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Abstract. Let C be a smooth projective curve and W a symplectic

bundle over C. Let LQe(W ) be the Lagrangian Quot scheme parametriz-

ing Lagrangian subsheaves E ⊂ W of degree e. We give a closed formula

for intersection numbers on LQe(W ). As a special case, for g ≥ 2, we

compute the number of Lagrangian subbundles of maximal degree of a

general stable symplectic bundle, when this is finite. This is a symplectic

analogue of Holla’s enumeration of maximal subbundles in [14].

1. Introduction

Let C be a smooth projective curve of genus g ≥ 2, and V a vector bundle

of rank r and degree d over C. For 1 ≤ k ≤ r − 1, a rank k subbundle E of

V is called a maximal subbundle if deg(E) is maximal among all subbundles

of rank k. Consider the following enumerative problem.

What is the number of rank k maximal subbundles of V , when it is finite?

Classically, Segre [27] and Nagata [22] proved that if d 6≡ g mod 2, then

a general stable bundle of rank two has 2g maximal line subbundles. Later,

Holla [14] gave an explicit formula enumerating maximal subbundles in gen-

eral (see also [19], [23] and [28]).

The goal of this article is to give an analogous result for symplectic bun-

dles. To pose the problem, let us recall some basic notions. Let L be a

line bundle of degree `. An L-valued symplectic bundle is a vector bun-

dle W on C equipped with a nondegenerate skewsymmetric bilinear form

ω : W ⊗W → L. Such a W has rank 2n for some n ≥ 1. From the induced

isomorphism W ∼= W∨ ⊗L, we have deg(W ) = n`. In fact, it can be shown

that det(W ) ∼= Ln (see [3, § 2]).

A subsheaf E ⊂W is called isotropic if ω(E⊗E) = 0. By linear algebra,

rk (E) ≤ n. If rk (E) = n then E is said to be Lagrangian. A maximal

Lagrangian subbundle of W is one whose degree is maximal among all La-

grangian subsheaves of W .

Let W be an L-valued symplectic bundle over C. For each integer e,

let LQe(W ) be the Lagrangian Quot scheme parameterizing Lagrangian
1
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subsheaves [E → W ] with deg(E) = e; equivalently, quotients [q : W → F ]

with F coherent of rank n and degree n` − e, and Ker(q) isotropic. The

scheme LQe(W ) is projective, and contains the quasiprojective subscheme

LQ◦e(W ) consisting of Lagrangian subbundles. By [8, Proposition 2.4], the

expected dimension of LQe(W ) is

D(n, e, `) := −(n+ 1)e− n(n+ 1)

2
(g − 1− `).

Based on results in [9], we will see the following.

Proposition 3.2. Let L be a line bundle of degree ` and W an L-valued

symplectic bundle of rank 2n which is general in moduli. Write

e0 := −
⌈

1

2
n(g − 1− `)

⌉
.

(1) A maximal Lagrangian subbundle of W has degree e0, and LQe0(W ) =

LQ◦e0(W ).

(2) If n(g−1−`) is even, then LQe0(W ) is a smooth scheme of dimension

zero.

This indicates how Lagrangian Quot schemes enter the picture. Our problem

reduces to evaluating the integral∫
LQe0 (W )

Θ0 .

where Θ0 denotes the fundamental cycle of the zero dimensional scheme

LQe0(W ).

To compute this integral, more generally we find a closed formula for

integrals
∫
LQe(W ) Θ, where W is an arbitrary symplectic bundle, e an integer

and Θ a certain 0-cycle on LQe(W ). (We work with cycles rather than

cohomology classes; see the paragraph subsequent to Definition 1.1). To

obtain the desired formula, we follow essentially the method of Holla [14]

for the case of vector bundles. An important ingredient in the argument of

[14] is the fact, proven in [24, § 6], that for small enough values of e, the

scheme Quotr−k,d−e(V ) parameterizing subsheaves of rank k and degree e in

W is of the expected dimension, and that a general point of any component

corresponds to a vector subbundle. For the present work, an analogous

statement on Lagrangian Quot schemes is required. This follows from [8].

(We mention that in both [24] and [8] the respective Quot schemes are even

shown to be irreducible.)

Let us give a sketch of the strategy for obtaining the formula. We begin

with some terminology.
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Definition 1.1. We say that LQe(W ) has property P if every component

of LQe(W ) is generically smooth of the expected dimension D(n, e, `), and

moreover a general point corresponds to a subbundle of W .

Unlike in the case of Quotr−k,d−e(V ), Lagrangian degeneracy loci on

LQe(W ) do not represent the corresponding Chern classes (see [17, § 4.5]),

so we cannot make up a cohomology class on LQe(W ) whose integral against

the fundamental class [LQe(W )] gives geometric information like Gromov–

Witten invariants. As an alternative, we shall work with 0-cycles, whose

degree gives the same information. However, in general LQe(W ) may ex-

hibit pathologies. Therefore, to begin with we restrict to those W and e for

which LQe(W ) has property P. In this case, given an integer t ≥ 0 and a

monomial P (α) in a set of formal variables α = (α1, . . . , αn), we construct

a 0-cycle Θ(P (α); t) on LQe(W ) and then we define Nw
C,e(W ; Θ(P (α); t)) as

the degree of Θ(P (α); t); that is,

Nw
C,e(W ; Θ(P (α); t)) :=

∫
LQe(W )

Θ(P (α); t).

This extends linearly to any homogeneous polynomial P (α). This number is

invariant under a deformation of LQe(W ), as expected in Gromov–Witten

theory.

Next, we extend this to an intersection theory on an arbitrary Lagrangian

Quot scheme LQe(W ). An essential step is to embed LQe(W ) in LQe(W̃ )

where W̃ is a symplectic Hecke transform of W such that LQe(W̃ ) has

property P. Here LQe(W ) is identified with the intersection of t suit-

able Lagrangian degeneracy loci on LQe(W̃ ) corresponding to the maximal

length strict partition ρn (Corollary 4.8). Then the intersection number

Ñw
C,e(W ; Θ(P ; 0)) for t = 0, which is our main object of interest, is defined

as

Ñw
C,e(W ; Θ(P ; 0)) := Nw+tn

C,e (W̃ ; Θ(P ; t)).

Once Ñw
C,e(W ; Θ(P ; 0)) is shown to be independent of the choice of W̃ , it

is straightforward to see that the two definitions of intersection number

coincide when LQe(W ) has property P.

We then use this intersection theory to answer the enumerative problem

stated at the outset. As the integral
∫
LQe(W ) Θ0 is intractable without fur-

ther conditions on W , we follow [14] and link W̃ with the trivial symplectic

bundle O2n
C by another sequence of Hecke transforms. Then this process

gives a bridge between the integral and a genus g Gromov–Witten invariant

of the Lagrangian Grassmannian LG(C2n). Using results from [5], [6] and

[7], the latter, in turn, can be connected to a genus zero Gromov–Witten
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invariant of LG(C2n), whose closed formula is given by a Vafa–Intriligator-

type formula. Using results from [5], [6] and [7], the latter can be connected

to a genus zero Gromov–Witten invariant of LG(C2n), whose closed formula

is given by a Vafa–Intriligator-type formula.

For LQe(W ) not enjoying property P, this approach is an alternative to

the use of virtual classes in developing an intersection theory, as done in [20]

for the usual Quot schemes. It would be interesting to follow the approach

of [20] for Lagrangian Quot schemes.

Lastly, let us point out a relation with a quantum field theory. In the case

of vector bundles, Marian and Oprea [21] gave a description of a topological

quantum field theory (TQFT) studied by Witten in terms of intersection the-

ory on Quot schemes. In particular, they showed that the so-called Verlinde

number defined on the moduli of vector bundles is equal to an intersection

number on a suitable Quot scheme. Very recently, Goller [12] developed a

weighted TQFT to compute intersection numbers explicitly on some Quot

schemes. Since all these constructions have counterparts in the symplectic

setting, it would be interesting to reveal a connection between our invariants

Ñw
C,e(W ;P ) and symplectic Verlinde numbers, and to give a description of

weighted TQFT in the symplectic setting.

The paper is organized as follows. In § 2, we review the quantum coho-

mology of Lagrangian Grassmannians. In § 3, we give basic properties of

the Lagrangian Quot scheme LQe(W ) and discuss property P and the non-

saturated locus. In § 4, we define Lagrangian degeneracy loci on LQe(W )

and investigate their properties and behavior under Hecke transforms. In

§ 5, we develop an intersection theory on LQe(W ) and find relations among

intersection numbers. In § 6, we give our main result on enumerating max-

imal Lagrangian subbundles (Corollary 6.2). At the end, the numbers are

explicitly computed for ranks two and four (Corollary 6.3).
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Conventions and notation. Throughout this paper, we work over the

field C of complex numbers. Unless otherwise stated, C is a complex projec-

tive smooth curve of genus g ≥ 0, and W is an L-valued symplectic bundle

of rank 2n ≥ 2. We write ` := deg(L). The fiber at p ∈ C of a bundle

V → C is denoted by Vp. We shall most often consider points of Quot

schemes as subsheaves. For a bundle V of rank r and degree d, the point in

Quotr−rk (E),d−deg(E)(V ) determined by a subsheaf E ⊆ V will be denoted

[E → V ] or simply by E.

2. Quantum cohomology of Lagrangian Grassmannians

In this section, we record some known facts on quantum cohomology of

Lagrangian Grassmannians.

2.1. Notations. Fix a positive integer n. A partition λ is a weakly decreas-

ing sequence of nonnegative integers λ = (λ1, λ2, . . . , λn). The nonzero λi
are called the parts of λ. The number of parts is called the length of λ and

is denoted l(λ). The sum
∑n

i=1 λi is called the weight of λ, and denoted |λ|.
Denote by R(n) the set of all partitions (λ1, . . . , λn) such that λ1 ≤ n. A

partition λ is called strict if λ1 > · · · > λl and λl+1 = · · · = λn = 0, where

l = l(λ). Let D(n) be the set of all strict partitions (λ1, . . . , λn) ∈ R(n)

such that λ1 ≤ n. We usually write (λ1, . . . , λl) for a (strict) partition λ =

(λ1, . . . , λl, 0, . . . , 0) of length l, if no confusion should arise. For λ ∈ D(n),

let λ′ be the dual partition of λ, whose parts complement the parts of λ in

the set {1, 2, . . . , n}. Set ρn = (n, n− 1, . . . , 1) ∈ D(n).

Later, we shall also use the following notations to state the Vafa–Intriligator-

type formula in § 2.5. For n = 2m+ 1, set

Tn := {J = (j1, . . . , jn) ∈ Zn | −m ≤ j1 < · · · < jn ≤ 3m+ 1},

and for n = 2m, set

Tn :=

{
J = (j1, . . . , jn) ∈

(
Z +

1

2

)n ∣∣ −m+
1

2
≤ j1 < · · · < jn ≤ 3m− 1

2

}
.

For J = (j1, . . . , jn) ∈ Tn and ζ := exp
(
π
√
−1
n

)
, we write ζJ := (ζj1 , . . . , ζjn).

Define a subset In of Tn by

In :=
{
J = (j1, . . . , jn) ∈ Tn | ζjk 6= −ζjl for k 6= l

}
.

Note that
∏
k ζ

jk = ±1 for J = (j1, . . . , jn) ∈ In. We put

Ien :=
{
J ∈ In

∣∣ ∏
k
ζjk = 1

}
.
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2.2. Symmetric polynomials. Let X = (x1, . . . , xn) be an n-tuple of vari-

ables. For i = 1, . . . , n, let Hi(X) (resp. Ei(X)) be the i-th complete (resp.,

elementary) symmetric function in X. Then for any partition λ, the Schur

polynomial Sλ(X) is defined by

Sλ(X) := det [Hλi+j−i(X)]1≤i,j≤n

where H0(X) = 1, and Hk(X) = 0 for k < 0.

The Q̃-polynomials of Pragacz and Ratajski [25] are indexed by the ele-

ments of R(n). For i ≥ j, define

Q̃i,j(X) = Ei(X)Ej(X) + 2

j∑
k=1

(−1)kEi+k(X)Ej−k(X).

For any partition λ, not necessarily strict, and for r = 2 b(l(λ) + 1)/2c, let

Bλ be the r × r skewsymmetric matrix whose (i, j)-th entry is given by

Q̃λi,λj (X) for i < j. The Q̃-polynomial associated to λ is defined by

Q̃λ(X) = Pfaff(Bλ).

Note that from the definition of Q̃λ(X), for λ = (k) with 0 ≤ k ≤ n we have

Q̃(k)(X) = Ek(X). We often write Q̃k(X) for Q̃(k)(X).

2.3. Degeneracy loci of type C. Let W be a vector bundle of rank 2n

over a scheme Z, equipped with a symplectic form ω : W ⊗W → OZ . Let

E be a vector bundle of rank n. Fix a homomorphism of vector bundles

ψ : E → W with isotropic image; equivalently, such that the composite

E →W →W∨
ψt−→ E∨ is zero, where W →W∨ is the isomorphism induced

by the symplectic form ω. Assume thatW admits a complete flag of isotropic

subbundles

H• : 0 = H0 ⊂ H1 ⊂ · · · ⊂ Hn,

where rk (Hk) = k. For any subbundle G ⊂W , set

G⊥ := {w ∈W | ω(w ⊗ v) = 0 for all v ∈ G},

the orthogonal complement of G with respect to the symplectic form.

Definition 2.1. The degeneracy locus of type C associated to a strict par-

tition λ ∈ D(n) is defined as

Zλ(H•) :=
{
z ∈ Z | rk

(
E →W/H⊥n+1−λi

)
z
≤ n+ 1− i− λi

for each i} .

Note that (W/H⊥n+1−λi)z
∼=
(
H∨n+1−λi

)
z
.

Degeneracy loci of type A are defined analogously, and their classes can

be expressed in terms of the Chern classes of the vector bundles involved
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(see [11]). For type C, we have a similar expression when ψ is everywhere

injective. For F a bundle of rank n and λ a partition, the class Q̃λ(F ) is

defined as Q̃λ(X) with the variable xi specialized to the ith Chern root of

F . Recall that if λ = (k) where 1 ≤ k ≤ n, then Q̃λ(X) = Ek(X). This

implies that Q̃λ(F ) = ck(F ).

As motivation, we quote the following special case of [17, Corollary 4].

Proposition 2.2. Suppose that Z is Cohen–Macaulay, and that the subbun-

dles H1, . . . ,Hn are trivial over Z. Assume that Zλ(H•) is of pure codimen-

sion |λ|. If ψ : E → W defines a Lagrangian subbundle, then in the Chow

group CH|λ|(Z), we have [Zλ(H•)] = Q̃λ(E∨).

Proof. See [17, Corollary 4] and the discussion on [17, p. 1718]. �

Remark 2.3. A few words on Proposition 2.2 are in order. Intersection

theory on a scheme Z in general involves a product of cycle classes (or

cohmology classes) as an integrand of the integral, and a product of cycle

classes is not always possible, unlike of cohomology classes [10, Chap.6].

However if suitable cycles represent corresponding cohomology classes as in

Proposition 2.2, then we can obtain a product of cycles via the corresponding

cohomology classes. This may make the intersection theory on Z relatively

easier. On the other hand, the condition that in Proposition 2.2, ψ : E → V

be a vector bundle injection is necessary in general. A counterexample is

described in [17, § 4.5] in a case where ψ is not everywhere injective. In

fact, as the referee pointed out, this happens in our case. Thus we cannot

use a product of cycles, and so shall take an alternative approach to an

intersection theory in Section 5.

2.4. Cohomology of Lagrangian Grassmannians. Let V be a vector

space of dimension 2n equipped with a symplectic form ω : V ⊗ V → C.

Let LG(V ) be the Lagrangian Grassmannian parametrizing Lagrangian sub-

spaces in V . Over LG(V ), there is a universal exact sequence of bundles

0 → E → V → E∨ → 0,

where V = LG(V )× V . Clearly V admits a symplectic form induced from

V , and the subbundle E ⊂ V is isotropic. Let

H• : H1 ⊂ H2 ⊂ · · · ⊂ Hn−1 ⊂ Hn

be a complete isotropic flag in V . This induces a complete flag of isotropic

subbundles

H• : H1 ⊂ H2 ⊂ · · · ⊂ Hn−1 ⊂ Hn,

in V, where Hk := LG(V ) × Hk. Then for strict partitions λ ∈ D(n), the

degeneracy loci Zλ(H•) are called Schubert varieties. By Proposition 2.2,
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we obtain

(2.1) [Zλ(H•)] = Q̃λ(E∨).

It is well known that the classes {σλ := [Zλ(H•)] |λ ∈ D(n)} form a basis of

the Chow group of LG(V ). For 1 ≤ k ≤ n, we have the length 1 partition

(k). We write σk for the special Schubert class σ(k) ∈ CHk(LG(V )).

2.5. A Vafa–Intriligator-type formula. Fix a symplectic vector space

V = C2n, and write LG(n) for LG(C2n). In this subsection, we state a Vafa–

Intriligator-type formula for LG(n), which computes the Gromov–Witten

invariants. We begin by defining these invariants.

The degree of a morphism f : C → LG(n) is defined as the intersection

number ∫
[LG(n)]

f∗[C] · σ1.

Such an f defines a Lagrangian subbundle Ef of the trivial symplectic bundle

O⊕2n
C , and deg(Ef ) = −deg(f). The Gromov–Witten invariant is informally

defined as follows. For the precise definition, see [26].

Definition 2.4. Let p1, . . . , pm be distinct points of C. Let λ1, . . . , λm ∈
D(n) be strict partitions. Fix d ∈ Z. We define the Gromov–Witten invari-

ant 〈σλ1 , . . . , σλm〉C,d as follows. If

(2.2)
m∑
j=1

|λj | =
1

2
n(n+ 1)(1− g) + d(n+ 1),

then 〈σλ1 , . . . , σλm〉C,d is the number of morphisms f : C → LG(n) of degree

d, such that for each i, we have f(pi) ∈ Zλi(γi ·H•) for a general choice of

symplectic transformation γi ∈ Sp2n(C).

If (2.2) does not hold, we define 〈σλ1 , . . . , σλm〉C,d to be zero.

Now it is well known (see [26, p. 262]) that the Gromov–Witten invariant

is independent of the points pi and the curve C, depending only on the genus

g. Thus we write 〈σλ1 , . . . , σλm〉g,d for 〈σλ1 , . . . , σλm〉C,d.

The (small) quantum cohomology ring of LG(n) is defined via the genus

zero three-point Gromov–Witten invariants [18]. Let q be a formal variable

of degree n+ 1. The ring qH∗(LG(n),Z) is isomorphic as a Z[q]-module to

H∗(LG(n),Z)⊗Z Z[q]. The multiplication in qH∗(LG(n),Z) is given by the

formula

σλ · σµ =
∑
d≥0

∑
ν

〈σλ, σµ, σν′〉0,d σν q
d,
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where ν ranges over all strict partitions with |ν| = |λ|+ |µ| − (n+ 1)d. Note

that the specialization of the (complexified) quantum cohomology ring at

q = 1 is given by

qH∗(LG(n),C)q=1 := qH∗(LG(n),C)⊗ C[q]/(q − 1).

As a complex vector space, this is isomorphic to H∗(LG(n),C).

Now we are ready to give a Vafa–Intriligator-type formula for LG(n) for

an arbitrary genus g.

Proposition 2.5. Let C be a curve of genus g with m marked points. For

strict partitions λ1, λ2, . . . , λm ∈ D(n) and d ≥ 0, the genus g Gromov–

Witten invariant for LG(n) is computed as

〈σλ1 , σλ2 , . . . , σλm〉g,d := 2n(g−1)−d
∑

J∈Ien+1

Sρn(ζJ)
g−1

Q̃λ1(ζJ) · · · Q̃λm(ζJ)

whenever
∑m

i=1 |λi| =
n(n+1)

2 (1− g) + (n+ 1)d, and zero otherwise.

Proof. For g = 0, the formula was given in [6]. For an arbitrary g, we have

the formula from [5, p. 1263]:

(2.3) 〈σλ1 , σλ2 , . . . , σλm〉g,d = tr
(
[Eg−1σλ1 · · ·σλm ]

)
,

where E is the quantum Euler class (cf. [1]) of LG(n) in qH∗(LG(n),C)q=1,

and [σ] denotes the quantum multiplication operator on qH∗(LG(n),C)q=1

determined by σ. Then the formula follows from [7, Theorem 6.6] where the

eigenvalues of [σ] were computed for an arbitrary σ ∈ qH∗(LG(n),C)q=1. �

3. Lagrangian Quot Schemes

Let Mord(C,LG(n)) be the space of morphisms of degree d from C to

LG(n). Informally, Gromov–Witten invariants of LG(n) might be thought

of as intersection numbers on Mord(C,LG(n)). However, it is necessary to

compactify Mord(C,LG(n)) in order to develop an intersection theory. An

alternative compactification to Kontsevich’s moduli space of stable maps is

the Lagrangian Quot scheme, which is practical for computing intersection

numbers. In fact, Kresch and Tamvakis [18] used a Lagrangian Quot scheme

for W = O⊕2n
P1 to compute the quantum cohomology ring of LG(n). This

may indicate that Lagrangian Quot schemes are important moduli spaces

whose intersection theory is of interest. In this section, we describe the

Lagrangian Quot schemes of a symplectic bundle over a curve of any genus.
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3.1. Definition and notation. Let C be a smooth projective curve of

genus g, andW a vector bundle of rank r and degree d on C. Let Quotr−k,d−e(W )

be Grothendieck’s Quot scheme parameterizing subsheaves [E →W ] of rank

k and degree e, or equivalently quotients [W → F ] where F is coherent of

rank r − k and degree d− e. Let Quotr−k,d−e(W )◦ be the open sublocus{
[ψ : E →W ] ∈ Quotr−k,d−e(W ) | ψ is a vector bundle injection

}
.

Recall that Quotr−k,d−e(W ) is a projective variety, possibly having other

components than the closure of Quotr−k,d−e(W )◦. If πC : Quotr−k,d−e(W )×
C → C is the projection, then on Quotr−k,d−e(W )×C we have the universal

exact sequence of sheaves

0 → E → π∗CW → Q→ 0.

Suppose now that rk (W ) = 2n and W is equipped with a symplectic

form ω : W ⊗W → L, where L is a line bundle of degree `. As ω induces an

isomorphism W ∼= W∨ ⊗ L, in particular deg(W ) = n`.

The Lagrangian Quot scheme LQe(W ) is the subscheme of Quotn,n`−e(W )

consisting of Lagrangian subsheaves. To see that LQe(W ) is a closed sub-

scheme of Quotn,n`−e(W ), consider the map

σ : Quotn,n`−e(W ) −→ H0(C,∧2(E∨)⊗ L)

sending [j : E → W ] to ω ◦ ∧2j : ∧2 E → L. This σ defines a section of the

sheaf π∗(∧2(E∨)⊗ π∗L), where π : Quotn,n`−e(W )× C → Quotn,n`−e(W ) is

the projection. The subscheme LQe(W ) is nothing but the zero locus of σ.

(For another argument, see [8, Lemma 2.2].)

Hence LQe(W ) is a compactification of the quasiprojective scheme LQ◦e(W )

of Lagrangian subbundles, possibly having components in addition to the

closure of LQ◦e(W ). For the trivial symplectic bundle W = O⊕2n
C and e ≤ 0,

the subscheme LQ◦e(W ) coincides with the space Mor−e(C,LG(n)) of mor-

phisms of degree −e.

3.2. Property P on LQe(W ). In this subsection, we discuss further the

property P which was defined in § 1. To give a motivating example of an

LQe(W ) having property P, we use the notion of very stability as studied

in [4]. A symplectic bundle W ∼= W∨ ⊗ L is called very stable if the bundle

KCL
−1⊗Sym2W has no nonzero nilpotent sections. The following is proven

similarly to [19, Lemma 3.3].

Lemma 3.1. Let W be a very stable symplectic bundle. Then we have

H1(C,L⊗ Sym2E∨) = 0 for every Lagrangian subsheaf E ⊂W .
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By [8, Proposition 2.4], the Zariski tangent space of LQe(W ) at a point

[E →W ] ∈ LQ◦e(W ) is H0(C,L⊗Sym2E∨). Hence the expected dimension

of LQe(W ) is

(3.1) χ(C,L⊗Sym2E∨) = −(n+ 1)e− n(n+ 1)

2
(g− 1− `) = D(n, e, `).

Proposition 3.2. Let L be a line bundle of degree ` and W an L-valued

symplectic bundle of rank 2n which is general in moduli. As before, we set

e0 := −
⌈

1
2n(g − 1− `)

⌉
.

(1) A maximal Lagrangian subbundle of W has degree e0, and LQe0(W ) =

LQ◦e0(W ).

(2) If n(g−1−`) is even, then LQe0(W ) is a smooth scheme of dimension

zero.

Proof. The first statement in (1) follows from [9, Theorem 1.4 and Remark

3.6]. For the rest: As the Lagrangian subsheaves parametrized by LQe0(W )

have maximal degree in W , every point of LQe(W ) corresponds to a La-

grangian subbundle, for otherwise, the subbundle generated by a subsheaf

of degree e0 would be a Lagrangian subbundle of higher degree. Hence in

this case LQe(W ) = LQ◦e(W ).

For (2): By [8, Proposition 2.4], if H1(C,L⊗Sym2E∨) = 0, then LQe(W )

is smooth of dimension χ(C,L ⊗ Sym2E∨) = 0 at [E → W ]. By Lemma

3.1, this holds for all [E → W ] if W is very stable; and by [4], very stable

bundles are dense in moduli. Statement (2) follows. �

In particular, if W is generic and n(g− 1− `) ≡ 0 mod 2, then LQe0(W )

has property P. More generally, regarding property P, we cite the main

result of [8].

Proposition 3.3. Let W be a symplectic bundle of degree n` over C. Then

there exists an integer e(W ) such that if e ≤ e(W ), then LQe(W ) is an

irreducible and generically smooth variety of dimension D(n, e, `), of which

a general point corresponds to a Lagrangian subbundle. In particular, if

e ≤ e(W ), then LQe(W ) has property P.

3.3. Evaluation maps. Let W be a symplectic bundle. For each p ∈ C,

we have an evaluation map

evp : LQ◦e(W ) → LG(Wp)

taking a Lagrangian subbundle to its fiber at p. The map evp is defined

at [E → W ] if and only if E is saturated at p. Note that evp depends on

the degree e, but since this will always be clear from the context, to ease

notation we simply write evp.
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The following result assures the surjectivity of the evp in cases of interest.

Let e(W ) be as defined in Proposition 3.3.

Proposition 3.4. There is an integer f0(W ) ≥ e(W ) such that for all

e ≤ f0(W ), the evaluation map evp : LQ◦e(W ) → LG(Wp) is surjective for

all p ∈ C.

Proof. The existence of f0(W ) is a special case of [8, Proposition 4.4]. The

inequality f0(W ) ≥ e(W ) follows from the definition of e(W ) at the end

of the proof of [8, § 4.2] (note that in [8] the space LQe(W ) is denoted

LQ−e(W ) and the subsheaves have degree −e instead of e). �

3.4. Nonsaturated loci of Lagrangian Quot schemes. Let W be a

symplectic bundle and E ⊂W a Lagrangian subsheaf. We denote by E the

saturation of E inW . This is the sheaf of sections of the subbundle generated

by E, or equivalently, the inverse image in W of the torsion subsheaf of W/E.

For fixed e and for r ≥ 0, we write

(3.2) Br := {[E →W ] ∈ LQe(W ) | E/E is a torsion sheaf of length r}.

This is a locally closed subscheme of LQe(W ). The following is clear from

the definitions (compare with [2, Theorem 1.4]).

Lemma 3.5. The association E 7→ E defines a surjective morphism

fr : Br → LQ◦e+r(W ).

If F ⊂W is a Lagrangian subbundle of degree e+ r, then f−1
r (F ) is canon-

ically identified with Quot0,r(F ). In particular, Br → LQ◦e+r(W ) is topolog-

ically a fiber bundle with irreducible fibers of dimension nr.

Notice that f0 : B0 → LQ◦e(W ) is the identity map.

4. Degeneracy loci for Lagrangian Quot schemes

In this section we define Lagrangian loci on LQe(W ) and establish all

results necessary for the intersection theory in Section 5.

4.1. Lagrangian degeneracy loci. Let W be an L-valued symplectic bun-

dle, and set X := LQe(W ). Write πC : X×C → C for the projection. There

is an exact sequence of sheaves over X× C given by

(4.1) 0 → E → π∗CW → Ê

where E is the universal subsheaf and Ê = E∨⊗π∗CL. For p ∈ C, denote by

E(p),W(p) and Ê(p) the restrictions to X×{p} of E , π∗CW and Ê respectively.

Identifying the restrictions Ê(p) ∼= E(p)∨, we obtain

(4.2) 0 → E(p) → W(p) → E(p)∨.
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Note that W(p) = X×Wp is a trivial symplectic bundle. Let

H• : H1 ⊂ H2 ⊂ · · · ⊂ Hn−1 ⊂ Hn

be a complete flag of isotropic subspaces in Wp, and

Hn = H⊥n ⊂ H⊥n−1 ⊂ · · · ⊂ H⊥2 ⊂ H⊥1

the corresponding coisotropic flag of orthogonal complements. This induces

a flag of trivial subbundles

H⊥n−k+1 := X×H⊥n−k+1 : 1 ≤ k ≤ n

of X×Wp. Following [18], we will define Lagrangian degeneracy loci on X.

Each Lagrangian subsheaf map ψ : E →W induces a map Ep →Wp/H
⊥
n+1−k

for each k. We adapt Definition 2.1 to this case.

Definition 4.1. For p ∈ C and λ ∈ D(n), define Xλ(H•; p) as{
[ψ : E →W ] ∈ X | rk

(
E(p)→W(p)/H⊥n+1−λi

)
ψ
≤ n+ 1− i− λi,

1 ≤ i ≤ l(λ)} .

Remark 4.2. If λ = (k), then X(k)(H•; p) is determined by the single

isotropic subspace Hn+1−k of Wp. Also, for ρn = (n, n− 1, . . . , 1), we have

(4.3) Xρn(H•; p) = {[ψ : E →W ] ∈ X | ψ (Ep) ⊆ Hn} ,

which depends only on Hn. Henceforth we shall denote X(k)(H•; p) and

Xρn(H•; p) by Xk(Hn+1−k; p) and Xρn(Hn; p) respectively. Also, for any λ,

we denote by X◦λ the saturated part Xλ ∩ LQ◦e(W ).

The following lemma will be used in the estimation of various dimensions

later.

Lemma 4.3. Let W be a symplectic bundle of rank 2n and F ⊂ W a

Lagrangian subbundle. Fix an integer r ≥ 1. For 1 ≤ k ≤ n, let H be

an isotropic subspace of dimension n + 1 − k in a fiber Wp, such that the

composed map Fp →Wp →Wp/H
⊥ is surjective. Then the locus

(4.4)

{[E → F ] ∈ Quot0,r(F ) | the map Ep → Fp →Wp/H
⊥ is not surjective}

is empty or of codimension at least k in Quot0,r(F ).

Proof. Since Fp → Wp/H
⊥ is surjective, E belongs to (4.4) only if E fails

to be saturated at p. On the other hand, since

length(Fp/Ep) ≤ deg(F/E) = r,
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we have rk (ψp : Ep → Fp) ≥ n − r. We shall prove the lemma by showing

that for each l satisfying

max{0, n− r} ≤ l ≤ n− 1,

the intersection of (4.4) with the set

(4.5) {[E → F ] ∈ Quot0,r(F ) | rk (Ep → Fp) = l}

has codimension at least k in Quot0,r(F ).

We begin by estimating the dimension of (4.5). A point E of this locus

is determined by the choice of Im (Ep → Fp) =: Π ∈ Gr(l, Fp) and a point

in Quot0,r−(n−l)(FΠ), where FΠ is the elementary transformation

0 → FΠ → F → Fp/Π → 0.

Thus (4.5) is of dimension at most

dim Gr(l, Fp) + dim Quot0,r−(n−l)(FΠ) = l(n− l) + n(r − (n− l))

= rn− (n− l)2.

If l ≤ n−k, then Ep →Wp/H
⊥ cannot be surjective, so (4.5) is contained

in (4.4). But in this case k ≤ n − l ≤ (n − l)2, so (4.5) has codimension at

least k in Quot0,r(F ).

Suppose on the other hand that l ≥ n− k + 1. Noting that

Ker
(
ψ(Ep)→Wp/H

⊥
)

= ψ(Ep) ∩
(
H⊥ ∩ Fp

)
,

we see that E belongs to (4.4) if and only if

dim
(
ψ(Ep) ∩H⊥ ∩ Fp

)
≥ l − n+ k = dimψ(Ep)− dimWp/H

⊥ + 1.

This is a Schubert condition on ψ(Ep) ∈ Gr(l, Fp), of codimension l−n+ k.

Thus for l ≥ n− k+ 1, the intersection of (4.5) with (4.4) is of codimension

(n− l)2 + (k + l − n) = k + (n− l)(n− l − 1) ≥ k

in Quot0,r(F ). (Notice that we have equality if l = n − 1.) This completes

the proof. �

Recall now the locus Br defined in (3.2).

Proposition 4.4. Let p ∈ C be a point and let H ⊂ Wp be an isotropic

subspace of dimension n+ 1− k, where 1 ≤ k ≤ n.

(1) For general γ ∈ Sp(Wp), the intersection Xk(γ ·H; p) ∩ Br is either

empty or of codimension at least k in Br.
(2) Suppose that e ≥ e(W ), so X = LQe(W ) has property P and the

evaluation map evp : LQ◦e(W )→ LG(Wp) is surjective. Then if γ ∈
Sp(Wp) is general, Xk(γ ·H; p) is nonempty and generically smooth

of codimension k in X, and a generic element is saturated.
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Proof. (1) We adapt the approach of [2, Theorem 1.4]. For a fixed r ≥ 0,

we define the degeneracy locus

Y◦k(H; p) :=
{

[F →W ] ∈ LQ◦e+r(W ) | rk (Fp →Wp/H
⊥) ≤ n− k

}
.

This is the preimage by evp : LQ◦e+r(W )→ LG(Wp) of the degeneracy locus

Zk(H) = {Λ ∈ LG (Wp) | dim(Λ ∩H⊥) ≥ k}

(cf. Definition 2.1), which has codimension k. Now evp|LQ◦e+r(W ) is a mor-

phism, so by [15, Theorem 2 (i)], for a general γ ∈ Sp(Wp), the locus

Y◦k(γ ·H; p) is either empty or of codimension k in LQ◦e+r(W ).

Consider now the set

{E ∈ Xk(γ ·H; p) ∩ Br | rk (Ep →Wp/H
⊥) ≤ n− k}.

This is precisely f−1
r (Y◦k(γ ·H; p)), where fr : Br → LQ◦e+r(W ) is as defined

in § 3.4. By Lemma 3.5 and the last paragraph, f−1
r (Y◦k(γ ·H; p)) is either

empty or has codimension k in Br.
(For the remainder of the proof, we do not use the assumption that γ is

general.) It remains to treat the situation where Ep →Wp/H
⊥ is surjective.

In this case, E can belong to Xk(H; p) only if E fails to be saturated at p;

in particular, r ≥ 1. By Lemma 4.3, for fixed F ∈ LQe(W )◦e+r(W ), all

components of the locus

{[E → F ] ∈ Quot0,r(F )| the map Ep → Fp →Wp/H
⊥ is not surjective}

are of codimension at least k in Quot0,r(F ) ∼= f−1
r (F ). Letting F vary

in LQ◦e+r(W ), we see that the locus of E ∈ Xk(p;H) with Ep → W/H⊥

surjective is of codimension at least k in Br. Thus (1) is proven.

(2) Since by hypothesis evp : LQ◦e(W )→ LG(Wp) is surjective, for general

γ ∈ Sp(Wp) the locus X◦k(γ ·H; p) is nonempty and of codimension k by [15,

Theorem 2 (i)]. By part (1), for each r ≥ 0 the intersection Xk(γ ·H; p)∩Br
has codimension at least k in Br. As LQe(W ) has property P, for r ≥ 1 this

intersection has codimension strictly greater than k in X. Thus a general

point of Xk(γ ·H; p) is saturated.

For smoothness: Since LQe(W ) has property P, it is generically smooth.

Let X◦sm be the smooth and saturated part of LQe(W ), a dense open subset.

Let Zk(γ ·H)sm be the smooth part of Zk(γ ·H; p). Consider the diagram

X◦sm ∩ Xk(γ ·H; p)
∼ // X◦sm ×LG(Wp) Zk(γ ·H)sm

//

��

Zk(γ ·H)sm� _

��
X◦sm

evp // LG(Wp)

.

The top left intersection is contained in Xk(γ ·H; p), and by [15, Theorem

2 (i) & (ii)], for general γ is smooth and of codimension k. In a similar way,
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by [15, Theorem 2 (i)], for general γ the intersection of Xk(γ ·H; p) with the

singular part of X◦ is of codimension strictly greater than k in X◦. Hence a

general point of Xk(γ ·H; p) is smooth. �

We now prove an analogue of Proposition 4.4 for the partition ρn. This

will be used in dealing with symplectic Hecke transforms.

Proposition 4.5. Let Λ be a Lagrangian subspace of Wq for a point q ∈ C.

(1) For each r ≥ 0, for general η ∈ Sp(Wq), the intersection Xρn(η ·
Λ; q)∩Br is either empty or of codimension at least 1

2n(n+1) in Br.
(2) Suppose that e ≥ e(W ), so evq : LQ◦e(W ) → LG(Wq) is surjective

and X = LQe(W ) has property P. Then if η ∈ Sp(Wq) is gen-

eral, Xρn(η ·Λ; q) is nonempty and generically smooth of codimension
1
2n(n+ 1) in X, and a generic element is saturated.

Proof. (1) For 0 ≤ m ≤ n, consider the locus

Zρm(Λ) := {Π ∈ LG(Wq) : dim(Π ∩ Λ) ≥ m}.

Any Π ∈ Zρm(Λ) fits into an exact sequence 0 → Π1 → Π → Π2 → 0,

where Π1 is an m-dimensional subspace of Λ and Π2 a Lagrangian subspace

of the 2(n − m)-dimensional symplectic vector space Π⊥1 /Π1. Hence the

codimension of Zρm(Λ) in LG(Wp) is at least

dim LG(Wp)− dim Gr(m,Λ)− dim LG(n−m) =
1

2
m(m+ 1).

Now for any E ∈ Xρn(Λ; q) ∩ Br, there is a commutative diagram

Eq // Eq ∩ Λ //

��

Λ

��
Eq // Wq

.

If dim(Eq ∩ Λ) = m, then E ∈ ev−1
q (Zρm(η · Λ)). (Note that r ≥ n−m, so

m ≥ n− r.) Moreover, letting EΛ be the elementary transformation

0 → EΛ → E → Eq/(Eq ∩ Λ) → 0,

we have

(4.6) [E → E] ∈ Im
(

Quot0,r−(n−m)(EΛ) ↪→ Quot0,r(E)
)
.

Now by [15, Theorem 2 (i)] and the first paragraph, for general η ∈
Sp(Wq), the locus

(4.7)

{[F →W ] ∈ LQ◦e+r(W ) | dim (Fp ∩ (η · Λ)) = m} ⊆ ev−1
q (Zρm(η · Λ))
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is either empty or has codimension 1
2m(m+ 1) in LQ◦e+r(W ). Furthermore,

for each F in this locus, setting Fη·Λ = Ker(F → Fq/(Fq ∩ η · Λ)) as above,

the locus Quot0,r−(n−m) (Fη·Λ) has codimension

nr − n(r − (n−m)) = n(n−m)

in Quot0,r(F ) ∼= f−1
r (F ). As (4.7) and (4.6) are conditions purely on the

base and the fibers of fr respectively, in view of Lemma 3.5 we may add the

codimensions and conclude that for min{0, n− r} ≤ m ≤ n, the locus

{[E →W ] ∈ Xρn(η · Λ; q) ∩ Br | dim(Eq ∩ Λ) = m}

is of codimension

1

2
m(m+ 1) + n2 − nm =

1

2
n(n+ 1) +

1

2
(n−m)(n−m− 1)

in Br. As n ≥ m, this is at least 1
2n(n+ 1), as desired. (Notice also that we

have equality for m = n and m = n− 1.)

Part (2) can be proven similarly to Proposition 4.4 (2). �

4.2. The Hecke transform. In this subsection, given a vector bundle V

and a divisor D on C, we denote V ⊗OC(D) by V (D).

Let W be a bundle with symplectic form ω : W ⊗W → L. Fix p ∈ C and

choose a subspace Λ ⊂ Wp. Let WΛ be the Hecke transform of W , which is

defined as the kernel of the composition map W → Wp → Wp/Λ. Then we

have the exact sequence of sheaves

(4.8) 0→ WΛ → W → Wp/Λ → 0.

By [3, Proposition 2.2], if Λ is a Lagrangian subspace of Wp, then WΛ is

bundle of degree deg(W )− n admitting the symplectic form

ωΛ : WΛ ⊗WΛ → L(−p)

and fitting into the commutative diagram

(4.9) WΛ ⊗WΛ
//

ωΛ

��

W ⊗W

ω

��
L(−p) // L.

Dualizing (4.8), we obtain a sequence

0→W∨ → (WΛ)∨ → Cn ⊗Op → 0.

Here Op is a skyscraper sheaf of length one supported at p. Using the

isomorphisms W ∼= W∨⊗L and WΛ
∼= (WΛ)∨⊗L(−p), we obtain a sequence

(4.10) 0→W →WΛ → Cn ⊗Op → 0,
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where WΛ := WΛ(p) is an L(p)-valued symplectic bundle. In this way, to

each Lagrangian subspace Λ ⊂Wp we can associate a symplectic bundle WΛ

fitting into (4.10). Since Λ∨ ⊂ (WΛ)∨p , we may regard Λ∨ as a Lagrangian

subspace of (WΛ)p. If E ⊂ W is a subsheaf, then E can be viewed as a

subsheaf of WΛ via the inclusion W ⊂ WΛ. Furthermore, if E ⊂ W is a

Lagrangian subsheaf, so is E ⊂WΛ. Hence there is a well-defined morphism

ΨΛ : LQe(W ) → LQe(W
Λ).

One can check that ΨΛ is an embedding. Furthermore, ΨΛ([E → W ])

belongs to LQ◦e(W
Λ) if and only if [E → W ] ∈ LQ◦e(W ) and Ep ∩ Λ = 0 in

Wp.

Proposition 4.6. Fix p ∈ C and a Lagrangian subspace Λ ⊂Wp. Then the

image of ΨΛ coincides with the Lagrangian degeneracy locus Xρn(Λ∨; p) ⊆
LQe(W

Λ).

Proof. By definition, [E →WΛ] belongs to Xρn(Λ∨; p) if and only if the map

Ep → (WΛ)p factorizes via Λ∨ ⊂ (WΛ)p. This is equivalent to E → WΛ

lifting to a degree e Lagrangian subsheaf of W . �

Now choose distinct points q1, . . . , qt ∈ C and Lagrangian subspaces

Λ1, . . . ,Λt in Wq1 , . . . ,Wqt respectively. Let W̃ be the symplectic bundle

obtained from a sequence of t Hecke transforms associated to Λ1, . . . ,Λt.

Then W̃ fits into the sequence

(4.11) 0 → W → W̃ →
t⊕

j=1

(
Cn ⊗Oqj

)
→ 0.

Then deg(W̃ ) = deg(W ) + tn, and as in the case above with t = 1, there is

an embedding LQe(W ) ⊂ LQe(W̃ ).

Lemma 4.7. Let W be any symplectic bundle with LQe(W ) nonempty.

There exists an integer t0(W ) such that if W̃ is the Hecke transform defined

by a general choice of t ≥ t0(W ) points q1, . . . , qt ∈ C and Lagrangian

subspaces Λi ⊂Wqi, then the Lagrangian Quot scheme LQe(W̃ ) has property

P.

Proof. By Proposition 3.3, there exists m0 ≥ 0 such that LQe−mn (W ) has

property P for all m ≥ m0. Let D be a reduced effective divisor of degree

m ≥ m0. Then W (D) is an L(2D)-valued symplectic bundle, and

LQe−mn(W ) ∼= LQe(W (D))

via the map [E →W ] 7→ [E(D) 7→W (D)].
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Now W (D) is a symplectic Hecke transformation of W . Precisely, W (D)

is obtained from W by transforming along m pairs of complementary La-

grangian subspaces of W , one pair from each point of Supp(D). Clearly

W (D) can be deformed to the Hecke transform defined by a general choice

of 2m Lagrangian subspaces of distinct fibers of W . Therefore, as property

P is open in families, a general Hecke transform W̃ with deg
(
W̃/W

)
= 2mn

has property P.

Similarly, let WΛ be any Hecke transform of W along a single Lagrangian

subspace Λ. Applying the above argument to WΛ, there exists m1 ≥ 0

such that if m ≥ m1 and W̃Λ is a general Hecke transform of WΛ with

deg
(
W̃Λ/WΛ

)
= 2mn, the scheme LQe(W̃Λ) has property P. But such

a W̃Λ is also a Hecke transform of W along 2m + 1 Lagrangian subspaces

(including Λ).

Thus, for t ≥ t0(W ) := max{2m0, 2m1 + 1}, if W̃ is the Hecke transform

along a general choice of t Lagrangian subspaces, then LQe(W̃ ) has property

P. �

Corollary 4.8. Let W be any symplectic bundle over C and W̃ be the Hecke

transform in (4.11). Assume LQe(W ) is not empty. Then, as subschemes

of LQe(W̃ ), we have

LQe(W ) =
t⋂
i=1

Xρn(Λ∨i ; qi),

where we view Λ∨i as a Lagrangian subspace of W̃qi.

Proof. The equality of subschemes follows by applying Proposition 4.6 re-

peatedly. �

We shall also require the following corollary later.

Corollary 4.9. Let e be a fixed integer. Then there is a number w̃(e) such

that for a general symplectic W of degree w̃ ≥ w̃(e), the Lagrangian Quot

scheme LQe(W ) has property P.

Proof. Clearly we can find a symplectic bundle W0 of large enough degree

w0 such that LQe(W0) is nonempty. By Lemma 4.7, for t ≥ t0(W0) there

exists a symplectic bundle W̃0 of degree w0 + tn such that LQe(W̃0) has

property P. As property P is open in families of symplectic bundles, we

may set w̃(e) := w0 + nt0(W0). �

5. Intersection theory on LQe(W )

We shall now develop an intersection theory on LQe(W ). We firstly de-

fine intersection numbers on a Lagrangian Quot scheme LQe(W ) having
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property P, and then extend this to an arbitrary Lagrangian Quot scheme

LQe(W ). Note that as pointed out in Remark 2.3, we cannot generate

desired 0-cycles for the integral through a product of cycles on LQe(W ).

However we obtain them by directly taking an intersection of Lagrangian

loci in Proposition 5.1.

5.1. Intersection theory on LQe(W ) having property P. Recall that

for a fixed g, we have defined

D(n, e, `) := −(n+ 1)e− n(n+ 1)

2
(g − `− 1),

the expected dimension of LQe(W ) for a symplectic bundle W of rank 2n

and degree n` over a curve of genus g. For a nonnegative integer t, write

Dt(n, e, `) := D(n, e, `)− n(n+ 1)

2
· t.

The next proposition, whose proof will be given in § 5.5, plays a key role

in developing the intersection theory on LQe(W ).

Proposition 5.1. Let W be any symplectic bundle of degree w = n`. As-

sume that e ≤ e(W ), so LQe(W ) has property P and evx : LQ◦e(W ) →
LG(Wx) is surjective for all x ∈ C. Let t, k1, . . . , ks be integers with t ≥ 0

and 1 ≤ ki ≤ n, satisfying
∑s

i=1 ki = Dt(n, e, `). Let p1, . . . , ps, q1, . . . , qt be

distinct points of C. For each pi, let Hi ⊂ Wpi be an isotropic subspace of

dimension n+ 1− ki. For each qj, let Λj ⊂ Wqj be a Lagrangian subspace.

Then for a general choice of γi ∈ Sp(Wpi) and ηj ∈ Sp(Wqj ), the following

holds.

(1) The intersection

(5.1)

(
s⋂
i=1

Xki(γi ·Hi; pi)

)
∩

 t⋂
j=1

Xρn(ηj · Λj ; qj)


is a 0-dimensional subscheme of LQe(W ).

(2) The intersection (5.1) is equal to

(5.2)

(
s⋂
i=1

X◦ki(γi ·Hi; pi)

)
∩

 t⋂
j=1

X◦ρn(ηj · Λj ; qj)

 .

In particular, each point of the intersection corresponds to a satu-

rated subsheaf.

(3) The intersection (5.2) is reduced.

For 1 ≤ i ≤ n, let αi be a formal variable of weight i, and set α :=

(α1, . . . , αn). Let P (α) be a homogeneous polynomial in α1, . . . , αn.
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Definition 5.2. Assume X = LQe(W ) has property P. Let t be a nonneg-

ative integer and P = P (α) =
∏s
i=1 αki be a monomial with degP (α) =

Dt(n, e, `). Define Θ(P ; t) as the 0-cycle determined by the intersection

(5.1).

Notice that Θ(P ; t) depends on the choice of reference points pi and qj ,

and the subspaces Hi and Λj .

Definition 5.3. Suppose that X = LQe(W ) has property P. Let t ≥
0 be a nonnegative integer and P (α) a homogenous polynomial such that

degP (α) = Dt(n, e, `). Define Nw
C,e(Θ(P, t);W ) as follows. If P (α) is a

monomial
∏s
i=1 αki, then

Nw
C,e(Θ(P, t);W ) :=

∫
X

Θ(P ; t).

Then Nw
C,e(Θ(P, t);W ) is defined for any homogeneous polynomial P (α)

of degree Dt(n, e, `) by linearity of the integral. By convention, we set

Nw
C,e(Θ(P, t);W ) = 0 if degP (α) 6= Dt(n, e, `).

We are ultimately interested in the integral of cycles Θ(P, 0), i.e., for t = 0

and the case with t > 0 plays an auxiliary role in our theory (cf. Definition

5.9). We use a simpler notation for t = 0:

Notation 5.4. For simplicity, in the case where t = 0 we write Nw
C,e(P ;W )

for Nw
C,e(Θ(P, 0);W ).

Remark 5.5. By [10, Proposition 10.2], the number Nw
C,e(Θ(P ; t);W ) is

well-defined in the sense that it is independent of the chosen reference points

pi and qj and the subspaces Hi and Λj provided that the intersection (5.1)

remains 0-dimensional; and by Proposition 5.1, this is the case when the Hi

and Λj are chosen generally in their respective fibers.

5.2. Invariance of intersection number under deformations. We show

now that the intersection number Nw
C,e(Θ(P ; t);W ) is invariant in a family

of Lagrangian Quot schemes with property P. Let C → B be a family of

smooth projective curves over an irreducible curve B and L → C a line

bundle of relative degree `. Let W be a vector bundle over C such that Wb is

an Lb-valued symplectic bundle over Cb for each b ∈ B. The family W → C
gives rise to a family φ : X̃ = LQe(W ) → B of Lagrangian Quot schemes

parameterized by B.

Let Ẽ be a universal bundle over LQe(W ) ×B C. Now we define a rela-

tive version of the Lagrangian degeneracy locus on X̃ associated to a strict

partition λ ∈ D(n). This can be done locally on B.

To do this, we replace points p, q ∈ C and subspaces H ∈Wp and Λ ⊂Wq

with local sections corresponding to these. For simplicity, we proceed with
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λ = ρn, the general case being similar. Let q̃ : U → C be a local section of

the family C → B. Let Wq̃ be the restriction of W to Im q̃ ⊂ C. Denote

by Ẽ(q̃) the restriction of Ẽ to X̃|U = LQe(W |U ) ×U Im q̃. Shrinking U

if necessary, we may choose a section Λ̃ of the Lagrangian Grassmannian

bundle LG(Wq̃) → U . Then the Lagrangian degeneracy locus X̃ρn(Λ̃; q̃),

which is parameterized by U , is defined as in (4.3) or Definition 4.1 by

X̃ρn(Λ̃; q̃) := {[ψ : E → Wb] ∈ LQe(W |U ) | ψ(Eq̃(b)) ⊆ Λ̃(b)}.

Now suppose t ≥ 0, and let P (α) =
∏s
i=1 αki be a monomial with

degP (α) = Dt(n, e, `). Then, by the above description, for each b ∈ B

there is a neighborhood U of b in B such that the relative version of (5.1)

is defined over U . Furthermore, by shrinking U , if the (chosen) reference

sections are general, this family over U is a one-dimensional subscheme of

X̃|U (recall that dimB = 1) of which every component dominates U . Thus,

for each b1 ∈ U , it determines a 0-cycle Θ(P ; t)) of LQe (Wb1).

Proposition 5.6. Let C → B and W be as above. Suppose that LQe (Wb)

has property P for each b ∈ B. For a nonnegative integer t and a homo-

geneous polynomial P (α) of degP (α) = Dt(n, e, `), the intersection number

Nw
Cb,e (Θ(P ; t); Wb) is independent of b ∈ B.

Proof. It suffices to prove the proposition for a monomial P (α) =
∏s
i=1 αki .

Take an open covering {Uι| ι ∈ I} of B such that for each ι ∈ I, the family

version of the intersection (5.1) is defined over Uι. Then, once we take gen-

eral reference sections over Uι, by invariance of degree of a family of 0-cycles

shown in [10, Proposition 10.2], the intersection number Nw
Cb,e (Θ(P ; t); Wb)

is independent of b ∈ Uι. If Uι ∩ Uε is not empty, then by the definition, it

is obvious that Nw
Cb,e (Θ(P ; t); Wb) is independent of b ∈ Uι ∩ Uε. Thus the

proposition is immediate. �

5.3. Definition of intersection numbers on an arbitrary Lagrangian

Quot scheme. We shall now extend our definition of intersection number

to arbitrary Lagrangian Quot schemes, not necessarily enjoying property P.

For a symplectic bundle W and a symplectic Hecke transform W̃ , we write

X := LQe(W ) and Y := LQe(W̃ ).

Lemma 5.7. Let W be a symplectic bundle and W̃ a general Hecke trans-

form of W as in (4.11). Let r1, . . . , ru be distinct points of C distinct

from the pi and qj, and for 1 ≤ l ≤ u let Πl be a Lagrangian subspace
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of Wul
∼= W̃ul. Then there is a set bijection

(5.3)
s⋂
i=1

Xki(γi ·Hi; pi)∩
u⋂
l=1

Xρn(Πl; rl)
∼−→

(
s⋂
i=1

Yki(γi ·Hi; pi)

)
∩

u⋂
l=1

Yρn(Πl; rl) ∩

 t⋂
j=1

Yρn(Λ∨j ; qj)

 .

In particular, if LQe(W ) and LQe(W̃ ) have property P, then for any ho-

mogenous polynomial P (α) of degree Du(e, n, `), we have

(5.4) Nw+un
C,e (Θ(P (α);u);W ) = N

w+(u+t)n
C,e

(
Θ(P (α);u+ t); W̃

)
.

Proof. By Proposition 4.6, the map [E → W ] 7→ [E → W → W̃ ] defines a

one-to-one correspondence between

{Lagrangian subsheaves of W of degree e}

and

{Lagrangian subsheaves Ẽ ⊂ W̃ of degree e satisfying

Im
(
Ẽqj → W̃qj

)
⊆ Λ∨j for 1 ≤ j ≤ t}.

Furthermore, as the points p1, . . . , ps, q1, . . . , qt and r1, . . . , ru are distinct,

for 1 ≤ i ≤ s and 1 ≤ l ≤ u each map of fibers Wpi → W̃pi and Wrl → W̃rl

is an isomorphism. Therefore, an element [E →W ] ∈ LQe(W ) satisfies

rk
(
Epi → Wpi/γi ·H⊥i

)
≤ ki − 1

if and only if the corresponding element [E →W → W̃ ] satisfies

rk
(
Epi → W̃pi/γi ·H⊥i

)
≤ ki − 1.

Similarly, Im (Erl →Wrl) ⊆ Πl if and only if Im
(
Erl → W̃rl

)
⊆ Πl. Com-

bining these observations, we conclude the existence of the bijection (5.3).

Now suppose LQe(W ) has property P. Then for general γi, by Propo-

sition 5.1 (c) the left hand side of (5.3) is a finite and reduced scheme of

length Nw+un
C,e (Θ(P (α);u);W ). As the map LQe(W )→ LQe(W̃ ) is an em-

bedding, the right hand side is also reduced of length Nw+un
C,e (Θ(P (α);u);W )

in LQe(W̃ ).

By Proposition 5.6, since the right hand intersection in (5.3) has di-

mension zero, its degree is constant under small deformations of the Λ∨j in

LG(W̃ ). By definition, this degree is equal to N
w+(u+t)n
C,e (Θ(P (α);u+ t); W̃ )

for the monomial P (α) =
∏s
i=1 αki . Thus (5.4) holds for P (α) =

∏s
i=1 αki .

By linearity, (5.4) holds for any homogeneous polynomial P (α). �
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Remark 5.8. Furthermore, by Proposition 5.1 (b) all elements [E →W ] of

the left hand side of (5.3) define saturated subsheaves. Since the Lagrangian

subspaces Λj were chosen generally, deforming them if necessary we can

assume that for each of these finitely many E we have Eqj ∩ Λj = 0. Thus

[E → W̃ ] is also saturated for all such E.

Motivated by Lemma 5.7, we make a definition.

Definition 5.9. Let W be a symplectic bundle of degree w, and suppose

LQe(W ) is nonempty. For t � 0, let W̃ be a general symplectic Hecke

transform of W with deg(W̃/W ) = tn, so that LQe(W̃ ) has property P by

Lemma 4.7. We define

Ñw
C,e(P (α);W ) := Nw+tn

C,e

(
Θ(P (α); t); W̃

)
.

Lemma 5.10. The number Ñw
C,e(P (α);W ) is well-defined and depends only

on g, e and w once the polynomial P (α) is specified. More precisely,

(1) It does not depend on the chosen Hecke transform W̃ .

(2) Let W → C → B be a family of symplectic bundles parametrized

by a connected curve B, such that LQe (Wb) is nonempty for all

b ∈ B. Then Ñw
Cb,e (P (α); Wb) is constant with respect to b ∈ B.

(In particular, it is invariant even for not necessarily flat families of

Lagrangian Quot schemes.)

Proof. (1) Let w̃(e) be as defined in Corollary 4.9. Choose two different

general Hecke transforms W̃1 and W̃2 of W , of degree at least w̃(e). We may

assume that the Hecke transforms are obtained at distinct points p1, . . . , pt1
and q1, . . . , qt2 , respectively. We can take a Hecke transform of W̃1 at ap-

propriate general Lagrangian subspaces of (W̃1)qi = Wqi for 1 ≤ i ≤ t2, and

also a Hecke transform of W̃2 at suitable general Lagrangian subspaces of

(W̃2)pj = Wpj for 1 ≤ j ≤ t1 to obtain a symplectic bundle W̃3 which is a

common Hecke transform of W̃1 and W̃2. By generality of the choices and

by Corollary 4.9, all the intermediate Hecke transforms W̃1 ⊂W ′ ⊂ W̃3 and

W̃2 ⊂W ′′ ⊂ W̃3 may be assumed to have property P. Hence we may apply

Lemma 5.7 to obtain the desired equality

Nw+t1n
C,e (Θ(P (α); t1); W̃1) = Nw+t2n

C,e (Θ(P (α); t2); W̃2),

using the fact that W̃3 is the common Hecke transform.

(2) For a given b0 ∈ B, by Lemma 4.7, there exists t � 0 such that if

W̃b0 is a general Hecke transform along t Lagrangian subspaces of Wb0 , then

LQe

(
W̃b0

)
has property P. By openness of property P, there exists an open

subset U of the component of B containing b0, such that for each b ∈ U and
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for a general symplectic Hecke transformation of Wb of degree w + tn, the

scheme LQe

(
W̃b

)
has property P.

Thus, shrinking U if necessary, we may choose a family of degree w + tn

Hecke transforms W̃ |U → C|U → U , all having property P. By Proposition

5.6, we see that

(5.5) Nw+tn
Cb,e

(
Θ(P (α); t); W̃b

)
is constant with respect to b ∈ U.

Now let b′ be any other point of B. As each component of B is a quasi-

projective curve, we can find a finite connected chain of open subsets U =

U0, U1, . . . , Uν of components of B with b0 ∈ U0 and b′ ∈ Uν , equipped with

families of Hecke transforms

W̃j → C|Uj → Uj

of W |Uj of degree w+ tjn as above such that LQe

(
W̃j |b

)
has property P for

each b ∈ Uj . Now the the numbers tj may be different, but for b ∈ Uj ∩ Uk,
by part (1) we have equality

N
w+tjn
Cb,e

(
Θ(P (α); tj); W̃j |b

)
= Nw+tkn

Cb,e

(
Θ(P (α); tk); W̃k|b

)
.

By definition of Ñw
C,e(P ;W ) and by (5.5) it follows that Ñw

Cb,e(P (α); Wb)

is constant with respect to b ∈ B. �

If LQe(W ) has property P, then in computing Ñw
C,e(P (α);W ) we can

take W̃ = W . Thus we obtain:

Proposition 5.11. Let W be any symplectic bundle of degree w such that

LQe(W ) has property P. Then we have

Ñw
C,e(P (α);W ) = Nw

C,e(P (α);W ).

In particular, the two definitions of intersection number coincide.

We shall shortly see that if LQe(W ) has property P, then Nw
C,e(P ;W ) enu-

merates Lagrangian subbundles of W satisfying a certain condition.

5.4. Relations between intersection numbers. Here we study the be-

havior of the numbers Ñw
C,e(P ;W ) under various transformations. Let W be

an L-valued symplectic bundle of degree w over C. Let L̂ be a line bundle

of degree ˆ̀ over C. Then W ⊗ L̂ is an L ⊗ L̂2-valued symplectic bundle of

degree w + 2nˆ̀.

Proposition 5.12. Let W and L̂ be as above. Then

Ñw
C,e(P (α);W ) = Ñw+2nˆ̀

C,e+nˆ̀(P (α);W ⊗ L̂).
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Proof. The proposition is immediate from the fact, already used in Lemma

4.7, that the association

[E →W ] 7→
[
(E ⊗ L̂)→ (W ⊗ L̂)

]
defines an isomorphism LQe(W )

∼−→ LQe+nˆ̀(W ⊗ L̂). �

Proposition 5.13. Let W be an arbitrary symplectic bundle of degree w,

and assume LQe(W ) is nonempty. Then for any integer k ≥ 0, we have

(5.6) Ñw
C,e(P (α);W ) = Ñw

C,e−nk(Θ(P (α); 2k);W ).

Proof. Firstly, by the definition of Ñw
C,e(P (α);W ), for large enough m� 2k

the left hand side of (5.6) can be written as

(5.7) Ñw
C,e(P (α);W ) = Nw+mn

C,e (Θ(P (α);m); W̃ )

for a general Hecke transform W ⊂ W̃ with deg(W̃ ) = w +mn.

Now set h := m− 2k. Since h is sufficiently large, the right hand side of

(5.6) can be written as

(5.8) Ñw
C,e−nk(Θ(P (α); 2k);W ) = Nw+hn

C,e−nk(Θ(P (α); 2k + h); W̃1)

for a general Hecke transform W ⊂ W̃1 with deg(W̃1) = w + nh. Let L̂ be

a line bundle of degree k. Then by Proposition 5.12, the right hand side of

(5.8) can in turn be written as

(5.9)

Nw+hn
C,e−nk(Θ(P (α); 2k + h); W̃1) = Nw+hn+2nk

C,e (Θ(P (α); 2k + h); W̃1 ⊗ L̂)

= Nw+mn
C,e (Θ(P (α);m); W̃1 ⊗ L̂)

since m = h+ 2k. As both LQe(W̃ ) and LQe(W̃1⊗ L̂) have property P, by

Lemma 5.10 (2) the right hand sides of (5.7) and (5.9) coincide. �

5.5. Proof of Proposition 5.1. In this subsection, we give a proof of

Proposition 5.1.

Proof of Proposition 5.1. Firstly, we claim that for a general choice of γi
and ηj , the locus (5.2) has dimension zero. To see this, note that

s∏
i=1

Sp(Wpi)×
t∏

j=1

Sp(Wqj ) acts transitively on

s∏
i=1

LG(Wpi)×
t∏

j=1

LG(Wqj ).

Now each Zki(Hi) has codimension ki in LG(Wpi), and each Zρn(Λj) has

codimension 1
2n(n+ 1) in LG(Wqj ). Hence by [15, Theorem 2 (i)], if the γi
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and ηj are general, then (5.2) is empty or of codimension

s1∑
i=1

ki + t · 1

2
n(n+ 1) = D(n, e, `)

in LQ◦e(W ). The claim follows since LQe(W ) has property P.

In view of the claim, statements (1) and (2) would follow if we show that

(5.1) is contained in the saturated part LQ◦e(W ). So let us consider elements

[E → W ] belonging to (5.1) such that E is nonsaturated, so that E/E is

a torsion sheaf of degree r ≥ 1. For any such E, for 1 ≤ i ≤ s, we have

maps Epi →
Wpi

(γi·Hi)⊥
. Without loss of generality, we may assume that for

some s1 ∈ {0, . . . , s} these maps are not surjective for 0 ≤ i ≤ s1, and are

surjective for s1 + 1 ≤ i ≤ s. (The case s1 = s (resp., s1 = 0) corresponds

trivially to none (resp., all) being surjective.)

For 1 ≤ i ≤ s1 the point [E →W ] belongs to

(5.10) f−1
r

(
Y◦ki(γi ·Hi; pi)

)
,

where fr is as defined in § 3.4, and

Y◦ki(γi ·Hi; pi) = ev−1
pi (Zki(γi ·Hi)) =

{F ∈ LQ◦e+r(W ) | Fpi →Wpi/(γi ·H⊥i ) is not surjective}

is as defined in the proof of Proposition 4.4. By an argument similar to

that in the first paragraph, we see that
⋂s1
i=1 Y◦ki(γi ·Hi; pi) is empty or of

codimension
∑s1

i=1 ki in each component of LQ◦e+r(W ) (note that the latter

may not be equidimensional).

Furthermore, for s1 + 1 ≤ i ≤ s, by Lemma 4.3, for each F ∈ LQ◦e+r(W )

the set

(5.11) {[E →W ] ∈ f−1
r (F ) | Epi → Fpi →Wpi/H

⊥
i is not surjective}

is of codimension at least ki on f−1
r (F ) ∼= Quot0,r(F ).

Next, let m1, . . . ,mt be elements of {0, . . . , n} satisfying

r ≥
t∑

j=1

(n−mj).

Consider the set

(5.12) {F ∈ LQ◦e+r(W ) | dim(Fqj ∩ ηj · Λj) = mj for 1 ≤ j ≤ t}

⊆
t⋂

j=1

ev−1
qj

(
Zρmj (ηj · Λj)

)
.

Recall from the proof of Proposition 4.5 that Zρmj (Λj) is of codimension
1
2mj(mj + 1) in LG(Wqj ). By [15, Theorem 2 (i)], for general η1, . . . , ηt the
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set (5.12) is empty or of codimension 1
2

∑t
j=1mj(mj +1) in each component

of LQ◦e+r(W ).

Next, given such an F , we consider the elementary transformation

0 → F(ηj ·Λj) → F → Fqj/(Fqj ∩ ηj · Λj) → 0.

Then, as in the proof of Proposition 4.5, an element E ∈ f−1
r (F ) ∼= Quot0,r(F )

belongs to all Xρn(ηj · Λj ; qj) if and only if E ⊂ F ′, where F ′ ⊆ F is the

elementary transformation

F ′ =
t⋂

j=1

F(ηj ·Λj);

more precisely, [E → F ] defines an element of

(5.13) Im
(

Quot0,r−
∑t
j=1(n−mj)(F ′) ↪→ Quot0,r(F )

)
,

a locus of codimension nr − n(r −
∑t

j=1(n − mj)) =
∑t

j=1 n(n − mj) in

f−1
r (F ).

Now (5.10) and (5.12) are conditions purely on the base of fr : Br →
LQ◦e+r(W ). By [15, Theorem 2 (i)], since the γi and ηj are general, the

intersection of the loci defined on LQ◦e+r by (5.10) and (5.12) is either empty

or of the expected codimension on each component of LQ◦e+r(W ).

Next, (5.11) and (5.13) are conditions purely on the fibers of fr : Br →
LQ◦e+r(W ). As the points pi and qj are all distinct, the loci defined by these

conditions intersect properly in each fiber of fr. (Note that this is true for

arbitrary γi and ηj .)

Therefore, to compute the codimension of (5.2) in Br for general γi and

ηj , we can add the codimensions of the sets (5.10), (5.11), (5.12) and (5.13).

We obtain a locus in Br which is empty or of codimension at least

s∑
i=1

ki +
1

2

t∑
j=1

mj(mj + 1) +
t∑

j=1

n(n−mj) =

s∑
i=1

ki + t · 1

2
n(n+ 1) +

1

2

t∑
j=1

(n−mj)(n−mj − 1) ≥ D(n, e, `).

But since LQe(W ) has property P, no Br is dense. Thus the intersection of

(5.2) with the nonsaturated locus is empty for general γi and ηj , as desired.

This completes the proof of (1) and (2).

As for (3): By [15, Theorem 2 (ii)], the intersection

(5.14)

(
s⋂
i=1

X◦ki(γi ·Hi; pi)sm

)
∩

 t⋂
j=1

X◦ρn(ηj · Λj ; qj)sm





COUNTING MAXIMAL LAGRANGIAN SUBBUNDLES 29

is smooth. Moreover, by Proposition 4.4 (2) and 4.5 (2) respectively, the

intersections

Sing
(
X◦ki0 (γi0 ·Hi0)

)
∩

⋂
i 6=i0

X◦ki(γi ·Hi; pi)

 ∩
⋂

j

X◦ρn(ηj · Λj ; qj)


and

Sing
(
X◦ρn(ηj0 · ηj0 · Λj0)

)
∩

(⋂
i

X◦ki(γi ·Hi; pi)

)
∩

⋂
j 6=j0

X◦ρn(ηj · Λj ; qj)


have expected codimension strictly greater than D(n, e, `). Hence they are

empty by [15, Theorem 2 (i)]. Therefore, (5.14) coincides with (5.2), and

hence also with (5.1) by part (2). This proves (3). �

5.6. A relation to Gromov–Witten invariants of the Lagrangian

Grassmannian. Kresch and Tamvakis [18] used intersection theory on

LQe(O⊕2n
C ) to work out the (small) quantum cohomology of LG(n), which

gives all genus zero 3-point GW invariants and so n-point GW invariants of

the type in Definition 2.4. (Note that n-point GW invariants of this type do

not coincide with the ordinary GW invariants unless n = 3, and are deter-

mined by 3-point GW invariants of this type.) Similarly, we show that the

intersection number Ñ0
C,e(P (α);O⊕2n

C ) is equal to the corresponding GW

invariants of LG(n).

Proposition 5.14. Let C be a smooth projective curve of genus g. Suppose

λ1, . . . , λm ∈ D(n) are strict partitions such that
∑m

i=1 |λi| = D(n, e, 0). Set

P (α) =
∏m
i=1 Q̃λi(α). Then we have the equality

(5.15) Ñ0
C,e(P (α);O⊕2n

C ) = 〈σλ1 , . . . , σλm〉g,|e| .

Proof. If P (α) =
∏s
j=1 αkj is a monomial in α1, . . . , αn of weighted degree

D(n, e, 0), then using (2) and (3) of Proposition 5.1, we easily obtain

(5.16) Ñ0
C,e(P (α);O⊕2n

C ) = 〈σk1 , . . . , σks〉g,|e| .

On the other hand, the Vafa–Intriligator-type formula shows that the Gromov–

Witten invariant 〈σλ1 , . . . , σλm〉g,d only depends on the product
∏m
i=1 σλi of

the arguments. Since σ1, . . . , σn generate CH∗(LG(n)), the class P (σ) :=∏m
i=1 σλi can be written as a sum of monomials in σ1, . . . , σn. But since each

σi corresponds to αi and hence P (σ) to P (α), the desired equality follows

from the linearity of both sides of the equality (5.16). �

Proposition 5.14 together with Proposition 5.13 yields the following re-

cursive relation among Gromov–Witten invariants of LG(n).
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Corollary 5.15. Let n > 0 and g, d ≥ 0 be given. Suppose
∑m

i=1 |λi| =

(n+ 1)d− n(n+1)
2 (g − 1). Then for any k ≥ 0, we have

〈σλ1 , . . . , σλm〉g,d =
〈
σ2k
ρn , σλ1 , . . . , σλm

〉
g,d+kn

.

6. Main results

From the discussion in the previous sections, we conclude:

Theorem 6.1. Let C be a smooth projective curve of genus g and W a

symplectic bundle over C of degree w = n`. Then for a polynomial P (α) of

degree D(n, e, `), the number Ñw
g,e(P (α);W ) is computed by

Ñw
C,e(P (α);W ) =

A
∑
J∈Ien+1

{
Sρn (ζJ )

}g−1
P (ζJ ) if ` = 2m,

A
∑
J∈Ien+1

{
Sρn (ζJ )

}g−1
Q̃ρn (ζJ )P (ζJ ) if ` = 2m− 1,

where A := 2n(g−1)+e−mn and P (ζJ) := P
(
E1(ζJ), . . . , En(ζJ)

)
.

Proof. For the case w = 2mn, we take a line bundle Ξ on C of degree −m,

so that W̃ := W ⊗ Ξ is a symplectic bundle of degree 0 over C. Then by

Proposition 5.12, we have

Ñw
C,e(P (α);W ) = Ñ0

C,e−mn(P (α); W̃ ).

Thus the result follows from Propositions 2.5 and 5.14.

If w = (2m− 1)n, by Lemma 5.7 we have

Ñw
C,e(P (α);W ) = Ñw+n

C,e (Q̃ρn(α)P (α);WH)

for some Hecke transform WH of degree w+ n. Since w+ n = 2mn, we are

reduced to the previous case. �

Assume W is general (for example, very stable). Let P be the constant

polynomial 1, so that Θ(1, 0) is the fundamental cycle of LQe(W ). If e = e0

and n(`−g+1) is even, where e0 was defined in Proposition 1, then LQe(W )

is zero dimensional and hence Ñw
C,e(1;W ) is precisely the number of maximal

Lagrangian subbundles of W . Recall from Lemma 5.10 that in this case

Ñw
C,e(1;W ) depends only on the genus of C, so we denote it by N(g, n, `, e).

The following is immediate from Theorem 6.1.

Corollary 6.2. Let W be a general stable symplectic bundle over C of rank

2n and degree w = n`, where n(` − g + 1) is even. Let e = 1
2n(` − g + 1).

Then the number N(g, n, `, e) of maximal Lagrangian subbundles is given by

N(g, n, `, e) =

B1
∑
J∈Ien+1

{
Sρn (ζJ )

}g−1
if ` = 2m,

B2
∑
J∈Ien+1

{
Sρn (ζJ )

}g−1
Q̃ρn (ζJ ) if ` = 2m− 1,
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where B1 =
√

2
n(g−1)

and B2 =
√

2
n(g−2)

.

Using this formula, we compute by hand the number of maximal La-

grangian subbundles of a general W of rank 2n ≤ 4.

Corollary 6.3. For g ≥ 2 and e = 1
2n(`− g + 1), we have the following.

(1) n = 1, ` 6≡ g mod 2: N(g, 1, `, e) = 2g.

(2) n = 2, g even, ` odd: N(g, 2,−1,−g) = 2g−1(3g + 1).

(3) n = 2, g even, ` even: N(g, 2, 0,−g + 1) = 2g−1(3g − 1).

(4) n = 2, g odd, ` odd: N(g, 2,−1,−g) = 2g−1(3g − 1).

(5) n = 2, g odd, ` even: N(g, 2, 0,−g + 1) = 2g−1(3g + 1).

Remark 6.4. In (1), the number 2g coincides with the number of maximal

line subbundles of a general rank 2 vector bundle obtained in [27] and [22].

This can be explained by the fact that any rank 2 vector bundle V has a

symplectic structure given by V ∼= V ∨ ⊗ det(V ), and any line subbundle is

Lagrangian.

Remark 6.5. By Holla [14, Theorem 4.2], if g = 2, the number of maximal

rank 2 subbundles of a general rank 4 vector bundle V is 24 (resp., 40), if

deg(V ) ≡ 2 mod 4 (resp., deg(V ) ≡ 0 mod 4). These can be compared

with the numbers 20 and 16 given by (2) and (3) respectively.

It should be noted that [13, Theorem 2], in our language, states incorrectly

that N(2, 2, 0,−1) = 24. This is due to a mistake in the geometric argument

on [13, p. 270]. The correct statement of [13, Theorem 2] is that the moduli

map Φ is surjective and generically finite of degree 20.
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