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a b s t r a c t

Zhang and Zhou (2016) use the concept of Bayesian persuasion due to Kamenica and Gentzkow (2011)
to analyze information disclosure in a contest with one-sided asymmetric information. They show that
an effort-maximizing designer can manipulate information disclosure to increase expected efforts in
the contest, based upon active contest participation by all types of the informed player. We allow some
informed types to exert no effort in the contest, showing how this (i) can increase the applicability of
the previous results, and (ii) in some cases, can change the type of information disclosure.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Contests in which resources are sunk to win a prize capture
ompetition in social, political and economic spheres. A common
heme is how a designer (principal) can maximize the resources
xpended in the contest. Recently Zhang and Zhou (2016) intro-
uced information disclosure as an instrument at the disposal
f the principal, using the Bayesian Persuasion framework of
amenica and Gentzkow (2011). In a two-player contest, Zhang
nd Zhou (2016) focus on one-sided informational asymmetry,
here one player has better information than the competitor and
he principal. The effort-maximizing, but uninformed, principal
nitially commits to a set of state-conditional distributions of sig-
als before realization of the state, which is the value of the prize
o the player with private information; the signals disclose all or
o information at two extremes, but can also impart a particular
osterior belief to the uninformed. The optimal distribution of
ignals raises the principal’s payoff to the concavification of the
otal expected effort function.

Zhang and Zhou (2016) show first that binary values for the
tate yields an expected effort function that is either globally
onvex or concave; in the former case, full information disclosure
s optimal, and in the latter there is no disclosure.1 Only when
there are more than two possible valuations can partial disclosure

∗ Corresponding author.
E-mail addresses: derek.clark@uit.no (D.J. Clark), tapas.kundu@oslomet.no

T. Kundu).
1 This follows Kamenica and Gentzkow (2011), and is explained later.
https://doi.org/10.1016/j.econlet.2021.109915
0165-1765/© 2021 The Authors. Published by Elsevier B.V. This is an open access art
appear, in which the signal reveals the true value of the prize
imperfectly to the uninformed player. Zhang and Zhou (2016)
consider only fully internal solutions in which all types of the
informed player have an effort level above zero. Epstein and
Mealem (2013) show with two types for the informed player that
an equilibrium exists in which the lower value type will not exert
effort in the contest. We extend the results of Zhang and Zhou
(2016) by considering equilibria in which some types exert no
effort, and we fully characterize optimal information disclosure in
the two-type case. Furthermore, we show how these results have
consequences for deriving the optimal disclosure policy when
there are more types.

2. Analysis

In Zhang and Zhou (2016), there are two risk-neutral players,
A and B. Player A’s value of winning the contest is vA and this
is common knowledge. Player B’s value vB (the state) is private
information, but it is commonly known that it takes N ≥ 2
values, v1 < v2 < · · · < vN , with prior µ0

=
(
µ0

1, . . . , µ
0
N

)
∈

PN
=

{
(p1, . . . , pN) : pj ≥ 0,

∑N
j=1 pj = 1

}
. Before the state is

realized, the contest designer commits to a signaling mecha-
nism, which consists of a family of state-conditional distributions
{Pr
[
ms | vj

]
≥ 0 : ms ∈ S,

∑
ms∈S Pr

[
ms | vj

]
= 1}, j ∈ {1, . . . ,N}

over a finite set of messages S. We denote the Bayesian posterior
after observing message ms ∈ S by µs

=
(
µs

1, . . . , µ
s
N

)
∈ PN . We

use the notation µ ∈ PN to represent any generic distribution
over the state space.
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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In the posterior contest, players exert non-recoverable effort
(xA, xB), which gives player i ∈ {A, B} a success probability of

pi (xA, xB) =
xi

xA + xB
.

enote the pure strategy Bayes–Nash equilibrium by
[
x∗

A, x
∗

B

(
vj
)]
.

Observe that the effort of B maximizes
xB

xB + x∗

A
vj − xB.

he first-order condition gives

B
(
vj
)

=

{√
vj
√
x∗

A − x∗

A for √
vj −

√
x∗

A > 0
0 for √

vj −
√
x∗

A ≤ 0,
(1)

from which it is apparent that some low vB types may not
participate actively in the contest.

For now, fix a distribution µ ∈ PN of player B types and a
set of inactive types 1, . . . , k (i.e., xB

(
vj
)

= 0 for j = 1, . . . , k),
whilst k + 1, . . . ,N participate actively (i.e., xB

(
vj
)

> 0 for j =

k+ 1, . . . ,N); if k = 0, then all player B types exert effort. When
k > 0, player A wins with certainty if he meets types 1, . . . , k,
making his expected payoff(

k∑
h=1

µh +

N∑
m=k+1

µmxA
xA + xB (vm)

)
vA − xA.

The first-order condition is(
N∑

m=k+1

µmxB (vm)

(xA + xB (vm))2

)
vA = 1. (2)

Solving (1) and (2) gives a solution for xA when k types are
inactive as

x∗

A (k) =

⎛⎝ ∑N
m=k+1

(
µm√
vm

)
1
vA

+
∑N

m=k+1

(
µm
vm

)
⎞⎠2

. (3)

Replacing x∗

A in (1) by (3) gives

x∗

B

(
vj
)

=
√

vj

⎛⎝ ∑N
m=k+1

(
µm√
vm

)
1
vA

+
∑N

m=k+1

(
µm
vm

)
⎞⎠

−

⎛⎝ ∑N
m=k+1

(
µm√
vm

)
1
vA

+
∑N

m=k+1

(
µm
vm

)
⎞⎠2

, j = k + 1, . . . ,N. (4)

None of the inactive player B types will want to exert positive
effort as long as

√
vk −

√
x∗

A (k) ≤ 0. Using (3) and (4) yields total
ffort with k inactive types, TE (µ, k), as

E (µ, k) = x∗

A (k) +

N∑
m=k+1

µmx∗

B (vm) . (5)

Zhang and Zhou (2016) consider an internal solution, in which
ase k = 0 and the total expected effort is

E (µ, 0) =

Eµ

[√
vB
]
Eµ

[
1

√
vB

]
1
vA

+ Eµ

[
1
vB

] . (6)

he expression in (1) makes it clear that low vB types may not
ind it profitable to exert effort. This implies that participation
as to be checked for player B of lowest type v1 first, given that
he other players exert positive effort. Only if type v1 makes
positive contest effort do we have the internal equilibrium
f Zhang and Zhou (2016); if type v does not exert effort, then
1

2

active participation is checked for v2 given that all types with a
igher valuation participate. This proceeds in sequence until two
djacent types are identified such that x∗

B (vk) = 0, x∗

B (vk+1) > 0.
Lemma 1 determines the set of active types for a given µ ∈ PN .

Lemma 1. Consider µ ∈ PN . Thresholds θk (µ) > 0, k ∈

{1, . . . ,N − 1} exist where θk (µ) ≤ θk+1 (µ) for all k and with
strict inequality if max {µk+1, . . . , µN} > 0, such that θk (µ) ≤

vA < θk+1 (µ) yields x∗

B

(
vj
)

= 0, for j ∈ {1, . . . , k} and x∗

B

(
vj
)

> 0,
for j ∈ {k + 1, . . . ,N}.

Proof. Suppose that player B types j = 1, . . . , k set x∗

B

(
vj
)

= 0.
From (1), type k will not want to change action if

√
vk ≤

√
x∗

A (k),
.e.,

vk ≤

∑N
m=k+1

(
µm√
vm

)
1
vA

+
∑N

m=k+1

(
µm
vm

) , (7)

which reduces to

vA ≥

√
vk∑N

m=k+1
µm(

√
vm−

√
vk)

vm

:= θk (µ) . (8)

Type k being inactive, it follows from (7) that player B types with
j < vk will not participate if x∗

B (vk) = 0. By construction, player
types with vj > vk will participate if vA < θk+1 (µ). To see

k (µ) ≤ θk+1 (µ), note that for any m > k,

k < vk+1 ⇒
µm

(√
vm −

√
vk+1

)
vm

√
vk+1

≤
µm

(√
vm −

√
vk
)

vm
√

vk
. (9)

Summing (9) over m ∈ {k + 1, . . . ,N},
N∑

m=k+2

µm
(√

vm −
√

vk+1
)

vm
√

vk+1
≤

N∑
m=k+1

µm
(√

vm −
√

vk
)

vm
√

vk
(10)

⇒
1

θk+1 (µ)
≤

1
θk (µ)

⇒ θk (µ) ≤ θk+1 (µ) .

The inequality in (10) holds strictly if max {µk+1, . . . , µN} > 0, in
which case, θk (µ) < θk+1 (µ). □

Setting θ0 (µ) = 0 and θN (µ) = ∞, by Lemma 1, we can
express the equilibrium total effort for a given belief µ ∈ PN as

Ee (µ) = TE (µ, k) if vA ∈ [θk (µ) , θk+1 (µ)) , k = 0, 1, . . . ,N−1.
(11)

Lemma 1 includes two main results: (i) it characterizes the
precise condition (vA < θ1(µ)) under which the Zhang and Zhou
(2016) analysis holds in which all player B types actively partic-
ipate in the contest for a given belief µ and a set of prize values
v1, v2, . . . , vN , (ii) it gives conditions under which a subset of
types {1, . . . ., k} does not exert effort in the contest, A sufficient
condition for full type participation can be derived by considering
belief-free thresholds; these are outlined in Lemma 2.

Lemma 2. Fix k ∈ {1, . . . ,N − 1}. Denote min
µ∈PN

θk (µ) by θmin
k .

Then,

θmin
k = min

vm∈{vk+1,...,vN}

vm
√

vk
√

vm −
√

vk
. (12)

urther, 4vk ≤ θmin
k < θmin

k+1.

Proof. θk (µ) is minimized by identifying the largest value of
(
√

vm−
√

vk)
vm

for m = k + 1, . . . ,N , and attaching belief 1 to this
particular v and zero to all others. To show that θmin < θmin ,
m k k+1
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irst note that vm
√

vk
√

vm−
√

vk
is increasing in vk. Therefore, for any

m ∈ {k + 2, . . . ,N}, vm
√

vk+1
√

vm−
√

vk+1
>

vm
√

vk
√

vm−
√

vk
for a common vm.

uppose that vM ∈ {vk+2, . . . , vN} minimizes θmin
k+1 =

vM
√

vk+1
√

vM−
√

vk+1
.

hen it is possible to choose the same vM and reach a lower value
f θmin

k . Hence θmin
k < θmin

k+1 for k ∈ {1, . . . ,N − 1}. Further, note
hat vm

√
vk

√
vm−

√
vk

is decreasing in vm for vm < 4vk and increasing in

vm for vm > 4vk, which gives vm
√

vk
√

vm−
√

vk
≥

vm
√

vk
√

vm−
√

vk
|vm=4vk= 4vk

or any vm ∈ {vk+1, . . . , vN}, and therefore, θmin
k ≥ 4vk. □

Lemma 2 makes two important observations regarding the
alidity of the internal solution considered in Zhang and Zhou
2016). First, we see that for vA < θmin

1 , all player B types
articipate actively in the contest for any prior µ and the internal
olution of Zhang and Zhou (2016) is valid. However, the exact
alue of θmin

1 depends on the parameters v2, . . . , vN . Lemma 2
urther implies that if vA ≤ 4v1, then vA < θmin

1 for any
2, . . . , vN and the internal solution remains valid. This links to
he analysis of Zhang and Zhou (2016, footnote 5) who state that
sufficient condition for the interior equilibrium is vA ≤ 4v1. Our
tatement of the sufficient condition extends the parameter range
or which Zhang and Zhou (2016) is valid.

Following Kamenica and Gentzkow (2011), we can determine
he optimal information disclosure from the concave closure of
Ee (µ). The principal increases her expected payoff to the con-
avification of TEe (µ) by optimally choosing a distribution of
ayes-plausible posteriors generated from the signal distributions
Pr
[
ms | vj

]
,ms ∈ S}, j ∈ {1, . . . ,N}. If TEe (µ) is globally

oncave (convex), then no- (full-) information disclosure yields
he principal a payoff equal to the concavification of TEe (µ). The
rincipal’s preferred signaling mechanism can partially disclose
nformation only if TEe (µ) has both concave or convex parts. To
ighlight the role of information disclosure in the case of k = 0
all types participate actively), and k > 0 (some inactive types),
e first present the binary-type case and then look at the case of
ore types.

.1. N = 2

Consider a posterior µ = (µ1, µ2) ∈ P2 over player B types
(v1, v2). Since N = 2, the posterior µ can be identified with a
scalar µ2 = Pr [vB = v2] ∈ [0, 1]. Both types exert effort in the
ontest for any µ2 if vA < θmin

1 =
v2

√
v1

(
√

v2−
√

v1)
. Zhang and Zhou

(2016, Lemma 1 and Proposition 3) show that the total effort
TE (µ, 0) with both player B types active is strictly concave in
µ2 ∈ [0, 1] for vA <

√
v2v1 and therefore no disclosure is optimal;

and TE (µ, 0) is strictly convex in µ2 ∈ [0, 1] for vA >
√

v2v1

nd therefore full disclosure is optimal.2 Note that θmin
1 >

√
v2v1,

nd so the full-information disclosure finding of Zhang and Zhou
2016) holds for

√
v2v1 < vA < θmin

1 .

act 1 (Zhang and Zhou (2016, Proposition 3, modified)). For N = 2,
consider vA < θmin

1 . Then, both types of player B exert non-zero effort
in the contest under asymmetric information for any posterior µ.
Further, for vA <

√
v2v1, no disclosure is optimal and for

√
v2v1 <

A < θmin
1 , full disclosure is optimal.

This is an important result since Zhang and Zhou (2016) show
that the general case with N > 2 can be reduced to that of N = 2.
For our extended parameter space, even the case N = 2 is not so

2 Unlike us, Zhang and Zhou (2016) describe the concavity/convexity property
f (6) in terms of µ1 = Pr [vB = v1]. However, the findings are comparable since
he second-order derivatives of TEe with respect to µ1 and µ2 = (1 − µ1) have
he same sign.
3

clear cut; we show below that partial information disclosure can
be optimal.

Consider vA ≥ θmin
1 . By Lemma 1 and the fact that θ1 (µ2)

is decreasing in µ2, there exists a unique µ̃2 satisfying vA =

θ1 (µ̃2) such that both types exert effort for µ2 ∈ [0, µ̃2). Direct
calculation gives

µ2 =
v2

√
v1

vA
(√

v2 −
√

v1
) .

For µ2 ∈ [µ̃2, 1], type 1 is inactive and TEe (µ2) = TE (µ2, 1). We
can calculate the derivatives as
∂TE (µ2, 1)

∂µ2
=

2µ2vAv
2
2 (vA + v2)

(µ2vA + v2)
3 > 0, (13)

∂2TE (µ2, 1)
∂µ2

2
=

2vAv
2
2 (v2 − 2vAµ2)

(µ2vA + v2)
4 . (14)

Define µ̂2 :=
v2
2vA

. From (13) and (14), it follows that TE (µ2, 1)
s always increasing in µ2, strictly concave (convex) for µ2 >

<) µ̂2. When µ̂2 ≥ 1, which occurs if vA ≤
v2
2 , the total

expected effort is piecewise convex in µ2. Lemma 3 shows that
ull information disclosure remains optimal.

emma 3. Suppose θmin
1 <

v2
2 and consider vA ∈

[
θmin
1 ,

v2
2

]
. Then,

full information disclosure is optimal.

Proof. Note that TEe (µ2) is given by TE (µ2, 0) for µ2 ∈ [0, µ̃2),
and TE (µ2, 1) otherwise; both functions are convex in µ2 and
TEe (µ2) is continuous at µ̃2. Therefore, TEe (µ2) is continuous and
piecewise convex in µ2 ∈ [0, 1]. Further,

TEe (µ̃2) = TE (µ̃2, k = 0) ≤ (1 − µ̃2) TE (µ2 = 0, k = 0)
+ µ̃2TE (µ2 = 1, k = 0)

= (1 − µ̃2) TE (µ2 = 0, k = 0)
+ µ̃2TE (µ2 = 1, k = 1)

= (1 − µ̃2) TEe (0) + µ̃2TEe (1) ,

which follows from convexity of TE (µ2, 0) and the fact that
TE (µ2 = 1, k = 0) = TE (µ2 = 1, k = 1) =

vAv2
vA+v2

. Therefore,
the graph of TEe (µ2) will always be lower than the straight
line joining TEe (0) and TEe (1), implying that full disclosure is
optimal. □

When µ̂2 < 1, which occurs if vA >
v2
2 , total expected effort

is concave for µ2 ≥ max {µ̂2, µ̃2} and either convex or piecewise
convex for µ2 < max {µ̂2, µ̃2}. Proposition 1 shows that partial
information disclosure is optimal for sufficiently large values of
vA.

Proposition 1. Consider vA > max
{
θmin
1 ,

v2
2

}
. Then, there exists

vA > max
{
θmin
1 ,

v2
2

}
such that max

{
θmin
1 ,

v2
2

}
< vA < vA,

full information disclosure is optimal and for vA ≤ vA, partial
information disclosure is optimal.

Proof. TEe (µ2) is given by TE (µ2, 0) for µ2 ∈ [0, µ̃2), and
E (µ2, 1) for µ2 ∈ [µ̃2, 1]; the former is convex, whilst the latter

is either concave for µ2 ∈ [µ̃2, 1] if µ̂2 ≤ µ̃2, or, first convex for
µ2 ∈ [µ̃2, µ̂2] and then concave for µ2 ∈ [µ̂2, 1] if µ̃2 < µ̂2. Full
information disclosure is optimal if (1 − µ2) TEe (0)+µ2TEe (1) =

1 − µ2)
vAv1

vA+v1
+µ2

vAv2
vA+v2

> TEe (µ2) for all µ2 ∈ (0, 1); necessary
and sufficient for this is that the slope of the straight line is
greater than the slope of TEe (µ2) measured at µ2 = 1, which
requires

vAv2
−

vAv1
>

2vAv
2
2

2
vA + v2 vA + v1 (vA + v2)
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⇔ v2
A (v2 − v1) − vAv2 (v1 + v2) − 2v1v

2
2 < 0 ⇔ vA < vA,

here vA =
v2
2

[
v1+v2+

√
v22+10v1v2−7v21
v2−v1

]
. When vA > vA, define

µ2 that solves TE(µ2,1)−TE(0,0)
µ2

=
∂TE(µ2,1)

∂µ2
|µ2 . The concavification

f TEe (µ2) consists of the line
(

µ2−µ2
µ2

)
TE (0, 0) +

µ2
µ2

TE (µ2, 1)
for µ2 ∈ [0, µ2] and TE (µ2, 1) for µ2 ∈ [µ2, 1]. Then the
rincipal uses partial information disclosure for µ2 ∈ [0, µ2] and
o disclosure otherwise. □

Example 1 illustrates the relationship between our results and
hose of Zhang and Zhou (2016).

xample 1. Consider N = 2, v1 = 1, v2 = 4. In this case, θmin
1 =

v2
√

v1
√

v2−
√

v1
= 4, and vA = 8. Combining Fact 1 and Proposition 1

ives the optimal policy for information disclosure:

ptimal disclosure =

⎧⎪⎪⎨⎪⎪⎩
no disclosure (ND) if vA < 2
full disclosure (FD) if 2 < vA < 4
full disclosure (FD) if 4 ≤ vA < 8
partial disclosure (PD) if 8 ≤ vA

(15)

he first two lines in (15) reflect the results of Zhang and Zhou
2016), and the last two are our extension.3 Thus, we extend the
arameter range for which full disclosure is the optimal policy,
nd after this the principal implements partial disclosure. To see
ow this is implemented, suppose that vA = 16, and calculate
2 =

v2
2vA

= 0.125 < µ̃2 =
v2

√
v1

vA(
√

v2−
√

v1)
= 0.25. Therefore,

or µ2 < µ̃2, both types are active and TEe (µ) is convex; For
2 ≥ µ̃2, only type v2 is active and TEe (µ) is concave. Fig. 1
lots TEe (µ) against µ2 ∈ [0, 1]. For µ2 = 0.3, the principal’s
ayoffs from no disclosure and from full disclosure are 1.4876 and
.61882, respectively. Consider a distribution of Bayes-plausible
osteriors: µ1

= (1, 0), µ2
= (0.4, 0.6) with probabilities β1 =

/2, β2 = 1/2, which can be generated with two messages m1
nd m2 and the signal distributions matrix:

=

[
5/7 2/7
0 1

]
,

here S(ij) denotes Pr
[
mj | vi

]
, i ∈ {1, 2} , j ∈ {1, 2}. From Ka-

enica and Gentzkow (2011), we know that the principal’s pay-
ff from partial disclosure of the above kind is β1TEe

(
µ1
)

+

2TEe
(
µ2
)

= 1.71626, which is higher than her payoffs from full
r no disclosure.

.2. N ≥ 3

For N ≥ 3, Zhang and Zhou (2016, Corollary 2) show that full
isclosure is optimal for sufficiently high vA (i.e., vA ≥

√
vN−1vN ),

and partial disclosure can arise otherwise. For our extended pa-
rameter space, partial disclosure can be optimal even for high
values of vA. To understand why, recall the underlying mechanism
in Zhang and Zhou (2016): For µ ∈ int

(
PN
)
, there always exists

a direction along which TE (µ, 0) is convex, and therefore, the
rincipal can obtain a higher expected payoff from a distribution
ver two Bayes-plausible posteriors on Edge

(
PN
)
where the di-

ectional vector intersects Edge
(
PN
)
. This reduces the dimension

f the problem by one, and gradually optimal posteriors can be
ound on pairwise edges. The analysis of the N = 2 case shows

3 When v = 2, total expected effort is independent of information disclosure.
A

4

Fig. 1. TEe against µ2 , N = 2.

Fig. 2. TEe against (µ2, µ3), N = 3.

that these edges are fully convex (concave) for high (low) values
of vA when only interior solutions are considered. However, as
we have shown, the possibility of a corner solution implies that
pairwise edges will not always be convex for high vA, because
of which the findings of Zhang and Zhou (2016) will not hold.4
Example 2 illustrates how partial disclosure can dominate full or
no disclosure.

Example 2. Consider N = 3, v1 = 1, v2 = 4, v3 = 9,
and vA = 16. We have θmin

1 = min
{

v2
√

v1
√

v2−
√

v1
,

v3
√

v1
√

v3−
√

v1

}
=

, θmin
2 =

v3
√

v2
√

v3−
√

v2
= 18, and θmin

1 < vA < θmin
2 . Further,

θ1 (µ) =
36

9µ2+8µ3
and vA < θ1 (µ) ⇔ 36µ2 + 32µ3 < 9.

4 In addition, we conjecture that the finding that TEe is convex along some
directional vector for µ ∈ int

(
PN
)
, which holds when all types are active, is

not robust when some types choose to remain inactive. Therefore, the optimal(
N
)

posteriors may not necessarily be found on Edge P .
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herefore, for prior µ0 with 36µ0
2 + 32µ0

3 < 9, all three types
re active and for µ0 with 36µ0

2 + 32µ0
3 ≥ 9, type v1 will be

nactive. Fig. 2 plots TEe against (µ2, µ3) , 0 ≤ µ2 + µ3 ≤ 1.
Ee is neither globally concave or convex. The darker region at
he top of the graph represents the area where the principal’s
ayoffs from no disclosure is higher than that from full disclosure.
or µ0

= (0.3, 0.3, 0.4), her payoffs from full and no disclosure
re TEFD

(
µ0
)

= 3.54635 and TEe
(
µ0
)

= 3.53056, respec-
ively. Consider a distribution of Bayes-plausible posteriors: µ1

=

0.5, 0.4, 0.1), µ2
= (0.2, 0.7, 0.1), µ3

= (0.2, 0, 0.8) with
robabilities β1 = 1/3, β2 = 5/21, β3 = 3/7, which can
e generated with three messages m1, m2, m3, and the signal
istributions matrix:

=

[ 5/9 10/63 2/7
4/9 5/9 0
1/12 5/84 6/7

]
,

here S(i,j) = Pr
[
mj | vi

]
. The principal’s payoff from partial

isclosure is β1TEe
(
µ1
)

+ β2TEe
(
µ2
)

+ β3TEe
(
µ3
)

= 3.60892,
5

hich is higher than her payoffs from full or no disclosure.
lthough the posteriors considered here are not necessarily op-
imal, the exercise shows that the payoff from partial disclosure
an dominate that from full or no disclosure.
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