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Abstract

The functional near-infrared spectroscopy (fNIRS), as a brain imaging modality, is a versatile
technique for understanding brain activity processes at the level of the brain cortex. The
use of this technology facilities the understanding of brain metabolism, oxygenation, and
its related brain activity parameters when participants perform dynamical tasks. In this
thesis, we apply different methods to extract the functional connectivity network of the
brain, employing data generated by this technology. This functional connectivity network
is a measure that qualitatively informs the interconnection of different regions of the brain.
To perform such a task, we calculated the Pearson correlation coefficients and the mutual
information between pairs of signals from fNIRS data, to determine the strength of shared
information among them. We construct weighted networks that display the more correlated
regions and compare these methods to unsupervised learning techniques such as PCA, ICA,
and dendrograms. Additionally, we include an implementation where we explore nonlinear
dependencies of fNIRS data using mutual information.

From this analysis, we observed that a mutual information approach based on binning
techniques allows quantifying more general correlations than using the Pearson coefficient but
is highly susceptible to bias. The method also provides more relevant information compared
to the PCA and ICA, since with the last one, we can observe the dependencies of signals
but in a disorderly manner. The resulted bias is been reflected in lower values that are more
visible when doing a threshold examination (5.1,5.7). A deeper analysis in this regard to
bias reduction needs further exploration in future work. Additionally, the calculation of a
coefficient (referred to in the thesis as Λ) that distinguishes the type of dependence between
random variables resulted to be a useful method for fNIRS data. Such a coefficient indicates
a clear way to quantify linear and nonlinear dependencies by using mutual information, but
with the incapability of reflecting the specific type of behavior involved.
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Chapter 1

Introduction

It is often said that there are two mysteries in nature that win the title for being the most
challenging and mesmerizing to unravel: the human mind and the universe itself. When one
drives the attention to the study of the mind, it is often possible to particularize the problem
on the biological system: the brain. With the technological advances of today, computers are
becoming more powerful and more capable of performing more complicated tasks compared
to the ones at the beginning of the millennium. Progress in material and computer sciences
has allowed researchers to explore different areas of knowledge by using computational and
technological tools that can provide a better understanding of the behavior of biological
phenomena. Simultaneously, the fast-growing technological advances have opened the door
for computers to be powerful enough to receive, record, and process different types of sig-
nals emanating from the brain and translate physical signals into a digital language more
efficiently. This task allows the creation of an interface between the brain and the computer
in a communication system that could, for example, enable the brain to control external
devices around it. Such interfaces are usually named brain-machine interface (BMI) or to
be more precise for this thesis, brain-computer interface (BCI). This field of study explores
the technology responsible to collect information from the brain and the translation of it
into data that can be posteriorly analyzed.

In that particular field, there is one technology that concerns this thesis known as func-
tional near-infrared spectroscopy (fNIRS). The use of fNIRS has been gaining terrain over re-
cent years due to its practical usage and versatility for conducting experiments as neuroimag-
ing concerns. This technology compares the amount of oxygenated and non-oxygenated
blood regions of the brain after a task performed by the individual of study. The use of
fNIRS offers certain advantages over other techniques for neuroimaging (see Chapter 2)
such as functional magnetic resonance (fMRI), electroencephalography (EEG), and magne-
toencephalography (MEG); and is because of that reason we are motivated in using it to
collect data from the brain. Some features that make fNIRS particularly interesting are its
non-invasiveness, its portability, and its tolerance to body movements (although it has its
disadvantages as well). Consequently, it enables the possibility to be suitable for a wide
range of applications and also, a more flexible use for data collection inside or outside of a
laboratory. The latter brings some attention particularly to the studies involving data col-
lection from cognitive neuroscience studies and different analyses on activated regions from
brain activity.
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Given the fact that the brain is highly interconnected and since the brain activates
certain regions while performing a task, an immediate question is: How to quantify the
amount of shared information between different areas of the brain? Or in other words, how
to quantitatively evaluate the relationship between a region in the brain and its neighboring
regions by looking at the fNIRS data? To answer that, it is proposed that statistical and
information theory measures are good candidates to be used for extracting the connectivity
network in the brain. When it comes to correlation measures, one can think of two types
depending on the nature of the information at our disposal. These two notions are what we
call in this thesis linear and non-linear measures. Once such measures are applied, another
question to explore is: How good is fNIRS data for extracting the functional connectivity
network between regions of the brain?

The main focus of this thesis is to answer the pair of questions presented above by using
the fNIRS technology to extract information from regions of the brain while a participant
executes a specific task. We later analyze it with statistical tools and build functional
connectivity networks for the oxygenated and non-oxygenated data. To draw a connectivity
network we use statistical weights (more specifically, a family of weights) that measure types
of correlation between the activated channels measured with fNIRS data. The goal of this
thesis is to compare the accuracy of these measures with the actual physiological hypothesis.
The data used in this thesis was collected from several activated channels localized in the
prefrontal cortex that have collected oxygenized and non-oxygenized hemoglobin lectures as
a function of time.

In Chapter 2, we start by discussing the main features of fNIRS technology and what it
consists of. Later on, we give a presentation about the fundamentals of multivariable analysis,
introducing the concept of correlations and statistical tools and how they apply to sets of
data. We introduce concepts from information theory to study more general approaches of
correlations and discuss some unsupervised learning techniques. In Chapter 3 we describe
the methodology to follow, and some approaches for analyzing fNIRS data and measuring
nonlinear dependencies. In Chapter we describe a synthetic data generation procedure to
test the correlation measures and in Chapter we apply the framework to a particular fNIRS
data sets. Lastly, in Chapter 6 we discuss the results obtained and conclude the thesis.
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Chapter 2

Fundamental concepts

The emergent technology of neuroimaging has had a very crucial impact on our understand-
ing of brain activity, the functioning of the brain, and its health. In that regard, neuroimaging
is surrounded by many constraints due to the inaccessibility to the brain and the complexity
of such an organ during the execution of tasks. Technologies such as functional Magnetic Res-
onance Imaging (fMRI), magnetoencephalography (MEG), electroencephalography (EEG),
Positron Emission Tomography (PET), and functional Near-Infrared Spectroscopy (fNIRS);
have taken part in a big growth of a way to monitor brain activity in a wide range of ap-
plications, going from just capturing images on brain structures to obtaining information
about cognitive activities and sensorimotor systems. In particular, fNIRS technology has
demonstrated to be one of the most successful areas to investigate brain activation and neu-
roimaging given the fact that it is a suitable option for analyzing body movements due to
its portability and low sensitivity to movements, unlike other options that use stationary
scanners. This non-invasive neuroimage device provides lots of opportunities in exploring
regions of the brain from a modern perspective. In fact, in the present work, data collected
employing an fNIRS device will be used for the implementation of a functional connectivity
network [36].

In this chapter, we will present a brief overview of technologies in biomedical engineering
dedicated to exploring the brain. In particular, we will focus on fNIRS and study the basics
of how it works. Because the goal of this thesis is to implement a functional connectivity
network from brain data, the discussion will be followed by an introduction to mathematical
concepts involving data analysis. In that section, we will cover the concept of correlation
and covariance followed by a discussion of some nonlinear correlation measures from informa-
tion theory in addition to a method that uses mutual information to calculate nonlinearity
quantitatively. We end this chapter by mentioning some common unsupervised learning
techniques that will be used later on in the text to explain certain features of the data.

2.1 Technologies used in neuroscience

In biomedical engineering, there are many tools and techniques to study the human brain
[39]. In order to have a deeper understanding of how it works, it is necessary to look inside
such an organ [28]. That task is today realized by brain imaging methods that act in an
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entirely non-invasive way. In this section, we will describe some of the most common brain
imaging technologies and have a comparison between them by looking at the advantages
and disadvantages of each. The list of available technologies for studying human cognition
includes: (f)MRI, PET, EEG, MEG and fNIRS. The first two rely on neurovascular coupling,
the third and fourth detect the electromagnetic activity of the brain and the last one relies
on infrared spectroscopy of light. These technologies are typically compared based on the
temporal and spatial resolution of each, but before going into detail there, it is better to
have a short explanation of some of them.

2.1.1 EEG

Electroencephalography (EEG) is a technique that measures the electrical activity of the
brain through electrodes that are placed on the scalp. Such electrodes measure brain activity
and its changes, as a response to some stimuli [29]. The electrodes used in EEG detect only
electrical changes of a large number of neurons that respond to a signal at the same time.
The information from the electrodes is then amplified and received by a computer where
data is analyzed. A complication from this technology is that due to the spatial resolution,
it is difficult to know how deep the signal is produced [30].

2.1.2 MRI

Magnetic resonance imaging (MRI) is a complex imaging technique that uses strong magnetic
fields to interact with the protons of the hydrogen atoms in the body. Given the fact that
the organic tissue consist of a high degree of water [23], this technology uses this feature
for obtaining images of organs. The strong magnetic field aligns the protons in a certain
direction, but when a radio pulse is emitted, it interacts with the protons flipping them
in their orientation. As the protons go back to the alignment, there is an energy release
detected by the MRI machine [20] [13] and analyzed by a computer to create the image of
the tissue.

2.1.3 fMRI and fNIRS

Functional MRI (fMRI) [6] works in a similar way as described above, but the main difference
with MRI is that the intention here is focused on determining the changes in the flow of
oxygenated blood [13].

On the other hand, functional Near-Infrared Spectroscopy (fNIRS) [2] is similar to fMRI
in the sense that it relies on the blood oxygen level-dependent signal that happens when
the neurons activate and consume oxygen. The differences with fMRI are that for this
technique the presence of the magnetic is crucial whereas in fNIRS only optical properties
are considered [4]. To be more specific, in fMRI the deoxygenated hemoglobin affects more
the magnetic field compared to the oxygenated hemoglobin therefore, the ratio of these two
quantities is analyzed to measure brain activity. fNIRS, on the other hand, takes advantage
of the different absorption spectra between oxygenated and deoxygenated hemoglobin.

Because the utility of a particular neuroimaging technique can be assessed in a variety of
ways [34], it is important to discuss why is it relevant to focus on fNIRS for the purpose of
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this thesis. This is done in the next section. The following table shows a brief comparison
between different neuroimaging technologies that are used nowadays.

fNIRS fMRI EEG/MEG PET

Signal HbO2/HbR BOLD (HbR) Electromagnetic Glucose metabolism

Spatial resolution 2–3 cm 0.3 mm voxels 5–9 cm 4 mm

Penetration depth Brain cortex Whole head Brain cortex/deep Whole head

Sampling rates 1-200 Hz 1–3 Hz >1000 Hz <0.1 Hz

Range of tasks Enormous Limited Limited Limited

Motion Very good Limited Limited Limited

Participants Everyone Limited Everyone Limited

Sounds Silent Very noisy Silent Silent

Portability Yes None Yes None

Cost Low High Low /high High

Table 2.1: Comparison between neuroimaging methods. In this table, the information of
strengths and weaknesses of the neuroimaging methods are displayed [4] [15].

As seen from Table 2.1, fNIRS systems have many advantages when it comes to comfort,
cost, and portability. The main feature of this technology is that the optical components do
not interfere with electromagnetic fields allowing the researchers to gather a more complete
set of information from individuals.

Due to the wide range of advantages, this technology is used in various institutions and
research centers such as universities. In particular, this fact allows for generating a wide
collection of data in different experiments from which it is possible to extract information
from the connectivity of the brain. It should be noted that this last is the main objective
of this thesis topic, so the use of this technology will be discussed in more detail in the next
section.

2.2 The fNIRS technology

To collect information from brain activity, fNIRS needs measurements that can compare
physical quantities from the regions of interest [12] [9]. The measurements in this case,
are typically performed by transmitting infrared light onto the head of an individual and
compare it to the one that is received. fNIRS consist of a set of electrodes that emit infrared
light that is shot onto the scalp [26] (Figure 2.1). The light goes through several different
organic layers that have different optical properties [12]. Along its path, the light is absorbed
and scattered not only due to the equipment, but also because irregularities and composition
of organic tissue is involved [26].

When the light goes through a material, the photons 1 can be absorbed, transmitted, or
reflected as a result of interaction with the barrier. In the human body, it is well-known
[12] [5] that one of the most infrared absorbing chromophore substance is hemoglobin. Such

1Elementary blocks of light.
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(a) (b)

(c) (d)

Figure 2.1: Here we can see the setup of the fNIRS device used for the data collection of this
thesis. In a) the setting presented is connected to the NIRscout device. In b), c) we see the
electrodes and the cap used and in d) the NIRX sport device is shown.

a large molecule (or protein to be more specific) is responsible for providing oxygen to the
bloodstream. Because hemoglobin is the oxygen carrier in the body, the amount of oxygen
that it contains has a noticeable feature when it comes to absorption. Specifically for infrared
light. Oxygenated hemoglobin (oxyhemoglobin, HbO2) and deoxyhemoglobin HbR absorb
near-infrared (NIR) light between 650-900 nm 2. With this in mind, it is possible to use these
features to make use of spectroscopical measurements and tools to localize oxygenated areas
in the brain. When a brain area is active and involved in a certain task, the brain requires
a supply of glucose and oxygen resulting in an increase of blood flow. Such an increase is
proportional to the increase in HbO2 and simultaneously a decrease in HbR concentrations.
The differences in concentrations are measured by the estimation of light attenuation with
fNIRS.

As mentioned above, the NIR light also suffers a process of scattering which is more fre-
quent than absorption contributing to light attenuation. This means that the more photons
scattered, the longer the traveled path and the greater the probability of being absorbed
[26]. These issues are considered and treated with fNIRS to detect brain activity.

2According to [12], HbO2 absorption is higher for wavelengths in the range of λ > 800 nm, while HbR
absorption coefficient is in the range of λ < 800 nm.
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It is worth mentioning that recent works have been done using this technology. Investi-
gations about brain activity for people with amputated limbs and finger tapping [36] from
Norwegian institutions (Figure 2.2) are the base of this thesis. Because in such works they
have used fNIRS technology for collecting the data, it is interesting to explore correlation
measures to implement the connectivity network from regions of the brain for such data set
[36].

(a) (b)

Figure 2.2: Example of data collected from fNIRS technology. In the plot displayed in a), it
is possible to see the amplitude of the signals received from HbO2 and HbR during a time
interval. In b), it is possible to see the comparison between 3 different conditions. These
plots were provided from a set of measures at OsloMet taken for a study of patients with
Multiple sclerosis (MS). For further references check: [10, 1, 37, 33] and [36].

2.3 Fundamentals of multivariate data analysis

The use of fNIRS technology and its relevance to this thesis, have been discussed in the pre-
vious sections. However, the core of this project is related to signal analysis and the imple-
mentation of techniques to measure the correlation between them. To begin the discussion
regarding correlation measures, it is worth introducing basic concepts such as probability
density, linear and nonlinear correlation measures, as well as certain basic generalities in
stochastic processes [21]. This last concept is attributed to the need of adopting a formalism
that quantifies the temporal evolution of the signals since, as is well known, the experimental
measurements are parameterized with the time associated with the duration of the signal.

2.3.1 Probability density function

The Bayesian interpretation of probability is a measurement that quantifies the likelihood of
an event to happen. This approach introduces the notion of information and the uncertainty
of an event to occur based on that information. Probability has as its basis a concept
known as random variables. When an experiment is performed, the object of interest is
some function of the outcome as opposed to the actual outcome itself. Let us think about
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tossing a coin to exemplify this matter. In this case, one is interested in the number of
heads and not the actual head/tail sequence that results. These quantities of interest, or,
more formally, these real-valued functions defined on the sample space, are known as random
variables.

From probability theory, it is known that a random variable is a quantity that can take
on numerical values with certain probabilities [24], [35]. However, it is possible to consider
another type of random variables whose set of possible values is either finite or countably
infinite and in some cases, uncountable.

Let’s consider X to be a random variable. X is considered to be a continuous random
variable if there exists a non negative function f ∈ R, with the property that for any set
B ∈ R

P (X ∈ B) =

∫
B

f(x)dx. (2.1)

The function f is called the probability density function of X and it contains the infor-
mation of the probabilities for the set once the function has been integrated. In other words,
what eq. (2.1) is saying is that the probability of X being in B, is calculated by taking the
integral of the probability density over the set B. And because X must have a particular
value, f(x) must satisfy

P [X ∈ (−∞,∞)] =

∫ ∞
−∞

f(x)dx = 1. (2.2)

Eq. (2.2) means that the probability of measuring any value, is one. Now, if B = [a, b] ∈
R, the probability of finding X in the interval [a, b] is

0 ≤ P (X ∈ [a, b]) =

∫ b

a

f(x)dx ≤ 1. (2.3)

Notice that (2.3) takes values in the real line, but because [a, b] is a subset of R,

P [X ∈ [a, b]] ∈ [0, 1].

With the concept of random variable introduced, an interesting question to ask could
be that given a pair of random variables X and Y , to what extend having some knowledge
of X helps predict Y ? (or vice versa). In other words, we are asking about the degree to
which two random variables are correlated [24].

2.3.2 Correlation and covariance

The larger the correlation between variables, the more information we know about a variable
helping to predict the other. It is possible to exemplify qualitatively, what correlation means.
If it happens to perceive an increase in X that corresponds to an increase in Y (on average)
then, we can call this association as a positive correlation. On the other hand, we say
a negative correlation occurs when an increase in X corresponds to a decrease in Y (on
average). Having said this, it is important to clarify that the concept of correlation does not
necessarily imply causation [24].
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To understand the general way in which random variables are correlated, it useful to
introduce the correlation coefficient r that will be defined below. By using the central limit
theorem, it is possible to approximate real-life variables to normal distributions. In this
direction, we can consider a random variable X normally distributed with µ = 0 (to simplify
the argument) and standard deviation σx. Now, if another random variable Y is partially
determined (in a linear way) by X and partially determined by another random variable Z
with standard deviation σz and µz = 0 (independent of X); it is possible to quantify the
dependence of Y on X and Z by expressing

Y = mX + Z (2.4)

where m is a real scalar.
In (2.4) mX and Z have standard deviation mσx and σz respectively. And because

we are considering the mean (or expectation value) of Y to be µy = mµx + µz = 0 then
σy =

√
m2σ2

x + σ2
z .

All these quantities define the correlation coefficient r, a scalar that provides a way of
measuring the degree of correlation between variables. For given values of m and σz in a
linear dependence attributed to X as stated above, the correlation coefficient is expressed as

r ≡ mσx
σy

=
mσx√

m2σ2
x + σ2

z

. (2.5)

The meaning of the equality in (2.5) is that r2 is the ratio of the variance of Y that can
be attributed to X.

Because the analysis in this thesis corresponds to a collection of signals (or more generally,
a collection of data points) to determine correlations (and therefore r), it is important to
introduce the concept of covariance. In this sense, just as the expected value and the variance
of a single random variable give information about the random variable of interest, the same
happens with the covariance but between two random variables.

The covariance between X and Y , denoted by Cov(X, Y ) is defined as

Cov(X, Y ) ≡ E[(X − E[X])(Y − E[Y ])] = E[(X − µx)(Y − µy)], (2.6)

where E[X] is the expectation value of the random variable X. In case the X is a discrete
random variable, E[X] is expressed as

E[X] =
∑
x

xP (X = x). (2.7)

In the case X is a continuous random variable with probability density function f(x)
then

E[X] =

∫ ∞
−∞

xf(x)dx. (2.8)

Taking this into consideration we can extend more generally the idea that for any real-
valued function g(x), eq. (2.9) represents the expectation value of such function given a
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probability density f(x).

E[g(x)] =

∫ ∞
−∞

g(x)f(x)dx. (2.9)

Having defined the covariance, it is possible to see that eq. (2.5) can be written in terms
of it. Given the fact that the assumption of X and Z are independent variables, it is possible
to rewrite r as

r =
mσx
σy

=
mσ2

x + 0

σxσy
=
mE(X2) + E(XZ)

σxσy
=
E[X(mX + Z)]

σxσy

=
Cov(X,mX + Z)

σxσy
=

Cov(X, Y )

σxσy

(2.10)

∴ r =
Cov(X, Y )

σxσy
. (2.11)

The reader must notice that eq. (2.11) holds regardless of the distribution. The advantage
of (2.11) is that it does not contain m. Meaning that it has an advantage of use when one
wants to study the correlation by using a set of data points (xi, yi) instead of a specific
distribution.

Traditional texts like [25] and [35] denote the correlation of two random variables in terms
of the variance instead of the standard deviation as long as the variance is positive. This
coefficient is also called Pearson coefficient and this is the notation that will be followed
in this thesis for the sake of clarity to the reader.

ρ(X, Y ) =
Cov(X, Y )√

Var(X)Var(Y )
, (2.12)

where 
−1 ≤ ρ(X, Y ) ≤ 1,

Var(X) = E[X2]− (E[X])2,

σx ≡
√

Var(X).

Again, this coefficient measures the linearity between X and Y so a positive value of
ρ(X, Y ) means that Y tends to increase as X does, while a negative value represents an
increase of one variable when the other decreases. If ρ(X, Y ) = 0 X and Y are said to be
uncorrelated.

Because the measurement of brain activity under the use of the fNIRS technology has
multiple signal collection channels, it is worth mentioning the generalization of correlation
measures when having a larger number of random variables. This is the intention of the next
subsection.
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2.3.3 Multivariable case

If we consider a more general case where an array of random variables is written as a vector
~x = (X1, · · · , Xd) in a d-dimensional space then, its covariance matrix is defined as

Cov[~x] ≡ E[(~x− E[~x])(~x− E[~x])T ],

where the entries of the matrix are

Cov[~x] =


Var[X1] Cov[X1, X2] · · · Cov[X1, Xd]

Cov[X2, X1] Var[X2] · · · Cov[X2, Xd]
...

...
. . .

...
Cov[Xd, X1] Cov[Xd, X2] · · · Var[Xd]

 . (2.13)

This matrix is symmetric and positive definite, the entries of the covariance matrix codify
the variance and covariance of the random variables pairwise. Given the definition of the
latter quantities, it is easy to see that such entries can take values in [0,∞). Because of that
reason, we can define the corresponding correlation matrix of ~x as a normalized measure
with a finite upper bound

Corr[~x] =

ρ[X1, X1] ρ[X1, X2] · · · ρ[X1, Xd]
...

...
. . .

...
ρ[Xd, X1] ρ[Xd, X2] · · · ρ[Xd, Xd]

 . (2.14)

Now, up to this point, the importance of quantifying the signal correlation linearly has
been emphasized, but also, it is desired to know non-linear features between signals. To do
this, we will make use of information theory concepts to describe nonlinear measures.

2.4 Information theory measures for nonlinear corre-

lations

Information theory studies the representation of a certain type of data compactly together
with its transmission and storage in a way that data is more susceptible to errors. Therefore,
when dealing with collecting information on a system, it is often possible to separate the
blocks of information in regions to analyze their properties separately. These different sets
of information will then contain measures of the phenomena or the problem involved. In this
particular case, we consider signals from brain activity as discussed above. In data analysis is
important to figure out a way of measuring correlations between those so-called elementary
blocks of information in different manners. In many practical cases, probabilistic models
offer a good approach to solve this question just as, for example, decoding signals from noisy
channels [25]. To extract as much information as possible from a set of measurements, linear
and nonlinear correlation measures are considered in this thesis. Linear correlation measures
were introduced in the previous section for continuous and discrete random variables. It is
because of this reason that the notion of nonlinear measures needs to be introduced in
this section for a more complete evaluation of the information between random variables.
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Therefore it is precise to introduce the key concept of classical information theory: the
Shannon entropy [27].

2.4.1 Shannon entropy

Let’s consider again a discrete random variable X. The Shannon entropy of X measures in a
quantitative way, how much information is gain, on average, when the value of X is learned.
In other words, we can understand the Shannon entropy by considering that the entropy of
X measures the amount of uncertainty about the variable X before we can get to know the
value [27], [7]. The previous definitions are complementary to each other in the sense that it
is possible to think of the entropy as a measure of our uncertainty before knowing the value
of X, or as a measure of how much information we have gained after we learn the value of
X.

Now, because the information content of a random variable shouldn’t depend on the
labels attached to the values that may be taken by the random variable, the entropy of a
random variable is defined to be a function of a probability distribution, p1, ..., pn. Then the
Shannon entropy associated with this probability distribution is:

H[X] ≡ H(p1, ..., pn) ≡ −
∑
k

p(X = k) log2 p(X = k). (2.15)

Notice that here we are using the log base 2, meaning that the units of measure for
the entropy are bits as corresponds to classical information. We will keep this convention
throughout the entire text to refer logarithms base 2 as ′ log′ and ′ ln′ indicating natural
logarithms 3. To justify this definition of entropy, eq.(2.15) quantifies the necessary resources
to store information [27]. These minimal physical resources produced by the source can, at
a later time, reconstruct the information via H[X]. More specifically, in the context of
this thesis, the source which produces the information are the signals received from the
electrodes connected to a participant’s head. Most of real information sources consider
strings of independent, identically distributed random variables Xi for modeling reality. We
will use this for our future analysis along with extra considerations for modeling real data.

2.4.2 Relative entropy

Another entropy measure that is useful to introduce, is the relative entropy (or Kullback-
Leibler divergence). This quantity measure the closeness ( distance or dissimilarity) of two
probability distributions, p(x) and q(x), over the same index set x [27]. Having this in mind,
the relative entropy is defined as:

H(p(x)||q(x)) ≡
∑
x

p(x) log
p(x)

q(x)
≡ −H(X)−

∑
x

p(x) log q(x). (2.16)

An important feature from this measure is that H(p(x)||q(x)) is strictly non-negative.
That means H(p(x)||q(x)) ≥ 0 with the equality achieved ⇐⇒ p(x) = q(x)∀x. Eq. (2.16)

3For natural logarithm the units of entropy units are known as nats.
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is often useful to define other entropy measures since they can be thought as special cases of
this one.

2.4.3 Conditional entropy and mutual information

With the previous definitions stated above, one question that one could address is that if
X and Y are two random variables, How is the information of X related to the information
of Y ? One could think that computing the correlation coefficient might be enough, but it
happens to be a very limited measure of dependence due to its linearity profile. To answer
the latter question, two concepts are needed: conditional entropy and the mutual information
(We will pay special attention to this last one since its treatment is the core of this thesis).
But before introducing them, it is convenient to define first the joint entropy of two random
variables X and Y as

H(X, Y ) = −
∑
x,y

p(x, y) log p(x, y), (2.17)

where eq. (2.17) measures the total uncertainty of the pair of variables (X, Y ) and p(x, y)
represents the joint probability mass function. An advantage of this definition is that it can
be extended in any vector representation.

In the case where a variable is known say Y , then there are H(Y ) bits of information
acquired from the pair (X, Y ). Therefore, the remaining uncertainty of the pair (X, Y ), is
associated with the remaining lack of knowledge about the other variable X, regardless if Y
is already known. For this reason, the entropy of X conditional on knowing Y is

H(X|Y ) ≡ H(X, Y )−H(Y ), (2.18)

where H(X|Y ) in eq.(2.18) is known as conditional entropy.
This quantity brings to the light that both X and Y can have information in common.

A natural question at this point is about a way to define a measure in which we can know
the amount of information that one random contains about another. To answer that, let’s
suppose that we add the information content of X, H(X), to the information in Y ; the
resulting common information between X and Y will be counted twice in the sum, while
the information that is not common, will be counted just once. By subtracting off the joint
information of the pair (X, Y ) and H(X, Y ), we can define the mutual information of X and
Y as

I(X, Y ) =
∑
x

∑
y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
(2.19)

or alternatively,

I(X, Y ) = H(X) +H(Y )−H(X, Y ) = H(X)−H(X|Y ). (2.20)

The signals that will be analyzed in this project contain information that is parameterized
over time. For this reason, stochastic description of our system is a reasonable way to analyze
data. Along this thesis we will discuss and apply this quantity to extract nonlinear features
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from data, since it is a different way of extracting information from a pair of random variables
without any requirement of linearity. In the next section we will mention more about the
continuous case.

Another immediate concept relevant in information theory is the conditional mutual in-
formation which is defined as the reduction of the uncertainty of the random variable X
due to the knowledge of Y when Z is given [7]. We can express the conditional mutual
information as

I(X;Y |Z) = H(X|Z)−H(X|Y, Z) =
∑
z

p(z)
∑
x

∑
y

p(x, y|z) log

(
p(x, y|z)

p(x|z)p(y|z)

)
. (2.21)

2.4.4 Differential entropy measures

In the previous subsection we discussed some well known definitions of information measures
for discrete random variables. In this section, we will introduce the concept of differential
entropy, which considers the case of continuous random variables for the definition of entropy
measures. A continuous approach allow us analyzing certain features of the implementation
of a mutual information matrix for data based on a quantization theorem 4 .

In this case, let’s consider X to be a random variable with a cumulative distribution
function (cdf) F (x) ≡ Pr(X ≤ x). When the function F (x) happen to be continuous, then
we say X is a continuous random variable. As defined in (2.8), we define the probability
density function (pdf) as f(x) = F ′(x) when such derivative exists. That being said, let’s
define the continuous entropy measures.

Definition (Support set). We define the support set of X the set where f(x) > 0.

Definition (Differential entropy). The differential entropy of a continuous random variable
X with (pdf) f(x) is

h(X) = −
∫
S

f(x) log f(x)dx (2.22)

where S is the support set of X, where h(X) depends only on the pdf .
For the case of a set X1, . . . , Xn of random variables with pdf f(x1, . . . , xn),

h(X1, . . . , Xn) = −
∫
f(xn) log f(xn)dxn (2.23)

In a similar fashion, it is possible to extend the previous definition to several variables
and therefore the continuous version of the entropy measures previously described [7].

Definition (Conditional differential entropy). For a pair of continuous random variables
X, Y that have a joint density function f(x, y), the conditional differential entropy is

h(X|Y ) = −
∫
f(x, y) log[f(x|y)]dxdy = h(X, Y )− h(Y ) (2.24)

4Extra remarks are also mentioned in Appendix A.
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Definition (Relative entropy). In the case of 2 pdf ’s f(x) and g(x) for a random variable
X, we can define the relative entropy as

D(f ||g) =

∫
f log

f(x)

g(x)
dx (2.25)

where D(f ||g) <∞ if the support of f is contained in the support of g.

Definition (Mutual information). For the case of 2 continuous random variables with joint
density f(x, y). the mutual information is defines as

I(X, Y ) =

∫
f(x, y) log

f(x, y)

f(x)f(y)
dxdy (2.26)

Definition (General version mutual information). Let X be the smallest interval that con-
tains all the values of the random variable X (i.e. the range of X). A partition P of X is a
finite collection of disjoint sets Pi that cover X such that X =

⋃
i Pi. If X and Y are random

variables with partitions P ,Q, then the mutual information is given by

I(X;Y ) = sup
P,Q

I([X]P ; [Y ]Q) (2.27)

where the supremum is taken over all finite partitions P and Q [7].

It exist a relation between the definitions of discrete entropy measures and the ones
from the differential entropy fashion. The demonstration assumes a similar approach as the
construction of the Riemann integral. This method is known in the literature as quantization
of a continuous random variable and can be summarized in the following theorem

Theorem 2.4.1. Let X be a continuous random variable with a pdf f(x) that is Riemann
integrable. If we divide the range of X into bins of length ∆ and consider X∆ as the quantized
random variable defined by X∆ = xi if X ∈ [i∆, (i+ 1)∆], then

H(X∆) + log ∆→ h(f) = h(X) (2.28)

when ∆→ 0.

The previous result will come handy when we examine the bias of the histogram-based
estimation of the mutual information matrix. Such examination will be discussed more
thoroughly in the following chapters of this text, when we apply entropy measures to measure
non linearity in the data.

2.5 Non-linearity using mutual information

Previously introduced in sections above, we saw that Pearson correlation coefficient (2.12)
is one of the most used measures that reflects only the linear dependence between the two
random variables. As we recall from its definition, such coefficient does not provide any
nonlinear dependence since such dependence is more subtle and requires other type of anal-
ysis. To exemplify this subtlety, we can think of the correlation dependencies for the known
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Anscombe’s Quartet. Such quartet is known for having four data sets with almost identical
statistical features but with different distributions when plotted (See Apendix C, Table C.1).

In Figure (C.1) we can see the distributions of the data sets from Table (C.1) and notice
that they all have the same mean (µ), standard deviations, Pearson correlation and coefficient
of determination (R2). Moreover, the data sets have pretty much the same linear fit following
the line equation y = 0.5x+3.00. As mentioned before, nonlinear dependence is not reflected
by any of these measures. On the other hand, by calculating the mutual information for
each set, it is evident that the value obtained is different for most of the cases. This is an
indication that mutual information is a useful measure for examine nonlinear dependence.

If we recall from the previous section, the concept of mutual information was introduced
as a measure of the reduction of uncertainty between random variables by knowing another.
In this context, mutual information can be interpreted as a measure of total dependence. The
latter is evident from eq. (2.19) and (2.20) when 2 random variables have a joint entropy
less than the sum of their individual Shannon entropies because otherwise, such random
variables would be independent form each other.

As we will see in the next chapter, the way mutual information is calculated in this
thesis is based on probabilities by using a binning method for the computation of the joint
probability distribution between a pair of random variables. Typically the binning method
and nearest neighbor measurements are the most common methods for calculating mutual
information.

An important reminder to the reader is that the binning method described in this thesis is
completely non-parametric. Meaning that in our mutual information computation for a given
pair of random variables, there is no inherent parameter along the computation that influence
the outcome. This point is crucial because it allows us to apply the framework described
in [38] for an estimation of the linear component of mutual information. The goal of this
estimation can be understood in the following way: After calculating the mutual information
from the original data, we would like to remove the linear component of dependence given by
the Pearson correlation. Then, recalculate the mutual information on the new data set and
lastly, compare the mutual information from both data sets. The technique can be described
in four steps as follows:

• Pearson coefficient and least-squares regression

In this step, we take advantage on the Pearson coefficient and the least-squares re-
gression, to extract the linear features of the random variables. If we consider the
pair (X, Y ) as the relevant random variables, it is possible to plot them and obtain
a regression function for Y given X 5. In particular, if we designate Ŷ as the fitted
values of Y , after we conduct a linear regression fit, we can calculate the difference
between the original dependent variable Y and the fitted values as

zi = Yi − Ŷi (2.29)

where zi are the residuals and i ∈ 1, . . . , N 6. Notice that the linear regression effectu-
ated to Y is justified due to the fact that we want to extract only the linear behavior

5Here we are considering Y as the dependent variable and X as the independent random variable.
6We are using this label i ∈ 1, . . . , N to match the notation in Chapter 4.
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of the data. In this way, considering the difference between Y and Ŷ will leave the
residuals zi with other dependencies that are strictly nonlinear. For the pair (X, Y ),
the Pearson coefficient informs us about the linear correlation between the variables,
and the coefficient of determination R2 informs us about how precise the linear fit was.
In this way, we can have a better understanding of the dependencies in zi.

• Mutual information calculation using a binning method

The next step is to calculate the mutual information I(X, Y ). For this, we do the
computation following the description in Chapter 4 where first we compute the 2D
histogram to create the joint probability matrix for each entry and then use expression
(2.19) to obtain the result 7.

• Analysis of residuals

As mentioned before, the residuals obtained in eq.(2.29) represent a quantitative way of
nonlinear dependence between the random variables X and Y because its magnitude
indicate the distance of the point Yi from the ideal linear behaviour Ŷi. Given the
way the residuals are defined, this suggests that the relationship between them and
the independent random variable X should have a Pearson correlation equal to zero
(ρ(X, z) = 0) because in principle, only nonlinear dependencies survive with z 8.

To compare the mutual information between X and z and the pair X and Y it is
important to perform such difference at the level of the joint entropy between each
pair of variables [38]. In this sense, what we want to do is to perform a mutual
information comparison between 2 pair of variables (X, Y ) and (X, Y ′) where Y and
Y ′ have the same marginal probability density function (pdf) and therefore, the same
Shannon entropy H(Y ) = H(Y ′). Following this idea, it is immediate to see that this
ensures the difference of the mutual information to be exclusively present at the level
of the joint entropies (H(X, Y ) and H(X, Y ′)). Notice that if the Shannon entropies
H(X) and H(z) are different then, it will be unclear whether the difference between
I(X, Y ) and I(X, z) is due to H(z) or H(X, z) (eq.2.20). To calculate Y ′, Smith’s
technique [38] uses the van der Waerden normal transform (also known as quantile
normalization) to map the cumulative distribution function (cdf) 9 onto the cdf of a
normal distribution. We use this technique to map the (cdf) of the residuals and match
the pdf to the dependent variable X to achieve the same entropy. This will ensure the
reduction of the mutual information at the level of the joint entropies H(X, Y ) and
H(X, Y ′). The quantile transform of Y ′ is

Y ′ = F−1
y (G(z)) (2.30)

where Fy is the cdf of the dependent variable Y , F−1
y is the quantile function 10 of Y

7The amount of bins used in the computation are given by Sturge’s rule: log2N + 1, where N represents
the time steps of our signals.

8In practice we will obtain that this correlation is sufficiently small (∼ 10−10) so the claim holds for our
numerical analysis.

9The cumulative distribution function (cdf) of a discrete random variable X is FX(x) ≡ P (X ≤ x). For
the continuous case we make use of the pdf fX so that FX(x) =

∫ x

−∞ fX(t)dt.
10Also known as inverse cumulative distribution function.
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and G(z) is the cdf of the residuals. In this way, Y and Y ′ have the same pdf and
therefore, the same Shannon entropy. To perform this quantile transform in Python,
first we calculate the cdf of the residuals using a uniform distribution. Next, we make
use of the sklearn.preprocessing package and the QuantileTransformer library to
transform the data using a normal distribution and concatenate the information to
obtain the array Y ′ needed for the calculation of I(X, Y ′).

• Mutual information of X and Y ′

The last step is to calculate I ′(X, Y ′), which is the mutual information of X and Y ′

but with the linear dependence subtracted. Notice that an important property of the
mutual information comes up to light. Due to the property that Shannon entropy
is non increased under functions H(X) ≥ H(g(X)) for g(X) and arbitrary function,
then I(X, Y ) ≥ I(h(X), k(Y )) for h(X), k(Y ) arbitrary functions. Therefore, we can
conclude that I ≥ I ′ reaching the equality iff h(X) and k(Y ) are invertible. Thus,
in the case where linear dependence is more manifest, this will result on I ′ ∼ 0. On
the other hand, if the linear dependence is very small (or dominated by non linear
behaviour), then I ∼ I ′. This allows to define a coefficient (Λ) [38] that informs about
the global proportion of the linear dependence between X and Y

Λ = 1− I ′

I
(2.31)

Based on the definition in eq. (2.31), Λ ∈ [0, 1] and when Λ = 0 it means that the
random variables have completely nonlinear dependence between them when I > 0.
In the other extreme case where Λ = 1, then we can ensure that the relationship is
entirely linear and that the Pearson coefficient is enough to describe the correlation.

In this fashion, the Λ coefficient improves the understanding of what portion of the total
dependence between a pair of random variables is linear. Since a direct correspondence
between the mutual information and the Pearson correlation is not yet resolved other
that for normal distributions (eq. A.3), this calculation of Λ indirectly answers such
correspondence.

To conclude this section, let’s just introduce some useful statistical learning techniques
that will be used for analysing synthetic and fNIRS data. For the most part of the text, we
will discuss unsupervised learning techniques applied to time series to observe how much in-
formation they share after undergone a mixture in a certain fashion (synthetically or directly
from the experiment).

2.6 Topics in unsupervised learning

Unsupervised learning is a category of techniques that approach problems where there is
no associated response measurement after conducting an observation [16]. In this sense,
the intention is to infer probabilistic properties of a random vector, by providing accurate
answers of the observation without the help of a supervisor [11]. In the analysis of fNIRS
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data, there are some of these techniques that allow to extract certain features of the data
that are relevant for a pre-processing analysis. In this thesis we will consider two relevant
algorithms: principal and independent component analysis.

2.6.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a statistical technique widely used to examine interre-
lations among a set of variables in order to identify a certain structure of those variables. The
method uses orthogonal linear transformations to express correlated variables into linearly
uncorrelated variables named as principal components [17] [11]. It converts high dimensional
data (as the one used in this report) to low dimension data, scaling the features where
most of the information of the dataset is captured. Such features are the directions where
the highest variance of the data occurs. The method projects the dataset onto a different
subspace where the data is represented well enough.

This is done by finding and ranking all the eigenvalues and eigenvectors of a covariance
matrix. This is useful because high-dimensional data (with p features) may have nearly
all their variation in a small number of dimensions k, i.e. in the subspace spanned by the
eigenvectors of the covariance matrix that have the k largest eigenvalues. If we project the
original data into this subspace, we can have a dimension reduction (from p to k) with
hopefully little loss of information [11].

2.6.2 Independent Component Analysis (ICA)

Independent component analysis (ICA) is a technique for estimating independent source
signals from a set of recordings in which the source signals were mixed together in unknown
ratios. An important feature this technique has is the assumption of statistical independence
and non-Gaussianity behaviour on the source signals. Often when one performs a statistical
analysis a common assumption is the normally distributed behavior that a particular data
set has. This so called Gaussian feature is important for techniques as PCA as described in
the section above. However, there are many measurements that aren’t necessarily normally
distributed. An example of the latter are the electrical signals from different brain regions or
measurements from brain activity like the ones concerning this thesis [25], [22]. When non-
Gaussianity is assumed, ICA could distinguish individual signals after they are submitted to
a mixture process involving multiple sources.

An important remark is that unlike PCA, ICA does not maintain a hierarchy for the
components that result of the process. That means the method itself does not consider a
magnitude order with each component.

To understand ICA, one can think of the so-called cocktail party problem which is an
example of blind source separation (BSS) problem [25] in which we do not know anything
about the source of the signals that one is registering. In this case, if we consider that in a
reunion each person has a microphone Xj that collects a mixture of signals form independent
sources Sl (in this case people at the party), ICA is able to distinguish the voice of each source
from the linear combinations of their voices exploiting the independence and non-Gaussianity
of the sources itself [11] Figure 2.3.
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Figure 2.3: ICA on artificial time-series data. Here we are observing 3 source signals mea-
sured at 8000 uniformly spaced time points. The upper panel shows the signals collected by
the microphones and the lower panels show the real sources form each individual speaker and
the independent component solutions.

If we consider an observed vector ~x = (X1, . . . Xn)T whose n components are linear
combinations of independent elements of a random vector ~s = (S1, . . . Sn)T given by

~x = A~s (2.32)

where A is a n×n mixing matrix, then the purpose of ICA is to find an unmixing matrix W
such that it will retrieve a vector ~y that is the best approximation to ~s (i.e. ~y = W~x ≈ ~s).
Notice that in ICA, the time index t is not considered and it is assumed that each mixture Xj

and each independent component Sk are random variables. The vector-matrix form written
in (2.32) provides an advantage for brain signals since ~x is the fNIRS signal matrix (from
the observations registered in the experiment), A is the basis matrix spanning a subset of
the observation space [18] and ~s is the random vector with component signals S1 . . . Sn. The
matrix A is a square full rank matrix with inverse W.

To proceed with the use of ICA some assumptions must be considered:

• As we have said before, statistical independence between every source Si form the
sources vector ~s must be assumed. This feature opens the possibility for different ways
to measure independence that result in slightly different unmixing matrices [22]

• The mixing signal matrix A must be full rank

• The only source of stochasticity is the source vector ~s

• The data is centered (i.e it has zero mean). Depending on the algorithm, the observa-
tion vector ~x must be whitened i.e., it must be linearly transformed so the correlation
matrix retrieves E[~x~xT ] = I

• The source signals Si must not have a Gaussian probability density function (pdf).
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There are several prescriptions for introducing measures of non-Gaussianity (i.e. ob-
jective functions for ICA estimation). To mention some, we can name the Infomax (or
maximizing mutual information), the minimization of mutual information and maximiza-
tion of non-Gaussanity. According to [14], these methods are equivalent to a maximum
likelihood estimation. One of the most common ways to estimate square mixing matrices is
the fastICA algorithm introduced in Ref.[14]. This method is the one used in this thesis
given its efficiency and performance [22].

The fastICA algorithm given by [14], [22]is the following:

• Choose an initial weight vector wi

• Let wi
+ = E(g′(wT

i x))wi − E(xg(wT
i x))

•
w+

i

‖w+
i ‖

• For i = 1 go to step 7. Else, continue with step 5

• w+
i = wi −

∑i−1
j=1 wT

i wjwj

•
w+

i

‖w+
i ‖

• If not converged, go back to step 2. else go back to step 1 with i = i + 1 until all
components are extracted.

where the wi’s are the column-vector of the matrix W and w+
i is the variable used to

calculate wi in the iteration loop, g(.) is a non-quadratic function usually g(.) = Tanh(.)
and g′(.) its derivative. The algorithm above is later used in Chapter 5 when we perform
ICA to the fNIRS data. To apply PCA and ICA algorithms to our data, we will make use
of sklearn.decomposition routine for computing it in Python.
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Chapter 3

State of the art and methodology

In this chapter, we discuss the standard approach to fNIRS. We start by describing the
equipment and software used to collect the data. Subsequently, we present the usual fNIRS
data acquisition followed by the typical pre-processing of such data. Lastly, we introduce
the methodology and the type of data that will be used for the analysis.

3.1 fNIRS technology: equipment, data, and software

For this thesis, we will be using the data sets generated by the fNIRS equipment at Oslo
Metropolitan University (Figures 2.1 and 3.1). This data set is similar to the one in [36],
where the brain activity lectures were collected using a portable continuous-wave system
named NIRSport, a device that works with wavelengths of 760nm and 850nm. The portabil-
ity of this device allows the possibility of broader physical tasks, for example, experiments
that involve measurements to people with lower limb amputation (LLA).

(a) NIRSport device (b) Interface of the software

Figure 3.1: On the left-hand side, we can see the NIRSport device used to collect the data.
In (b), one can see an image of the interface used for the data collection.

The data that we will be using in this thesis consists of a collection of lectures taken
from the prefrontal cortex of a subject doing a series of physical tasks. In particular, work
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with data sets from LLA individuals that perform three physical tasks: walk along an 8-
figure path, walk with a trial and glasses of water, and finally, walking on an unstable
terrain. Such measurements inform about the concentrations of oxygenated (oxyHb) and
deoxygenated hemoglobin (deoxyHb), that are later use to create functional connectivity
networks and explore the types of correlation using the measures described in Chapter 2.
All these lectures were collected from the fNIRS equipment described above (Figure 3.1),
and then saved in a .txt-file.

Later on, we analyze these files to extract statistical features by using Python 3 as the
main programming language for this thesis. In particular, we will be using Python libraries
and other resources (such as the Jupyter notebooks) to generate synthetic data, the networks,
and other relevant diagrams to be presented in more detail in Chapters 4 and 5.

3.2 Acquiring fNIRS data with a NIRx machine

When collecting data from brain activity, it is important to understand how the data ac-
quisition equipment works 1. Is because of this reason that we provide a summary of data
collection for fNIRS experiments. Moreover, we describe the traditional setting for a new
study and the machine’s calibration for our dataset. Specifically, we focus our attention on
the NIRx equipment. Hardware used for this thesis.

3.2.1 Hardware and software for fNIRS acquisition

The machine used to collect the data is the NIRSport I imaging system (Figure 3.1b), and
operates with 32 sources (colored in red) and 32 detectors (colored in blue). Figure 2.1 shows
the setting of the machine and the location of the electrodes placed on a subject’s head. The
detector tips used are frequently referred to as the standard detector tips, and each of them
is labeled with a number. Moreover, the device uses delicate fiber-optic wires that provide
efficient signal transmission from the electrodes to the machine.

When using the NIRSport I equipment, the information containing the lectures of brain
activity is later passed to a software named NIRStar for further analysis and processing of
data. This software typically runs on a Windows PC (see Figure 3.1a)2. As illustrated in
Figure 2.1c, we can see attached optodes to the participant’s head by using textile polyester
caps adjustable to different sizes (typically 54, 56, 58 and 60cm diameter). The caps contain
holes specifically placed according to international standard head locations, where an array
of detectors and light emitters are placed.

1The standard analysis of fNIRS data is by using the nirsLAB v201706 software (https://www.nitrc.

org/projects/fnirs_downstate/).
2As a side note to the reader, it is worth mentioning the use of another software for analyzing fNIRS data,

named Homer 3. This software uses a MATLAB environment and works as an alternative to the NIRStar
option for Mac OS users. Homer 3 was only used to visualize the physical location of the optodes and the
virtual channels as dispalyed in Figure (5.2).
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3.2.2 Setting for a new study: program montage

To conduct a new data collection using the device described above, the first step is to arrange
the cap’s configuration also known as probe montage. The latter is performed by knowing the
number of sources and detectors available per person (i.e., according to the individual’s head
size). In Figure 2.1c we can see an example of the probes’ montage. Notice that sources and
detectors need to alternate so a standard spacing between each one of them is maintained.
The connection between source-detector is what we will define as a virtual channel 3. In
practice, there are many standard layouts that one can use to measure activity from different
parts of the brain such as the prefrontal, premotoric, motoric or visual cortex; but for our
experimental data, we will focus the attention only on the prefrontal cortex region.

To set a new experiment, it is necessary to tell the acquisition software what the montage
is going to be. This can be seen in the manual [40] for further details since it is a standardized
procedure and its description is beyond the scope of this thesis. The NIRStar software can
create a new montage that includes all the relevant files the experiment needs. At this point,
the participant’s head must also be measured to ensure that the size of the cap and the
electrodes are located correctly along with the head 4.

3.2.3 Calibration and data collection

Before beginning an experiment, the system must be calibrated. The latter is done by
opening the NIRStar software and ensuring that the montage is correct. The software has
different labels and bottoms to choose the right calibration option. At this stage, it is possible
to see the channels (source-detector numbers) activation by colors. The coloration denotes
the quality of the signal that is coming through the electrodes. There are 4 labels: white, red,
yellow, and green labeling from the worst to the best-received signal respectively. When the
software detects low-quality signals, adjustments need to be made. These include checking
the connection of the electrodes and removing the grommet cap and push out some excess
hair to avoid light cut out in the electrodes. This procedure can be done many times until
the software receives good quality signals. After mapping the regions with good calibration,
it is possible to record the data and has a visualization of it [40]. An important note is that
warming up the machine before the measurements will reduce the signal drifting. Once the
experiment is completed, the recording is terminated causing the NIRStar to automatically
save the data. This will create a folder with the format of ”DATE-NUMBER”, where the
measurements are saved. The data sets explored in Chapter 5, were collected based on these
settings.

3.3 Standard pre-processing for raw fNIRS data

Once the files are saved after the experiment, a pre-processing treatment is performed to
the raw fNIRS signals to extract relevant features from the experiment. This raw data

3We will use this nomenclature in the rest of the text for a pair source-detector. As we will see in Chapter
4, we will name signals to the analog of these virtual channels for synthetic data.

4The optic fiber cables connected to the NIRSport I device are back over and behind the cap, so the
participant’s face is clear. The stabilization of the cables is important to avoid loose connections.
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measures light intensity, and the amplitude of the signals is measured in voltage units (V).
A visualization of the raw data can be obtained directly from the NIRStar software Figure
3.2.

(a) (b)

Figure 3.2: Time series of the fNIRS data from the files available. In this case the time series
are describing lectures of brain activity for people with amputated limbs. The plot displayed
in a) is the time series for Oxy. Hb (HbO2) from the .txt file. The plot in b) is the time
series for deoxy. Hb from the .txt file.

The file with the signals is divided into columns each of which corresponds to one virtual
channel lecture (i.e. a source-detector pair). The columns correspond to the time series in
a certain acquisition frequency measured in Hertz (Hz). It is important to mention that
when looking at an fNIRS signal, it is not just brain activity the one that is being recorded.
The signals contain noises from the externals sources as well as from other factors inherited
from the experiment itself. For instance, cortical signal is a small percentage of the total
raw signal that has been recorded. Many times a way to observe noise on data that comes
directly from the participant’s physiology is by performing a fast Fourier transformation
(FFT). Figure 3.3 5.

3.3.1 Physiological noise

One special type of noise the raw data contains is the one coming from physiological contri-
butions, endemic to the human body. For instance, cardiac signal, respiration, and Mayer
waves [31] are the most common contributions one can encounter. The first two have an im-
pact that depends on the physical condition and age of the participant and can synchronize
with repeated stimuli presentations from the experiment. The Mayer waves are fluctuation
in blood pressure that occurs at a certain frequency, approx 0.1 Hz; and are related to the
position of the participant. They can vary when the participant is sitting, standing, or laying
down [19].

5Normally, the peaks observed in Figure 3.3 are acknowledged as physiological noise such as cardiac pulse,
respiration and other factors. However, for the purposes of this report, we are just illustrating the FFT of
our relevant data sets.
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(a) (b)

Figure 3.3: Fast Fourier Transformation (FFT) of the signals from our data sets. Here
we have the FFT’s for the 19 virtual channels. The bumps observed in the plots are the
physiological noises caused by cardiac pulse, respiration, etc. a) is for the deoxygenated Hb,
and b) is for the Oxygenated Hb.

The removal of the physiological noise from the data is carried out in two stages. The
first one is during the data collection. Several experiments use the General Linear Model
(GLM) approach [31], so in this case, it is useful to use multiple presentations of the task
and space the stimuli in intervals of time. Also, the use of shorter channel regressions can
help to reduce physiological noise. Depending on the experiment, some people also use other
peripherical physiological measures like respiration monitoring and heart rate monitoring to
reduce these contributions so that one condition (or stimuli) won’t reliably obtain changes
in breathing and heart rate.

The second is during the pre-processing stage. Here, there are different algorithms for
addressing the reduction of data contamination. To mention some of the most used we can
name Frequency filtering, PCA 6, and Adaptive and Kalman filtering. Frequency filtering
is useful because one can specify which of these frequencies one wants to keep in the signal
and which ones should be removed. For most GLM stimuli the range of work is 0.1-0.3 Hz
[31].

For physiological noise, the PCA filter creates new dimensions for the data to fall on
according to the variance (Chapter 2 and [17]). The method identifies those dimensions
which are responsible for the most variation in the data and from there one can choose to
discard the variability due to those dimensions. The utility of this analysis for fNIRS data
is that some oscillations like Mayer waves can be removed if we know the variation of the
signal they create.

3.3.2 Non-physiological noise

The non-physiological contributions are derived from the measurement itself. This kind can
be reduced due to controlled environment conditions when the experiment is been conducted

6This one used later in the text for analyzing correlations.
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but cannot be completely mitigated. For this kind of noise, we can name some techniques
to reduce such contributions. At the level of data collection,

• The machine drift can be reduced by using LEDs and by turning on the machine 15
min before the collection of data.

• Motion artifacts: reduce unnecessary participant motion, stabilize the wires properly.

• Measurement noise: ensure good contact with the electrode to the scalp of the partic-
ipant, block the ambient light, etc.

During the pre-processing stage, we can use again, frequency filtering for the machine
drift, PCA, Spline, correlation-based signal improvement (CBSI) for motion artifacts, and
manual removal of motion stimuli. An important thing to notice is that since the motion
artifacts can have a strong contribution to the data collection, a PCA filter is one of the most
used tools for dealing with this in the pre-processing pipeline. Another technique commonly
used but not as popular as PCA is the CBSI. The latter is based on the knowledge that
oxygenated Hb and deoxygenated Hb are strongly anti-correlated during cortical activation
[3] yet, they have a correlated motion artifact spike or discontinuity. In plain terms, this
method recreates the true signal by forcing a negative correlation 7. It assumes the negative
correlation under a certain assumption. This procedure is done by the software but it could
be problematic in case there are many motion artifacts.

The pre-processing stage is crucial for extracting relevant features of the brain and as we
have seen, it involves different techniques that allow scientists to remove undesired noises
from data. The set of tools to analyze fNIRS data has grown rapidly in recent years that
standard techniques are easy and, in some cases, automatically implemented by the software
itself. The study described in this thesis intends to explore other ways of analysis based on
linear and nonlinear correlation measures to have a different perspective of how intercon-
nected the brain is. This discussion brings more into context the kind of results that we
will be analyzing more thoroughly later in Chapter 5 and opens the door to discuss how to
distinguish linearity dependencies in our fNIRS data. In particular, in the next section we
will introduce a method that involves mutual information to answer this inquiry.

3.4 Overview of the methodology

We divide the methodology into four important steps that will allow us understand the
purpose of this thesis. First, we will generate multivariable synthetic signals sets where
we test some of the correlation measures discussed in Chapter 2, namely linear correlations
using covariance matrix and nonlinear by using mutual information. Later on, we will
study the behaviour between numerical and analytical approaches, and test their response
when increasing the number of parameters involved in the computation. After that, we will
see what information can be validated with the synthetic data so it can be applied to the
framework of fNIRS data. At this stage we will also compare the results with other statistical

7In this thesis we will use another approach for this by the use of independent component analysis (ICA)
because it intrinsically uses the mutual information.
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learning techniques. Finally, we will interpret the results via functional connectivity networks
similar to Figure 3.4, and assure positive direct relations between functional connectivity
network and the data of the participants. The stages are:

Figure 3.4: A framework of the Activation Channels. In this figure, we show the Activation
channels from the subjects as the mapping area of the activation channels that measures
brain activity. The activation channel denoted as Ai represents the measure of Oxygenated
and deoxygenated blood in a lecture after the activity has been performed. Once the signals
are collected, the idea is to model the activation channels via correlations (linear and non-
linear) to map different regions of the brain and to draw a connectivity network as in the
representation in the RHS. Here, wij represents the correlation families of interest.

1. Set of synthetic multivariable signals with an imposed correlation matrix

We begin by generating synthetic data signals from coupled stochastic processes to
compare numerical and analytical correlation matrices, based on an entry-wise matrix
norm of the difference. This tool will allow us to explore how the percentage error
between the two matrices behave when we increase the number of time-steps and the
number of signals involved in a simulation. Notice that for a set of n-signals, deter-
mining a correlation measure between them is not an easy task since such labor cannot
be done in general for any kind of stochastic process. This step will be implemented
by writing a Python code where it is possible to calculate correlation matrices from
an array of numbers. In Python, we can work with arrays of numbers. We can have
vectors and matrices describing the signals and calculate the correlation between them.

2. Implementation of mutual information for synthetic signals

The next stage is to implement the mutual information using a binning method. More
specifically, we create a joint probability distribution between a pair of random vari-
ables using a 2D histogram from which we will compute the mutual and normalized
mutual information. As in the previous step, we will test these measures by exploring
the behavior of the matrix norm when the number of signals and time-steps are in-
creased. Finally, we compare the binning method described above with the analytical
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counterpart i.e., when we use normal distributions and compare with the continuous
case.

3. Application of the computational framework to fNIRS data

With the code prepared for synthetic data, it is possible to simulate the signals from
a region around an individual’s head with n-points. After completing the step above
and achieving reasonable results from the synthetic data set, we proceed to use the
real data to test the analytical methods and techniques. The latter has measurements
from oxygenated and deoxygenated blood responses from an experiment previously
done by OsloMet. The collection of this data consists of brain activity signals using
fNIRS technology from subjects with a lower limb amputation (LLA) walking in an 8
figure path, along an unstable terrain, and with a trail of glasses of water. The idea
here is to extract information on how the brain is responding to a task and to create
a functional connectivity network with the information collected. The main work at
this stage is to classify important information and visualize it in different ways.

4. Interpretation of the extracted functional connectivity networks

For this stage, we study the results obtained from applying the different correlation
techniques to the fNIRS data set and compare the results with unsupervised learning
techniques such as PCA, ICA, and hierarchical clusters. In addition to that, we also
explore the meaning of the visualization tools that have a big role in the data analysis
in creating the connectivity network.

To end this chapter let’s just recapitulate a little. So far, we have described the method-
ology for measuring brain activity using fNIRS data specifying relevant features for the data
sets concerning this thesis. Also, we have introduced a recent method to use nonlinear mea-
sures to quantify the linear dependencies by pairs of random variables. The next step is to
consolidate these ideas more explicitly when we describe the treatment of the data in the
next chapters.
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Chapter 4

Synthetic data for correlations and
mutual information

In this chapter, we explain the logic behind the generation of synthetic data using stochastic
processes. The assumptions and hypotheses for the analysis and creation of the code are
described here. By implementing and using a synthetic data set we can observe the behavior
of the linear and nonlinear correlation measures and test their reliability.

Once we have implemented and examined the measures for the synthetic data set, we
proceed and apply the formalism to fNIRS data in a way we can interpret the outcome both
qualitative and quantitative. This last part will help to understand the discussion section in
Chapter 5.

4.1 Generating signals from coupled stochastic pro-

cesses

From the previous chapter, we know that in an fNIRS experiment, the relevant information
involves lectures of oxygenated and deoxygenated hemoglobin from the brain when a subject
performs a specific activity. Such measurements are collected in files, as time series for each
of the brain signals involved in the experiment. The files that we will consider in the analysis
of this thesis are measurements of light amplitude (for oxy Hb and deoxy Hb) collected at a
specific interval of time, with a fixed number of virtual channels (a pair of source-detector)
given by the experiment. Therefore, the purpose of generating synthetic data is to simulate
a possible experiment where we can analyze the linear and nonlinear correlation measures
verify them, and apply them to the real data set. For the nonlinear correlation measures, the
idea is to examine its behavior when certain parameters are changed. Namely, the length of
the time series and the number of signals involved.

The advantage of this procedure is that the .txt data files (Figure 3.2) from the ex-
periment, are basically a matrix with lectures of each virtual channel therefore, we use this
feature to describe our signals in the form of an arrays in our Python code.
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Figure 4.1: White noise for 5 signals with µ~w(i) = 0 and σ~w(i) = 1 for i = 1, 2, 3, 4, 5. Here
we can see the time series generated by 5 Wiener processes.

4.1.1 The use of stochastic processes

The idea of how we generate synthetic data is the following: because the set of signals
recorded from the virtual channels on the cap contain the lectures of oxygenated (or deoxy-
Hb) hemoglobin from a region of the brain (Figure 3.4) at a certain time-step, we can consider
this discretization of information as arrays in the code. In particular, we can create our
testing signals using the increments of Wiener processes. We begin by generating M vectors
~w(m) (m ∈ 1, . . . ,M) with entries randomly generated according to a normal distribution
N(0, 1). These ~w(m) are all uncorrelated series of Wiener increments and all of them have
dimension equal to N (i.e., dim ~w(i) = N ∀i).

To prepare a set of vectors ~X(m) (m ∈ 1, . . . ,M) correlated with each other, we make
use of an auxiliary matrix B.The entries of this matrix (written as Bln) are also randomly
generated by a normal distribution such that

~X(m) = B~w(m) (4.1)

with m ∈ 1, . . . ,M and the time steps represented by the N entries of ~X 1. See Figures
4.2 and 4.1.

Given the way we are constructing these X(m)’s, we can calculate the correlation matrix
as in eq.(2.14). Notice that this matrix size is M ×M because we are considering M -signals.
This particular correlation matrix of the M signals is what we will refer to as the numerical
correlation matrix. The analytical (or true) correlation matrix of the process is actually
inherited from B itself. To exhibit this last statement more clearly, we need to make use of
the expressions (2.6) and (2.11) to justify this claim.

1To make the notation consistent to the one presented in Chapter 2, we will remove the arrow of the
vectors to have a cleaner approach to the random variable description presented earlier in this thesis. The
reader should keep in mind that each ~X(m) ≡ X(m), where the super-index (m) is the label of the M vectors
involved (m ∈ 1, . . . ,M) and that each of which has N entries (dim X(i) = N ∀i).
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Figure 4.2: In this figure each plot represents a synthetic channel described by a vector ~X(i)

from i = 1, 2, 3, 4, 5.

From Figure 4.2 we see the X(m) signals having different expected values after being
generated according to (4.1). By shifting the expected value of the signals to zero ( i.e.
E[X(m)] = 0 ∀m ∈ M (Figure 4.3)) and standardize the X(m) with σm = 1, we see that the
correlation between X(i) and X(j) for i 6= j is

Cov(X(i), X(j)) = E[(X(i)−E[X(i)]︸ ︷︷ ︸
=0

)(X(j)−E[X(j)]︸ ︷︷ ︸
=0

)] = E[X(i), X(j)] = E

[∑
k

∑
l

BikwkBjlwl

]

=
∑
k

∑
l

BikBjlE[wk, wl]︸ ︷︷ ︸
δk,l

=
∑
k

BikBjk =
∑
k

BikB
T
kj.

From the computation above we see that E[wk, wl] = δk,l because by construction we are
using that the w(k) are independent and uncorrelated vectors for k 6= l. Thus, the covariance
matrix of the process is given by BBT, and therefore, the correlation matrix is given by

ρ(X(i), X(j)) =
Cov(X(i), X(j))√

Cov(X(i), X(i))Cov(X(j), X(j))
=

(BBT)ij√
(BBT)ii(BBT)jj

(4.2)

Where ρ(X(i), X(j)) are the entries of the analytical correlation matrix at the i column
and j row. Notice that the expression in (4.2) is different to what we will refer to as the
numerical correlation matrix. The latter is obtained by applying eq. (2.14) to the vectors
X(m) in (4.1) directly 2.

2Another way to generate synthetic channels (Figure 4.1) is by using white noise signals (Wiener in-
crements). With these, we can build the ~w(i) with µ~w(i) ≈ 0 and σ~w(i) ≈ 1 directly, and use the analysis

described above to generate the ~X(m).
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(a) (b)

Figure 4.3: Time-series from the 5 signals in Figure 4.2 when (a) the mean is shifted to zero
and (b) when we shift the signals and normalize by the standard deviation (σi = 1).

Since the correlation matrix can be directly estimated from the data eq.(2.14), the dif-
ference between such estimation and the true value BBT can be computed. To evaluate how
different the 2 matrices are, we consider the Frobenius norm 3 of their difference:

‖Corr[~x]an − Corr[~x]num‖F ≡ ‖Corr[~x]− Ĉorr[~x]‖F := ‖A‖F , (4.3)

where here, ~x = (X(1), . . . , X(M)) as the multivariable case in Chapter 2, Ĉorr is the numerical
correlation matrix, and where the Frobenius norm (B) of a matrix A is defined by

‖A‖F =

√√√√ N∑
i=1

N∑
j=1

|aij|2, (4.4)

with aij the entries of such matrix.
Henceforth, to analyze how different those two matrices are we consider the relative

magnitude of this difference defined by

ε =
‖Corr[~x]− Ĉorr[~x]‖F

‖Corr[~x]‖F
. (4.5)

This scalar ε quantifies how different the analytical and the numerical correlation matrices
are. To have a better insight of how the Frobenius norm behaves when we change the number
of time steps (N) and the number of channels (or signals M), we can do the following:

1. Fix the number of signals and compute the Frobenius norm for different time-steps N .
Typically by going from 101 up to 107 time-steps in increases of one order of magnitude.
For this case, we ran 50 simulations to examine the behaviour of the norm when there
is an increase on the number of time-steps. The plot generated after the simulation
has points center in the average of values after the simulations and uncertainty given
by the standard deviation (Figure 4.4 a).

3See Appendix B for the justification of this norm.
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2. Fix the time-steps (104) and increase the number of signals from 2 to 20. For this case,
we run 103 simulations. The plot in this case is generated in the same way as in the
paragraph above, taking the average and the standard deviation after the simulations
(Figure 4.4b).

(a) (b)

Figure 4.4: Behaviour of the percentage difference for the Frobenius norm, when the param-
eters N and M are changed. The plot displayed in a) reflects the behaviour of the percentage
difference after performing 50 simulations. Here, the number of signals is fixed to 5, and the
number of points go from 101 to 107. As we can see from the figure, the data follows a power
law behaviour y(x) = a ∗ xb with parameters a = −1.367 and b = −0.529. The plot in b) is
the percentage difference after performing 1000 simulations. Here, the number of time-steps
are fixed to 104, and number of signals increase form 2 to 20. In this case, we observe that
the data also fits well to a power law behaviour y(x) = a ∗ xk with parameters a = 0.004 and
k = 0.714 (blue dashed line).

From the figures shown in Figure 4.4, we can see that the Frobenius norm is one way of
calculating the error between the true and the numerical correlation matrices. In that figure
we can appreciate the Frobenius norm ‖ · ‖F → 0 following a power law behaviour when N
→∞. Notice that in Figure 4.4a) the error bars from the uncertainty also decrease when the
number of time-steps increase. This means that the more time-steps we have in a signal, the
more accurate the numerical implementation is. On the other hand, Figure 4.4b) shows that
when we increase the number of signals, the percentage difference between the numerical and
analytical cases, increase in a power-law fashion. The latter can be appreciated by the curve
fitting with a blue dash line where we have a power-law fit. In contrast, we can also observe
a second order polynomial curve fitting with a red dashed line respectively. An important
remark at this point is that we cannot forget that the correlation matrices described above
in eq. (2.14), are merely linear correlation measures, and a similar comparison for nonlinear
measures is also relevant particularly when we consider the mutual information defined in
eq. (2.17).

It is also possible to introduce other types of matrix norms for the difference between the
analytical and numerical correlation matrices. The generalization of the Frobenius norm is
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the Lp,q norm defined as

‖R‖p,q =

 n∑
j=1

(
m∑
i=1

|rij|p
)q
p


1

q

. (4.6)

where the rij are the entries of the matrix R.
For p = q = 2 the Lp,q norm retrieves the Frobenius norm as in eq.(4.4). An interesting

case is when p = 2 and q = 1 because this norm could act as an error function widely used
for robust data analysis given that the error for each point is not squared. In Figure 4.5 we
can see the behavior of different L(p, q) norms when the number of time steps is increased.
A question that arises at this point is if there is a way to optimize p and q for which the
L(p, q) norm is minimum for this particular type of data.

(a) (b)

(c) (d)

Figure 4.5: Behaviour of the L(p, q)-norms. In these figures we see the behaviours of the
L(p, q)-norms for 5 signals after 20 simulations when: (a) p = q = 1, (b) p = 2, q = 1, (c)
p = 3, q = 2 and (d) p = 5, q = 3. In these figures we still obtain a power-law as in Figure
4.4.
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Given that eq.(4.4) and eq.(4.6) are entry-wise matrix norms that treat a m× n matrix
as a vector of size m · n, the parameters’ choice p and q in eq.(4.6) must not affect the
behaviour of the matrix difference because geometrically speaking, this represents a mere
distance between 2 vectors. In addition to that, the equivalent norm theorem in (B.0.1) can
be used to refute a more privileged matrix norm since the ones we considered in this thesis are
from a more general one as in eq.(4.6). The norm election re-scales the value obtained after
the computation but the parameters do not give any information of how good the norm is.
That depends on the type of data to analyze. To see this argument more clearly, we can plot a
surface with different values for p and q. In Figure 4.6, we can observe that if we increase the
values of p and q, the surface that represents the L(p, q) norm of the difference between the
analytical and numerical correlation matrices, decreases monotonically. This means that
by increasing the parameters of such norm we will obtain a similar power-law behaviour.
It is because of this reason that in future analysis of this thesis we will only consider the
Frobenius norm due to a more recognizable geometric meaning to the Euclidean space.

(a) (b)

Figure 4.6: Behaviour of the L(p, q)-norms for different values of its parameters. The surface
follows the prescription given in (4.6) when we compare the analytical and the numerical
correlation matrix with synthetic data. In (a) we observe that as we increase the values of
p and q the norm decreases monotonically showing that there is not a predilect value for p
or q. In (b) we display the natural logarithm of the L(p, q) norm to observe the behaviour
better.

4.2 Implementation of mutual information to coupled

stochastic processes

As we have previously mentioned in Chapter 2, one way to measure nonlinear correlations
between a pair of signals is by computing the mutual information from their probability
distributions. This means that first, we need to determine the probability distributions of
the ~X(i) and then use eq. (2.19) to compute the mutual information. Equation (2.19) contains
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the information about the joint probability distribution and the marginal probabilities from
the pair of random variables involved.

To obtain such information from our X(i)’s, we can obtain the normalized 2D histogram
between a pair of signals X(i), X(j) (for i, j ∈ 1, . . .M). By giving a specific number of bins,
we can determine the joint probability distribution matrix and the marginal probabilities
(Figure 4.7).

Figure 4.7: 2D Histograms for the joint probability distribution between two signals X(i) and
X(j). In this case i 6= j. In this figure we observe the join probability matrices represented
as a heat map. The heat map of the joint prob. matrix showed here corresponds to N = 105.
The election of number of bins in the cases displayed are

√
N .

The reader should recall that the X(m) are generated following the prescription in eq.(4.1).
From the joint probability matrix in Figure 4.7, it is possible to obtain the marginal probabil-
ities P (xi), P (xj) to use them as indicated in eq.(2.19) since those, are the sum or the values
per column and per row of the joint probability matrix. The joint probabilities are simply
the entries on the matrix in Figure 4.7. With these quantities, it is possible to compute the
mutual information matrix between the generated signals.

In Figure 4.8 we can see a mutual information matrix for a collection of 6 signals. Each
matrix entry represents the computation of the normalized mutual information of a pair
X(i) and X(j). As we can see, the matrix is symmetric and follows the properties from
eq.(2.19) entry-wise. The reason for introducing such matrix is because the normalized
mutual information matrix (Figure 4.8) allows us having a more direct comparison to the
correlation matrix, based on a nonlinear approach. The normalization choice decided for this
thesis consist on taking each entry of the mutual information matrix divided by the square
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Figure 4.8: Normalized mutual information matrix. In this case, m ∈ [1, . . . , 6] and the
amount of time-steps is N = 105. We notice that the mutual information matrix is symmetric
as in (2.19). The terms in the diagonal represent the normalized Shannon Entropies.

root of the product of the adjacent diagonal terms of the matrix 4. In other words

Ĩij =
Iij√
Iii ∗ Ijj

(4.7)

At this point, we can repeat a similar analysis for this mutual information matrix as we
did for the correlation matrix in the previous section. Since we do not have an analytical
and numerical comparison for mutual information matrices, we will examine the behavior
of the Frobenius norm when we increase the number of signals (M) and the number of time
steps (N).

For this case, we run some simulations to analyze the behaviour for the Frobenius norm.

• After having the routine for the mutual information matrix, we can fix the number of
signals and change N . In this case, we run 100 simulations for when N goes from 101

to 105 as in the Figure 4.9.

• We can see the other simulation fixing N = 103 and increasing the amount of signals
from 5 to 19 . In this other case, we run 10 simulations due to the computational time.

In Figure 4.9, we observe a similar behavior for the different L(p, q) norms applied to the
normalized mutual information matrices to the ones obtained for the correlation matrices.

4This normalization election is not unique. The normalization election used in this thesis is chosen in
such way so that the diagonal terms also take part in the calculation and to have the diagonal terms equal to
1. Since I(X,Y ) ∈ [0,∞), other prescriptions could also be used to normalize the mutual information entry-
wise. For instance, one of the most immediate manners of normalizing the mutual information is to take the
measure: Ĩij(X,Y ) = 1− e−Iij(X,Y ), where Ĩ → 0 when I → 0 and Ĩ → 1 when I → ∞. The advantage of
this normalization is that it treats high values of the mutual information in a finite manner unlike eq.(4.7)
where divergences could occur if the denominator is small enough. Another normalized measure commonly

used [8] is Ĩ(X,Y ) =
2 · I(X,Y )

H(X) +H(Y )
.
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(a) (b)

(c) (d)

Figure 4.9: Analysis using the different norms for the normalized mutual information matrix.
In (a) we can see the plot of the L(2, 2) norm when we increase the number of time-steps. A
power-law behavior is similar to the one obtained in (4.4). The plot in (b) shows a similar
behavior as in Figure 4.4 (b) when the number of signals is increased from 5 to 19. In (c) we
see a similar behaviour for the L(2, 1) after 100 simulations. In (d) we see the behaviour for
the L(1, 1) norm after 100 simulations. As expected, the matrix norm election has the same
effect for the mutual information.
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The points plotted in that figure represent the mean values after each simulation and the error
bars correspond to their respective standard deviations. It is clear that when one increases
the number of time-steps, theL(p, q) norms decrease as a power-law. This is similar to the
analysis in Figure 4.5 but with the difference that in 4.9 we can see that the parameters p
and q make the elbow of the curve in a slightly different way. With this we can confirm once
again that the Frobenius norm is good enough for evaluating a percentage error between
matrices.

4.3 Features of the mutual information matrix for syn-

thetic data

In this section we will observe the behaviour of the mutual information matrix for synthetic
data. In order to do so, we generate 19 signals with 103 time-steps each. We chose the
value of this parameters this way to simulate a similar scenario for our real data set. As we
have previously seen, from eq.(4.5) and in previous sections of this chapter, the percentage
error between the numerical and analytical correlation matrices is expected to be low for
103 time-steps. In Figure 4.10 one can see both correlation matrices displayed for the case
of synthetic signals. In this particular case, the percentage error (ε) between them is 8.62%.

(a) (b)

Figure 4.10: Comparison between analytical and numerical correlation matrices for synthetic
data. As we can see from the heatplots, the matrices are very similar. Here the percentage
error is around 8.62%

For the case of the mutual information matrix, as we have previously described in section
4.2, first, we need to compute the joint probability matrix and from there, use eq.(2.19)
to estimate the mutual information. The way of estimate the joint probability distribution
and therefore, the joint entropy as in eq.(2.20), is by computing a 2D histogram per pair of
variables. This method involves an arbitrary election of the number of bins involved in the
computation which induces a bias and increases the percentage error. Due to the amount of
time-steps involved we consider Sturge’s formula for the number of bins in the 2D histogram
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(i.e., k = log2(N) + 1) since the amount of steps is large enough to obtain a decent result
for the calculation of the mutual information.

Contrary to the correlation matrix case, for the mutual information matrix there is not
such direct analog between numerical and analytical mutual information matrices. However,
it is possible to compute a similar comparison by calculating eq.(A.3) with the correlation
coefficients directly from the analytical correlation matrix. The reason of this is because
the only well-known case between mutual information and correlation coefficient is given by
Gaussian variables as described in Appendix A. In this case, such comparison can provide
us with information about how close is the data to a Gaussian behaviour.

(a) (b)

Figure 4.11: Comparison between mutual information matrices for synthetic data. In (a) is
the M.I. matrix generated by the joint probability distributions using 2D histograms (using
Sturge’s formula), whereas (b) is the application of expression (A.3) using the coefficients
from the analytical correlation matrix.

As we can see from Figure 4.11, it is possible to see certain similarities between the
mutual information matrices. The matrix generated by the joint probability distributions
in (a), shows that the off-diagonal contributions are much smaller than the diagonal terms.
This mean that the Shannon entropy of each individual signal is considerable larger than the
mutual information per pairs of signals. It is also possible to see some off-diagonal entries
where the coefficients are larger but still close to zero. For the implementation with Gaussian
variables in (b), it is possible to see a similar setting. The off-diagonal terms represent regions
with small values close to zero but there are many that have a larger positive influence. We
notice in this case that the contribution compared to the diagonal terms is very low as in (a).
One feature that it is possible to notice is that in both heatmaps there are certain off-diagonal
regions that seem to have a qualitative similar footprint. The latter indicates that even after
calculating the 2D histogram for the joint probabilities, the data might still have a trace
of Gaussian behaviour. Based on the observation from the heatmaps, it is also noticeable
that the values between them are quite different in magnitude with the biggest difference
displayed in its diagonal terms. Since I(X, Y ) ≥ 0, I(X, Y ) can in principle take large values
just as the diagonal terms in Figure 4.11(b) as a direct consequence of the maximum linear
correlation along the diagonal. Given that the diagonal terms in both matrices don’t allow
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us making a clear comparison on the overall contribution for different signals, we can remove
such terms and calculate the percentage error for the off-diagonal terms (Figure 4.12).

(a) (b)

Figure 4.12: Comparison between mutual information matrices for the off-diagonal terms
using synthetic data. In (a) is the M.I. matrix generated by the joint probability distributions
using 2D histograms whereas (b) is the application of expression A.3. Here we display the
heatmaps exclusively for the off-diagonal terms in Figure 4.11, obtaining a percentage error
of 68.26%.

In Figure 4.12 we observe a qualitative indication that the inherent Gaussian behaviour is
still there even after using the binning election previously mentioned. In the ideal case that
the binning method collected all the information needed to compute the mutual information
for each pair of signals, we would’ve expect Figure 4.11(a) to be much close to (b), since the
signals were created using white noise as described in section 4.1 above. However, we can see
that the number of bins selected have a bias involved that increases its deviation from the
ideal case. As for the off-diagonal terms in Figure 4.12, although a clear pattern is obtained
displaying Gaussian behaviour, the percentage error is 68.26%. This is a significant increase
compared to the one for the correlation matrices is attributed to the election of the amount
of bins needed at the joint entropy level. This percentage error using of Sturge’s formula
retrieves a much lower error compared to the square-root bin choice in Figure 4.7.

Given that the mutual information matrix for the synthetic signals is fundamentally
important to the analysis of this thesis, an immediate question to ask is: What happens
to the mutual information when the time steps and the amount of signals vary?. In Figure
4.13 we observe the behaviour of the Frobenius norm for the mutual information matrix
as a function of the number of points and the number of signals. In this case, we observe
that when we fix the number of signals to 8 and run 100 simulations, the Frobenius norm
increases in a logarithmic manner. In particular, the curve for Figure 4.13 (a) that fits
better the simulation points is y(x) = 1.631∗ ln(x)+1.747 with R2 = 0.998. Notice that this
Figures are different from the ones in Figure 4.9 because in this case, we are not considering
the normalized mutual information matrix where we have an upper bound for the mutual
information.

For case (b) in Figure (4.13), we observe that as we increase the number of available signals
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(a) (b)

Figure 4.13: Frobenius norm behaviour for the mutual-information matrix as a function
of a) number of points (time-steps) and b) number of signals. In these cases we observe
the behaviour after 100 simulations. For the first case (LHS), we encounter a logarithmic
increase of the Frobenius norm when there is an increase on the number of points. In b)
(RHS) we can see that the curve that fits the data more accurately is the power law black
dashed line.

in the simulation, the black dashed line fits the data more accurately than the quadratic
regression. In this case, we observe again the power law is the best description for the
simulation following the equation y(x) = 4.190 ∗ x0.540 with R2 = 0.9994 5.

In the previous sections of this chapter, we have introduced a set of steps and tests for
working with synthetic data to compute the correlations and mutual information between
a set of signals involved in an experiment. We tested these tools to observe the behavior
of the matrix norm and the comparison between numerical and analytical cases, where we
encountered that the binning method has a relevant role for obtaining a precise result. In
the following chapter we will apply these tools the real fNIRS data sets in more in detail.

5For this case, we also noticed that a parabolic fit is also accurate but to a lower degree than the power-
law fit previously mentioned. In particular, we encounter that the best parabolic fit follows the equation
y(x) = −0.016x2 + 1.158x + 4.451 with a R2 = 0.99907. Although, both fits have a large R2, a power-law
behavior is better at an early stage when few signals are present in the simulation, in addition to one less
coefficient involved in the fit.
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Chapter 5

Applied framework to fNIRS data

As showed in the previous chapter, we have visualized the signals’ contributions using linear
and nonlinear correlation measures. Namely, the Pearson coefficient and mutual information.
In both cases, it is clear to notice that some signals maintain strong dependencies to others
with the autocorrelations being cases of maximum correlation. Additionally, based on the
comparisons between the analytical and numerical cases, a clear correlation pattern (or
footprint) for both types of measures is maintained (Fig. 4.10 and 4.12). It is not surprising
that such footprint exists given the fact that we are examining correlations of time series, but
what is interesting is the interpretation of the coefficients as well as the collective behavior
of all the signals involved.

In this chapter, we focus our attention on fNIRS data and apply the framework to analyze
the functional connectivity networks based on linear and nonlinear correlations. To do so,
we examine the data sets more carefully. Since our data set has not been pre-processed,
we need to distinguish the appearance of possible patterns and try to quantify them for a
posterior global description of the data. In particular, we want to see if using information
measures for nonlinear correlations, we could obtain a new perspective of how the regions of
the brain are interconnected to each other.

5.1 Comparison between correlation and mutual infor-

mation matrices for fNIRS signals

After justifying the routines for the correlation, mutual information, and the behavior of
the L(p, q) norm for signals generated by Wiener processes; we would like to compare the
corresponding matrices for our particular data set (Figure 3.2). The data sets contain mea-
sures from an individual in control group, performing physical activities such as walking in
a 8-figure pattern, walking along an unstable terrain and walking with glasses of water while
maintaining the attention to the glass. The brain activity lectures from such experiments are
saved in .txt files for oxy−Hb and deoxy−Hb. After tabulating the data, it was observed
that from the 20 channels recorded in the experiment, channel 12 did not have numerical
values (both for the oxy-Hb file and for the deoxy-Hb file). This may be the consequence of
measurement errors. Therefore, such channel was removed from both data sets, making the
analysis consisting of 19 channels (M = 19) with 8891 readings (time-steps) for the oxy-Hb

44



file and the deoxy-Hb file (Table 5.1).

ch1 ch2 . . . ch11 ch13 . . . ch19 ch20

-0.000942 -0.000305 . . . -0.001724 -0.001717 . . . -0.000270 -0.000070
-0.001108 -0.000434 . . . -0.001754 -0.001822 . . . -0.000265 -0.000071
-0.000954 -0.000360 . . . -0.001764 -0.001853 . . . -0.000250 -0.000069
-0.000994 -0.000310 . . . -0.001785 -0.002018 . . . -0.000293 -0.000066
-0.001006 -0.000275 . . . -0.001813 -0.001920 . . . -0.000295 -0.000084

Table 5.1: Table of the different measurements for deoxy-Hb. Here, the columns represent the
channels in the cap, while each row represents the measurements obtained in each interval of
time. Note that channel 12 was removed from deoxy-Hb and oxy-Hb files due to the absence
of numerical values. Here, 5 out of the 8891 measurements are shown for the deoxy-Hb file.
For the oxy-Hb there is a similar setting.

As we can see from Table 5.1, each column represent a time series which we can treat as
a discrete random variable, in this sense, it is possible to calculate the Pearson coefficient
and the normalized mutual information pairwise and visualize the comparison between the
correlation and the normalized mutual information matrices for the deoxy-Hb and oxy-Hb
data sets (Figure 5.1).

In Figure 5.1 it is clear to see that the correlation matrices for both cases show regions
with high correlation. The red zones reveal clusters where certain signals are more correlated
to other neighboring signals. We can also see in the four heatmaps that the diagonal terms
are the ones with the highest correlations and the largest information gains. The heatmaps
on the LHS 1 of Figure 5.1 make evident that a different pattern is followed for oxy-Hb
and deoxy-Hb data sets. We can see for the deoxy-Hb case a very well marked region where
signals have strong correlation, whereas in the oxy-Hb case, the correlations are strong but in
a more scattered fashion. For the normalized mutual information matrices (RHS), we see a
slightly different behavior. Although we obtain the highest information gains in the diagonal,
we observe that for different signals, the normalized mutual information is generally lower to
its correlation counterpart. We notice that certain highly correlated regions have also higher
mutual information contributions and that a very well marked footprint is maintained for
those signals. The latter is an indication that nonlinear correlations are still relevant during
the experiment and that those are easy to observe after examining the normalized mutual
information. The important comment that needs to be added is that the pattern between
the signals for both types of linear and nonlinear measures is somehow maintained for the
oxy-Hb and deoxy-Hb cases, but that the data sets do not retrieve the same pattern. Such
patter is more manifest by using Sturge’s rule for the amount of bins needed in the 2D
histogram when calculating the normalized mutual information. Therefore, this binning rule
is the one followed along the rest of the text.

1Left hand side (LHS) and right hand side (RHS).
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(a) (b)

(c) (d)

Figure 5.1: Comparison between the correlation and normalized mutual information matrices
for the 19 signals in each data set. (a) and (b) correspond to the deoxygenated Hb, and (c), (d)
are for the Oxygenated Hb.

5.2 Topology for the virtual channels

In Figure 3.4 we sketched a representation of the possible network we might obtain from
analyzing possible correlations from experimental data. As been mentioned before, for the
purposes of this thesis we only consider measurements on the prefrontal cortex of the brain.
Is because of this reason that a visualization of the physical location of the optodes is
important. In this way, the heatmaps’ representation from Figure 5.1 can have a graphical
interpretation about the brain activity. In particular, this region covers the forehead of the
individual with a setup sketched in Figure 5.2. In this figure it is possible to observe the
optodes’ physical distribution along the subject’s prefrontal cortex. The numbers colored in
red represent the location of the light sources whereas the blue ones indicate the location
of the light detectors respectively. An important remark to consider is that the gray edges
adjacent to each node in Figure 5.2, represent the virtual channel between a source-detector
pair. Such virtual channels are precisely what we have been referring in this text as signals.
The reader can easily verify that from the experiment that there are 20 of them. However,
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as mentioned before, the virtual channel number 12 was compromised leaving our analysis
with 19 signals, corresponding with the amount of signals in Section 4.3. From this point
on, when we refer to channels we mean virtual channels.

Figure 5.2: GUI for the optodes generated by Homer3. Here, we are representing the topology
of the optodes placed on the individual’s forehead. The red and blue numbers correspond to
the light sources and the detectors respectively. The gray edges correspond to what is typically
know as virtual channels. These virtual channels are what we are referring as signals and
as we can see, our configuration involves 20 of them following the same order as in Figure
5.1.

Figure 5.2 give us a better idea of the activated regions of the brain after the subject
performs a task. With this figure the reader can notice that there is now a correspondence be-
tween the heatmaps in Figure 5.1 and the physical position during the experiment. However,
since the virtual channel is a link between the light source and the detector, the resolution of
the measurement is compromised since there is a region where such hemodynamic response
could happen. Such contribution is considered to be somewhere along the connecting line
between a pair nodes. Therefore, for our purposes we consider the main contribution lo-
cated at the center of each edge of Figure 5.2, which facilitates the analysis when drawing a
network.

5.2.1 Networks based on correlation over a certain threshold
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Undirected weighted networks for the deoxy-Hb based on correlation threshold. In
(a) we are keeping the edges of the network in case there is a correlation factor > 0 between
each node. For the subsequent cases the threshold is increased by 0.2 except for (f) where
the threshold is set to be > 0.9. In this figure we are avoiding self-correlations for the nodes
(corresponding to a self-loop) since the correlation factor is equal to 1. The thresholds for
these networks are set to be larger than 0, 0.2, 0.4, 0.6, 0.8 and 0.9 respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Undirected weighted networks for the Oxy-Hb based on correlation threshold. In
this figure we show the networks with a correlation threshold from 0 to 0.8 with an increase
step of 0.2 just as in Figure (5.3). The f) case corresponds to the threshold set at 0.9. The
thresholds for these networks are set to be larger than 0, 0.2, 0.4, 0.6, 0.8 and 0.9 respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Networks for the deoxy-Hb based on normalized mutual information threshold. In
a) we are keeping the edges of the network for a threshold > 0.1 between each node. For the
subsequent cases the correlation factor is increased by 0.05 until case f) where the threshold
follows a correlation factor > 0.45. The thresholds for these networks are set to be larger
than 0.1, 0.2, 0.25, 0.3, 0.35 and 0.45 respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Networks for the oxy-Hb based on normalized mutual information threshold. In
a) we are keeping the edges of the network for a threshold > 0.1 between each node. For the
subsequent cases the correlation factor is increased by 0.05 until case f) where the threshold
follows a correlation factor > 0.35. The thresholds for these networks are set to be larger
than 0.1, 0.15, 0.2, 0.25, 0.3 and 0.35 respectively.
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The visual representation of the heatmaps between the different channels allows detecting
which virtual channels have more influence on each other. This matrix visualization provides
an overall picture of a more general interaction between regions of the brain but lacks specif
details given its physical localization. There is another way to exhibit the latter by drawing
the networks where we can keep the correlation manifest over a certain threshold. The latter
means it is possible to draw the graph where each signal (virtual channel) (a node in a more
general weighted graph) and the links between them, represent the existence of correlation.
What we intend to explore here is the progression of a functional connectivity network when
a correlation threshold is imposed (Figure 5.3).

If we consider the signals′ as the nodes of an undirected weighted network where the
edges between them are drawn with the respective weights indicated by the entries of the
matrices given in Figure 5.1, then, we can observe the functional connectivity of such figure
in a different fashion (Figs. 5.3,5.5, 5.4 and 5.6). Furthermore, if we now set a threshold and
observe the networks’ formation between the signals, we can actually see the evolution of
the connectivity between them when the threshold is increased. In Figure 5.3 we present the
generated networks for the deoxy-Hb case, when different correlation thresholds are imposed.

In Figure 5.3(a) we keep all edges of the graph that have a positive correlation between the
respective pair of nodes, and the corresponding weight of each edge follows a color bar scale.
As expected, most of the links are drawn in red due to the few cases where the correlation
between the signals is ∼ 0. Figure 5.3b−e presents the cases where the correlation threshold
is increased by 0.2, meaning that in (b) we are only drawing the edges where the correlation
between nodes is > 0.2 and so on. In Figure 5.3 cases (e) and (f) we notice than the number
of edges drawn is reduced because only few nodes preserve high correlations. An important
remark is that in Figures 5.3, 5.4 we are not considering self-correlations at all. In Figure
5.4 we present the same analysis for the Oxy-Hb. The reader can notice that the nodes’
distribution are not symmetric. The underlying reason is to avoid confusion with overlapped
edges in the diagrams and preserve the clarity of the diagrams.

For the deoxy-Hb and oxy-Hb sets in Figures 5.3 and 5.4, we see that the lower the
threshold the more dense the network is. Also, the higher the threshold the more sparse
it becomes. We also notice that the most correlated virtual channels in oxy-Hb do not
always correspond to the most correlated ones in the deoxy-Hb case, as initially observed
in Figure 5.1. The exception occurs for the pair between channel 7 and channel 17, where
the correlations are constantly high in both cases. By having these correlation thresholds
it is possible to detect certain clusters within the network that are more representative and
that indicates a larger region of influence along the individual’s brain cortex. For example,in
Figure 5.3 (a) − (c) it is not possible to see a clear distinction from the more correlated
signals, but we can see that as the threshold increases, the density of each node decreases
considerably form case to case. In cases from Figure 5.3(d)−(f) we can observe a more sparse
networks being formed. Notice that the network in case (f) suggests that the participant is
a right handed individual.

For the oxy-Hb case, we observe a similar correlation influence between Ch7 and Ch17 as
in deoxy-Hb, but a weaker correlation with the rest of the channels. The (f) cases in both
Figures 5.3 and 5.4 are different given that for oxy-Hb network we encounter only few pairs
of strongly correlated virtual channels in the left and right side, whereas for the deoxy-Hb
we observe a clear activation mostly on the right hand side of the network. In both Figures
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5.3 and 5.4 we observe that the strongest correlations are present along signals from opposite
sites (Figure 5.2), suggesting that the activated region manages to bridge both sides of the
subject’s head during the activity.

One can repeat this visualization for the mutual information matrices on the fNIRS data
(i.e. for Figures 5.1 b and 5.1d). If we consider again the normalized mutual information
matrices as in Figure 5.1, what one obtains is that the networks become sparse much faster
than the ones in Figures 5.3 and 5.4. For the case of deoxy-Hb, this behaviour can be
seen more clearly in Figure 5.5. There, the initial threshold starts at 0.1 (case (a)) for the
normalized mutual information up to a threshold equal to 0.45 (Figure 5.5f). We can see
that although the progression of these networks as we increase the threshold becomes less
dense much faster than in the correlation case, it is possible to see two disconnected sub
networks in (e) and (f) that suggest nonlinear nature.

For the oxy-Hb with the normalized mutual information case, we have a similar thing. In
this case we see that the upper threshold is obtained at 0.35 with the similar increasing on
the number of steps as for the deoxy-Hb case (Figure 5.6). We have to point out that for the
oxy-Hb networks in Figures 5.4 and 5.6, we obtain different observations. For instance, Fig.
5.4f displays the pair chan7-17 to be the most correlated whereas Fig. 5.6f the heaviest
edges correspond to the pairs between chan3-1 and chan4-6. These results indicate that
perhaps there are extra contributions perceived by the normalized mutual information that
are not entirely captured by the Pearson coefficient.

To observe the behaviour of the number of edges in the network as we increase the
threshold, we can take a look at Figure 5.7. In this figure, we notice that we are only
displaying coefficients that are strictly positive for comparison purposes between the Pearson
coefficient and the normalized mutual information. Pearson coefficient ρ ∈ [−1, 1] as we
have previously discussed whereas the normalized mutual information is ≥ 0, meaning that
in Figure 5.7, we are not displaying the negative correlated channels. The latter is due to
the very few negatively correlated pair of channels in the data. In Figure 5.7a, we observe
that the red plot starts a little below the blue one when we allow the threshold to be larger
than zero. This is because for the deoxy-Hb case, the only negative correlation pair obtained
corresponds to ρch9−ch11 = −0.1038. In contrast, we notice that the gap between the red
and blue plots in Figure 5.7b is more notorious, and the reason is because for the oxy-Hb,
there are three pairs of channels that are negatively correlated, namely: ρch4−ch11 = −0.236,
ρch8−ch11 = −0.117 and ρch11−ch20 = −0.001.

The plots in Figure 5.7 indicate the number of edges that have a coefficient larger than
the value indicated in the x-axis. In other words, for x = 0 we observe that we obtain the
maximum number of edges. Meaning that we are counting all edges in the network with a
threshold larger than zero. Naturally, as we increase the threshold the number of edges that
are larger than such value decreases.

The number of existing edges for the Pearson coefficient (red) and for the normalized
mutual information (blue) evolve differently as expected from the analysis of the networks
depicted above. For both cases, we notice a concave shape for normalized mutual information
and a convex shape for correlation. This shape for the normalized mutual information
exhibits that the bits of information between channels are less intense compared to their
Pearson coefficient, indicating an inherent nonlinear correlation between the virtual channels
involved.
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(a) (b)

Figure 5.7: Amount of present edges in the correlation and normalized mutual information
networks as a function of the threshold. The red plot corresponds to the correlation case,
whereas the blue is for the normalized mutual information. That the number of counts of the
red plots is initially lower than in the blue counterparts because in these figures we are only
considering positive defined values for comparison purposes.

5.2.2 Tree-structured graphs for hierarchical clustering

In the previous subsection, we exhibited the generated networks based on Pearson correla-
tion and normalized mutual information thresholds for deoxy-Hb and oxy-Hb data sets. It
was clear that when the threshold was higher, the formation sub networks between nodes
appeared, revealing strong influences among them. To explore this behavior more clearly,
we can observe the hierarchical cluster (or dendrogram) for the Pearson correlation and the
normalized mutual information. Figures 5.8 and 5.9. There, we can see the formation of
clusters following a bottom-up approach.

The hierarchical clusters in Figure 5.8 uses the information of the matrices in Figure
5.1, and arranges it by the similarity of its coefficients. We use the seaborn.clustermap
function in Python to compute the clusters and the dendrograms. The procedure consist on
figuring out which entry (Pearson or normalized mutual information coefficient channel i) is
most similar to another. After forming the first cluster based on the similarity of the entries,
we continue doing this comparison until we figure out which two signals are most similar
pairwise. Once this has been achieved, we merge them into a bigger cluster. This procedure
is repeated until we don’t have any more clusters to compare. Figure 5.8 is accompanied
by its corresponding dendrograms which indicate both the similarity and the order in which
the clusters were formed.

The method used for determining the similarity in our dendrograms is the Euclidean
distance. The linkage method involved here is Ward’s method. This method of cluster
comparison exploits the Euclidean distance in order to minimize the variance between them.
Since each cell in the heatmaps has a numerical value, what the Euclidean distance method
does is to calculate the distance between each similar cluster. In this case, since the matrix
is symmetric, the dendrograms are mirrored by the diagonal. Such Euclidiean distance can
be understood as

√∑
i(ai − bi)2 where ai− bi is the difference between the samples involved

(i.e., the entries of the matrices in Figure 5.1). In our case, those values are the numeric
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(a) (b)

(c) (d)

Figure 5.8: Heatmaps with dendrograms showing the hierarchical clustering of the channels.
These dendrograms are implemented by a Euclidean metric and with a linkage set up following
Ward’s criteria. In the LHS of the figure we observe the dendrograms for the correlations
matrices for deoxy-Hb (a) and Oxy-Hb (c). In the RHS we observe the dendrograms for the
normalized mutual information for the deoxy-Hb (b) and oxy-Hb (d) .

values from the correlation (or normalized mutual information) of the virtual channels. A
better picture for the height of the branches in the dendrograms can be seen in Figure 5.9.
There, the height show which cluster is more similar. The shortest branches indicates which
cluster is first formed based on the similarity of its coefficients.

For deoxy-Hb case, we see that the clusters are formed faster (or equivalently, in a
shorter Euclidean distance) that in the normalized mutual information counterpart where
the clusters are mostly formed when such distance is close to 1. Similarly for the oxy-Hb
case. The dendrograms for deoxy-Hb case reflect the formation two big structures (green
and red) when the Euclidean distance is large enough. The green and red clusters for deoxy-
Hb contain the same channels in both cases but the formation of pairs are not constant in
each case. We observe that the strongest connection obtained by the networks is between
ch7-ch17 resulting on the formation of the earliest cluster in both correlation and normalized
mutual information dendrograms.

For the oxy-Hb, we observe a notorious difference in regards to the formation of the den-
drograms. In this case, the correlation dendrogram forms three major clusters whereas, for
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(a) (b)

(c) (d)

Figure 5.9: Dendrograms for the correlation and normalized mutual information matrices
between fNIRS channels.

the normalized mutual information counterpart, we observe seven. This difference exhibits
the distinction between the deoxy-Hb measures because with the mutual information we can
see that more specific responses are captured compared with the linear correlation. The lat-
ter is justified by the number of sub-clusters depicted in different colors in Figure 5.9(c) and
(d). In Figure 5.9(c) we observe that the first cluster correspond to the pair between ch7-17
whereas in Figure 5.9(d) the first formed cluster corresponds to the pair ch1-3 matching the
last sub networks from the previous section.

The dendrograms for the normalized mutual information cases reach just above the half
of the Euclidean distance of their correlation counterparts. This is because the values of
the normalized mutual information are considerably smaller than the ones in the correlation
case explaining why the threshold in Figures 5.5 and 5.6 is lower than in Figures 5.3 and 5.4
respectively. Moreover, the fact that we obtain dendrograms for normalized mutual infor-
mation suggest that the nature of dependencies codify somehow the non-linearity between
each channel. The reason to make this claim is because as seen in Figure 5.1, an existing
footprint between linear an nonlinear measures is evident. If such footprint had an overall
influence on all entries of the matrices, then we would expect very similar dendrograms but
with scaled Euclidean distances, preserving a similar cluster formation.
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5.3 PCA for fNIRS data

PCA can qualitatively explain such relationship by finding a list of principal axes in the data
and using those axes to describe the data sets [41], [17]. Moreover, from Figure 3.2 one can
see that the data sets do not have tall peaks where well-defined features of the brain activity
are displayed. It is for this reason that many of the features of NIRS spectra have highly
correlated readings [32], [2] and therefore, need to be treated statistically.

The procedure we use to apply PCA to the fNIRS data sets is described as follows:
From the data, it is possible to obtain information about the means and the standard

deviations of each channel. The latter will inform if a normalization (or standarization)
needs to be performed to get rid of any bias towards the features that could lead to false
results. The datasets used in this project required a standardization for the variables. This
means that before finding the principal components, a scaling of the variables was performed
so they have zero mean and standard deviation equal to 1. This was done using the scale()
function from sklearn (Table 5.2).

ch1 ch2 . . . ch11 ch13 . . . ch19 ch20

-2.435881 -2.006836 . . . -2.128628 -2.428613 . . . -1.182455 -0.557294
-2.926276 -2.491063 . . . -2.182049 -2.605588 . . . -1.161627 -0.5624051
-2.471257 -2.214142 . . . -2.199027 -2.658068 . . . -1.108564 -0.555368
-2.588064 -2.025180 . . . -2.236887 -2.937227 . . . -1.268245 -0.542556
-2.623596 -1.894624 . . . -2.286736 -2.771390 . . . -1.273498 -0.622475

Table 5.2: Table of the different measurements for deoxy-Hb after the standarization of the
data to zero mean and variance equal to 1.

The PCA() function provides with information about the explained variance and the ex-
plained variance ratio. The first describes the amount of variance of each component and the
second, the percentage of variance explained (PVE) by each of the components (Figure 5.10).
This will help determine the minimum amount of principal components for high percentage
of variance of each data set.

In Figure 5.10, one can see the cumulative explained variance for both data sets. There,
we plot the expected variance ratio for the 19 principal components presented as color bars,
and the cumulative proportion of explained variance with the black line. Each principal
component explains some of the existent variations in the data. For deoxy-Hb in Figure 5.10
(a), one can see that the first 3 principal components account for the 90.11% of the total
variance while for the oxy-Hb the first 3 principal components account for the 87.22% of the
total variance. For the oxy-Hb in Figure 5.10 (b) 90.56% of the total variance is achieved by
the first 4 principal components.

Because the first three principal components represent the majority of the variance for
both cases, Figure 5.11 shows the scatter plots of the first 2 and 3 principal components in
an attempt to achieve dimensional reduction.

In Figure 5.12 it is possible to see the influence on each of the principal components by
channel. For the deoxy-Hb on the left-hand side, the correlation between the channels and
the principal components is shown. There, one can see that the 1st principal component
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(a) (b)

Figure 5.10: Plots of the explained variance ratio. The plots in (a) correspond to the deoxy-
Hb dataset (LHS). There it is possible to see that only 3 principal components explain the
90% of the variance. In b) we see the case corresponding to the oxy-Hb (RHS). For this case,
the first 4 principal components explain the 90% of the variance.

has a uniform correlation with the 19 channels. For the 2nd principal component, we see
that some channels are highly correlated to that component while some others are almost
uncorrelated. Similar behavior is shown on the right-hand side for the oxy-Hb and its first
four principal components. These figures show that most of the channels in both cases
are mostly correlated to the first 3 principal components. If we recall from the correlation
networks in Figs. 5.3 and 5.4 chan7 and 17 had the strongest correlation. However, this
information is not visible by the principal component contributions from figure 5.12 since
what we observe is that all that information might be already contained in the components
with the largest variance.

In Figures 5.11 a) and c) and in Figure 5.13 one can see the plots of the first 2 principal
components. In Fig. 5.11, we can see the principal component scores and the loading vectors
while in 5.13 is just the loadings. From Figure 5.13, certain channels are more correlated to
others because some loadings are located close to each other and far from others. It is possible
to see that for both data sets there is a clear division between the channel correlations. All
channels are well aligned along with the two principal components where most of the variance
is accumulated. It is possible to observe that for some channels, the correlation is maintained
due to the proximity of the loadings for the oxy-Hb and deoxy-Hb cases simultaneously. This
indicates that such channels have a bigger presence in the experiment corresponding to very
active and relevant regions of the brain.

After performing the PCA and create the biplots for the two principal components, it is
not clear to see a neat formation of clusters that can give specific information about how
correlated a pair of channels are. We can only give this information based on the distance the
loadings have to each other as indicated in Figure 5.13. Although the method is convenient
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to qualitatively describe the correlation between each channel, it certainly does not provide
any insight into possible nonlinear dependence.

(a) (b)

(c) (d)

Figure 5.11: Scatter plots of the first 2 and first 3 principal components for the deoxy-Hb
and oxy-Hb datasets respectively. In (a) one can see the 2D biplot, and in (b) the 3D biplot
for deoxy-Hb data. The subplots (c), (d) correspond to the oxy-Hb dataset.

5.4 ICA for fNIRS data

We can also apply an ICA to the data sets in order to observe if those independent com-
ponents can say anything about nonlinear behaviour. Figure 5.14 show the independent
components for the deoxy-Hb and the oxy-Hb respectively after applying the fast ICA

routine, as mentioned in Chapter 2. We observe from those figures that the independent
components aren’t ordered as in the PCA case and that the method itself forgets about the
labeling of each channel, loosing the track of the physical location of such components.

An interesting observation is that when we observe individually the oxy-Hb time series
(Figure 5.14 (b)), the blue plots corresponding to the measurements form the experiment
seem to have a very strong patter described by a clear pulse for most of those cases. This
pulse is no longer observed once ICA is performed.

These independent components have zero linear correlation to one another. This means

59



(a) (b)

Figure 5.12: Contribution of each principal component on each channel for fNIRS data. In
(a) we observe the heatmap for the deoxy-Hb and in (b) we have the case for the oxy-Hb. The
first principal component for both cases corresponds to the first row of each heatmap while
the last principal component is placed at the bottom of each sub figure.

(a) (b)

Figure 5.13: Plots of the loadings for the deoxy-Hb (a) and oxy-Hb (b) without the scatter
plot of the first two principal components.

that its correlation matrix has all entries equal to zero except for the diagonal terms. How-
ever, if we calculate the normalized mutual information matrix for these independent compo-
nents, we obtain non-zero contributions that reflect a more complicated share of information
between pairs of channels. In Figure 5.15, we plot the normalized mutual information matri-
ces for the independent components for both data sets. Since the diagonal term of the original
matrix consist of only ones, it is more practical focusing the attention to the off-diagonal
terms as in Figure 5.15. From this figure, we observe that the independent components main-
tain a strict positive normalized mutual information which reflects non-linearity. A thing
certainly not captured by the correlation matrix. These contributions can also be attributed
to the fact that the independent components are signals measured in a spatial region that
might be susceptible to some error during the experiment. It is not clear from this analysis
which factor is the one that make these contributions exists, but what we can observe here
is the mutual information measure is still capturing contributions that are strictly nonlinear
in a very useful manner.
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(a)

(b)

Figure 5.14: ICA for the 19 virtual channels for (a) the deoxy-Hb and (b) the oxy-Hb case.

5.5 Λ coefficient for fNIRS data

In Section 4.4 we presented the correlation and normalized mutual information matrices for
fNIRS data. From Figure 5.1 it is possible to see that the normalized mutual information
coefficient is significantly smaller than the Pearson coefficient when comparing a pair of
signals in both oxy-Hb and deoxy-Hb cases. Clearly one can see that the pattern is some-
how conserved for both types of matrices suggesting that nonlinear dependence are relevant
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(a) (b)

Figure 5.15: Normalized mutual information for the independent components. A) represent
the case for deoxy-Hb, and b) for oxy-Hb case.

when computing calculating the mutual information. What we do in this section is to mea-
sure nonlinear dependence using the mutual information to separate linear and nonlinear
components of dependence according to Smith’s method [38].

With the Λ coefficient justified in Chapter 3, we want to obtain the coefficient for each
pair of signals in our fNIRS data. Figure 5.1 compares the correlation and normalized mutual
information matrices yet, it shows only a qualitative way of making evident the nonlinear
dependencies between signals. By computing the Λ-matrices for oxy-Hb and deoxy-Hb, we
can have a better notion of how much linear dependency the fNIRS data sets have. The
entries of these matrices correspond to the computation of the Λ coefficient by pair of signals
according to eq. (2.31). These matrices will help understanding much better Figure 5.1
because the Λ-matrices manifestly distinguish the linear dependence of a pair of signals
(Figure 5.16).

Figure 5.16 contains relevant information about the kind of correlation each signal has
to another. In Figure 5.16(b) we observe that for the deoxy-Hb case, the signals with more
linear dependence are colored in orange and red. Notice that the diagonal terms have Λ = 1
as expected since those terms correspond to a complete linear dependence. In such sub-figure
(b), it is possible to observe the formation of certain cluster of orange regions. Such orange
clusters have similar locations to the red ones in the correlation matrix counterpart. This is
an indication that the most correlated zones in the deoxy-Hb data set have linear dependence.
In particular, it is possible to see that most of the linear dependence between the signals
concentrate in five clusters. An important remark is that the location of these five relevant
clusters is exhibited in Figure 5.16(b) and in the normalized mutual information in Figure
5.1, with the difference that in Fig. 5.16(b) we know the degree of linearity dependence in
a quantitative precise fashion. Another remarkable feature of this analysis is that the color
bar in Fig.5.16(b) has a lower limit of Λij = 0.3. This means that the technique is able to
capture the linearity dependencies between the signals but with a lower threshold in which
non-linearity is still present. The matrix in Fig. 5.16(b) is not perfectly diagonal compared
to the mutual information and correlation counterparts due to the analysis in Step 3 from
the method itself. The main reason can be explained due to the alternation of dependent
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(a) (b)

(c) (d)

Figure 5.16: Comparison between the correlation matrices and the Λ matrices for deoxy-Hb
and Oxy-Hb data. The heatmaps in the top panel belong to the deoxy-Hb (a), (b) set whereas
the pair in the lower panel correspond to the oxy-Hb set (c), (d).

and independent variable X and Y in Step 3, added to the fact that the bias induced due
to the number of bins might also increase the asymmetry in the matrix. These details are
the ones responsible for the non-diagonal computation of the Λ matrix. In regards to the
deoxy-Hb the pair Ch7-17 has a highly linear dependence which means that the networks
above describe mostly linear contributions in the more activated regions.

For the oxy-Hb case, we achieve similar results but in a different regions. The correlation
matrix in this case contain more orange and red regions spread along the different signals
without a clear distinction of clusters (as in deoxy-Hb case). Nevertheless, when computing
the normalized mutual information matrix the pattern is somehow reproduced but with less
intensity. The Λ matrix for this case, maintain the highly correlated patterns as expected,
indicating a larger value of Λ. This heatmap also has a lower threshold of around 0.4
indicating that nonlinear dependence is still manifest. In this case the pair Ch1-3 that has
stronger presence in the networks result in a high linear dependence. We also observe the
same issues regarding the diagonalization of this matrix as in the deoxy-Hb case.

The Λ coefficient method allows identifying the degree of linear dependence but it does not
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provide information about the kind of non linear dependence. It is important to mention that
although a value of Λ ∼ 1 implies linearity, it does not determine the strength of the linear
correlation [38]. In Figure (5.16) we observe that regardless of the correlation coefficient, Λ
can be high when it accounts most of the liner dependence. Likewise, it is also possible to
obtain large correlation coefficients with low Λ indicating nonlinear dependence.
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Chapter 6

Conclusions and future directions

The main aim of this study was to examine different methods that can provide a relevant
interpretation of fNIRS data for studying the connectivity of the brain. We do this ex-
amination by using an information theory measure, mutual information, and compare the
results with linear correlations and unsupervised learning techniques such as PCA, ICA, and
dendrograms. We obtained that the creation of a functional connectivity network based on
correlations and mutual information is an interesting approach to examine the nature of
the dependencies between regions of the brain. However, these approaches to brain data
need to explore with more specific experiments to verify their effectiveness and reliability.
Compared to the unsupervised learning techniques we noticed that a mutual information
approach might be more informative to explore the specific nature between regions of the
brain, given its sensitivity of capturing linear and nonlinear phenomena. We observed that
PCA is a good pre-processing data technique but it does not express nonlinear informa-
tion. ICA on the other hand can be used to explore nonlinear dependencies after isolating
the component paying the price of the location interpretation of the optodes. The use of
dendrograms allows explaining the cluster formation given by the functional connectivity
networks as a complementary visualization of the possible sub-networks formed based on a
threshold.

The implementation presented in this project was tested for synthetic data and later
applied to fNIRS data sets of a control group. As we have seen, the Pearson correlation coef-
ficient is strictly a linear correlation measure that, despite being widely used for quantitative
analysis of interrelation among variables, has several limitations when describing general
data sets. One of these is the incapability of the coefficient to reflect other dependencies
within the data that are not strictly linear. To explore non-linearity, we calculated the mu-
tual information between time series under the consideration that the time series collected
from the experiment are discrete random variables.

The implementation for obtaining the mutual information between these sets of data is
based on a binning formula (Sturge’s rule) that allows observing nonlinear features that are
not directly seen in the correlation matrix. Although this is a straightforward approach for
calculating mutual information, we encountered that the method is susceptible to certain
bias due to the binning process. An example of this was when we compared the mutual
information values between the binning method and the analytical result under the assump-
tion of Gaussian variables. Here, we obtained a percentage error of 68.26% that we think
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can be reduced by a low-bias estimation method. Since there are explicit analytical results
for the calculation of mutual information in the case of Gaussian variables, more general ap-
proaches for reducing the bias of the mutual information for a finite data set are still needed
and represent an open question within the realm of information theory. The effect of the
bias in our analysis might have been the factor that made the coefficients of the normalized
mutual information to be lower than the Pearson correlation.

Based on the results from Chapter 5, we can conclude that mutual information is a great
candidate to explore nonlinear dependencies on a data set because its formulation does not
require linear dependencies as the ones assumed in the Pearson coefficient. On the other
hand, mutual information does not uncover the specific type of dependencies between a
pair of random variables. In other words, the measure is sensible enough to capture linear
and nonlinear dependencies but without a clear separation of the degree of linearity or
nonlinearity involved. By using a binning method, we observed the Frobenius norm of the
mutual information matrix increases logarithmically as we increase the number of time steps
when fixing the number of signals. This could be useful for more robust data sets with more
measurements involved. Additionally, we also obtained that when the number of time steps
of the signals is fixed, a power-law behavior describes the increase of the Frobenius norm
as the number of signals increases. This is assumed to be a consequence of the definition
itself of the mutual information for the discrete case, but also due to the bias of the joint
distribution. A question that needs further exploration is if the reduction of the bias for the
joint probability distribution might change the type of behavior of the Frobenius norm in a
way that is possible to maintain the norm small enough as we increase the time-steps or the
number of signals.

On a network model as the ones shown in Figures 5.4 and 5.6, we observe that for
the oxygenated hemoglobin the Pearson coefficient indicates a strong correlation between
most of the virtual channels involved during the experiment. This indicates that most of
the mapped regions of the brain are activated during the measurement process with the
strongest presence along the bridge between channel 7 and channel 17. Such feature is also
exhibited by the mutual information but with the difference that other connections are also
relevant, suggesting a more complex biological process endeavor. For the deoxygenated case
Figures 5.3 and 5.5, we indicate that the participant might be right-handed since most of the
connections with stronger correlations and mutual information are displayed on the left-hand
side. The latter is not observed for the oxy-Hb networks which indicate that oxygenated
and deoxygenated hemoglobin have a different physiological interpretation as expected. The
network models provide an advantage over a simple matrix calculation given the possibility
of localizing the nodes geometrically. However, the more dense the network is (i.e. the more
optodes are present in the experiment) the more difficult it is to discern specific connections
between activated regions.

Concerning the unsupervised techniques, we obtained that PCA allows determining only
linear contributions without providing relevant information beyond that. In this sense, the
calculation of the correlation and the normalized mutual information matrices turns out to
be a better approach since we can maintain the explicit label of channels and therefore have
knowledge about the topology of the optodes in future analysis. In contrast, ICA results to
be a more suitable technique compared to PCA. Although ICA also loses the information
about the physical distribution of the optodes, it enables observing pure nonlinear depen-
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dencies between the independent components. This feature is fundamental to examine more
complicated connections and interactions between different brain regions.

The information of these data sets about the linear dependence displayed in Figure 5.16,
is a useful method to verify the linear dependence of a pair of signals. However, in the
case where non-linearity is dominant, it is not possible to know what kind of relation the
pair of variables have. Although Λ is a coefficient that, to a certain degree informs about
linear dependence using mutual information, it does not inform about the type of nonlinear
dependencies present in the data. To determine if this calculation of Λ matrix is telling
relevant information and therefore be useful in a more systematic way, more tests on fNIRS
data sets are needed to verify if the method describes in this thesis, will provide better
insights about brain activity that are not evident at the level of the correlation matrix and
the mutual information matrix. We noticed from Figure 5.16 that most of the zones with
higher correlation and mutual information coefficients reflect a high value of Λ meaning that
most of the dependencies are linear. This was expected because these zones are evident when
seeing the footprint in Figure 5.1. We notice that in the Λ matrices, channel 11 reflects for
oxy and deoxy case, a low coefficient suggesting that in that channel there might be more
nonlinear behavior. This suggestion is supported by the fact that channel 11 was the one
with negative correlations in both cases.

Additionally, since the bias correction for the mutual information has a big influence
on our results, more explorations on the way of estimating entropy measures are needed
to compare and validate more systematically the results of this thesis. K-nearest neighbor
is an alternative method recently used to study mutual information with a low bias and
can perhaps provide more accurate results than the ones obtained here. Lastly, it would
be interesting to explore other information theory measures such as conditional mutual
information and possibly, more sophisticated tools like entanglement on network generation.
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Appendix A

Information theory remarks

In this appendix we present some interesting results from differential entropy. As we will
see, there is a special case where there is a direct connection between correlation coefficient
and mutual information.

Entropy of a normal distribution

For a continuous random variable with a normal distribution, X ∼ N(0, σ2), we know that
the probability density function (pdf) is

f(x) =
1√
2πσ

exp

(
− x2

2σ2

)
therefore,

h(X) = −
∫ ∞
−∞

f(x) log

(
1√
2πσ

exp

(
− x2

2σ2

))
dx = −

∫ ∞
−∞

f(x)

−1

2
log(2πσ2)− x2

2σ2
log(e)︸ ︷︷ ︸

1

 dx
= −

∫ ∞
−∞

f(x)

[
−1

2
log(2πσ2)− x2

2σ2

]
dx =

∫ ∞
−∞

f(x)

[
1

2
log(2πσ2)

]
dx+

∫ ∞
−∞

f(x)

(
x2

2σ2

)
dx︸ ︷︷ ︸

1

2

∴ h(X) =
1

2
log(2πeσ2) (A.1)

which is a concave function of σ2.
For a multivariate normal distribution ~x ∼ N(0,K) if ~x = (X1, . . . , Xd)

T is a d-dimensional
Gaussian vector with zero mean and covariance matrix K, then the pdf is

f(~x) =
1

(
√

2π)d|K|1/2
exp

(
−1

2
~xTK−1~x

)
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Therefore

h(~x) = −
∫
f(~x)

[
−1

2
log
(
(2π)d|K|

)
− log(e)

2

(
~xTK−1~x

)]
d~x

=
1

2
log
(
(2π)d|K|

)
+
d log(e)

2

∴ h(~x) =
1

2
log
(
(2πe)d|K|

)
(A.2)

Mutual information between correlated Gaussian variables

If we consider that the two Gaussian variables have a correlation coefficient ρ, let (X, Y )T

be a zero-mean Gaussian random vector with covariance matrix K =

[
σ2 ρσ2

ρσ2 σ2

]
, where ρ

is given as in 2.11. In this case, h(X) = h(Y ) given by A.1 and h(X, Y ) obtained from A.2.
Therefore in this case:

I(X, Y ) = H(X) +H(Y )−H(X, Y ) = log(2πeσ2)− 1

2
log
(
(2πe)2|K|

)
= log(2πeσ2)− 1

2
log
(
(2πe)2σ4(1− ρ2)

)
=

∴ I(X, Y ) = −1

2
log
(
1− ρ2

)
(A.3)
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Appendix B

Matrix norms

In this appendix we will introduce some definitions that will help justifying the Frobenius
norm used in the implementation.

For matrices in Ci,j on a field C, we can define define the following:

Definition (Matrix norm). A matrix norm is a function ‖ · ‖ : Cm,n → C such that if ∀
matrices A,B ∈ Cm,n and all scalars α ∈ C the following conditions are satisfied

• ‖A‖ ≥ 0 with the equality iff A = 0

• ‖αA‖ = |α|‖A‖

• ‖A+B‖ ≤ ‖A‖+ ‖B‖

In other words, a matrix norm is a vector norm on the finite dimensional vector space of
m× n matrices.

Theorem B.0.1 (Equivalent norms). All matrix norms are equivalent. If ‖ · ‖ and ‖ · ‖′
are 2 matrix norms on Cm,n, then there exist µ,M > 0 such that µ‖A‖ ≤ ‖A‖′ ≤ M‖A‖
∀A ∈ Cm,n. Additionally, a matrix norm is a continuous function ‖ · ‖ : Cm,n → R.

Definition (Submultiplicative matrix property). For square matrices A,B ∈ Cm,m and a
matrix norm we say the norm is submultiplicative if

‖AB‖ ≤ ‖A‖B‖
.

Definition (Consistent Matrix norm). We say a matrix norm is consistent if is a submulti-
plicative matrix norm defined ∀m,n ∈ N

Definition (Subordinate matrix norm). We say a matrix norm ‖ · ‖ on Cm,n is subordinate
to a vector norm ‖‖α on C and ‖‖β on Cm if

‖Ax‖ ≤ ‖A‖‖x‖α,

∀ A ∈ Cm,n and x ∈ Cn.

Definition (Frobenius matrix norm). The frobenius norm is a consistent matrix norm sub-
ordinate to the Eucledian vector norm.
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Appendix C

Anscombe’s Quartet

Introduced in Chapter 2, here we explicitly present the Anscombe’s Quartet. This quartet
consist of data sets that have very similar statistical properties but display different graphic
behavior. By using this quartet, it is clear to see that not all the information related to the
dependencies between the data sets can be given by linear measures. As Figure (C.1) shows,
mutual information is a good candidate to explore non linearity.

x1 y1 x2 y2 x3 y3 x4 y4

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

Table C.1: Anscombe’s Quartet. In this table we present four data sets with similar statistical
properties but with different graphs displayed in Figure (C.1)
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Figure C.1: Statistical features and mutual information for Anscombe’s quartet. In this case
the joint probability used 3 bins for its computation due to the number of points in each
data set. We noticed that although we have similar statistical features for each data set, the
mutual information is generally different in each case.
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Appendix D

Code

1 from pylab import *

2 import numpy as np

3 import pandas as pd

4 import scipy

5 import pylab as pl

6 import matplotlib

7 from matplotlib.ticker import ScalarFormatter , FormatStrFormatter

8 import sys

9 from numpy import *

10 import networkx as nx

11 import seaborn as sn

12 ############ Load data

13 Datafnirs= loadtxt(’NIRSdeoxyhb.txt’) #use NIRSoxyhb.txt for oxyHb case

14 #here is just a visualization of the dataset using Pandas

15 dfi = pd.DataFrame(Datafnirs ,columns =[’ch1’,’ch2’,’ch3’,’ch4’,’ch5’,’ch6’

,’ch7’,’ch8’,’ch9’,’ch10’,’ch11’,’ch12’,’ch13’,’ch14’,’ch15’,’ch16’,’

ch17’,’ch18’,’ch19’,’ch20’])

16 #removing the NAN

17 array1 = Datafnirs

18 nan_array = np.isnan(array1)

19 not_nan_array = ~ nan_array

20 array2 = array1[not_nan_array]

21 Datafnirs2=np.reshape(array2 , (len(Datafnirs),len(array1 [0]) -1))

22 # here I have eliminated channel 12 that was compromised

23 dfi2 = pd.DataFrame(Datafnirs2 ,columns =[’ch1’,’ch2’,’ch3’,’ch4’,’ch5’,’

ch6’,’ch7’,’ch8’,’ch9’,’ch10’, ’ch11’,’ch13’,’ch14’,’ch15’,’ch16’,’ch17

’,’ch18’,’ch19’,’ch20’])

24 # calculate the correlation matrix

25 corr = dif2.corr()

26 # plot the heatmap for correlation matrix

27 sn.heatmap(corr ,xticklabels=corr.columns , yticklabels=corr.columns ,cmap=

plt.cm.jet)

28 plt.title(’Correlation matrix deoxyhb ’)

29 plt.xlabel(’signal ’)

30 plt.ylabel(’signal ’)

Listing D.1: Routine for correlation matrices

1 datadeoxy=Datafnirs2.transpose ()
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2 #here I create the joint prob matrices for each pair of signals

3 veam =[]

4 for i in range(len(datadeoxy)):

5 # veam2 =[]

6 for j in range(len(datadeoxy)):

7 nxbins , nybins = (np.log2(len(datadeoxy [0]))+1,np.log2(len(

datadeoxy [0]))+1)

8 #with this we calculate all joint

9 outp , xedges , yedges = np.histogram2d(datadeoxy[i],datadeoxy[j],

bins=(nxbins ,nybins))

10 outp /= np.sum(outp)

11 veam.append(outp)

12 ########################################################

13 #here we define the function for the mutual information

14 #this function eats the joint probability matrices from the array: veam

15 def mutinfo2(jopmat):

16 #jpmatr=np.array ([x1,x2])

17 #marginals of X:

18 #returns an array with all the marginal prob of X

19 Pmx=np.sum(jopmat , axis =0)

20 #marginals of Y:

21 #returns an array with all the marginal prob of Y

22 Pmy=np.sum(jopmat ,axis =1)

23

24 mutualinf =0

25 #for i in range(len(pru)):

26 for i in range(len(jopmat)):

27 for j in range(len(Pmx)):

28 if jopmat[i][j]==0.:

29 pass

30 else:

31

32 mutualinf += jopmat[i][j]*np.log2(jopmat[i][j]/(Pmx[j]*Pmy[i

]))

33 return mutualinf

34 ###########################################################

35 qpd =[]

36 for i in range(len(veam)):

37 ora=mutinfo2(veam[i])

38 qpd.append(ora)

39 #print(qpd)

40 MImat=np.reshape(qpd ,(len(datadeoxy),len(datadeoxy)))

41 #print(MImat)

42 ###########################################################

43 ax = sn.heatmap(MImat , cmap=plt.cm.jet)

44 plt.title(’Numer MI matrix ’)

45 plt.xlabel(’signal ’)

46 plt.ylabel(’signal ’)

47 ##########################################################

48 #To normalize the matrix

49 initmat =(len(datadeoxy),len(datadeoxy))

50 normMI=np.zeros(initmat)

51 for ii in range(len(datadeoxy)):

52 for jj in range(len(datadeoxy)): ### a_ij = a_ij/sqrt(a_ii * a_jj)
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53 normMI[ii ,jj]= MImat[ii ,jj]/(np.sqrt(MImat[ii ,ii]* MImat[jj ,jj]))

54 #print(normMI)

55 ax = sn.heatmap(normMI , cmap=plt.cm.jet)

56 plt.title(’Normalized MI matrix deoxyhb ’)

57 plt.xlabel(’signal ’)

58 plt.ylabel(’signal ’)

Listing D.2: Routine for mutual information matrices

1 MI = pd.DataFrame(normMI , columns =[’ch1’,’ch2’,’ch3’,’ch4’,’ch5’,’ch6’,’

ch7’,’ch8’,’ch9’,’ch10’, ’ch11’,’ch13’,’ch14’,’ch15’,’ch16’,’ch17’,’

ch18’,’ch19’,’ch20’])

2 MI.index=[’ch1’,’ch2’,’ch3’,’ch4’,’ch5’,’ch6’,’ch7’,’ch8’,’ch9’,’ch10’, ’

ch11’,’ch13’,’ch14’,’ch15’,’ch16’,’ch17’,’ch18’,’ch19’,’ch20’]

3 ##########################################################

4 #### Transform it in a links data frame (3 columns only):

5 links = MI.stack ().reset_index ()

6 links.columns = [’var1’, ’var2’, ’value ’]

7 ###########################################################

8 plt.figure(figsize =(12 ,8))

9 G=nx.from_pandas_edgelist(links , ’var1’, ’var2’, edge_attr=’value ’) #add

attributes of the weight

10 widths = nx.get_edge_attributes(G, ’value’)

11 nodelist = G.nodes ()

12 #### Transform it in a links data frame (3 columns only):

13 links = MI.stack ().reset_index ()

14 links.columns = [’var1’, ’var2’, ’value ’]

15 #### Keep only correlation over a threshold and remove self correlation (

cor(A,A)=1)

16 links_filtered=links.loc[ (links[’value’] > 0) & (links[’var1’] != links[’

var2’]) ]

17 #### Build the graph

18 G=nx.from_pandas_edgelist(links_filtered , ’var1’, ’var2’, edge_attr=’value

’)

19 ##### Plot the network:

20 plt.figure(figsize =(12 ,8))

21 #nodes

22 nx.draw_networkx_nodes(G,posit ,

23 nodelist=nodelist ,

24 node_size =1500 ,

25 node_color=’black ’,

26 alpha =0.7)

27 #node labels

28 nx.draw_networkx_labels(G, posit ,

29 labels=dict(zip(nodelist ,nodelist)),

30 font_color=’white ’)

31 ###edges

32 mcl = nx.draw_networkx_edges(

33 G, posit , edge_cmap=cm.Blues , width=5,

34 edge_color =[G[u][v][’value ’] for u, v in G.edges ])

35 labels = nx.get_edge_attributes(G,’value’)

36 plt.box(False)

37 plt.colorbar(mcl)
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38 plt.show()

Listing D.3: Routine for creating the networks. In this case we present the routine for
normalized mutual information

1 ### Replace ’MI’ instead of ’corr’ for mutual information

2 sn.clustermap(corr , metric="euclidean", method="ward", cmap="mako")

3 # Show the graph

4 plt.show()

5

6 import scipy.cluster.hierarchy as sch

7 dendrogram = sch.dendrogram(sch.linkage(corr ,metric="euclidean", method =

"ward"))

8 plt.title(’Correlation Dendrogram deoxy -Hb’)

9 plt.xlabel(’channels ’)

10 plt.ylabel(’Euclidean distances ’)

11 plt.show()

Listing D.4: Dendrograms

1 # Here we have the data standarized ready to apply PCA

2 #for that , we use the scale () function form sklearn

3 from sklearn.preprocessing import StandardScaler

4 y = StandardScaler ().fit_transform(dfi2)

5 y = pd.DataFrame(y, columns =[’ch1’,’ch2’,’ch3’,’ch4’,’ch5’,’ch6’,’ch7’,’

ch8’,’ch9’,’ch10’,

6 ’ch11’,’ch13’,’ch14’,’ch15’,’ch16’,’ch17’,’ch18’,’ch19’,’ch20’])

7 ####Get the PCA components

8 from sklearn.decomposition import PCA

9 pcamodel = PCA(n_components =19)

10 pca = pcamodel.fit_transform(y)

11 ax = sn.heatmap(pcamodel.components_ ,

12 cmap=’plasma ’,#’YlGnBu ’,

13 yticklabels =[ "PCA"+str(y) for y in range(1,pcamodel.

n_components_ +1)],

14 xticklabels=list(y.columns),

15 cbar_kws ={"orientation": "vertical"})

16 ax.set_aspect("equal")

17 plt.title(’P. component contr by channel deoxyhb ’)

18 # Plot cumulative explained variance

19 from pca import pca

20 # Initialize up to the number of component that explains 90% of the

variance.

21 model = pca(n_components =0.9)

22 # Fit transform

23 results = model.fit_transform(y)

24 #plot figure

25 fig , ax = model.plot()

Listing D.5: Routine for PCA

1 #Standardize the data

2 dfi2 /= dfi2.std(axis =0)

3 # Compute ICA
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4 ica = FastICA(n_components =19)

5 S_ = ica.fit_transform(dfi2) # Reconstruct signals

6 A_ = ica.mixing_ # Get estimated mixing matrix

7 #Convert to Pandas frame

8 ind_ca= pd.DataFrame(S_ ,columns =[’ICA1’,’ICA2’,’ICA3’,’ICA4’,’ICA5’,’ICA6

’,’ICA7’,’ICA8’,’ICA9’,’ICA10’, ’ICA11’,’ICA12’,’ICA13’,’ICA14’,’ICA15’

,’ICA16 ’,’ICA17 ’,’ICA18’,’ICA19’])

9 #Plot channels and ICA’s

10 ka=len(Datafnirs2.T)

11 fig , axs = plt.subplots(ka ,2)

12 for i in range(ka):

13 axs[i,0]. plot(Datafnirs2.T[i])

14 axs[i,0]. set_title(’ch%d’ %(i+1))

15

16 axs[i,1]. plot(S_.T[i], ’tab:red’)

17 axs[i,1]. set_title(’ICA %d’ %(i+1))

18 fig.tight_layout ()

Listing D.6: Routine for ICA

1 def lambda_(x,y):

2 ### Define the function

3 def recta(x, a, b):

4 return (a*x)+b

5 #Fit for the parameters a,b,c of the function func

6 popt , pcov=curve_fit(recta ,x,y)

7 #this is the fit data

8 fit_data=recta(x,*popt)

9 #The residuals

10 res=y-recta(x,*popt)

11 #r^2

12 r2=r2_score(y,fit_data)

13 ##### Calculate the cdf for the residuals:

14 G_z = scipy.stats.uniform.cdf(res) # calculate the cdf using uniform

distribution

15 ###### we can plot the cdf

16 #sn.lineplot(res , G_z)

17 #plt.show()

18 ####### Now we do the quantile transform Y ’=F_{y}^{ -1}(G(z))

19 from sklearn.preprocessing import QuantileTransformer

20 ##### reshape data to have rows and columns

21 data = G_z.reshape ((len(G_z) ,1))

22 ###### quantile transform the raw data

23 quantile = QuantileTransformer(n_quantiles=len(data),

output_distribution=’normal ’) #using normal distrib

24 data_trans = quantile.fit_transform(data)

25 ###### concatenate the infromation to use it as Y’ as an array in the

MI matrix

26 y_p=np.concatenate(data_trans)

27 lam=1-( mutinf_mat(x,y_p)[0][1]/ mutinf_mat(x,y)[0][1])

28 return lam

29 #Create a list for the matrix

30 bv=[]

31 for g in range(len(lista2)):
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32 m=[]

33 for i in lista2[g]:

34 ag=lambda_(i[0],i[1])

35 m.append(ag)

36 bv.append(m)

37 #Plot the matrix as heatmap

38 sn.heatmap(bv ,xticklabels=corr.columns , yticklabels=corr.columns ,cmap=plt.

cm.jet)

Listing D.7: Routine for Λ coefficients for fNIRS data

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.optimize import curve_fit

4 from sklearn.metrics import r2_score

5 import seaborn as sn

6 import random

7 import math

8

9 x = [10, 8, 13, 9, 11, 14, 6, 4, 12, 7, 5]

10 y1 = [8.04, 6.95, 7.58, 8.81, 8.33, 9.96, 7.24, 4.26, 10.84, 4.82, 5.68]

11 y2 = [9.14, 8.14, 8.74, 8.77, 9.26, 8.10, 6.13, 3.10, 9.13, 7.26, 4.74]

12 y3 = [7.46, 6.77, 12.74, 7.11, 7.81, 8.84, 6.08, 5.39, 8.15, 6.42, 5.73]

13 x4 = [8, 8, 8, 8, 8, 8, 8, 19, 8, 8, 8]

14 y4 = [6.58, 5.76, 7.71, 8.84, 8.47, 7.04, 5.25, 12.50, 5.56, 7.91, 6.89]

15

16

17 datasets = {

18 ’I’: (x, y1),

19 ’II’: (x, y2),

20 ’III’: (x, y3),

21 ’IV’: (x4 , y4)

22 }

23 #create the frames

24 fig , axs = plt.subplots(2, 2, sharex=True , sharey=True , figsize =(10, 10),

25 gridspec_kw ={’wspace ’: 0.1, ’hspace ’: 0.1})

26 #loop for plotting the data points according to the dictionary

27 for ax , (label , (x, y)) in zip(axs.flat , datasets.items()):

28 ax.text (0.1, 0.9, label , fontsize =20, transform=ax.transAxes , va=’top’

)

29 ax.tick_params(direction=’in’, top=True , right=True)

30 ax.plot(x, y, ’o’)

31 ######### Fit for the parameters a,b,c of the function func

32 # linear regression

33 p1 , p0 = np.polyfit(x, y, deg=1) # slope , intercept

34 ax.axline(xy1=(0, p0), slope=p1 , color=’r’, lw=2)

35

36 textstr=’\n’.join((’slope =%5.3f, intercept =%5.3f’ %tuple(popt) ,

37 r’$R ^2=%.2 f$’ % (r2, ),

38 r’$\rho =%.2f$’ %(np.corrcoef(x,y)[0][1] ,),

39 r’$MI =%.2f$’ %( mutinf_mat(x,y)[0][1] ,)))

40

41 props = dict(boxstyle=’round ’, facecolor=’wheat ’, alpha =0.9)

42 ax.text (0.95, 0.07, textstr , transform=ax.transAxes , fontsize =10,
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43 horizontalalignment=’right’, bbox=props)

Listing D.8: Routine for Figure (C.1)
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