPU that polls it. As explained in Section 6.1, our API extension supports specifying
access pattern hints when allocating memory segments. By specifying that the CQ segment will
be mostly read from by the CPU and only written to by the device, the CQ memory segment will
be allocated in the borrower’s local memory. Similarly, by specifying read access by the device
(and only write access by the CPU) for the SQ memory segment, our SmartIO driver API will
prefer memory close to the NVMe. As PCIe provides us with an ordering guarantee, the CPU or
GPU may simply write the command to remote memory and immediately after ring the doorbell
register.12 This means that when the NVMe device is notified by the doorbell write, we can be
certain that the command has arrived in the queue, and the NVMe may read it using DMA.

To evaluate the performance benefit of this strategy, we have designed the following experi-
ment: a local CPU runs our proof-of-concept userspace NVMe driver (implemented as a CUDA
application). It uses a local Nvidia Quadro P620 GPU and a remote Intel Optane P4800X DC NVMe
device. The local GPU is managed by the native CUDA driver, while the remote NVMe device is
operated by our application (proof-of-concept driver). The application reads data from the NVMe
directly into GPU memory on the local GPU. Note that “local” and “remote” in this experiment
refer to the CPU the application runs on. The NVMe CQ is allocated in the borrower’s local RAM,
while we have used three different memory locations for placing the SQ as shown in Figure 34(a):

(1) SQ hosted in Local RAM: We allocated queue memory for the first SQ in local RAM, and
mapped this for the NVMe device. When the application rings the doorbell register, the
NVMe has to read across 4 hops along the path, including internal PEX8796 switch chip in
the expansion chassis, the PM8536 PFX switch chip used internally in the MSX824 cluster
switch, as well as the PEX8733 chips used in the PXH830 NTB adapter cards.

(2) SQ hosted in Remote RAM: The memory for the second SQ was allocated in remote mem-
ory, i.e., RAM on the lender. As we use the same expansion chassis as previous evaluations
with HIB68-16 transparent adapters, the NVMe has to read across 3 hops when the applica-
tion rings the doorbell, including the internal switch chip in the expansion chassis and the
PEX8733 chips used in the HIB68-16 transparent adapter cards.

12NVMe I/O commands are 64 bytes, so writing a command will automatically flush the Write-Combining Buffer on x86.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:53

Fig. 34. SQ placement: We evaluate the impact of moving the SQ closer to the NVMe device. By reducing
the distance the NVMe device has to read to fetch I/O commands, we are able to reduce the command
completion latency.

(3) SQ hosted in Remote GPU memory: Using Device Lending, we also borrowed an Nvidia
Quadro P4000 GPU from the same lender and allocated memory for the third SQ as a mem-
ory buffer on this GPU. While the borrowed GPU is operated by the local CUDA driver,
both Device Lending and the SmartIO API extension uses the same underlying SmartIO sys-
tem, so mapping this memory for the NVMe device uses the same address resolving mecha-
nism described in Section 4.4. As the GPU is installed next to the NVMe device in the same

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:54 J. Markussen et al.

expansion chassis, the NVMe only has to read through the internal switch chip in the expan-
sion chassis. Note that GPU memory has different memory characteristics than system RAM.

Both hosts are running Ubuntu 18.04.4 with the 4.15 version of the Linux kernel, and the local host
(borrower) is running CUDA 10.2 with the included GPU driver. The IOMMU is enabled on the
local host, while it is disabled on the remote host (lender) to use shortest-path routing. While not
strictly necessary for this experiment, we also enabled persistent mode on both GPUs.

For each SQ location, one by one, our application executes 327,680 NVMe read commands of
4 kB chunks of data from storage each, starting at a pseudo-random offset for each chunk. The
command completion latency for each single command was recorded, and we used a queue depth
of just one entry to avoid aggregated measurements. We define the command completion latency
as the time elapsed between the driver writing a command to the SQ, followed by a write to the
doorbell register, until the corresponding completion shows up in CQ memory (local memory). As
we start the timer before writing the command, part of the latency measurement is the time it takes
to write to (remote) memory. Note that our NVMe driver implementation uses polling instead of
relying on interrupts, and that the data is written by the NVMe directly into memory onboard the
local GPU using peer-to-peer DMA.

Figure 34(b) depicts the distributions of latency measurements for all three SQ placements. The
same datasets are shown as both a histogram (left) and as a boxplot (right). Note that we have ad-
justed the Y-axis, so outliers are not shown. Our results demonstrate that moving the SQ memory
closer to the NVMe device significantly reduces latency, as the distance that the NVMe device has
to read across shrinks. We argue that this indicates that while there is a development cost of im-
plementing device drivers using the SmartIO API extension, the reward is improved performance
over Device Lending and native device drivers. There is also the added benefit of being able to fully
utilize PCIe clustering capabilities to implement functionality such as streaming data directly into
GPU memory.

Finally, it should be noted that the NVMe standard specifies optional support for one or more
controller memory buffers (CMBs) [55]. CMBs are BARs with generic device memory that an
NVMe driver may read from and write to. The intention of CMBs is that becomes possible for
a driver to host queue memory on the NVMe device itself, elminiating the need for the NVMe
controller to use DMA to fetch commands entirely. While the Intel Optane P4800X DC NVMe
device used in our experiments does not support CMB, implementing support for it to move queues
as close as possible to the NVMe would be trivial. Our SmartIO system automatically export device
BARs as mappable memory segments, so supporting CMB would be a matter of mapping the BAR
and setting up the necessary descriptors in CMB memory.

7.4.2 Sharing a Single-function NVMe Device. Due to the complexity of implementing SR-IOV
in hardware, NVMe devices with SR-IOV support are not widely available. Most NVMe devices on
the market are single-function devices. However, the inherent parallel design of the NVMe stan-
dard provides us with great flexibility. Each queue has its own dedicated doorbell register, which
avoids contention. Pairs of SQs and CQs can operate completely in parallel, making it possible
to distribute queue pairs to different nodes in the cluster using the SmartIO API extension, as ex-
plained in Section 6.2. As such, we can treat a non-SR-IOV device as a shared resource by using
our NVMe driver implementation.

To demonstrate this, we designed an experiment in a larger cluster of nodes. The MSX824 clus-
ter switch has 24 × 4 Gen3 ports that can be configured to ×8 and ×16 links by grouping two
or four ports, respectively. This makes it possible to create a cluster of 60 nodes by connecting
seven MSX824 switches in cascade (one top switch with six subswitches). Each individual node is
connected to one of the subswitches through a x8 Gen3 link. One node was dedicated as lender,

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:55

Fig. 35. By distributing an SQ and a CQ to 30 cluster nodes, we demonstrate that it is possible to concurrently
share a single-function NVMe device in a larger cluster.

and was configured with an expansion chassis with the NTB adapter and an Intel Optane P4800X
DC NVMe device as illustrated in Figure 35. Using our 60 node cluster setup, we performed two
experiments:

(1) Simulatenous sharing: The P4800X NVMe used in our experiment supports up to 32 queue
pairs (one queue pair is reserved for admin queues). We configured the lender to be the NVMe
manager, setting up the admin queues and resetting the device, and we configured 30 other
nodes to act as NVMe clients as described in Section 6.2. Each of the 30 clients configured one
SQ and one CQ, allowing them to operate the NVMe independently of the other nodes, as
illustrated in Figure 35. All 30 nodes each read chunks of 4 kB data in a loop, demonstrating
that our queue-distribution mechanism works.

(2) Multicast: We configured all 59 nodes (all nodes excluding the lender) to subscribe to the
same multicast group, allocating a buffer in their local memory and setting up multicast
mappings. We then used one of the nodes to initiate an NVMe identify command using
the address of the multicast segment. This replicated 4 kB of controller information to the
memory of all 59 nodes in a single operation.

While number of switches in the path increases command completion latency (as is expected),
hosting queues in the lender’s RAM rather than in memory on the borrowers would provide a
latency benefit similar to what we observed in Section 7.4.1. However, since the number of simul-
taneous borrowers is limited by the number of queues supported by the P4000X NVMe used in our
experiments, our latency measurements are affected by the round-robin scheduling mechanism
implemented in the NVMe controller hardware. Some borrowers suffer from starvation: they are
unlucky with regard to timing, ending up having to wait significantly longer than other borrowers

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:56 J. Markussen et al.

for their commands to be executed by the NVMe. Furthermore, the NVMe device itself is only PCIe
Gen3× 4, and the simultaneous read requests from several nodes far exceed the bandwidth capacity
of the device. Thus, a performance analysis is not particularly interesting with respect to evaluating
our queue-sharing concept, as we end up evaluating how well the NVMe device performs instead.
Nonetheless, while the small amount of data and low throughput in our tests may not be particu-
larly useful for an application, we have shown that it is possible for a larger number of nodes in a
cluster to access the same storage device simultaneously. In practice, we have successfully demon-
strated a form of “MR-IOV in software.”13 Newer NVMes with higher bandwidth and lower latency,
as well as support for a higher number of queues, will benefit from this kind of sharing capability.

7.4.3 NVMe-oF RDMA Comparison. NVMe-oF [56, 94] is a widely adopted standard for access-
ing remote NVMe devices over a network. NVMe-oF implementations are composed of two parts:
a device-side “target” driver and a client-side “initiator” driver. The target driver is responsible
for managing the NVMe device, setting up queue pairs and facilitating asynchronous access by
allocating dedicated queue pairs for each individual initiator. I/O commands are forwarded by the
initiator to the target driver, which enqueues them for the NVMe device. The NVMe-oF protocol
is agnostic regarding the transport layer, allowing commands and completions to be transmitted
over any kind of message-passing communication channel, and leaves the transportation of data
entirely up to the network fabric.

For network fabrics that support InfiniBand RDMA, NVMe-oF can be supported with very high
performance [29]. The defining feature of InfiniBand RDMA is that InfiniBand channel adapters

(HCAs) may access application memory directly, allowing data to be be transferred directly from
the application on one host to the application on another host without going through a network
stack. By avoiding kernel transmission buffers, InfiniBand RDMA applications have very high
throughput and low latency. Additionally, as the CPU is not involved in transmission, RDMA is
completely asynchronous, and avoids blocked send and receive calls.

In regard to NVMe-oF, the target driver can provide direct access to both data and queue memory
via system memory on the target host.14 Application memory used for RDMA is registered with
the InfiniBand driver in advance as so-called memory regions (MRs). This allows the InfiniBand
driver to pin the physical memory pages in memory, avoiding them being swapped out. Addition-
ally, as it allows other hosts to resolve the local physical addresses of MRs, an NVMe-oF initiator
driver can prepare I/O commands using target-local addresses. In other words, the initiator is able
to use the target’s MR as intermediate memory for NVMe data.

Similar to the SQ and CQ queue pairing mechanism for NVMe devices described in Section 6.2,
InfiniBand also uses queue pairs of work queues (WQs) and completion queues (CQs). HCAs
support hosting WQs on device memory (similar to NVMe CMBs described in Section 7.4.1), and
hosting CQs in system memory. This allows a userspace application to post work requests, such as
send and receive operations, and poll for completions directly, bypassing the kernel entirely in the
data path. An additional benefit is that this design maps very well onto the NVMe-oF architecture;
the NVMe-oF target driver can “bind” the receive WQ to the NVMe SQ. This means that NVMe
commands are already enqueued (in memory) when the target driver is notified about received
commands, and the target driver may simply ring the SQ’s doorbell register. Figure 36 illustrates
the steps involved in reading 4 kB of data from storage using RDMA:

13Multi-Root I/O Virtualization, see Section 9.1.
14In RDMA terminology, this is known as “zero-copy,” because the CPU is not involved in copying data. However, the
authors argue that in the context of NVMe-oF, quite literally copying data from the NVMe to system memory on the target
host, before sending it over the network, is actually not “zero-copy” at all.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:57

Fig. 36. Flow chart of an I/O read operation for NVMe-oF using InfiniBand RDMA. While the target-side CPU
is required to initiate NVMe operations and start the RDMA write transfer, neither commands, completions,
nor data is moved by the CPU. As InfiniBand queues and NVMe queues are bound to each other, commands
and completions are written directly to the queues by the HCAs using DMA.

(1) The initiator prepares an I/O read command for the NVMe device with the desired block
offset. Memory used for RDMA is already known to both NVMe-oF initiator, as it was regis-
tered by the target driver as a RDMA MR in advance. This allows the initiator to simply use
target-side physical addresses of this MR in the read command. It then posts the command
to the send WQ, sending the command across the network, directly to the target drivers
memory.

(2) The target driver receives a receive completion indicating that it has received an NVMe
command. As the HCA has already written the command to the appropriate location in
target’s memory, the target driver can immediately ring the doorbell register of the bound
SQ, initiating the NVMe I/O operation. The initiator driver has already resolved target-side
physical addresses in advance, so there is no processing required. After ringing the doorbell,
it checks what type of NVMe command this is. Seeing that it is an read command, it starts
preparing a WQ request for RDMA write from the local MR to a known MR on the initiator
host.

(3) The target driver receives the NVMe command completion, indicating that the NVMe device
has written data to memory. The target posts the prepared RDMA write request to the appro-
priate WQ. By using DMA to read from the MR, the HCA begins sending the data over the
InfiniBand fabric. The initiator-side HCA will start writing received data into the initiators
memory, also using DMA.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:58 J. Markussen et al.

(4) Since requests in the same WQ are always ordered, the target driver immediately posts a
send request for the NVMe completion, knowing that when the initiator driver receives the
completion the data must have arrived before it. This optimization means that the target
driver avoids needing to wait for the RDMA write completion, which is particularly useful
for larger data transfers.

(5) The initiator driver receives a receive completion for the NVMe command completion, and
knows that the data must have arrived in its local memory before the completion due to WQ
ordering. The data read from the remote NVMe device is now available for use.

We have designed an experiment to compare the Storage Performance Development Kit

(SPDK) [94] to our SmartIO NVMe driver implementation. SPDK is a storage application frame-
work that implements support for a wide variety of storage devices, including NVMe devices.
Similarly to our SmartIO NVMe driver, it is implemented in userspace, bypassing the kernel and
primarily relying on polling. Furthermore, SPDK has a built-in NVMe-oF stack with support for
InfiniBand RDMA. As such, SPDK is a suitable comparison for our SmartIO NVMe driver.

However, as SPDK and our proof-of-concept NVMe driver are two different NVMe driver im-
plementations, comparing them to each other would be comparing apples to oranges. As such,
we have instead conducted two separate tests, one where we compare the standard SPDK NVMe
driver to SPDK NVMe-oF, and the other where we compare our own NVMe driver using a local
and a remote NVMe device. Figure 37 depicts the four scenarios were used in our experiment:

• Local SPDK, shown in Figure 37(a): The standard SPDK NVMe driver operating a local
Intel Optane P4800X DC. The NVMe is installed in an expansion chassis, and connected
upstream using the HIB68-16 transparent adapters. This scenario serves as our local baseline
comparison for SPDK.
• SPDK NVMe-oF, shown in Figure 37(b): The SPDK NVMe-oF driver stack (initiator and

target) operating a remote P4800X using RDMA for transport. The two hosts are connected
back-to-back with two Mellanox InfiniBand ConnectX-5 EDR channel adapters. The target
driver has the same CPU core affinity as its InfiniBand HCA and the NVMe device. The
InfiniBand maximum transfer unit was configured to 64 kB, leaving more than enough
space within a packet for the data payload. This scenario is compared to the Local SPDK
scenario. Note that while we are measuring latency, the EDR speed of 100 Gb/s is equivalent
to 12.5 GB/s regardless. This is similar to an x16 Gen3 PCIe link.
• Local SmartIO, shown in Figure 37(a): Our proof-of-concept NVMe driver implemented

with the SmartIO API extension (as explained in Section 6.2), operating a local P4800X. The
topology is identical as the Local SPDK scenario, but we run our NVMe driver implementa-
tion instead of SPDK. As before, the HIB68-16 transparent adapters connecting the expansion
chassis use the same PEX8733 switch chips used in the PXH830 NTB adapters. This scenario
therefore serves as the local baseline comparison for SmartIO.
• Remote SmartIO, shown in Figure 37(c): Our driver operating a remote P4800X NVMe. The

two systems are connected back-to-back using PXH830 NTB adapters. Note that because we
use the expansion chassis in our configuration, there is the same number of switch chips in
the path as the Local SmartIO scenario.

On both hosts, we installed Ubuntu 18.04.2 with the 4.15 version of the Linux kernel, and we used
version 19.1.1 of SPDK. We also disabled the IOMMU on both hosts in all four of the evaluated
scenarios.

To measure read latency, we used FIO version 3.13 [9] to perform 327,680 reads, each read page-
sized chunk (4 kB) with an offset generated by a pseudo-random number generator. Figure 38

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:59

Fig. 37. The different scenarios in our NVMe-oF comparison experiment. Note that the local scenario is the
same for both SPDK and SmartIO, the difference is only which NVMe driver software is running.

shows the latency distributions for SPDK (left) and our NVMe driver (right). We observe that
compared to local access, where the NVMe device is able to access host memory directly, NVMe-
oF introduces a significant performance overhead, even when using RDMA. There are two primary
reasons for this performance difference. First, the CPU on the target host is involved in the critical
path, as software is needed to ring the NVMe doorbell registers as well as starting RDMA writes
back to the initiator. Second, to use RDMA, data must first be written to target’s memory by the
NVMe, in order for the InfiniBand HCA to access it and transfer it over the network fabric. In
comparison, our SmartIO NVMe driver is able to initiate DMA regardless of whether the NVMe
device is local or remote. Not only does this avoid the lender’s CPU in the critical path entirely,
but we also do not need to bounce data via memory on the lender in the same way RDMA does.
In the SmartIO scenarios, because the device and the driver are the same number of switch chips

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:60 J. Markussen et al.

Fig. 38. Distribution of I/O command completion latencies for Local SPDK and SPDK NVMe-oF (left) and
using our proof-of-concept SmartIO NVMe driver (right). By avoiding the device-side CPU in the critical
path, as well as being able to use DMA directly, our NVMe driver achieves the same performance for both
local and remote. Meanwhile, SPDK NVMe-oF introduces a visible latency overhead compared to local SPDK.

apart, there is no difference in performance for local and remote access. While SPDK and our own
proof-of-concept driver are two widely different NVMe driver implementations, it is interesting
to note that our driver appears to be slightly faster than local SPDK (around 600 ns on average),
even for remote access.

Finally, it should be mentioned that Mellanox has implemented support for NVMe-oF target
offloading in their InfiniBand adapters. Target offloading is a mechanism for avoiding target-side
CPU in the critical path, by moving some of the target driver logic into hardware on the target-side
HCA instead. For example, rather than relying on the target driver running on the CPU, the HCA
itself can ring the NVMe doorbell by using peer-to-peer DMA when it receives an NVMe-oF com-
mand. However, we argue that a performance overhead compared to local access is unavoidable,
since the RDMA mechanism inevitably requires the NVMe device to write data to memory before
it can be accessed by the HCA and sent over the network.

8 DISCUSSION

Our SmartIO solution offers several benefits over traditional approaches to distributed I/O. In the
previous section, we presented experiments demonstrating the usefulness and the performance
benefits of SmartIO. Particularly, we have performed experiments demonstrating that it is possi-
ble to facilitate remote access to devices with native PCIe performance. In this section, we provide
a short discussion on some topics and considerations that have not yet been covered by our eval-
uation.

8.1 Security

The challenge with security for distributed I/O and so-called “one-sided communication,” where
only the initiator-side (sender) software is involved in initiating I/O but not the target (receiver),
is an understudied research topic [85]. In the case of accessing remote devices using our Smar-
tIO system, particularly DMA is a security concern. By lending away a local device, the lender
effectively yields control over it to software running on a remote system. A flawed device driver
on the borrower may cause a device to read from or write to rogue memory addresses on the
lender. For Device Lending, it is possible to protect against unintentional memory accesses by us-
ing the lender-side IOMMU. Our SmartIO system is able to isolate devices on the lender, protecting

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:61

against accidental memory reads and writes. However, the current implementation is not able to
sufficiently protect against a malicious device driver, as any software running in kernel space on
the borrower system in practice has full access to the local NTB adapter. Regardless, we argue that
the in the case of a malicious kernel space driver, the entire local system is compromised as well.
In other words, we consider this scenario to be beyond the scope of our SmartIO implementation.

In case of the SmartIO extension to the SISCI API, where we expose device driver capabilities
to userspace software, a malicious program on the borrower is also a valid concern. An attacker
might intentionally use a DMA-capable device to overwrite memory on the lender, causing it to
crash, or use the DMA engine to snoop data from memory. In cases where the userspace software
cannot be trusted, we can also use the lender-side IOMMU to protect against undesired memory
accesses. By placing devices in separate IOMMU domains, SmartIO creates a virtual I/O address
space per device.15 This guarantees that the device is only able to access specific DMA windows
mapped for it, thus protecting system memory and other devices on the lender. Unlike a device
driver, a userspace application cannot exploit kernel space privileges to manipulate the local NTB,
and is only able to set up mappings to remote memory by using the SISCI API. We argue that
this provides sufficient protection against both defect and malicious userspace programs, as SISCI
prevents setting up mappings to arbitrary memory by only allowing registered memory segments.

Finally, for VM pass-through with KVM, our MDEV implementation requires using the lender’s
IOMMU, as explained in Section 5.2. By mapping a device to the guest-physical memory layout,
we limit the passed through device to only accessing DMA windows to the VM it is assigned to. In
other words, it is not possible for guest software to misuse our SmartIO system to break out of the
virtualized environment, since SmartIO provides the same level of memory isolation as standard
pass-through.

It should be noted that relying on the lender-side IOMMU in combination with long PCIe paths
may severely impair DMA performance, as we saw in our IOMMU evaluation in Section 7.3.1. As
a general advice, we recommend trying to minimize the distance between a device its lender’s
IOMMU. Devices that support PCIe ATS [60] are able to cache resolved I/O virtual addresses, thus
avoiding routing transactions via the CPU. However, it has been demonstrated that some devices,
such as FPGAs and programmable network adapters, can be exploited by an attacker to abuse ATS
to break out of IOMMU isolation [47].

8.2 Supported OSes

As explained in Section 4.1, PCIe devices are represented in the Linux kernel using generic device
handles. This handle provides device drivers with a unified interface for accessing a device’s con-
figuration space as well as mapping DMA buffers. Through hot-adding a virtual “shadow” device
handle into the Linux device tree, the borrower component of our Device Lending mechanism is
able to to intercept configuration cycles and calls to the Linux DMA API. As such, we are able
to inject I/O addresses that map over the device-side NTB in a manner that is transparent to the
device driver.

Other OSes may represent devices differently in their system. Microsoft Windows, for example,
does not provide such a unified device handle interface, and uses separate driver frameworks for
different classes of devices instead. The lack of a generic PCIe device interface that we can easily
manipulate makes porting the Device Lending mechanism to Windows non-trivial, and a large
engineering effort is required to support similar capabilities.

15Some IOMMUs support isolation per application by using Protected Address Space ID, but as this also requires support
in devices, our implementation does not currently support this.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:62 J. Markussen et al.

However, supporting the lender component of our SmartIO system is more straight forward.
The lender’s responsibility is essentially to facilitate remote access by setting up mappings over
the NTB when it is requested by a borrower. The low-level NTB driver and SISCI API are sup-
ported on a wide variety of OSes, including Windows, meaning that a Windows machine lending
out its devices is possible. Additionally, as the SISCI shared-memory API is also supported on
Windows, so is our SmartIO API extension. This means that while Device Lending may not be
possible on Windows, implementing userspace drivers is. We have proved this by running our
proof-of-concept NVMe driver on a Windows 10 installation.

Finally, it should be noted that by using our MDEV extension to KVM, devices may be passed
through to a VM running any guest OS. By passing through an Intel Optane 900P NVMe and an
Nvidia GTX 1080 Ti GPU to a VM instance using Qemu, booting the Windows 10 image from
the NVMe device itself and using the GPU for video output, we have confirmed that it works.
Investigating the possibility for extending our SmartIO solution by implementing support for other
hypervisors, such as Xen or Hyper-V, is, however, a candidate for future work.

8.3 Supported CPU Architectures

While we primarily used Intel Xeon CPUs in our performance evaluation presented in Section 7,
our implementation is not bound to any specific CPU architecture. For example, we have con-
firmed that our proof-of-concept NVMe driver works on an Nvidia Jetson TX2, running on its
ARM Cortex-A57 processor, and accessing a remote NVMe device. Even so, our SmartIO imple-
mentation does require some considerations in regard to CPU architecture:

• Lenders must be able to support PCIe peer-to-peer to route transactions between the NTB
and the device. In our experience, most CPU architectures are capable of this, but some
consumer-level CPUs are not. However, this CPU limitation can be alleviated by using peer-
to-peer capable switches in the PCIe tree, for example by using an expansion chassis.
• Our implementation of Device Lending only includes support for Intel and AMD IOMMUs.

While the borrower’s IOMMU is not strictly required for Device Lending, without it, a
lender needs to map the entire memory of the borrower for the device. This limits the
number of devices that can be lent out to different borrowers at the same time, as explained
in Section 4.3. However, userspace drivers using our SmartIO API extension do not need
the IOMMU for anything else than protecting memory. It should be mentioned that we are
currently working on implementing support for IOMMU on ARM (known as the System
Memory Management Unit).
• Some systems do not support assigning 64-bit I/O addresses to BARs, limiting how large the

NTB BAR size can be as the combined device memory requirements must fit below 4 GB.
This may limit how many devices the system is able to borrow, or how many devices the
system can lend out, depending on whether the system is used as a lender or a borrower. In
our experience, most modern systems support 64-bit I/O address space by enabling it in the
system’s BIOS.

8.4 Supported Devices

The main benefit of building our system on top of standard PCIe, is that our sharing idea will
work for any standard PCIe device. As PCIe is the industry standard for connecting I/O devices to
a computer system, our SmartIO system can support a wide range of devices with different form
factors and connectors. Even though we primarily presented performance measurements using an
Ethernet adapter, NVMe devices and Nvidia GPUs in our evaluation (Section 7), we have during the
development of SmartIO experimented with FPGAs, AMD GPUs, InfiniBand HCAs, sound cards,

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:63

and PCIe-attached cameras. We are even able to lend out individual functions of multi-function
and SR-IOV devices to different borrowers, as shown in Section 7.1.6.

Legacy device interrupts is currently only supported by our MDEV extension to KVM. By setting
up an interrupt handler on the lender for legacy interrupts, similar to how we forward interrupts
in our MDEV implementation, it would be possible to use software for forwarding legacy inter-
rupts while mapping MSI/MSI-X interrupts directly over the NTB as our current Device Lending
implementation does. The same solution could be used to map MSI/MSI-X interrupts directly over
the NTB for our MDEV implementation. However, we do not consider this a priority as the PCIe
standard require devices to implement either MSI or MSI-X (or both) [61].

8.5 Alternative NTB Implementations

Our low-level NTB driver is not limited to the specific Dolphin NTB adapter cards and cluster
switches used in our experiments, but supports multiple families of NTB-capable switch chips from
both Broadcom and Microsemi. Any hardware implementation integrating one of these switch
chips can be trivially supported by our driver, requiring only minor software adjustments. Ad-
ditionally, the SmartIO concepts themselves are general and could be implemented for any NTB
solution that supports similar capabilities. However, special attention may be required when using
an integrated NTB as an embedded CPU rather than as a peripheral device. For example, it is pos-
sible that the lender IOMMU must always be enabled, to properly route DMA transactions over
the NTB. We have not tested this, and we will investigate how embedded NTBs can be supported
in future work.

Although the SmartIO implementation is incorporated into Dolphin’s software stack due to its
high-level shared memory support, it should be mentioned that the Linux kernel also has an NTB
driver framework [35]. A handful of NTB implementations are already supported in the kernel
through this framework, such as Microsemi switches, Intel Xeon’s NTB, and the AMD Zeppelin
NTB. While this framework has only rudimentary support for low-level NTB functionality, i.e.,
setting up memory mappings and configuring interrupts, we hope that NTBs’ potential for PCIe-
based interconnection and shared-memory clustering is something that eventually may be picked
up by the community.

8.6 Scalability

The Dolphin PXH830 NTB adapters and MXS824 cluster switches used in our experiments support
external copper cables of lengths from 0.5 m up to 5 m. It is also possible to use fiber-optic cables
that can be up to 100 m long [21]. The MXS824 cluster switch has 24 × 4 Gen3 ports, which can
be configured to different combinations of ×4, ×8, and ×16 links. By connecting 7 switches (1 top
switch and 6 subswitches) in cascade, and connecting each node to a subswitch through a x8 link,
we demonstrated in Section 7.4.2 that our SmartIO solution works in a 60 node cluster sharing
an NVMe device. However, while up to 60 nodes can be supported in the cluster, there are some
limitations with regard to the number of devices that can be supported.

One such limitation is the number of available look-up table entries in the NTB implementation.
As we briefly discussed in Section 3.3, the number of mappings over the NTB is limited by the num-
ber of entries in the NTB’s internal look-up table. Reading from remote memory is a non-posted
request that require a completion, as we described in Sections 7.1.3 and 7.3.1. While the request is
routed based on its address, the completion (with data) is routed back again based on the requester.
This means that to support read operations to remote memory, the NTB must support mapping re-
questers as well as addresses, to make sure that completions are routed back to requesters through
the NTB. In other words, NTBs have two kinds of look-up tables, one used for translating a local
I/O address into an arbitrary remote address, and another used for returning completions to the

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:64 J. Markussen et al.

appropriate requester (a CPU or a device). The number of devices that can be borrowed or lent out
is limited by the size of this requester look-up table.

The PXH830 NTB adapters used in our evaluation support 32 such requester mappings per
adapter card. With two nodes connected back to back with PXH830 adapters, each of the two
nodes may borrow up to 30 devices from the other node and (simultaneously) lend out up to 30
local devices. In this context, we are referring to devices, rather than individual device functions,
and any of these 30 devices may have several device functions (such as an SR-IOV-capable device).
Two mappings are reserved for each of the CPUs, which must also be able to reach across the NTB
due to our implementation of the underlying shared-memory communication. While any single
node may only lend out 30 local devices and/or borrow up to 30 remote devices, it is possible to add
switches to the topology and connect more nodes, thus increasing the total number of available
devices in the cluster.

However, the cluster switch itself also has a finite number of available requester mappings per
NTB-capable switch port. Setting up an outgoing requester mapping on one switch port consumes
ingoing requester mappings on all the other ports. Therefore, adding switches and nodes to the
topology will consume requester mappings cluster-wide, as CPUs will require two requester map-
pings each to reach all the other nodes in the cluster. Although the number of these mappings is
very high, it does not scale indefinitely. The exact threshold for when adding more nodes starts
decreasing the possible number of devices that can be shared varies, and depends on the config-
uration of the cluster. However, this limitation can be avoided by designing the cluster topology
with device sharing in mind, rather than maximizing the number of nodes.

Another limitation on the number of devices a borrower is able to borrow is the NTB BAR
size, or, the size of the “NTB window.” As the borrower must map device BARs through its local
NTB, borrowing devices with large BARs would use up more of the NTB window than devices with
smaller BARs. For example, it would most likely be possible to borrow more NVMes than GPUs, as
NVMes usually have smaller device memory requirements than GPUs. Moreover, the NTB window
size can also affect how many devices a lender may lend out at any given time. Devices that require
large DMA windows would use more of the NTB window than devices that do not require large
DMA transfers. Because of this, it is desirable to set the NTB window size as large as possible.

However, some devices may have addressing limitations making them incapable of reaching
high memory addresses. This can become an issue in the case where a lender has many devices
or where the workflow requires very large DMA windows, and we need to configure a very large
NTB BAR size. As we explained in Section 4.3, increasing device memory requirements may
force the system to place the NTB at a high address. The sum of all device memory requirements,
i.e., the combined size of the combined downstream BARs (including the NTB), may be so large
that the system is forced to assign device memory at high addresses. In the case of the NTBs in our
evaluation, devices with addressing limitations would be incapable of reaching DMA windows.
The lender-side IOMMU can be used to remap DMA windows from high to low addresses for
devices with addressing limitations, but this may come with a performance cost as we observed
in Section 7.3.1. Without the lender’s IOMMU, the number of devices within a lender is therefore
limited by the devices’ memory requirements and addressing capabilities. However, in cases
where device memory limitations is a concern, it is possible to simply add more dedicated lender
nodes to the topology. This way, we can spread out devices over several lenders, ensuring that that
any one lender’s combined device memory requirements does not exceed the system’s low/high
memory assignment threshold.

Thus, the limitation on the number of devices and nodes depends on several factors, such as
cluster topology, addressing capabilities of the devices, memory requirements of the devices, and
the NTBs’ look-up table sizes. As such, there is no straight forward answer to the question of

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:65

how many devices and nodes can be supported (beyond the topologies already described in this
article). However, it should be noted that these limitations stem from limitations in the hardware
implementations of different devices and NTBs, and not from our SmartIO sharing methods.

8.7 Disaggregated and Composable Infrastructure

Using SmartIO, it is possible to design custom configurations of remote and local devices on the
fly, while all systems are running. Multiple hosts in the PCIe-networked cluster may contribute
their devices, effectively turning the entire cluster into a shared, disaggregated PCIe infrastructure.
Individual nodes can dynamically allocate device resources according to immediate application
requirements, and release them when they are no longer required. This can potentially greatly
increase the utilization of devices in the cluster, as devices are no longer tightly coupled with the
hosts they are installed in.

Moreover, as it is possible to use all three sharing aspects of our SmartIO framework, i.e., De-
vice Lending, MDEV, and the new SmartIO API extension, in different combinations, we are able
to support a wide variety of applications at different abstraction levels. Our system effectively
eliminates the distinction between local and remote, as well as device and system memory, provid-
ing great flexibility with regard to heterogeneous cluster computing. This makes it easier for an
application developer to scale out in a cluster and design advanced cluster workflows, e.g.:

• Using Device Lending, remote devices appear to a system as if they are locally installed,
facilitating remote access in a manner that is completely transparent to device driver, appli-
cation, and even the OS. Large-scale CUDA programming tasks can make use of multiple
GPUs that appear to be local, instead of writing a distributed applications or relying on
middleware such as rCUDA [23, 68]. In Section 7.2, we for example demonstrated that it is
possible to scale-out a GPU-intensive convolutional neural network training task. Pogorelov
et al. [66] have previously shown how a multimedia workload can be offloaded to remote
GPUs using Device Lending to meet real-time requirements.
• Access latency in NVMe-oF can be avoided by borrowing the remote NVMe device instead,

and accessing it directly, either by using Device Lending as demonstrated in Section 7.1.1 or
extending our proof-of-concept NVMe driver as demonstrated in Section 7.4.3. Distributed
database applications may reduce query times by using a combination of local and remote
NVMe devices for caching and data consistency. By distributing I/O queues for NVMe de-
vices to multiple nodes as demonstrated in Section 7.4.2, it becomes possible for each node
to control data locality and thereby reduce the latency for data consistency across nodes.
• Using Device Lending, high-speed network interfaces, such as InfiniBand HCAs and 100 Gi-

gabit Ethernet adapters, can be assigned to a node while it needs high throughput, and re-
leased when no longer needed. Furthermore, many network interfaces are also capable of
SR-IOV, allowing a single network card to be distributed to multiple cluster nodes simulta-
neously, without requiring any software adaptions as demonstrated in Section 7.1.6.
• In addition to enabling access to individual remote devices, SmartIO also supports creat-

ing groups of arbitrary devices and enabling direct peer-to-peer access between them. This
makes it possible to create workflows that are optimized for both resource utilization and
data locality. By combining Device Lending and the SmartIO API extension, we demon-
strated in Section 7.4.1 how it is possible to stream data directly into GPUDirect-capable
GPUs across the PCIe network. In Section 6.4, we also explained how a long-running GPU
kernel may load and store data by itself, eliminating CPUs and system RAM in the data path
entirely.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:66 J. Markussen et al.

Throughout this article, we have demonstrated how we can facilitate remote access to devices,
without any performance overhead compared to local access. As such, we argue that we have
demonstrated that our SmartIO sharing system turns a PCIe shared-memory cluster into a dis-
tributed, composable infrastructure.

9 RELATED WORK

As a complete system with several components, each component of SmartIO could potentially be
discussed at great length to place them in proper context. In fact, several aspects of related work
has already been presented throughout the article, such as PCIe shared-memory networking in
Section 3 and an implementation of NVMe-oF using RDMA in Section 7.4.3. Our SmartIO solution
is at its core a system for sharing I/O devices and facilitating remote access. We have therefore
condensed this section to compare our solution to disaggregation solutions we consider the most
relevant. In particular, we summarize disaggregation techniques based on PCIe fabric partitioning,
followed by a comparison to I/O distribution solutions implemented with NTBs. We also provide a
short discussion on using RDMA for distributed I/O. This is followed by some background for the
ideas behind our proof-of-concept NVMe driver, before we finally present memory disaggregation
ideas that are related to our shared-memory techniques.

9.1 PCIe Fabric Partitioning

The idea of using the PCIe bus as a shared interconnection fabric between independent host sys-
tems is not new. An early approach is Multi-Root I/O Virtualization (MR-IOV) [59]. MR-IOV
specifies how a single PCIe fabric may be logically partitioned into separate virtual PCIe trees,
where each host sees its own PCIe tree without knowing about the others. This partitioning be-
comes possible using special multi-root aware switches in the fabric. Additionally, in the same way
SR-IOV requires virtualization support implemented in hardware, MR-IOV too require devices to
be multi-root aware and support multi-host access. Devices without multi-root capabilities can
not be shared on the function level. Due to the complexity of implementing MR-IOV, particularly
its requirement that both switches and devices are multi-root ware, it did not see any widespread
adoption. At the time of writing, we are not aware of any commercially available devices capable
of MR-IOV. Wong [92] have demonstrated live partitioning using PLX/Broadcom switches with-
out requiring multi-root aware switches and devices, but their solution does not allow splitting
individual device functions or simultaneous access from multiple CPUs either.

Rack-scale computers [17, 18] are computer systems where multiple (independent) CPUs and
free-standing I/O devices are attached to the same PCIe fabric, usually connected by a so-called
“top-of-rack” PCIe switch. These solutions support disaggregation by dynamically partitioning the
shared fabric into different “subfabrics.” The partitioning is made possible by prefixing standard
PCIe transactions with a custom header extension called fabric IDs. Devices are transparently
attached to their respective partitioned fabric, and are only seen by a single CPU at the time. Unlike
MR-IOV, these partitioning solutions does not require support in devices, but they do require
dedicated switch chips that support the proprietary fabric ID header extension to configure routes
between devices and CPUs through the fabric. Chung et al. [15] present a proprietary solution
using Broadcom PEX9797 chips to partition the fabric and distribute individual SR-IOV functions.
Similar solutions also exist for Microsemi switch chips [51].

Solutions based on partitioning allow devices to be disaggregated at the (virtual) function level,
thus they can be said to enable a composable infrastructure. However, they do not specify any
memory-to-memory communication between hosts. In other words, partitioning solutions do not
offer any shared-memory capabilities as part of the system, making a solution like our device dri-
ver API extension impossible. Consequently, fabric partitioning does not provide the same level

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:67

of sharing capabilities compared to our shared memory-based system, and simultaneously shar-
ing a device between multiple CPUs requires additional distribution methods, such as RDMA. In
contrast, our SmartIO implementation is not only able to share distribute individual device func-
tions (both physical functions and SR-IOV virtual functions), but makes it possible to implement
“MR-IOV in software” even for non-SR-IOV single function devices. Our proof-of-concept NVMe
driver described in Section 6.2 demonstrates this in practice.

It should also be mentioned that most solutions based on fabric partitioning are only modular
to the extent of a typical blade server configuration, and scaling beyond this requires I/O distribu-
tion over traditional network. As many of them rely on proprietary technology, adding new I/O
devices or CPUs to the configuration requires additional modules, often only available from the
same vendor. In comparison, SmartIO is fully distributed, and enables a heterogeneous computing
system, where different CPU architectures may be connected in a cluster and sharing their devices.
Any standard PCIe device may be distributed and shared.

9.2 NTB-based Solutions

Using the same Broadcom PEX8733 switch chips used in Dolphin’s PXH830 NTB adapters,
Lim et al. [44, 75] have developed NTB host adapters and connected three hosts in a cluster. By
extending a shared-memory API with NTB support, their focus seem to be shared-memory func-
tionality for high-performance computing applications, and distributing devices appears not to
have been considered. It should be noted that the memory-mapping capabilities they have devel-
oped for their API support are similar to functionality already existing in the SISCI API [22].

Bielski et al. [12] summarize various disaggregation solutions of I/O devices in the context of
high-performance computing. Interestingly, they point out that NTB-based device distribution so-
lutions appear to have relied almost exclusively on network adapters in their performance evalua-
tions, as they were only able to find one example that used GPUs in their evaluation. Additionally,
they also point out that most solutions for disaggregating SR-IOV devices seem to be limited to
distributing virtual functions to (remote) VMs. Our SmartIO system, however, works for any stan-
dard PCIe device. We have used network adapters, NVMe devices and GPUs in our experiments
presented in Section 7. Moreover, while we also support pass through to VMs using our MDEV ex-
tension (Section 5), we have demonstrated how we can share individual virtual SR-IOV functions
to bare-metal machines in Section 7.1.6. Additionally, it becomes possible to disaggregate single-
function devices in software by using our SISCI API extension, as demonstrated by our NVMe
driver implementation explained in Section 6.

Suzuki et al. [79] have implemented NTB-like capabilities in an FPGA in order distribute SR-IOV
functions to different hosts. Although their solution is specific to tunnelling PCIe over Ethernet
(ExpEther), their initial performance evaluation showed promising throughput measurements for
a Gen2 x8 PCIe device. The authors have since shown that the additional network latency has a
negative performance impact for DMA reads [78].

Guleria et al. [27] propose to connect an expansion chassis to one or more hosts using an NTB.
By using an ARM CPU add-in card that enumerates the devices in the expansion chassis, they
propose an interesting solution that allows programmable devices, such as a GPU, to continue to
operate independent of host assignment. However, the implementation of the actual distribution
method seems to be lacking, and the authors do not suggest any solutions for allowing the device
to be seen by multiple CPUs, or providing any mechanism for dynamically setting up any memory-
mappings necessary for DMA. Instead, they propose various traditional distribution methods, such
as RDMA or adapting GPU-specific middleware.

Hou et al. [31] present a solution where hosts are connected to NTB-capable ports on a Broad-
com PEX 8648 switch chip. Devices are installed in a dedicated server host, which enumerates the

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:68 J. Markussen et al.

devices and assists the other hosts in setting up NTB mappings. However, instead of leveraging
the NTB to map device BARs for the local host and mapping memory for the device, their solution
appears to be based on transferring data from memory to memory, and then involving the local
device driver on the dedicated server. This solution incurs a performance reduction compared to
local device access, as reflected in their performance evaluation.

The Ladon system [88] provides functionality that is very similar to our own MDEV implemen-
tation, and could potentially be extended to support something similar to both Device Lending
and our device driver API. By using a top-of-rack switch with NTB-capabilities, Ladon facilitates
access to the same SR-IOV device from multiple VM guests. The device and a dedicated “manage-
ment host” are connected to the switch transparently, and the management host enumerates the
PCIe fabric and takes ownership of the device. In that regard, the management host is concep-
tually similar to our lender. Multiple “compute hosts” are connected to the same switch through
non-transparent switch ports, i.e., NTBs. The management host maps the entire memory of each
compute host for the device, and assists the compute hosts in setting up mappings to individual (vir-
tual) device functions, to pass them through to VM guests running on the compute hosts. Ladon’s
static setup, where all hosts are connected directly to the same top-of-rack switch as the device
and the entire memory of each compute host is mapped, allows transactions to be routed directly
to each compute host without relying on the IOMMU on the management host. Additionally, by
extending the compute hosts’ hypervisor with a specialized host driver, Ladon can support map-
ping MSI-X interrupts directly into VMs [86, 89]. However, by requiring device-specific drivers,
this interrupt mapping does not appear to be a generic solution.

The main difference between Ladon and our SmartIO solution is that while a single host owns
the device in Ladon, our SmartIO system is truly distributed by supporting multiple hosts acting
as lenders. Hosts may even act as both lender and borrower at the same time. Moreover, in Ladon,
the management host becomes a single point of failure. Ladon has since been extended with fail-
over support, allowing a back-up management host to copy the PCIe fabric enumeration of the first
host, and seamlessly take over ownership of the device in case the first management host fails [87].
However, we argue that this still does not make Ladon distributed in the same sense our SmartIO
system. It is not possible for a compute host to use devices from different management hosts. In
other words, the Ladon system appears to be limited to devices attached directly to a single rack
switch managed by a single host (with fail-over). In contrast, SmartIO solution supports scaling out
and using devices from several hosts across an entire cluster. Because the Ladon implementation
maps the entire memory space of each physical compute host (rather than just memory used by
the VMs), the number of compute hosts in Ladon setup will be limited to a handful hosts due to the
combined device memory requirements of the NTBs. Our MDEV implementation, however, scales
better by probing the guest-physical memory layout and only mapping VM memory, as explained
in Section 5.2. Not only does this allow a lender to support more borrowers as we are able to fit more
DMA windows through the NTB BAR, but we can simply add more lender systems should device
memory requirements become an issue. Finally, the Ladon system appears to work only for VMs
unless device-specific host drivers are implemented. Our SmartIO system, however, supports both
physical machines and VMs alike by combining Device Lending and the MDEV extension. With
Device Lending, devices can be used by the bare-metal host without requiring any modifications
to driver software.

9.3 Distributed I/O Using RDMA

There are several widely adopted high-speed interconnection technologies used in high-
performance computing clusters today, such as InfiniBand and 100/200 Gigabit Ethernet. To make

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:69

Fig. 39. Even though RDMA allows efficient memory-to-memory transfer, a device-side driver is still needed
to initiate the I/O operation. Using our SmartIO solution, the local device driver can initiate I/O operations
directly and avoids software in the critical path.

use of their high throughput and low latency, many cluster applications make use of RDMA [84].
RDMA variants are summarized by Huang et al. [32], and include RDMA over InfiniBand, RDMA

over Converged Ethernet (RoCE) and Internet Wide Area RDMA Protocol (iWARP). By
using one-sided communication and providing direct access to application memory, RDMA so-
lutions have been shown to greatly improve performance for a variety of distributed applica-
tions [32, 34, 45].

One of the most successful GPU disaggregation frameworks on the market today is rCUDA [23,
68]. Similarly to how the shadow device in our Device Lending mechanism makes it possible
to intercept calls to the kernel’s DMA API, rCUDA uses virtualization techniques to intercept
CUDA API calls and enable access to remote GPUs while the programming model remains simple.
By supporting GPUDirect, rCUDA and other RDMA-based GPU disaggregation solutions are able
to copy data directly in and out of GPU memory using RDMA with very high performance [70, 91].
However, these solutions are not as closely integrated to the PCIe fabric as our NTB-based solution;
using Device Lending or our MDEV extension, we are able to support CUDA Unified Memory [73],
allowing GPUs to access host memory and memory of other GPUs directly. We are not aware of
any RDMA-based GPU disaggregation solutions that are able to support this.

Many different frameworks for distributed I/O using RDMA exist, such as NVMe-oF [28, 29, 56]
and rCUDA discussed above. However, RDMA solutions are tightly coupled with the device (or
type of devices) they are implemented for. As illustrated in Figure 39, even though RDMA facilitates
memory-to-memory transmission, a specialized device driver is still required on the device-side
system to initiate the actual I/O operation.

Additional software complexity in the form of target-side drivers inevitably leads to a perfor-
mance overhead compared to accessing a local device, as we observed in our NVMe-oF comparison
in Section 7.4.3. Some of this target driver functionality can be implemented in network adapter
hardware, for example in the case of NVMe-oF target offloading. Another approach is implement-
ing network interface capabilities directly into device controllers, as proposed by Daglis et al. [19].
While such solutions may improve I/O performance to the point were it becomes comparable to
local access, we argue that these solutions become even more coupled with the specific devices
they are implemented for by requiring implementation in hardware. In contrast, our SmartIO sys-
tem is general in terms of device support, as we can distribute any PCIe device without requiring
specific support in devices or device drivers.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:70 J. Markussen et al.

9.4 NVMe Queue Distribution

Using the SmartIO extension to the SISCI API, we have implemented a working proof-of-concept
userspace NVMe driver, as described in Section 6.2. To the best of our knowledge, our driver is
unique in that it is able distribute individual I/O queues of a single-function NVMe device to remote
systems in an cluster, without using RDMA. As such, we disaggregate an NVMe device at the
software-level. However, similar ideas for sharing an NVMe device at the queue-level for userspace
applications running on the same local system can be found in several implementations, including
SPDK [94].

Peng et al. [58] implement a paravirtualized NVMe driver using the same mediated device driver
interface we have used for our MDEV implementation. Instead of passing through the device itself,
their solution is based on using passing through I/O queues instead. They accomplish this by as-
signing individual I/O queues to emulated NVMe child devices. An interesting observation is that
the authors report that relying on polling instead of interrupts significantly increases performance,
which could suggest that their performance measurements are affected by same interrupt notifica-
tion delays we observed in our own MDEV evaluation (Section 7.3.2). Furthermore, Kim et al. [39]
extend the Linux NVMe driver with a dedicated queue management kernel module that is respon-
sible for creating and deleting SQs and CQs, as well as mapping DMA buffers and doorbell registers
for a userspace application. This way, a userspace application is given control over queue memory
and can submit I/O commands and poll for completions directly, without going through the kernel
block layer. By mapping queue memory directly for the application, this solution is conceptually
very similar to how our own driver is implemented, but by using our SmartIO system we can
assign queues to applications running on remote hosts as well.

Our NVMe driver implementations also supports GPUDirect. Although several solutions using
GPUDirect to facilitate peer-to-peer access between an NVMe device and a GPU already exist [10,
11, 40, 83], we believe our proof-of-concept device driver’s ability use (remote) GPU memory to
host I/O queues closer to an NVMe device to be a new idea. This becomes possible by combining
our driver with using Device Lending to access remote GPUs. We have demonstrated the latency
benefit of this in Section 7.4.1.

Additionally, our implementation supports offloading NVMe operation onto a GPU entirely
and eliminating the CPU in the data path altogether, as we explained in Section 6.4. While this
would arguably prove to be highly useful in the case of a local system, the utility of this increases
significantly for applications that can now freely make use of accelerators, storage devices and
memory anywhere in a cluster and optimize the data flow through the PCIe network. Support-
ing this kind of flexibility while allowing applications and application programmers to remain
agnostic about address space layout on remote systems is, to the best of our knowledge, a novel
contribution.

9.5 Memory Disaggregation

In our work, we enable efficient distribution of devices across a cluster system, alleviating both
load balancing problems and lack of or limited numbers of local devices. While we are primarily
concerned with I/O device sharing to make active resources available to cluster nodes, our SmartIO
implementation is made possible through distributed shared memory. After all, we are effectively
mapping and enabling access to remote memory regions. As such, our work has an inherent rela-
tionship with memory disaggregation techniques.

Memory disaggregation concepts originally sprung out of related ideas from early work on dis-
tributed memory and distributed OSes. Since CPUs have only operated on local memory, scarce
memory would be augmented by swap space. Remote memory has frequently been proposed as a

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:71

faster alternative to disk-backed swap spaces [24, 26, 42, 46], to overcome the limited throughput
and high latency of hard disks. Although this premise has been questioned due to the software
overhead [8], performance gains have been measured with both centralized [24] and decentral-
ized [42, 46] approaches. By relying on the same PCIe-based distributed shared memory capabil-
ities that our own SmartIO is built on, an implementation for (partial) memory disaggregation
solution can be imagined. If combined with our extended SISCI API explained in Section 6.1, then
it could support a combination of local and remote RAM, as well as remote device memory. In fact,
we have already demonstrated something similar to this in Section 7.4.1. Even though the main
purpose of this experiment was to prove reduced memory access latency for a remote NVMe, it
also showed that we are able to map both remote RAM and onboard device memory (of the remote
GPU) for the local CPU.

More recent memory disaggregation solutions rely on RDMA for efficient access to remote mem-
ory. Gu et al. [26] show how software overhead of swapping to remote memory can nearly en-
tirely be avoided by using RDMA. Similarly, Aguilera et al. [5] propose a solution where clients
use remote memory more explicitly, through a file system-like API that acts as an abstraction
over RDMA. The most interesting aspect of this idea is that as their file system interface sup-
ports POSIX semantics, it becomes possible to support the mmap operation. A local process may
memory-map a file descriptor, and, by relying on virtual memory trapping (page faults), RDMA
transfers are initiated under the hood. By using the SISCI API to map remote memory directly into
a process’ virtual address space, we avoid any latency from handling traps in software. Instead,
the local CPU can access memory across the NTB directly, thus avoiding software in the path
altogether.

So-called “byte-adressable” NVMe devices are becoming increasingly common. These NVMes
implement memory controllers and expose non-volatile flash memory through device BARs, sim-
ilar in concept to the GPUDirect-capable GPUs used in our experiments. As such, they are fre-
quently used for persistent memory solutions [71, 93]. Abulila et al. [4] argue that because non-
volatile flash memory is approaching dynamic RAM speeds, traditional swapping semantics incur
significant system performance overhead. They propose an extension to the Linux kernel virtual
memory manager that short-cuts the Linux block-layer, to support efficient swapping to byte-
addressable NVMe devices. With our SmartIO API extension, this solution could be extended to
remote NVMe devices as well, by mapping the remote BAR for the local CPU. However, additional
adaptions would be required, to limit or, preferably, avoid reading over the NTB.

Although the use of dedicated blade servers may stretch the term disaggregation, Lim et al. [43]
nevertheless propose an interesting solution for swapping to remote memory blades over PCIe.
They suggest a hardware modification to the memory controller by which the CPU could prefetch
cache lines directly over the PCIe bus and “fault in” remote memory pages, by initiating DMA
transfers on the remote server. While their proposed solution would avoid reading over the PCIe
bus, their evaluation appears not to take into account any latency that would be added by this
hardware DMA mechanism.

The disaggregation concept is perhaps taken to its most extreme by LegoOS [74]. Here, process-
ing, memory, and storage resources are all encapsulated into components that can be combined
arbitrarily to serve cluster applications. Other hardware devices can be encapsulated in the same
manner. Although the authors note that it is not possible to fully separate CPUs and memory man-
agement in practice, their idea of building disaggregation concepts into the OS itself instead of
using middleware is intriguing. LegoOS only stops short of being a fully distributed OS by pre-
senting users with virtualized nodes that appear as individual VMs. While it is possible to run
existing Linux applications on these virtual nodes, device drivers must be adapted to fit this new

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



2:72 J. Markussen et al.

OS design. In contrast, our own Device Lending mechanism is able to facilitate this kind of dis-
aggregation at a level “underneath” the OS. In effect, it is possible to use remote devices without
requiring any modifications to existing device drivers. Finally, LegoOS claims to have performance
comparable to a standard Linux server, but their NVMe benchmark shows a significant reduction
in number of I/O operations per second compared to Linux when the amount of data is more than
a few kilobytes. This performance gap is explained with network overhead. In comparison, be-
cause our own SmartIO solution is PCIe-based, we have zero overhead compared to local access,
as shown in Section 7.

10 CONCLUSION

In this article, we have presented our SmartIO system for efficient, zero-overhead sharing of I/O
devices in a heterogeneous PCIe cluster. By using memory-mapping capabilities inherent in NTBs,
we combine traditional I/O with distributed shared-memory functionality over native PCIe. Our
system consists of the following five components:

(1) Our low-level NTB driver, facilitating shared-memory abilities and providing mechanisms
for mapping remote memory. As such, we use this to create a global address space comprised
of all hosts in the cluster, including their internal devices and memory.

(2) A common abstraction mechanism, providing the necessary functionality for translating
remote I/O addresses and resolving paths in the network. This allows both software and
devices to be agnostic about address space layouts in remote hosts.

(3) Our Device Lending method, making remote devices appear to a system as if they are locally
installed. Existing device drivers, application software, and even the OS itself may use the
remote devices without requiring any adaptions.

(4) Our MDEV extension to KVM hypervisor, allowing pass-through of remote devices to a VM,
and enabling direct access to hardware over native PCIe without breaking out of memory
isolation.

(5) Our new SmartIO device driver API extension to the SISCI shared-memory API, enabling
cluster applications to take full advantage of shared-memory capabilities and write device
drivers optimized for shared-memory cluster workloads.

Additionally, we have also presented our proof-of-concept NVMe driver implementation, using
our SmartIO API extension. This driver demonstrates several aspects of I/O with shared-memory
capabilities, such as simultaneously sharing a non-SR-IOV device among multiple hosts (“MR-IOV
in software”) and enabling peer-to-peer memory access to (remote) GPUDirect-capable GPUs.

Using our SmartIO system, devices can be distributed in a way that meets current processing
requirements, while at the same time the overall resource utilization in the cluster is improved as
resources are no longer locked to individual hosts. We prove the flexibility of our solution through
a broad range of performance evaluations for different scenarios and topologies for all three dis-
tribution aspects of our SmartIO system, i.e., Device Lending, MDEV, and the API extension (in
the form of experiments with our proof-of-concept NVMe driver). By comparing the performance
of using remote devices to local access, our results show that we do not add any performance
overhead beyond what is expected for longer PCIe paths.

While our current system shows great potentials for resource sharing, there are still several ar-
eas that still may be investigated. For example, currently only cold migration of VMs with passed-
through devices is possible. Adding support for a dynamic migration during runtime (live migra-
tion) is desirable. Such a solution would most likely require the development of new hardware as it
must support either pausing or re-routing transactions without violating strict ordering required

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.



SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:73

by PCIe. Additionally, our experimental results also show that a major performance bottleneck oc-
curs when DMA read requests traverse the lender’s CPU in order for addresses to be resolved by
the IOMMU. The Intel Xeon CPUs used in our performance experiments alter the requests in a way
that leads to poor link utilization. As our MDEV implementation requires the lender’s IOMMU to
map guest-physical memory for the device, this warrants further evaluations of alternative CPU
architectures. Furthermore, while our proof-of-concept NVMe driver provides block-level access
for userspace applications, implementing a file system or coordinating access is currently the re-
sponsibility of the application. Another candidate for improvement is therefore to implement the
sharing idea in a kernel space driver, making it possible to implement a shared-disk file system for
general use. As the device is shared on the queue-level, this solution could easily co-exist with the
existing userspace implementation, and we could assign queues to both application instances and
kernel drivers alike. Finally, as the Intel P4800X NVMe used in our queue-sharing experiments did
not perform adequately, it would prove useful to perform a large-scale evaluation of our queue-
sharing concept using a newer PCIe Gen4 NVMe with greater bandwidth capacity and support for
a higher number of queues.

AVAILABILITY

The source code of our proof-of-concept distributed NVMe driver is licensed using the BSD soft-
ware license, and is available at the following URL: https://github.com/enfiskutensykkel/ssd-gpu-
dma/.

The source code of the ping-pong CUDA program used in our latency evaluation can be found at
the following URL: https://gist.github.com/enfiskutensykkel/2b0f7afcb35d12477165746f062c7453.

The datasets and benchmarking results in this article are available from the corresponding author
upon request.

ACKNOWLEDGMENTS

The authors thank the Dolphin Interconnect Solutions developers team, particularly Eivind
Bergem and Eivind Eriksen for their input on data visualization. We also thank Friedrich Seifert,
Preben N. Olsen, and Calin Iaru for their feedback on the manuscript. The authors also thank
Hugo Kohmann and Roy Nordstrøm. Finally, we give a big thank you to all the anonymous re-
viewers. They have had a tedious task reviewing this long manuscript but still have provided a list
of valuable insights and suggestions that greatly improved this article.

REFERENCES

[1] Keras. [n.d.]. Retrieved from https://keras.io.
[2] TensorFlow. [n.d.]. Large-Scale Machine Learning on Heterogeneous Systems. Retrieved from https://www.tensorflow.

org/.
[3] Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger, Greg Regnier, Rajes Sankaran, Ioannis Schoinas,

Rich Uhlig, Balaji Vembu, and John Weigert. 2006. Intel virtualization technology for directed I/O. Intel Technol. J. 10,
03 (2006). https://doi.org/10.1535/itj.1003.02

[4] Ahmed Abulila, Vikram Sharma Mailthody, Zaid Qureshi, Jian Huang, Nam Sung Kim, Jinjun Xiong, and Wen-mei
Hwu. 2019. FlatFlash: Exploiting the byte-accessibility of SSDs within a unified memory-storage hierarchy. In Pro-

ceedings of the International Conference on Architectural Support for Programming Languages and Operating Systems

(ASPLOS). 971–985. https://doi.org/10.1145/3297858.3304061
[5] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi, Stanko Novaković, Arun

Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and Michael Wei. 2018.
Remote regions: A simple abstraction for remote memory. In Proceedings of the USENIX Annual Technical Conference

(ATC’18). 775–787.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

https://github.com/enfiskutensykkel/ssd-gpu-dma/
https://gist.github.com/enfiskutensykkel/2b0f7afcb35d12477165746f062c7453
https://keras.io
https://www.tensorflow.org/
https://doi.org/10.1535/itj.1003.02
https://doi.org/10.1145/3297858.3304061


2:74 J. Markussen et al.

[6] Knut Alnæs, Ernst H. Kristiansen, David B. Gustavson, and David V. James. 1990. Scalable coherent interface. In
Proceedings of the International Conference on Computer Systems and Software Engineering (CompEuro’90). 446–453.
https://doi.org/10.1109/CMPEUR.1990.113656

[7] Nadav Amit, Muli Ben-Yehuda, and Ben-Ami Yassour. 2010. IOMMU: Strategies for mitigating the IOTLB bottleneck.
In Proceedings of the International Symposium on Computer Architecture (ISCA’10). Springer, 256–274. https://doi.org/
10.1007/978-3-642-24322-6_22

[8] Eric A. Anderson and Jeanna M. Neefe. 1994. An Exploration of Network RAM. Technical Report. EECS Department,
University of California. Retrieved from https://www2.eecs.berkeley.edu/Pubs/TechRpts/1998/CSD-98-1000.pdf.

[9] Jens Axboe. [n.d.]. Flexible I/O Tester. Retrieved from https://github.com/axboe/fio.
[10] Stephen Bates. 2015. Project Donard. Retrieved from https://github.com/sbates130272/donard.
[11] Shai Bergman, Tanya Brokhman, Tzachi Cohen, and Mark Silberstein. 2017. SPIN: Seamless operating system inte-

gration of peer-to-peer DMA between SSDs and GPUs. In Proceedings of the USENIX Annual Technical Conference

(ATC’17). 665–676.
[12] Maciej Bielski, Christian Pinto, Daniel Raho, and Renaud Pacalet. 2016. Survey on memory and devices disaggregation

solutions for HPC systems. In Proceedings of the International Conference on Computational Science and Engineering

and International Conference on Embedded and Ubiquitous Computing and International Symposium on Distributed

Computing and Applications for Business Engineering (CSE-EUC-DCABES’16). 197–204. https://doi.org/10.1109/CSE-
EUC-DCABES.2016.185

[13] Broadcom. 2011. PEX8733, PCI Express Gen 3 Switch, 32 Lanes, 18 Ports. Retrieved from https://docs.broadcom.com/
docs/12351852.

[14] Broadcom. 2012. PEX8796, PCI Express Gen 3 Switch, 96 Lanes, 24 Ports. Retrieved from https://docs.broadcom.com/
docs/12351860.

[15] I.-Hsin Chung, Bulent Abali, and Paul Crumley. 2018. Towards a composable computer system. In Proceedings of the

International Conference on High Performance Computing in Asia-Pacific Region (HPCAsia’18). 137–147. https://doi.org/
10.1145/3149457.3149466

[16] Adam Coates, Brody Huval, Tao Wang, David J. Wu, Andrew Y. Ng, and Bryan Catanzaro. 2013. Deep learning with
COTS HPC systems. In Proceedings of the International Conference on Machine Learning (ICML’13). 1337–1345.

[17] Intel Corporation. 2015. Intel Rack Scale Design. Retrieved from https://www.intel.com/content/www/us/en/
architecture-and-technology/rack-scale-design-overview.html.

[18] Liqid Corporation. [n.d.]. Liqid Composable Infrastructure. Retrieved from https://www.liqid.com/.
[19] Alexandros Daglis, Stanko Novaković, Edouard Bugnion, Babak Falsafi, and Boris Grot. 2015. Manycore network

interfaces for in-memory rack-scale computing. ACM SIGARCH Comput. Architect. News 43, 3 (2015), 567–579. https:
//doi.org/10.1145/2872887.2750415

[20] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-scale hierarchical image
database. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR’09). 248–255. https://doi.
org/10.1109/CVPR.2009.5206848

[21] Dolphin Interconnect Solutions. [n.d.]. SFF-8644 MiniSAS-HD PCIe Gen3 cables. Retrieved from https://www.
dolphinics.com/products/PCI_Express_SFF-8644_cables.html.

[22] Dolphin Interconnect Solutions [n.d.]. SISCI API Documentation. Dolphin Interconnect Solutions. Retrieved from http:
//ww.dolphinics.no/download/SISCI_DOC_V2/.

[23] José Duato, Antonio J. Pena, Frederico Silla, Rafael Mayo, and Enrique S. Quintana-Ortí. 2010. rCUDA: Reducing the
number of GPU-based accelerators in high performance clusters. In Proceedings of the International Conference on

High Performance Computing and Simulation (HPCS’10). 224–231. https://doi.org/10.1109/HPCS.2010.5547126
[24] Michael J. Feeley, William E. Morgan, Frederic H. Pighin, Anna R. Karlin, and Henry M. Levy. 1995. Implementing

global memory management in a workstation cluster. In Proceedings of the ACM Symposium on Operating Systems

Principles (SOSP’95). 201–212. https://doi.org/10.1145/224056.224072
[25] Trevor Fountain, Alexandra McCarthy, and Fangfang Peng. 2005. PCI express: An overview of PCI express, cabled PCI

express and PXI express. In Proceedings of the International Conference on Accelerator & Large Experimental Physics

Control Systems (ICALEPCS’05).
[26] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdury, and Kang G. Shin. 2017. Efficient memory dis-

aggregation with INFINISWAP. In Proceedings of the Symposium on Networked Systems Design and Implementation

(NSDI’17). 649–667.
[27] Anubhav Guleria, J. Lakshmi, and Chakri Padala. 2019. EMF: Disaggregated GPUs in datacenters for efficiency, modu-

larity and flexibility. In Proceedings of the International Conference on Cloud Computing in Emerging Markets (CCEM’19).
1–8. https://doi.org/10.1109/CCEM48484.2019.000-5

[28] Zvika Guz, Harry Li, Anahita Shayesteh, and Vijay Balakrishnan. 2017. NVMe-over-fabrics performance character-
ization and the path to low-overhead flash disaggregation. In Proceedings of the International Systems and Storage

Conference (SYSTOR’17). 1–9. https://doi.org/10.1145/3078468.3078483

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

https://doi.org/10.1109/CMPEUR.1990.113656
https://doi.org/10.1007/978-3-642-24322-6_22
https://www2.eecs.berkeley.edu/Pubs/TechRpts/1998/CSD-98-1000.pdf
https://github.com/axboe/fio
https://github.com/sbates130272/donard
https://doi.org/10.1109/CSE-EUC-DCABES.2016.185
https://docs.broadcom.com/docs/12351852
https://docs.broadcom.com/docs/12351860
https://doi.org/10.1145/3149457.3149466
https://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
https://www.liqid.com/
https://doi.org/10.1145/2872887.2750415
https://doi.org/10.1109/CVPR.2009.5206848
https://www.dolphinics.com/products/PCI_Express_SFF-8644_cables.html
http://ww.dolphinics.no/download/SISCI_DOC_V2/
https://doi.org/10.1109/HPCS.2010.5547126
https://doi.org/10.1145/224056.224072
https://doi.org/10.1109/CCEM48484.2019.000-5
https://doi.org/10.1145/3078468.3078483


SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:75

[29] Zvika Guz, Harry Li, Anahita Shayesteh, and Vijay Balkrishnan. 2018. Performance characterization of NVMe-over-
fabrics storage disaggregation. ACM Trans. Stor. 14, 4 (Dec. 2018), 1–18. https://doi.org/10.1145/3239563

[30] Steven Alexander Hicks, Michael Riegler, Konstantin Pogorelov, Kim V. Ånonsen, Thomas de Lange, Dag Johansen,
Mattis Jeppsson, Kristin Ranheim Randel, Sigrun Eskeland, and Pål Halvorsen. 2018. Dissecting deep neural networks
for better medical image classification and classification understanding. In Proceedings of the International Symposium

on Computer-Based Medical Systems (CBMS’18). 363–368. https://doi.org/10.1109/CBMS.2018.00070
[31] Rui Hou, Tao Jiang, Liuhang Zhang, Pengfei Qi, Jianbo Dong, Haibin Wang, Xiongli Gu, and Shujie Zhang. 2013. Cost

effective data center servers. In Proceedings of the International Symposium on High Performance Computer Architecture

(HPCA’13). 179–187. https://doi.org/10.1109/HPCA.2013.6522317
[32] Jian Huang, Xiangyong Ouyang, Jithin Jose, Md Wasi-Ur-Rahman, Hao Wang, Miao Luo, Hari Subramoni, Chet

Murthy, and Dhabaleswar K. Panda. 2012. High-performance design of hbase with RDMA over InfiniBand. In Proceed-

ings of the International Parallel and Distributed Processing Symposium (IPDPS’12). 774–785. https://doi.org/10.1109/
IPDPS.2012.74

[33] Neo Jia and Kirti Wankhede. 2016. VFIO Mediated Devices. Retrieved from https://www.kernel.org/doc/
Documentation/vfio-mediated-device.txt.

[34] Weihang Jiang, Jiuxing Liu, Hyun-Wook Jin, Dhabaleswar K. Panda, William Gropp, and Rajeev Thakur. 2004. High
performance MPI-2 one-sided communication over InfiniBand. In Proceedings of the International Symposium on Clus-

ter Computing and the Grid (CCGrid’04). 531–538. https://doi.org/10.1109/CCGrid.2004.1336648
[35] Linux kernel development community. [n.d.]. NTB Drivers. Retrieved from https://www.kernel.org/doc/html/latest/

driver-api/ntb.html.
[36] Linux kernel development community. 2013. Linux Filesystems API. Retrieved from https://www.kernel.org/doc/

htmldocs/filesystems/index.html.
[37] Linux kernel development community. 2013. VFIO—“Virtual Function I/O.” Retrieved from https://www.kernel.org/

doc/Documentation/vfio.txt.
[38] Linux kernel development community. 2019. Linux IOMMU Support. Retrieved from https://www.kernel.org/doc/

Documentation/Intel-IOMMU.txt.
[39] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. 2016. NVMeDirect: A user-space I/O framework for application-

specific optimization on NVMe SSDs. In Proceedings of the USENIX Workshop on Hot Topics in Storage and File Systems

(HotStorage’16). 41–45.
[40] KaiGai Kohei. 2016. GpuScan + SSD-to-GPUDirect DMA. Retrieved from https://kaigai.hatenablog.com/entry/2016/

09/08/003556.
[41] Lars Bjørlykke Kristiansen, Jonas Markussen, Håkon Kvale Stensland, Michael Riegler, Hugo Kohmann, Friedrich

Seifert, Roy Nordstrøm, Carsten Griwodz, and Pål Halvorsen. 2016. Device lending in PCI express networks. In Pro-

ceedings of the International Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSS-

DAV’16). 10:1–10:6. https://doi.org/10.1145/2910642.2910650
[42] Shuang Liang, Ranjit Noronha, and Dhabaleswar K. Panda. 2005. Swapping to remote memory over Infiniband: An

approach using a high performance network block device. In Proceedings of the IEEE International Conference on Cluster

Computing (Cluster’05). 1–10. https://doi.org/10.1109/CLUSTR.2005.347050
[43] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K. Reinhardt, and Thomas F. Wenisch.

2009. Disaggregated memory for expansion and sharing in blade servers. In Proceedings of the the Annual International

Symposium on Computer Architecture (ISCA’09). 267–278. https://doi.org/10.1145/1555754.1555789
[44] Seung-Ho Lim, Ki-Woong Park, and Kwang-Ho Cha. 2019. Developing an OpenSHMEM model over a switchless PCIe

non-transparent bridge interface. In Proceedings of the International Parallel and Distributed Processing Symposium

Workshops (IPDPSW’19). 593–602. https://doi.org/10.1109/IPDPSW.2019.00104
[45] Xiaoyi Lu, Nusrat S. Islam, Md. Wasi-Ur-Rahman, Jithin Jose, Hari Subramoni, Hao Wang, and Dhabaleswar K. Panda.

2013. High-performance design of Hadoop RPC with RDMA over InfiniBand. In Proceedings of the International Con-

ference on Parallel Processing (ICPP’13). 641–650. https://doi.org/10.1109/ICPP.2013.78
[46] Evangelos P. Markatos and George Dramitinos. 1996. Implementation of a reliable remote memory pager. In Proceed-

ings of the USENIX Annual Technical Conference (ATC’96).
[47] Athanasios Theodore Markettos, Colin Rothwell, Brett F. Gutstein, Allison Pearce, Peter G. Neumann, Simon W.

Moore, and Robert N. M. Watson. 2019. Thunderclap: Exploring vulnerabilities in operating system IOMMU protection
via DMA from untrustworthy peripherals. In Proceedings of the Network and Distributed System Security Symposium

(NDSS’19). https://doi.org/10.14722/ndss.2019.23194
[48] Jonas Markussen, Lars Bjørlykke Kristiansen, Rune Johan Borgli, Håkon Kvale Stensland, Friedrich Seifert, Michael

Riegler, Carsten Griwodz, and Pål Halvorsen. 2020. Flexible device compositions and dynamic resource sharing in
PCIe interconnected clusters using Device lending. Cluster Comput. 23 (2020), 1211–1234. Issue 2. https://doi.org/10.
1007/s10586-019-02988-0

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

https://doi.org/10.1145/3239563
https://doi.org/10.1109/CBMS.2018.00070
https://doi.org/10.1109/HPCA.2013.6522317
https://doi.org/10.1109/IPDPS.2012.74
https://www.kernel.org/doc/Documentation/vfio-mediated-device.txt
https://doi.org/10.1109/CCGrid.2004.1336648
https://www.kernel.org/doc/html/latest/driver-api/ntb.html
https://www.kernel.org/doc/htmldocs/filesystems/index.html
https://www.kernel.org/doc/Documentation/vfio.txt
https://www.kernel.org/doc/Documentation/Intel-IOMMU.txt
https://kaigai.hatenablog.com/entry/2016/09/08/003556
https://doi.org/10.1145/2910642.2910650
https://doi.org/10.1109/CLUSTR.2005.347050
https://doi.org/10.1145/1555754.1555789
https://doi.org/10.1109/IPDPSW.2019.00104
https://doi.org/10.1109/ICPP.2013.78
https://doi.org/10.14722/ndss.2019.23194
https://doi.org/10.1007/s10586-019-02988-0


2:76 J. Markussen et al.

[49] Jonas Markussen, Lars Bjørlykke Kristiansen, Håkon Kvale Stensland, Friedrich Seifert, Carsten Griwodz, and Pål
Halvorsen. 2018. Flexible device sharing in PCIe clusters using device lending. In Proceedings of the International

Conference on Parallel Processing Companion (ICPPComp’18). Article 48, 48:1–48:10. https://doi.org/10.1145/3229710.
3229759

[50] Vijay Meduri. 2011. A Case for PCI Express as a High-Performance Cluster Interconnect. Retrieved from https://www.
hpcwire.com/2011/01/24/a_case_for_pci_express_as_a_high-performance_cluster_interconnect/.

[51] Microsemi. 2019. Multi-Host Sharing of NVMe Drives and GPUs Using PCIe Fabrics. Technical Report. Mi-
crosemi. Retrieved from http://www.symmttm.com/document-portal/doc_download/1244483-multi-host-sharing-of-
nvme-drives-and-gpus-using-pcie.

[52] Ben-Yehuda Muli, Jon Mason, Orran Krieger, Jimi Xenidis, Leendert Van Doorn, Asit Mallick, Jun Nakijima, and Elsie
Wahlig. 2006. Utilizing IOMMUs for virtualization in Linux and Xen. In Proceedings of the Linux Symposium. 71–85.

[53] NVIDIA Corporation 2019. GPUDirect RDMA Documentation. NVIDIA Corporation. Retrieved from https://docs.
nvidia.com/cuda/gpudirect-rdma/index.html.

[54] NVIDIA Corporation 2020. CUDA Toolkit Documentation v11.0.171. NVIDIA Corporation. Retrieved from http://docs.
nvidia.com/cuda/.

[55] NVM Express 2019. NVM Express Base Specification. NVM Express. Retrieved from https://nvmexpress.org/wp-
content/uploads/NVM-Express-1_3d-2019.03.20-Ratified.pdf.

[56] NVM Express 2019. NVM Express Over Fabrics. NVM Express. Retrieved from https://nvmexpress.org/wp-content/
uploads/NVMe-over-Fabrics-1.1-2019.10.22-Ratified.pdf.

[57] Sinno Jialin Pan and Qiang Yang. 2010. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 10 (Oct. 2010),
1345–1359. https://doi.org/10.1109/TKDE.2009.191

[58] Bo Peng, Haozhong Zhang, Jianguo Yao, Yaozu Dong, Yu Xu, and Haibing Guan. 2018. MDev-NVMe: A NVMe stor-
age virtualization solution with mediated pass-through. In Proceedings of the USENIX Annual Technical Conference

(ATC’18). 665–676.
[59] Peripheral Component Interconnect Special Interest Group (PCI-SIG) 2008. Multi-root I/O Virtualization and Shar-

ing Specification. Peripheral Component Interconnect Special Interest Group (PCI-SIG). Retrieved from https://www.
pcisig.com/specifications/iov/multi-root/.

[60] Peripheral Component Interconnect Special Interest Group (PCI-SIG) 2009. Address Translation Services Revision

1.1. Peripheral Component Interconnect Special Interest Group (PCI-SIG). Retrieved from https://www.pcisig.com/
specifications/iov/ats/.

[61] Peripheral Component Interconnect Special Interest Group (PCI-SIG) 2010. PCI Express 3.1 Base Specification. Periph-
eral Component Interconnect Special Interest Group (PCI-SIG). Retrieved from https://pcisig.com/specifications.

[62] Peripheral Component Interconnect Special Interest Group (PCI-SIG) 2010. Single-root I/O Virtualization and Shar-

ing Specification. Peripheral Component Interconnect Special Interest Group (PCI-SIG). Retrieved from https://www.
pcisig.com/specifications/iov/single-root/.

[63] Konstantin Pogorelov, Olga Ostroukhova, Mattis Jeppsson, Håvard Espeland, Carsten Griwodz, Thomas de Lange,
Dag Johansen, Michael Riegler, and Pål Halvorsen. 2018. Deep learning and hand-crafted feature based approaches for
polyp detection in medical videos. In Proceedings of the International Symposium on Computer-Based Medical Systems

(CBMS’18). 381–386. https://doi.org/10.1109/CBMS.2018.00073
[64] Konstantin Pogorelov, Kristin Ranheim Randel, Carsten Griwodz, Sigrun Losada Eskeland, Thomas de Lange, Dag

Johansen, Concetto Spampinato, Duc-Tien Dang-Nguyen, Mathias Lux, Peter Thelin Schmidt, Michael Riegler, and
Pål Halvorsen. 2017. KVASIR: A multi-class image dataset for computer aided gastrointestinal disease detection. In
Proceedings of the ACM Multimedia Systems Conference (MMSys’17). 164–169. https://doi.org/10.1145/3083187.3083212

[65] Konstantin Pogorelov, Michael Riegler, Sigrun Eskeland, Thomas de Lange, Dag Johansen, Carsten Griwodz, Peter The-
lin Schmidt, and Pål Halvorsen. 2017. Efficient disease detection in gastrointestinal videos–global features versus
neural networks. Multimedia Tools Appl. 76, 21 (2017), 22493–22525. https://doi.org/10.1007/s11042-017-4989-y

[66] Konstantin Pogorelov, Michael Riegler, Jonas Markussen, Mathias Kux, Håkon Kvale Stensland, Thomas Lange,
Carsten Griwodz, Pål Halvorsen, Dag Johansen, Peter Schmidt, and Sigrun Eskeland. 2016. Efficient processing of
videos in a multi auditory environment using device lending of GPUs. In Proceedings of the International Conference

on Multimedia Systems (MMSys’16). 381–386. https://doi.org/10.1145/2910017.2910636
[67] Murali Ravindran. 2008. Extending cabled PCI express to connect devices with independent PCI domains. In Proceed-

ings of the IEEE Systems Conference (SysCon’08). 1–7. https://doi.org/10.1109/SYSTEMS.2008.4519048
[68] Carlos Reaño, Federico Silla, and José Duato. 2017. Enhancing the rCUDA remote GPU virtualization framework:

From a prototype to a production solution. In Proceedings of the International Symposium on Cluster, Cloud and Grid

Computing (CCGRID’17). 695–698. https://doi.org/10.1109/CCGRID.2017.42
[69] Jack Regula. 2004. Using Non-Transparent Bridging in PCI Express Systems. Whitepaper. PLX Technology/Broadcom.

Retrieved from https://www.digikey.no/no/pdf/b/broadcom/using-non-transparent-bridging-pci.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

https://doi.org/10.1145/3229710.3229759
https://www.hpcwire.com/2011/01/24/a_case_for_pci_express_as_a_high-performance_cluster_interconnect/
http://www.symmttm.com/document-portal/doc_download/1244483-multi-host-sharing-of-nvme-drives-and-gpus-using-pcie
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_3d-2019.03.20-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVMe-over-Fabrics-1.1-2019.10.22-Ratified.pdf
https://doi.org/10.1109/TKDE.2009.191
https://www.pcisig.com/specifications/iov/multi-root/
https://www.pcisig.com/specifications/iov/ats/
https://pcisig.com/specifications
https://www.pcisig.com/specifications/iov/single-root/
https://doi.org/10.1109/CBMS.2018.00073
https://doi.org/10.1145/3083187.3083212
https://doi.org/10.1007/s11042-017-4989-y
https://doi.org/10.1145/2910017.2910636
https://doi.org/10.1109/SYSTEMS.2008.4519048
https://doi.org/10.1109/CCGRID.2017.42
https://www.digikey.no/no/pdf/b/broadcom/using-non-transparent-bridging-pci


SmartIO: Zero-overhead Device Sharing through PCIe Networking 2:77

[70] Davide Rosetti. 2014. Benchmarking GPUDirect RDMA on Modern Server Platforms. Retrieved from https://developer.
nvidia.com/blog/benchmarking-gpudirect-rdma-on-modern-server-platforms/.

[71] Andy Rudoff. 2017. Persistent memory programming. USENIX ;login: 42, 2 (2017), 34–40. Retrieved from https://www.
usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf.

[72] Kazuo Saito, Koji Anai, Keiju Igarashi, Takeshi Nishikawa, Ryoichi Himeno, and Kazuhiro Yoguchi. 1998. ATM bus
system. U.S. patent No. 5,796,741 A.

[73] Nikolay Sakharnykh. 2016. Beyond GPU Memory Limits with Unified Memory on Pascal. Retrieved from https://
developer.nvidia.com/blog/beyond-gpu-memory-limits-unified-memory-pascal/.

[74] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018. LegoOS: A disseminated, distributed OS for hard-
ware resource disaggregation. In Proceedings of the Conference on Operating Systems Design and Implementation

(OSDI’18). 69–87.
[75] Cheol Shim, Kwang-Ho Cha, and Min Choi. 2018. Design and implementation of initial OpenSHMEM on PCIe NTB

based cloud computing. Cluster Comput. 22 (Feb. 2018), 1815–1826. https://doi.org/10.1007/s10586-018-1707-0
[76] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition.

Retrieved from https://arXiv:1409.1556.
[77] Mark J. Sullivan. 2010. Intel Xeon Processor C5500/C3500 Series Non-Transparent Bridge. Technical Report. Intel Corpo-

ration.
[78] Jun Suzuki, Yoichi Hidaka, Hunichi Higuchi, Masaki Kan, and Takashi Yoshikawa. 2016. Disaggregation and sharing

of I/O devices in cloud data centers. IEEE Trans. Comput. 65 (Dec. 2016), 3013–3026. Issue 10. https://doi.org/10.1109/
TC.2015.2513759

[79] Jun Suzuki, Yoichi Hidaka, Junichi Higuchi, Teruyuki Baba, Nobuharu Kami, and Takashi Yoshikawa. 2010. Multi-root
share of single-root I/O virtualization (SR-IOV) compliant PCI express device. In Proceedings of the IEEE Symposium

on High Performance Interconnects (HOTI’10). 25–31. https://doi.org/10.1109/HOTI.2010.21
[80] Amir Taherkordi, Feroz Zahid, Yiannis Verginadis, and Geir Horn. 2018. Future cloud system designs: Challenges and

research directions. IEEE Access 6 (2018). https://doi.org/10.1109/ACCESS.2018.2883149
[81] Mellanox Technologies. [n.d.]. ConnectX-5 EN Single/Dual-Port Adapter Supporting 100Gb/s Ethernet. Retrieved

from https://www.mellanox.com/products/ethernet-adapters/connectx-5-en.
[82] PLX Technologies. 2005. Multi-Host System and Intelligent I/O Design with PCI Express. Whitepaper. PLX Tech-

nology/Broadcom. Retrieved from https://docs.broadcom.com/docs-and-downloads/pdf/technical/expresslane/NTB_
Brief_April-05.pdf.

[83] Adam Thompson and Chris J. Newburn. 2019. GPUDirect Storage: A Direct Path Between Storage and GPU Memory.
Retrieved from https://developer.nvidia.com/blog/gpudirect-storage/.

[84] Animesh Trivedi, Bernard Metzler, and Patrick Stuedi. 2011. A case for RDMA in clouds. In Proceedings of the Second

Asia-Pacific Workshop on Systems (APSys’11). 17:1–17:5. https://doi.org/10.1145/2103799.2103820
[85] Shin-Yeh Tsai and Yiying Zhang. 2019. A double-edged sword: Security threats and opportunities in one-sided network

communication. In Proceedings of the Workshop on Hot Topics in Cloud Computing (HotCloud’19).
[86] Cheng-Chun Tu. 2014. Memory-Based Rack Area Networking. Ph.D. Dissertation. Stony Brook University.
[87] Cheng-Chun Tu and Tzi-cker Chiueh. 2018. Seamless fail-over for PCIe switched networks. In Proceedings of the

International Systems and Storage Conference (SYSTOR’18). 101–111. https://doi.org/10.1145/3211890.3211895
[88] Cheng-Chun Tu, Chao-tang Lee, and Tzi-cker Chiueh. 2013. Secure I/O device sharing among virtual machines on

multiple hosts. ACM SIGARCH Comput. Architect. News 41, 3 (2013), 108–119. https://doi.org/10.1145/2508148.2485932
[89] Cheng-Chun Tu, Chao-tang Lee, and Tzi-cker Chiueh. 2014. Marlin: A memory-based rack area network. In Proceed-

ings of the ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS’14). 125–136.
https://doi.org/10.1145/2658260.2658262

[90] Akshay Venkatesh, Khaled Hamidouche, Sreeram Potluri, Davide Rosettig, Ching-Hsiang Chu, and Dhabaleswar K.
Panda. 2017. MPI-GDS: High performance MPI designs with GPUDirect-aSync for CPU-GPU control flow decoupling.
In Proceedings of the International Conference on Parallel Processing (ICPP’17). 151–160. https://doi.org/10.1109/ICPP.
2017.24

[91] Akshay Venkatesh, Hari Subramoni, Khaled Hamidouche, and Dhabaleswar K. Panda. 2014. A high performance
broadcast design with hardware multicast and GPUDirect RDMA for streaming applications on Infiniband clusters.
In Proceedings of the International Conference on High Performance Computing (HiPC’14). 1–10. https://doi.org/10.1109/
HiPC.2014.7116875

[92] Heymian Wong. 2011. PCI Express Multi-Root Switch Reconfiguration During System Operation. Master’s thesis. Mas-
sachusetts Institute of Technology.

[93] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson. 2020. An empirical guide to the be-
havior and use of scalable persistent memory. In Proceedings of the USENIX Conference on File and Storage Technologies

(FAST’20). 169–182.

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

https://developer.nvidia.com/blog/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://www.usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf
https://developer.nvidia.com/blog/beyond-gpu-memory-limits-unified-memory-pascal/
https://doi.org/10.1007/s10586-018-1707-0
https://arXiv:1409.1556
https://doi.org/10.1109/TC.2015.2513759
https://doi.org/10.1109/HOTI.2010.21
https://doi.org/10.1109/ACCESS.2018.2883149
https://www.mellanox.com/products/ethernet-adapters/connectx-5-en
https://docs.broadcom.com/docs-and-downloads/pdf/technical/expresslane/NTB_Brief_April-05.pdf
https://developer.nvidia.com/blog/gpudirect-storage/
https://doi.org/10.1145/2103799.2103820
https://doi.org/10.1145/3211890.3211895
https://doi.org/10.1145/2508148.2485932
https://doi.org/10.1145/2658260.2658262
https://doi.org/10.1109/ICPP.2017.24
https://doi.org/10.1109/HiPC.2014.7116875


2:78 J. Markussen et al.

[94] Ziye Yang, James R. Harris, Benjamin Walker, Daniel Verkamp, Changpeng Liu, Cunyin Chang, Gang Cao, Jonathan
Stern, Vishal Verma, and Luse E. Paul. 2017. SPDK: A development kit to build high performance storage applications.
In Proceedings of the International Conference on Cloud Computing Technology and Science (CloudCom’17). 154–161.
https://doi.org/10.1109/CloudCom.2017.14

[95] Xiangliang Yu. 2016. NTB: Add support for AMD PCI-Express Non-Transparent Bridge. Retrieved from https://lwn.
net/Articles/672752/.

Received July 2020; revised February 2021; accepted April 2021

ACM Transactions on Computer Systems, Vol. 38, No. 1-2, Article 2. Publication date: June 2021.

https://doi.org/10.1109/CloudCom.2017.14
https://lwn.net/Articles/672752/

