
ACIT5900

MASTER THESIS

in

Applied Computer and Information
Technology (ACIT)

May 2021

Cloud-based Services and Operations

The CAST-algorithm

bridging green energy with continuous testing.

Ingvild Stølen

Department of Computer Science

Faculty of Technology, Art and Design

Acknowledgements

I would like to thank my supervisor Kyrre Begnum for invaluable advice, help and motivation

during the work with this thesis. This year has been a challenge with both work and school

happening from home, but the support from my supervisor helped me keep my motivation

throughout the semester. Both his technical advice and ideas and inspiration has been a great

contribution during this whole process.

My gratitude also extends to OsloMet, for providing me with the necessary skills to undergo

this work, and for facilitating learning and academic progress during this difficult last year of the

Covid pandemic.

Finally, I need to thank my patient and caring boyfriend Marius Nilsen Kluften for

encouragement and support. Living with someone stuck behind the computer every waking

hour has not been ideal during these months of lockdown, but he has kept rooting for me every

step of the way.

Abstract

In society today, we are dependent on software in our daily lives. One key factor of success

when creating this software is the use of automated testing. At the same time, we have a large

challenge in reducing greenhouse gas emissions to prevent global warming. Every day,

thousands of developers trigger automated tests, and each test uses some amount of energy.

The electricity used for running these tests can be produced in many ways, some of them

greener than others. Green energy often comes from intermittent renewable energy (IRE)

sources, such as wind and solar power plants. The intermittent nature of these power sources

means that they cannot supply one area with electricity throughout the whole day.

This project explores the possibility of moving software testing jobs in time and geolocation

(different data centers) to areas with green energy surplus, in order to minimize the

greenhouse gas emissions caused by the tests. The results showed that it is possible to reduce

the carbon footprint of automated tests by this method, but this requires sophisticated

infrastructure along with a geography where data about the supply and demand of electricity

and its production sources is available in sufficiently high resolution.

Table of contents

1. Introduction .. 1

1.1 Problem statements: .. 3

2. Background ... 5

2.1 The rise of DevOps .. 5

2.2 The importance of automated testing .. 6

2.3 The need for efficiency in automated testing .. 7

2.4 Computing and power consumption .. 8

2.5 The properties of electricity as a commodity ... 10

2.6 The role of renewables ... 11

2.7 Supply and demand imbalance ... 12

2.8 Can testing become a part of the solution? ... 14

3. Approach ... 17

4. Design .. 19

4.1 Geographical area for test data .. 19

4.2 The relationship between exchange cables, IRE surplus and energy prices. 21

4.2.1. Introducing the CAST algorithm .. 23

4.3 Energy data sources .. 24

4.4 The cost of deploying a test server. .. 25

Decide allocation on demand and deploy on demand: .. 26

Decide allocation preemptively and deploy on demand: ... 27

Decide allocation and deploy preemptively: .. 27

4.5 The significance of the hour of the day .. 27

4.6 Data center capacity and pricing .. 29

4.7 Status and reservations of virtual machines in the cloud .. 30

4.8 Scenarios for test triggering .. 33

4.9 Test plan .. 33

4.10 Calculating greenhouse gas emissions from test runs ... 34

5. Implementation .. 35

5.1 Tools .. 35

5.2 Data sources for production volumes and prices ... 35

5.2.1. Time period selection ... 35

5.2.2. Production volume data selection and transformation ... 36

5.2.3. Price data selection and transformation .. 37

5.3 Test activity data ... 38

5.4 Constructing input data on delay tolerance ... 39

5.5 Test duration ... 39

5.6 Determining surplus areas and their price delta .. 40

5.7 Simulation script ... 41

5.8 Constructing test scenarios... 44

5.8.1. The baseline test scenario .. 44

5.8.2. Other scenarios ... 45

5.9 Analyzing input data. .. 47

6. Results/observations .. 49

6.1 Are some areas really better than others? – a closer look at the energy data. 49

6.2 Test distribution. ... 51

6.3 Approach for manual analysis... 52

6.4 Results of the baseline simulation .. 53

6.5 Results of the IRE_share scenarios ... 54

6.6 Results of different thresholds for keeping server open. ... 55

6.6.1. The cost of eliminating waste in a large project. .. 56

6.7 The effects of different delay tolerances. ... 57

6.8 The results with different test durations .. 58

6.9 Summary of cost / benefit analysis ... 59

6.10 Delay tolerance versus actual waiting time .. 60

7. Discussion.. 65

7.1 How does these findings answer the problem statements? .. 65

7.1.1. Problem statement 1 .. 65

7.1.2. Problem statement 2 .. 66

7.2 Takeaways from the process .. 67

7.2.1. The importance if interdisciplinary backgrounds for this type of projects 68

7.3 Deploy overhead. .. 68

7.4 Data center availability ... 69

7.5 The future of automated software testing ... 69

7.6 Electricity production in the future .. 70

7.6.1. More wind and solar power.. 70

7.6.2. Thermal production sources - A comeback for nuclear power? 70

7.7 Other applications ... 71

7.8 Possible improvements and further work .. 72

7.8.1. Parallelization and sectioning for advanced users ... 72

7.8.2. Combine with test ordering algorithms. ... 72

7.8.3. Further examine the relationship between test frequency and waiting time. 73

7.8.4. Apply nudging features to increase delay tolerance. ... 73

7.8.5. Include data center pricing as a decision parameter. .. 73

7.8.6. Build a prototype. ... 73

8. Conclusion ... 75

9. Litterature ... 76

10. Appendices .. 80

Appendix A Python files .. 80

A1 globalVariables.py.. 80

A2 simulate.py .. 80

A3 decideServer.py ... 83

A4 CAST.py .. 85

A5 delayTolerances.py .. 87

A6 heatmap.py .. 88

A7 convert.py .. 90

Appendix B – results ... 91

B1 Simuation result data Python Algorithms.. 91

B2 Simulation results MSC .. 94

B3 Simulation results VSC ... 98

List of figures

Figure 4.1: How the proposed model will check for running or planned servers 31

Figure 5.1: illustration of the process of transforming production volume data 37

Figure 5.2: map from nordpoolspot.com showing exchange. .. 41

Figure 5.3: the process of simulating test runs and recording the results. 42

Figure 6.1: heat map illustrating the energy situation in the Nordics .. 49

Figure 6.2: heat map showing surplus and deficit of energy for areas with a significant share of

IRE from March 18th to March 21st 2021. ... 50

Figure 6.3 line diagram illustrating how many commits the project VS code has per day of the

week, on average. ... 51

Figure 6.4: diagram showing how many percentages of the commits in each project are done in

each hour of the day. .. 52

Figure 6.5: diagram illustrating how cost, emissions and actual waiting time develops as delay

tolerance increases for the VSC project.. ... 62

Figure 6.6: diagram illustrating how cost, emissions and actual waiting time develops as delay

tolerance increases for the MSC project.. .. 63

Figure 6.7: frequency diagram illustrating the frequency of different distances in minutes

between one commit and the next. ... 64

Figure 7.1: Forecast of share of production from different energy sources in the Nordic

countries ... 70

List of tables and listings

Table 4-1: the different grid area codes in the NordPool electricity trading system. 20

Listing 4-1: the CAST-algorithm………………………………………………………………………………………………..23

Table 4-2: all variations that will be explored in the analysis phase of the project. 33

Listing 4-2: Algorithm for finding booked servers ……………………………………………………………………32

Table 5-1: example of production data.. .. 36

Table 5-2: the first lines and rows of the csv-file with results from the simulation script run. ... 44

Table 5-3: the parameters for the different scenarios. .. 47

Table 6-1: the output of the simulation of the base scenario for all projects and seasons. 53

Table 6-2: selected values from spring and winter simulations of scenarios with different IRE

threshold. . .. 54

Table 6-3: results of the shutdown scenarios for all projects, summer week. 55

Table 6-4: selected results for the shutdown long and shutdown short scenarios for the VSC

project. . .. 56

Table 6-5: selected results of the delay tolerance scenario simulations.. 57

Table 6-6: selected results from the simulations with different test durations. 58

Table 6-7: table showing the annual emissions in kilograms of CO2 and cost in number of

servers started. 59

Table 6-8: statistic values for the waiting time during active working hours for the scenarios

base, short delay tolerance and long delay tolerance. 61

1

1. Introduction

Today, most communities use digital products like bus ticketing apps, digital maps, newspapers,

traffic control systems and digital communication in everyday life. Digital products are

everywhere and provide us with access to services like education, health care and other human

rights, as well as less critical but widely used services like social media and entertainment. We

have made ourselves dependent on software because it increases our efficiency compared to

analog methods. It is expected that the demand for digital products will increase as more

domains become digitized and larger parts of the world's population gain access to the internet.

Software lives in an ever-changing environment, with new requirements, hardware, laws and

regulations and increasing user’s expectations. Therefore, the software must undergo rapid

changes, and it is of great importance that it still behaves as expected when changes are

introduced. Unplanned outages and unexpected behavior can have very costly consequences.

One example is the opening of a new terminal at Heathrow airport in 2008, where a software

bug caused thousands of bags to be left behind while their flights took off. Over 500 flights had

to be cancelled, and the costs have been estimated to be around 50$ million. Another example

is the Knight Capital trading glitch in 2012, where unexpected behavior in newly installed

trading software caused the loss of $440 million.

The antidote to new software failing, is to have a rigorous testing scheme in place. It is not

uncommon for testing activities to account for 50% of the development costs in a software

project, and for projects where the consequences of a failure have massive impact, it can be

even more (Dudekula Mohammad, Katam Reddy Kiran et al. 2012).

A widely used way to ensure the consistency and quality of the software is to run a collection of

automated tests, either after a change or at scheduled intervals. The size of the test collection

can be as large or even larger than the production code.

Running automated tests is necessary, but it has a cost. The most obvious cost is developing

and maintaining the tests themselves, but there is also a cost associated with running the tests,

2

as they require hardware and energy to execute. Getting small pieces of code to production

often is a key metric for successful software businesses, which means that small changes are

done frequently, which triggers at least one run of the test suite each time.

The resource usage associated with testing can become significant, and there is no reason to

believe it will decrease in the future. Data centers that offer infrastructure as a service charge

for the resources used and running tests can be a cost driver for software businesses. In

addition, there are indirect costs associated with using computing power. Every time a

computational calculation takes place, some amount of electric energy is used. In addition to

monetary costs, the production of electric energy often releases carbon emissions that

contribute to global warming. This cost is not necessarily reflected in software projects

literature but is forwarded to those who experience the most dramatic effect of climate

changes.

Data centers have become more energy efficient in recent years, which helps stem their current

impact on energy consumption. Virtualization has also contributed to reduced energy spending,

as more VMs now run on each physical machine. Still, it is expected that energy usage from

data centers and computing in general will increase in the coming years due to an increasing

demand (Masanet, Shehabi et al. 2020).

The amount of energy used is not the only relevant factor when in reducing the negative impact

a test suite run will have on the climate. Electric energy is produced in numerous different

ways, some causing large emissions while others have a small carbon footprint. Wind turbines

and solar power plants are considered green production methods, but they also have varying

production throughout the day of time and year. Hence, a data center placed near a wind

turbine park will not always use green energy.

Moving testing workloads dynamically between data centers based on the availability of green

energy would require the combination of the complex and dynamic conditions for local energy

production across a large region with the most advanced automated framework in software

engineering - the continuous integration pipeline. Software projects have different constraints

and requirements for their testing process. Still, they all would have to adapt to the same

3

conditions of the availability of green energy, which in turn can only be predicted for one day

ahead. The aim of this thesis, in broad terms, is to build a bridge between these two concepts.

1.1 Problem statements:

1: Investigate the development of a model which attempts to optimize the organization of tests

in an automated test suite with the objective of least energy greenhouse gas emissions.

2: Evaluate whether the model is successful in making a significant reduction in the usage of

non-green energy.

4

5

2. Background

Imagine you just bought a new phone. You tear open the wrapping and ogle this shiny and

expensive new companion which you will carry with you for years to come. You feel the heft of

it, the cold metal and glossy screen which radiates performance. Oh, how you look forward to

trying out all its new features! Fingerprint recognition, facial authentication and no more typing

with human-sized fingers on mouse-sized keyboards. This new phone is progress. Then it

happens. After all the apps are installed and your data is transferred, you want to log in to your

banking app using your smirking, smiling, I-just-got-a-new-phone face. What? No support for

the fingerprint reader? Not the other app either? Slowly, the smile turns sour.

Users expect their apps and services to keep up with the development of new technology.

Companies who manage to change their product as new requirements arise without

introducing defects have a significant competitive advantage in today’s market. The ability to

constantly deliver improvements and new features without the customers noticing instability is

the key factor to make software that drive business value (Forsgren, Humble, & Kim, 2018).

2.1 The rise of DevOps

The term DevOps came to light in 2009 after a presentation named “10+ Deploys per Day: Dev

and Ops Cooperation at Flickr” was held at the O’Reilly Velocity conference. The first DevOps

days were held in Belgium the same year, and in 2013 the novel The Phoenix project was

published. The book tells a story about an IT manager who uses ideas from lean manufacturing

to break down the walls between development and operations to successfully deliver his

seemingly hopeless project. This book is still used as a resource for understanding the DevOps

and Continuous Integration (CI) methods, and at the time of writing it is ranked number three

on the Amazon list of best sellers in Business production and Operations (Butgereit, 2019).

The more traditional way of thinking, where code is delivered in bulk from the developer team

to the operations team, is known to slow down delivery frequency as well as causing

collaboration issues and finger-pointing between the teams. DevOps methods are designed to

6

turn the code a developer is writing into something that has value for the end user fast. This is

done by streamlining and automating the processes build, test, and deploy in a Continuous

Integration/Deploy pipeline.

Figure 2.1: a continuous integration pipeline with deploy.

When a developer writes a piece of code and commits it to the version control system, this

action triggers a build software where the code is compiled and turned into running software

on a server. Next, a series of automated tests are triggered, and the developer is notified as to

whether the tests went well or not. If all tests pass, the new version of the software will deploy

automatically, and can now be used by the customer.

This process is followed through from end to end, even for the smallest changes. A developer

typically wants to commit their work quite often, in order to have many possible points to

restore from, so something like fixing spelling errors or changes to indentations can be run

through the cycle.

2.2 The importance of automated testing

CI methods are widely used by successful businesses to deliver software fast and efficient

(Haghighatkhah, Mäntylä, Oivo, & Kuvaja, 2018), but ensuring quality in a frequently changing

code base is a challenge that only grows bigger with the rate of change, and it is complicated to

design an appropriate testing scheme (Murugan Tanggiah, 2016). The automation of commit

and deploy has been in focus since the beginning of DevOps, but fitting tests and quality

assurance into the pipeline has received less focus. The deployment is quite similar for most

projects, while tests suite collections are unique.

The book Software Engineering by Ian Sommerville is used in educating software engineers and

has been around in numerous editions since it first came out in 1982. Still, the topic of software

7

testing only gets a 23 pages long slot in the 755-page book, and automated testing is not a part

of it. A 2017 study found that software engineering graduates had little or no knowledge of

automated testing, and many professionals have stopped expecting graduates to know

anything about it (Pham, Kiesling, Singer, & Schneider, 2017).

““Automated testing is an entirely new concept to most new hires. High-level

test suite design and real-world experience is universally lacking.”

– survey respondent (Pham, Kiesling, Singer, & Schneider, 2017)

Automated testing, it seems, is not on the curriculum in most software engineer degree

programs, but there are some highlights. Delft University has launched an online course in

automated testing and several other universities have testing courses or DevOps courses where

automated testing is a component. Knowledge and skill in automated testing are in high

demand by the software industry, but it has gotten little attention at universities so far.

2.3 The need for efficiency in automated testing

Running automated tests with each iteration of the software is a natural part of any CI-pipeline.

However, for the largest projects it can be too resource-consuming to run all tests every time

changes are made. This would require far too much time, which will delay feedback to the

developer and require significant computational resources. Fast feedback is useful, as a

developer will spend less time fixing a bug in code that she recently worked on (Saff & Ernst,

2003). Reducing computational resource usage is important, both for saving direct costs and

reducing carbon emissions associated with energy consumption. Choosing which tests to run

and how to order them are the key factors to testing performance, and some interesting

research has been done on these issues. Most research before 2012 has been focused on code

coverage-based techniques for bug discovery (Catal & Mishra, 2012), but in later years research

on model-based techniques like Test Suite Minimization, Tests Case Selection and Test Case

Prioritization have gotten more attention.

8

Previous findings indicate that the order in which the tests are run is of importance as to how

fast a failure is detected. This is important because one can stop the test suite from proceeding

further once a test has failed, saving time and costs. There are two main methods of

determining the order; historically based test case prioritization (HBTCP) and diversity-based

test case prioritization (DBTCP).

HBTCP is based on the idea that tests that have failed before are more likely to fail again and

should therefore be prioritized to provoke test failures faster. This hypothesis is supported by

research that show significant improvements in running time for test suites that uses HBTCP in

continuous integration environments (Hematti, Fang, Mäntylä, & Adams, 2016). Diversity based

test prioritization is based upon the idea that if one runs tests that are the most different from

each other first, one can find bugs faster.

2.4 Computing and power consumption

Getting feedback fast is one motivation behind making the tests run as efficiently as possible,

cost savings is another. Most cloud vendors bill for virtual machines on an hourly basis, so from

a cost perspective it is preferable to use as little as possible. In addition, there is the

environmental aspect. The fact that computing causes greenhouse gas emissions has gotten

more attention during recent years, and headings like “How thank you emails are polluting the

planet” and “The dark side of cloud computing: soaring carbon emissions” have been observed

in newspapers and magazines (World Economic Forum, 2019) (Schmidt, 2010).

Today, roughly 1% of the electric energy produced is consumed by data centers. A study from

2018 estimated that the ICT industry will contribute between 7 and 14% of the total global

greenhouse gas emissions by 2035, whereas 44% will come from data centers (Belkhir &

Elmeligi, 2018). Other projections are more optimistic, and the industry has done a lot to

increase efficiency over the later years. Placing data centers in cooler places to reduce the need

for heating, more efficient technology and smart virtualization software makes it possible to do

more with less electricity. In fact, data center energy usage has remained almost the same for

the last ten years, even though their workflow has increased twelvefold. Still, the International

9

Energy Agency expects a high increase in demand for data center services in the coming years

and state that it is still much needed to keep the focus on data center energy efficiency.

Strong government and industry efforts on energy efficiency, renewables

procurement, and RD&D are necessary to limit growth in energy demand and

emissions over the next decade. - (International Energy Agency, 2020)

Figure 2.2: IEA, Global trends in internet traffic, data centre workloads and data centre energy use, 2010-2019, IEA, Paris
https://www.iea.org/data-and-statistics/charts/global-trends-in-internet-traffic-data-centre-workloads-and-data-centre-
energy-us

Many of the larger cloud service providers, like Google and Microsoft buy green certificates to

ensure the energy they use comes from green sources. Some of them, like Amazon Web

Services also invest heavily in green energy projects like wind and solar power plants (Amazon,

2020). Even so, they cannot guarantee that the electricity they use at any given time comes

from a green source, as the production of green energy is variable and does not always match

the demand of the data centers.

https://www.iea.org/data-and-statistics/charts/global-trends-in-internet-traffic-data-centre-workloads-and-data-centre-energy-us
https://www.iea.org/data-and-statistics/charts/global-trends-in-internet-traffic-data-centre-workloads-and-data-centre-energy-us

10

2.5 The properties of electricity as a commodity

Electricity is the energy carrier used to power the data centers, and it has some special

properties compared with other commodities. Unlike oil, corn, or water, it cannot be stored in

larger quantities for later consumption. There are batteries, but with today’s battery

technology they lack the capacity to store large quantities of energy in a cost-efficient manner.

Hydropower can also be stored in dams (impounded hydropower), but this requires special

geographical characteristics. Electricity, as a rule of thumb, must be produced and consumed at

the same time.

In addition to the production and the consumption happening simultaneously, there are also

constraints in the power grid systems which limit where electricity can be used. Exports from

one grid area to another are made possible with high-capacity power lines, but only up to a

certain capacity. This means that a region that produces a lot of electricity must consume all of

its surplus which cannot be exported. Conversely, a region must always produce whatever

electricity it needs that exceeds the import capacity.

Figure 2.3: map showing the exchange capacities in the Nordic region. Source: nordpoolgroup.com

11

In countries with mature energy markets, the current energy price is a product of supply and

demand. The supply of electricity is composed of a multitude of different production sources,

which is commonly referred to as the power systems energy mix. Some of the production

sources deliver steadily at all hours of the day and time of year (constant energy sources), such

as thermal power plants which use coal or nuclear power sources. Ramping production up or

slowing it down takes a long time with these technologies, and they are usually most effective

when producing at a particular level. Other sources are more unreliable, like wind and solar

based plants where the production output varies with the weather (intermittent renewable

energy, IRE).

We also have some production types that can regulate their output on short notice, such as

gas-powered and impounded hydropower plants (controllable energy sources). Impounded

hydropower depends on the presence of mountains and lakes, which are not available in most

parts of the globe. Gas-powered plants are therefore often used to regulate production on

short notice.

On the demand side, there are also large variations which are affected by factors such as

temperature, light and daily consumption patterns. A typical day has a peak in demand at

around 0730 when people take a shower and cook breakfast, and a second and slightly larger

spike at around 1630 when people are preparing dinner. This pattern is often referred to as a

devil-heads curve.

2.6 The role of renewables

Renewable energy is becoming increasingly popular and with wind turbines and solar panels

being installed at a rapid pace in Europe and the US. From 2000 to 2020, the production from

wind turbines in the U.S. increased from 6 to 338 TWh (U. S. Energy Information

Administration, 2021). This is still a small part of the global energy mix, 8.4% of total production

in 2020, but it has already surpassed hydropower as the largest renewable energy source in the

United States. The numbers are similar in Europe where wind production was 311TWh in 2017,

which amounts to 11% of the total production.

12

Electricity production from solar and wind is expected to increase in the years to come. In the

United States they have introduced a production tax credit for these types of production. In the

European Union, the target is to have 32% of production from renewable sources by 2030

(European commission, 2021).

2.7 Supply and demand imbalance

An increased share of renewables in the energy production mix is beneficial for reducing co2-

emissions that come from fossil-fuel powered energy production, but it also brings certain

challenges. The wind does not necessarily blow at the same time we need electricity to cook

dinner. This means that there is a mismatch between supply and demand, and unlike what we

do with other commodities, storing the commodity until demand catches up is not an option.

Too little production will cause a black or brown-out, and too high production will cause

overheating of the power grid. A study done on the power grid of the Hokkaido region of Japan

concluded that when the production of IRE amounts to more than 20% of the production in an

area, the need for balancing measures increases significantly (Outsuki, Komiyama, & Fuji, 2017).

Traditionally, there are five types of solutions proposed for this mismatch:

1: Regulate demand by price differentiation. By making electricity more expensive when

production is low, consumers have an incentive to move their consumption to a particular time.

This can nudge people to charge electric cars at nighttime and turn down the heat at certain

times of the day. Still, little can be done about the fact that most people shower in the morning

and make dinner in the afternoon, so this can only solve parts of the problem.

2: Regulate supply by ramping up and down production. This can be done by regulating the

water flow in an impounded hydropower plant, or more commonly by ramping up the

production from a natural gas-powered plant. As natural gas is not a renewable energy source,

it is preferable to minimize the use of this possibility. It is also possible to regulate production

from thermal plants like coal and nuclear, but the regulation is slow, and the plants normally

only operate at full efficiency at certain levels.

13

3: Expand transmission capacity. Due to various climate and geographical conditions, energy

production from renewable sources will differ from area to area. By moving the energy to

where it is most needed at any given time, mismatches between supply and demand can be

reduced. This is the most widely used solution, and most energy systems have some sort of

exchange towards their neighbors.

An example of what can happen without exchange was seen in Texas, USA, in February 2021.

For political reasons, Texas is not connected to the national power grids, they run an isolated

system without exchange. When unusually cold weather caused their production units to fail,

they could not get power from their neighbors. The result was a massive blackout, leaving 4.5

million homes and businesses without electricity for several days. Prices for those who could

access electricity rose to a level that would be impossible to pay for the middleclass household.

Transmission capacity is effective, but it cannot remedy the problem completely. Sending large

amounts of electricity across multiple time zones is not viable with today’s technology, both

due to high building costs and energy loss during transportation.

4: Move demand to where the production is. This is not a realistic path when it comes to

household consumption, but it is a good fit for energy-intensive industries. An example is

Iceland, where they have easy access to geothermal energy that can be used for electricity

production. This electricity cannot be exported from Iceland directly, but it can be used to

produce aluminum, which is a process that requires large amounts of energy. Exporting

aluminum becomes a way of exporting energy. This is, however, most useful where there are

power sources that can produce a steady load, like geothermal or hydro. Data centers could

also be placed near such sources of renewable energy, but there are other considerations to

take as well when placing a data center, like infrastructure, climate, regulations, and security.

5: Produce where the demand is. De-centralizing production by putting solar panels on the

roofs of homes, offices and industrial buildings have been done for some time and this

development is still ongoing. This is especially popular in sunny areas with high energy costs like

California, US. Some also build small scale hydropower plants near farms or production facilities

14

where this is a possibility. This kind of production can help with the geographical distribution,

but it does not solve the problem of supply and demand imbalance over the hours of the day.

All in all, there are myriads of different causes and remedies for supply and demand imbalance,

and we know that one of the causes, intermittent renewable energy (IRE), will grow larger in

the coming years. Hence, it is necessary to increase the efforts on mitigating actions in order to

successfully reach the goals of a higher share of green energy in the years to come.

2.8 Can testing become a part of the solution?

As there are financial and practical gains to getting fast feedback from tests to the developers,

it is not advised to schedule the tests to times with a high supply of green energy. However,

with today’s vendors providing multiple datacenters at different locations, it becomes possible

to increase demand in areas with a currently high production by running tests in data centers

located in these areas. This ability to dynamically shift the geographical location of the demand

of a commodity is quite unique to the IT industry. Like what is done with aluminum production

in Iceland, re-locating the workload of software testing becomes a way of exporting energy, but

much more dynamic.

Automated software testing is particularly well suited to be moved around following green

energy production. The tests are independent in nature, one test does not depend on another.

They also do a considerable workload, so there is some energy usage involved. The software to

test must be built new for each test, making it easier to move it around than other parts of the

IT system like a mail server or a database. Because of the need for fast feedback, tests cannot

be shuffled around in time like one can with maintenance batch jobs either, so a movement

across geographical areas is a better candidate for ensuring green energy usage.

Some research has been done on the topic of data center allocation and energy savings. A 2012

study showed possible financial savings of 15% for a cloud provider that could forward requests

from its end users to the data center with the lowest energy price at the time (T. Sakamoto,

Yamada, Horie, & Kono, 2012). Other studies have looked at how a cloud provider can “follow

the green energy” by routing traffic to the areas with the highest production of IRE.

15

One study used numerical experiments on data from real traffic to data centers and renewable

energy production in the US to investigate how data centers could be powered with as much

green energy as possible without large-scale storage. They found that wind was more useful

than solar power for this purpose because wind production has low correlation across

geographical locations and is available at all hours of the day. They also found that geographical

load balancing could significantly reduce the required capacity of renewable energy to power

the data centers (Liu, Wierman, Ling, & Low, 2011).

Another study designed a prototype for applying geographical load balancing to web

application requests using the available renewable power and estimated electricity price at

each data center. The study used real meteorological data and realistic workloads from logs of

web requests to Wikipedia. Their simulations showed reduced use of gray energy, under the

assumption that the data centers produced their own green energy from local installed

production capacity (Toosi, Qu, Assunuco, & Buyya, 2017).

A study from 2011 found that it was possible to use 95% energy from green sources without

delaying processes or jobs by geographical load balancing of incoming requests. The study used

the data center power consumption ratio to the effective wind production as the allocation

criteria. (Gao, Zeng, Liu, & Kumar, 2013).

16

17

3. Approach

To investigate the effect allocating test runs could have on greenhouse gas emissions, an

exploratory approach will be used. Experiments with different variations of a model will be

done before analysis of the results. Testing the same scenario with different inputs and

threshold variables can also be done to reveal how different factors affect the outcome.

To make discoveries that could be relevant in a business setting, an imagined case scenario will

be used to guide the design work. The case can be described as envisioning being a DevOps

engineer given the task of making the test pipeline as green as possible with minimal delay to

the development process. This will require that the engineer balances many considerations at

once.

One must consider the energy usage and greenhouse gas emission from testing. At the same

time, one must consider the operational part of it. As previously discussed, rapid deployments

are a key success factor for an IT business. Neither colleagues nor management would accept

slower processes and code being delayed on its way to the customer. Lastly, the cost

perspective is important. One cannot ignore the fact that some ways of doing things are more

expensive than others. An efficient solution for climate footprint reduction will probably not be

acceptable if the costs are too high. Most likely, the DevOps engineer will have to compromise

in the search for a green but viable solution. Having these constraints in mind while

experimenting will hopefully lead to knowledge that is usable within the constraint that

businesses operate within.

Which exact algorithm to use will be explored in the design phase, but it will need to provide

useful data for analyzing the greenhouse gas emissions in simulations, both with different

patterns of tests and with and different approaches for allocating the workload in areas with a

low carbon footprint.

In the design phase different sources of input data will be looked at, and a procedure for

fetching and transforming data to a useful format will be described.

18

In addition to exploring results in what can be considered normal operations, the model must

be tested for robustness under more unusual conditions by looking at edge cases. What

happens if a lot of tests are being triggered at the same time? Or what will it do in periods with

little or no intermittent green energy production? Things like this do happen so testing for such

cases is important to make an algorithm that could perform under real-life conditions.

Different data sources must be examined to find suitable data for the task. We need realistic

data on the following in order to achieve meaningful results:

- Surplus of green energy from intermittent green energy sources relative to the locations

of different data centers. There are many energy markets in the world where one can

find data for production of electricity from different sources, consumption, and

exchange. Because of this, it should be possible to use realistic data for this part of the

project. For an experiment to give useful results, it is important to look at data that is

representative for a real-life scenario in an existing electricity market.

- Greenhouse gas emissions caused by running the tests. This will probably have to be

calculated as a function of CPU usage or server minutes, or stipulated as a function of

certain factors, like the comprehensiveness of the test.

The model will not be implemented in a tool for automated testing, as this would not

contribute any useful information towards the problem statements. However, it is still an

ambition to create something which could be used in a CI tool like Jenkins, Travis CI or

TestProject for JenkinsX, eventually.

19

4. Design

This chapter describes the steps that were undertaken in order to form a working model, the

model itself and the data collection. Decisions about which data to use and how to generate

data where realistic data could not be obtained are also explained here.

4.1 Geographical area for test data

Electricity is provided all over the world with different pricing schemes and market regulations.

Some of them are considered primitive, with no dynamic price mechanisms. Others are closed

towards their neighbors and have no exchange. For this project, we need to assume that there

is a market that employs market-based pricing for each area and where data is publicly

available. It also needs to have a significant amount of installed production capacity for IRE

(intermittent renewable energy, like wind and solar).

The Nordic power exchange NordPool fits with these criteria and is therefore suited for the

project. In real life, a software developer can choose from data centers across the globe, but for

this model the assumption is that tests must be run within a limited geographical scope. This is

not an unlikely situation, as many will choose to stay within one area due to regulations like the

GDPR, trust between countries and areas, or local legislation. Even though the Nordics is

chosen for this project, another area with publicly available data and a sufficient amount of IRE

could have been used.

NordPool calculates the electricity spot prices for Denmark, Estonia, Finland, Latvia, Lithuania,

Norway, and Sweden. Norway, Sweden, and Denmark are divided into multiple grid areas based

on transmission capacity constraints (see figure 2.3). This leaves us with the following areas

that can be used for the model:

20

Country Grid area codes

Finland FI

Estonia EE

Latvia LV

Lithuania LT

Sweden SE1, SE2, SE3, SE4

Norway NO1, NO2, NO3, NO4, NO5

Denmark DK1, DK2
Table 4-1: the different grid area codes in the NordPool electricity trading system.

There are data centers in most of these areas. Data from Baxtel, a commercial data center

information site, show that cloud data centers are placed in all areas except Latvia and

Lithuania. It is not realistic that a software developer has access to all these data centers, as

most stick to one or perhaps two cloud vendors. Still, for the sake of the model, we will include

all areas except Latvia and Lithuania.

Figure 4.1: map showing cloud data centers in the Nordic countries and the Baltics. Source: baxtel.com/map.

The geographical areas available for placing a server for testing is defined in the model as a list:

𝐴𝑅𝐸𝐴𝑆 = [𝐴1, 𝐴2, … , 𝐴𝑛]

21

4.2 The relationship between exchange cables, IRE surplus and energy prices.

To measure where energy consumption causes the least carbon emissions, one approach is to

look at the carbon intensity in the area. The carbon intensity represents the total emission per

unit of energy consumed (grams of CO2 equivalents per kWh). However, in the Nordic

countries, this would not be ideal. Because of its mountains, Norway has a large percentage of

hydropower in the mix. Where other countries use nuclear and coal to supply the base load,

Norway is one of the few countries in the world that uses hydropower for this purpose. If one

looked at carbon intensity alone, all workloads could simply be placed in western Norway.

Simply placing the data center near a hydropower-plant would ensure that the supplied energy

causes no greenhouse gas emissions, but it would not be helpful towards incentivizing more

green energy investments. Neither does it consider the demand side of the equation: maybe

the citizens and industry in this area already need the energy that is being produced? If that is

the case, placing the load here would simply result in an increase in energy prices, and energy

being imported from areas that could have less green production.

What we are looking for is a surplus of intermittent green energy in an area that can be utilized

for running tests. Energy production is the obvious factor to look at but looking at production

alone will not be representative for where there is a surplus. We know that demand in an area

varies greatly, so a production level that causes surplus at night might not be sufficient to cover

demand in the daytime. In addition, there are neighboring areas that could also use the

produced energy if they have an energy deficiency at the time, as well as exchange cables

allowing it to happen. Energy will flow from areas with a surplus to areas with a deficit, until the

constraints on energy transportation are met.

If the cables are not fully utilized, the neighboring areas will have the same energy price.

Similarly, different prices in two areas mean that the cables are fully utilized, and the area with

the lower price has a surplus compared to its neighbors. A surplus of intermittent renewable

energy is characterized by the following properties:

- The production of IRE is a significant portion of the total production. Previous studies

have calculated this to be around 20% (Outsuki, Komiyama, & Fuji, 2017). In the

22

simulations, 20% will be used as the base threshold for determining that an area has a

significant share of IRE in the production mix, but experiments will also be done with

other thresholds. This threshold will have the notation IRE_TRESHOLD

- The neighboring areas cannot utilize the surplus because of transmission constraints,

which causes higher prices in the neighboring areas.

To express whether an area has a relevant share of IRE, the following is included in the model:

𝐼𝑅𝐸_𝑆𝐻𝐴𝑅𝐸 =
𝑃𝐴𝐼𝑅𝐸

𝑃𝐴𝑇𝑜𝑡𝑎𝑙

Where 𝑃𝐴𝐼𝑅𝐸 is the amount of electricity from wind and solar PV produced in an area, and

𝑃𝐴𝑇𝑜𝑡𝑎𝑙 is the total production of electricity for that same area. The concept of neighbors is

described as a nested set of values:

𝑁𝐸𝐼𝐺𝐻𝐵𝑂𝑈𝑅𝑆 = {𝐴𝑎 [𝑁𝑎1, … , 𝑁𝑎𝑛], … , 𝐴𝑛[𝑁𝑛1, … , 𝑁𝑛𝑛]}

Where 𝐴 is the production area, and 𝑁 is an area with exchange to A that is within the same

price system.

The price delta for an area is given by:

∆𝑝 = ∑ 𝑝𝐴 − 𝑝𝑁𝑛

𝑆

𝑛=1

Where S is the number of neighboring areas with exchange, 𝑝𝐴 is the areas price and 𝑝𝑁𝑛 is the

price in the neighboring area. A negative delta indicates a surplus of energy in the area.

Based on the above, an IRE surplus is defined as an area where both the following conditions

are met:

𝐼𝑅𝐸_𝑆𝐻𝐴𝑅𝐸 ≥ 𝐼𝑅𝐸_𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷

∆𝑝 < 0

23

4.2.1. Introducing the CAST algorithm

The concepts of IRE_SHARE, NEIGHBOURS, and price delta, together with the conditions for IRE

surplus, can be combined and used to locate areas with IRE surplus. In this project, they are

used to create the CAST-algorithm.

The CAST-algorithm is used for deciding where to place the workload and it is described by the

following pseudo-code:

Listing 4.1: the CAST-algorithm

__

1 For each area with data center

2 If energy IRE_SHARE >= IRE_THRESHOLD

3 Add to array of candidates.

4 Workload area = null

5 For each area in array of candidates

6 Calculate price delta to neighbors (∆p).

7 if price delta to neighbors < 0 AND

8 price delta to neighbors (∆p) < workload area price delta

9 workload area = area

10 return workload area.

__

After adding all areas where the condition of a surplus is met to a collection of data, the one

with the lowest price delta is loaded to the variable workload area and returned. This variable

holds the value of the area with the best conditions for using surplus IRE. If none of the areas

have a surplus, the code will return null, which can be used to trigger the fallback option of

starting a server in an area without IRE surplus.

24

4.3 Energy data sources

To calculate surplus according to the previous section, we need the following data:

- The production of IRE per area per hour

- The total energy production per area per hour

- The energy price per area per hour

Many different APIs are available that could be used for obtaining production volume data from

wind and solar power. Both Statnett and Energinet provide APIs that can be used to see the

volume of production right now. These are the transmission system operators in Norway and

Denmark and deliver reliable data. Statnett’s data, however, is aggregated per country and

Energinet’s data is only available for Denmark. There are also vendors who supply real-time

data per grid area, but accessing their APIs is quite expensive.

Another approach could be to use the forecasts for production in each geographical area. Wind

production forecasts are available for the next day, per hour divided per grid area from

NordPool, except for the Norwegian areas. For the Norwegian areas, wind forecast data can be

downloaded from Entso-E (European network of transfer system operators). The forecast data

together with the calculated spot prices could be used to calculate a profile of the most

desirable area per hour for the coming day.

On NordPool, both the producers and retailers must submit orders on how much electricity

they plan to buy or sell for each hour in the coming day before 1200 hours CET. The day-ahead

price for every hour of the coming day is then calculated for each area. Retailers are the

companies the consumer buys electricity from, they operate as a link between Nordpool and

the end user.

25

Figure 4.2: price calculation curves per area on NordPool. The arrows shows how the supply shifts when exports or imports are
added to the calculation. Source: https://www.nordpoolgroup.com/trading/Day-ahead-trading/Price-calculation/

NordPool and Entso-E also supply data for historic hourly wind and solar photovoltaic

production (PV) per price area which can be used for simulations. Solar PV is not always an

indicator for where it is best to move the workload. High production of solar PV can be

correlated with high temperatures, which again calls for more energy spent on cooling. One

possibility is to include solar PV only when temperatures are below a given threshold. In this

project, production data from solar is included entirely, as it amounts to less than 0.5% of the

total production in the area used. Data for solar PV production and for wind production in the

Norwegian areas are obtained from Entso E.

4.4 The cost of deploying a test server.

In DevOps, rapid deployments are considered beneficial and there are many systems and

technologies developed with this in mind. Container-technology like Docker makes it easy to

deploy new and changed software with little effort. Still, a deployment is not without costs.

Large and complex systems can have an overhead to each deployment, and deployments can

fail, which makes it preferable to limit the number of deployments during a day. Implementing

a model that allocates tests to different servers requires the user to have the complex

infrastructure in place that enables deploying without manual intervention.

26

A central question any model in our context must answer, is whether the test infrastructure

should be expanded to a new location preemptively based on pre-planning, or if it should be

done ad-hoc as part of the test.

Figure 4.3: matrix showing the pros and cons of choosing ad hoc or preemptive methods for deciding allocation and deploying
the test environment.

The table above illustrates four different approaches as to when to decide upon allocation and

when to deploy the test environment. As we cannot deploy the test environment before we

have decided where to deploy it, the upper right quadrant of the matrix is crossed out. This

leaves us with the following options:

Decide allocation on demand and deploy on demand:

This would be the method most in compliance with the DevOps philosophy, and it would

require a simple algorithm without prediction. However, depending on the overhead associated

with a deployment, this option might be costly. One also risks that there is no available capacity

at the optimal location at the time. This approach would be good in cases where the cost of

deployments is moderate.

27

Decide allocation preemptively and deploy on demand:

This approach would call for a more complex algorithm that calculates the best allocation for a

coming period and reserves data center capacity at the optimal placement, thus securing

capacity at a lower price. However, this requires forecasting the need for deploys, which might

not be feasible. Also, one would risk reserving and paying for capacity that was never used, and

the number of deploys still is the same as with the previous approach. Doing it this way would

be suitable in a situation where the cost of deploying is moderate, there is a predictable pattern

of tests, and data center capacity constraints is a problem.

Decide allocation and deploy preemptively:

To do this one would have to reserve capacity in the forecasted optimal allocation for several

time periods, for instance the next 6 hours, and deploy there. Doing this comes with the risk of

paying for unused capacity. An approach like this could be a solution for projects where

deploying is costly.

4.5 The significance of the hour of the day

Energy demand follows a pattern, where the demand is higher in the mornings and afternoons

on weekdays, and less during nighttime and on weekends. Energy prices are highly volatile, and

even in the Nordics, which are considered to have relatively low volatility it is normal that the

most expensive hour of the day is double the price of the cheapest one.

Figure 4.4: Spot prices on Nordpool for the area DK2 on March 2nd 2021. The graph shows a typical "devils head" curve, where
increasing demand causes prices to rise in the morning and afternoon. Source: nordpoolspot.com

28

It is expected that the volatility will increase in the coming years, as the fraction of IRE is

increasing (Statnett, 2018). In the scenario where an engineer is committing some code at the

end of her workday, seeing the results right away is not important. The same goes for other

types of tests like scheduled tests for performance and security. Moving these workloads to a

less busy time could make it possible to utilize more IRE.

Traditionally, a DevOps pipeline does not have any concept of waiting. The whole idea is to get

fast feedback and ship code rapidly. Looking at the curve presented above it is clear that during

peak hours, there can be gains from waiting, especially if one can wait for hours. The NordPool

markets spot pricing is per hour. Other markets, like the German, trades in 15-minute intervals.

There are ongoing discussions about moving to 15 minutes resolution for the Nordics, but no

plans are made at the time of writing. This means that for this model, a short delay of a few

minutes will only be useful if the tests are ordered right before the hour changes.

Data centers also bill per hour, so that once a server is running it makes little economic sense to

take it down before one hour has passed. We might see a change in the billing system of cloud

providers, but this project will use the current scheme in order to make the conditions as

realistic as possible. From an operations perspective it therefore makes sense to group tests

together and run as much as possible within one server-hour. If we considered green energy

alone, we might start and stop servers without consideration for what was already running and

what tests are expected to be triggered in the future. This can be an option in the future, when

low/no energy operating systems are more widely used. Still for this model the economics of

operating in the cloud will also be addressed. The model must consider which servers are

already running, and whether we have other tests waiting to be executed.

29

Figure 4.5: CI/CD pipeline with waiting time inserted between code commit and build.

To investigate the possible gains of waiting, the concept of delay tolerance is included in the

model. Delay tolerance is defined as the amount of time it is acceptable to wait before running

the tests. The delay tolerance will be considered when the algorithm decides where and when

to start a new server.

In a real-life scenario there might be some hours of the day that are off limits for running tests.

For instance, it is not uncommon that database indexing jobs are scheduled to run during night

hours, or other infrastructure maintenance to take place. This will affect performance, and tests

running time. For tests that query the database, this can cause false positives due to timeouts.

4.6 Data center capacity and pricing

To run tests, one does not only need energy which is what has been discussed so far. One also

needs free capacity in a data center. The cloud providers all market that they can scale up and

down on short notice. They can do this, but they still want their users to spread the load across

the hours of the day and to reserve capacity beforehand. This is reflected in their pricing

schemes. A common price strategy is to bill the computing units per hour which discourages

rapid up and downscaling (Mazrekaj, Shabani, & Sejdiu, 2016). Some cloud providers also offer

to bill per minute or second, but this is priced at a significantly higher rate and will only be cost

effective in cases where one needs the VM for a very short amount of time. Amazon Web

Services also has spot pricing, where prices are dynamically determined based on supply and

30

demand. The model used for this project will consider the most common strategy, billing per

hour.

Most cloud providers also operate with different prices for each data center. These variations

are usually small within a limited area, and larger if one compares prices in different continents.

The CAST algorithm will in this project operate within a limited geographical area, and the price

differences between data centers will therefore not be considered.

4.7 Status and reservations of virtual machines in the cloud

As most cloud providers bill for one hour each time a server has started, it makes economic

sense to run it for one hour once it is started. Because of this it can be assumed that it is always

better to run tests on a server that is already up if the test can be completed before the end of

the current server-hour.

On the other hand, it is preferable to not have idle servers running for the sake of saving

energy, which means the model should aim to shut down servers where it is not expected that

more tests will be triggered before the hour is done. The model needs to decide upon the

following questions each time there is a commit:

- Is there a running server or a scheduled server that can be used for this test run?

- Should the server be shut down after the test run, or left running for the remainder of

an hour?

The following initial assumptions are made:

- How long a test will run is known before running it.

- A server has a defined capacity.

- The testing tools will use the full available capacity of the server.

- When a test has very low or no delay tolerance, we expect more test orders to come in

soon.

- There are no hours that are unusable due to scheduled jobs running.

- We can reserve capacity in data centers.

31

The implemented model will check for possible utilization of running or reserved servers before

ordering new servers.

Figure 4.1: the diagram illustrates how the proposed model will check for running or planned servers before either running the
decision algorithm described in chapter 4.2 or adding the tests to a server already planned for.

This design relies on a database that records all ordered servers along with a parameter that is

set for whether the server should be kept running after the test is done. The algorithm for

checking for usable servers is described in the following pseudo-code (all time variables are in

epoch-time format):

32

Listing 4.1: Algorithm for finding booked servers

__

1 Input: commit time, delay tolerance and test duration

2 Query the database for records where:

3 Shutdown variable == false AND

4 end of planned tests on server <= time of commit + delay tolerance AND

5 Server startup + 60 minutes >= time of commit

6 If query returns results:

7 Variable Start_time_for_incoming_test = min. value of planned server

 test end or commit time

8 Variable time_Left_To_Run_Tests = (Server startup + 60 minutes) -

 Start time for incoming test

9 If time time_Left_To_Run_Tests >= test duration

10 Return query result

11 Query the database for records where:

12 Shutdown variable == true AND

13 Server start time <= time of commit + delay tolerance AND

14 end of planned tests on server >= time of commit

15 If query returns results:

16 Variable time_Left_To_Run_Tests = (Server startup + 60 minutes) –

 Start time for incoming test

17 If time time_Left_To_Run_Tests >= test duration

18 Return query result

19 Else return 0

__

33

4.8 Scenarios for test triggering

In order to analyze the outcome of using the proposed model, it is necessary to find data that

represent a realistic series of tests being triggered from developers on a project. This can be

accomplished by obtaining the logs from the version control system. For this project, it is

desirable to explore the possible outcomes from different types of situations. It is therefore

decided to obtain data from three kinds of projects:

- Project 1: A large open-source project with commits coming in from different parts of

the world at a high frequency.

- Project 2: A smaller commercial project where all developers work during office hours in

one time zone.

- Project 3: A smaller open-source project with little activity.

4.9 Test plan

In order to see how the different parameters affects the server placement and utilization, it is

necessary to run several simulations with different parameters and input.

 IRE_Threshold Delay
tolerance

Shutdown
parameter
limit

Delay
tolerance
profiles

Test duration Season

Project 1 Baseline,
Low,
One

Baseline,
Long,
Short

Baseline,
Zero,
long

Static /
variable

Baseline,
Short, long,
High variance

all

Project 2 Baseline,
Low,
One

Baseline,
Long,
Short

Baseline,
Zero,
long

variable Baseline,
Short, long,
High variance

all

Project 3 Baseline,
Low,
One

Baseline,
Long,
Short

Baseline,
Zero,
long

static Baseline,
Short, long,
High variance

all

Table 4-2: all variations that will be explored in the analysis phase of the project.

The baseline scenario is the one where the most realistic data is used.

34

4.10 Calculating greenhouse gas emissions from test runs

There are countless ways of estimating the carbon footprint from server usage, but they all

depend on information that is unavailable to the consumer of cloud services. To precisely figure

out how much energy a computational task uses, one need to know what kind of server is used,

how much energy is used for cooling and other information of the hardware and utilization of

the hardware that is installed in the data centers (Mytton, 2020). The organization GoClimate

has developed a carbon calculator based on commonly used servers energy usage, server life

span of four years, data center energy efficiency and the carbon footprint of the Nordic Energy

Mix (GoClimate, 2019). They arrived at the following conclusion:

- A cloud server using 100% green energy will account for 160kg co2 per year.

- A cloud server using non-green energy will account for 458kg co2 per year.

The numbers from GoClimate will be used to estimate carbon footprint effect of the

experiments. This will provide an estimate of the emissions, but it will be quite unprecise, as it

uses an average and does not separate active CPU minutes and idle server minutes.

35

5. Implementation

This chapter describes the process and choices that were made to transform the model

described in the previous chapter into code that can produce useful outputs. The aim is to be

able to explore how allocation and management of test servers can impact the environmental

effects of testing, in order to answer the problem statement.

5.1 Tools

To transform the described model to code that can be used for simulating different scenarios of

testing, a Python script was written.

The TinyDB library for Python was used to construct a database with production data, prices,

and server reservations. In a real-life scenario, one would use an API to request production and

price data for each calculation, but this is not viable if we want to see how the model works at

different times of year. Historical data is therefore written to json-files that can be accessed by

querying. This also enables us to repeat experiments on the same time period. For transforming

data to database-files a combination of excel, notepad++ and python scripting was used.

For data visualizations, the python tools NumPy and Seaborn were used for heatmaps, as well

as Excel for tables and line charts. Accessibility was given the high priority when choosing colors

for the visualizations.

5.2 Data sources for production volumes and prices

5.2.1. Time period selection

To get test data for the model, four weeks spread throughout the year were selected as sample

data. The weeks 31, 43, and 51 of year 2020, as well as week 12 from 2021 were chosen. The

selection was done by taking the latest week from the time of writing and iterating backwards

per three months in order to get one sample per season of the year. This is important for

capturing the different seasonal patterns of IRE production. Because commit history data is

used to simulate test orders, it is preferable to avoid holiday weeks. Therefore, week 31 was

chosen for summer season data.

36

5.2.2. Production volume data selection and transformation

To calculate the share of IRE, data on total production and IRE production per area for each

hour in the time period selections is needed. Not all necessary data was available from one

source, so different sources had to be combined. All data on production totals was collected

from Nordpool. Wind production data from areas Estonia, Denmark and Sweden was collected

from Nordpool. For Norway and Finland, wind production data was not available from

Nordpool, so they were gathered from Entso-E. Production from solar PV is only done in Estonia

and Denmark, and the data on this was collected from Entso-E as well.

Downloaded data from Nordpool comes in an one excel-file per country. From Entso-E data is

fetched over an API which returns an XML-file. Several tools were used in the process. Firstly,

the data from Nordpool was pasted into one Excel-file with three tabs, one for total production,

one for solar PV production and one for wind production. Thereafter, data for each time period

and area was collected from Entso-E in separate XML-files. The files were stripped of all tags so

that the timeseries-data of production volumes was all that remained. This was done by a series

of regex-manipulations. After this, all the time series from the Entso-E data were pasted

manually into the excel-spreadsheet. The data from wind and solar were added to produce one

sheet of data for total production volumes of production from IREs.

date hour SE1 SE2 SE3 SE4 FI DK1

19.10.2020 0 2926 7278 8776 629 6223 1674

19.10.2020 1 2555 7060 8738 606 6245 1566

19.10.2020 2 2423 7047 8744 606 6358 1481

19.10.2020 3 2375 7022 8725 612 6430 1516

19.10.2020 4 2421 7236 8745 632 6663 1517

19.10.2020 5 2742 7546 8779 665 7315 1674

19.10.2020 6 2966 7884 8880 696 7975 1944

19.10.2020 7 3024 7852 9265 770 8487 2065

19.10.2020 8 3383 7661 9305 795 8699 1917

19.10.2020 9 3377 7473 9183 802 8651 1933

Table 5-1: example of production data. The table show total production volumes for the first 10 hours of October 19th 2020 for 6
areas. The production volumes are in given in megawatt-hours (MWh).

37

To prepare the data for use in a python script, the data for IRE and total production was

uploaded to a tool that converted it from excel to JSON format. Lastly, the json-files were run

through a script that inserted each record of data into database-files readable by TinyDB

querying.

Figure 5.1: illustration of the process of transforming production volume data

After completing this process, two database files were produced and ready for use:

- Volumes_IRE.json

- Volumes_total.json

5.2.3. Price data selection and transformation

Price data was collected from NordPool for all countries included in the model and countries

with exchange to these countries, except for Poland and Russia. Prices from the day-ahead

market was used, as these carry the largest volumes and best reflects the price for the end

user. Data comes in one file per year, and a manual process was done to extract the chosen

areas and time ranges and fit them into one file.

38

For Poland, the day-ahead prices were not available on NordPool, so the local exchange PSE

were used. Data from PSE were downloaded for each week. Prices on PSE are given in local

currency, so historical exchange rate from XEcurrency was used to convert the prices to euro in

Excel. Because the Russian market is partly regulated and will not adhere to the same price

mechanisms as the Nordpool system, Russian prices are omitted from the delta calculation.

When all prices had been collected into one spreadsheet, the data was converted on to a json-

file readable by TinyDB in the same way as with the production data.

5.3 Test activity data

For simulating testing activity, the commit logs from three different projects were used. These

were chosen to represent different types of development.

Visual studio Code (VSC), an integrated development environment project: This is one of the

largest open-source projects on GitHub, with over 19.000 contributors. It was chosen as a

representative of a large open-source project with many commits coming in from all over the

world.

Medium Sized Commercial project (MSC), software for handling memberships, insurances and

training for a large Norwegian union: The project was chosen to represent a commercial

software project, with developers working in one time zone only. The project has 5 developers

working full time based in Oslo.

The Algorithms – Python, a library of algorithms: This is a smaller open-source project with less

activity. It has about 1300 contributors and can sometimes go several days without any

commits. It was chosen to represent a smaller project with less activity.

The data were recorded to text files containing only the timestamp for the commits, one per

new line. One file was made for each project for each of the seasons, a total of 12 different files

with commit logs.

39

5.4 Constructing input data on delay tolerance

As in order to check for planned servers and calculate the most desirable area to run tests in,

three data entries are needed: the time the test was triggered, test duration and delay

tolerance. The time the test was triggered is available from the commit logs, but the other two

have to be constructed.

For projects that follow a steady daily rhythm of commits being done mainly during work hours,

the following assumptions are used for constructing delay tolerance data:

- the developers want to have fast feedback during work hours, the delay tolerance is

short.

- if a commit is done during nighttime or very early morning it is due to an urgent fix and

the developer cannot wait for feedback, the delay tolerance is short.

- if a commit is done between 11 and 1200 hours it can wait a moderate amount of time

due to lunch break, the delay tolerance is moderate.

- if a commit is done between 16 and 19, feedback can wait until the next day because

the developer is finishing her workday and feedback can wait until the next day.

The files with the commit times are run through a script that appends either short, moderate or

long delay tolerance to each line in a csv file, according to the assumptions.

For projects without a particular pattern of commits during the workday the method from the

previous chapter cannot be used. These will be given one static delay tolerance value for all

commits. For these projects, the files with the commit times are run through a script that

appends the same delay tolerance value to each line in a csv file.

5.5 Test duration

For collecting as realistic data as possible on the two open-source projects, they were

downloaded and built on a local environment. Both projects contain tests that could be used in

a pipeline.

40

The larger project, VScode, had unit tests, integration tests and an automated UI-test available.

The tests were run three times in Electron, and the average times were:

• UI-test: 1 minute, 51 seconds

• Integration test: 8 minutes 50 seconds

• Unit tests: 15 seconds

In addition, the build took 4 minutes and 41 seconds. Each commit to the pipeline needs a new

build, so this will be added to the total test duration.

The smaller project was written in python, with a tiny test suite to be executed by the tool

pytest. The tests took an average of 41 seconds to run.

With this in mind, it was determined to use 16 minutes for VScode and 1 minute for The

Algorithms as the test duration for the baseline test scenario. For MSC, historical test run data

was available, and the average run time of 22 minutes will be used.

5.6 Determining surplus areas and their price delta

For the calculation of surplus energy price and production volume, data as described above is

used. In addition, the model needs to have a concept of which price areas have energy

exchange with each other. A python dictionary listing the neighbors of each area is registered

as a global variable, excluding Russia. The data comes from Nordpool, and reflects the exchange

illustrated in figure 5.1. Threshold of how large a fraction of the produced energy must come

from IRE (IRE_SHARE) to define it a relevant contribution to the surplus, is also added as a

global variable.

41

Figure 5.2: map from nordpoolspot.com showing the exchange between the Nordics and surrounding areas and list over
neighboring areas.

5.7 Simulation script

The data and scripts described above is utilized by a simulation script that iterates through the

commits and runs each of them through the decision algorithms. Each commit that is read into

the script goes through the algorithm for checking for planned servers. If no suitable server is

found, it will proceed to find the best time and place to run the test by using the CAST-

algorithm. Thereafter, it will record the database booking with the appropriate time and place

to the server database.

42

Figure 5.3: flowchart describing the process of simulating test runs and recording the results. The solid lines illustrate the actions
of the processes, while dotted lines illustrate interaction with the database files. Green boxes illustrate python-scripts or
functions while white icons illustrate files.

43

After the simulation script has looped through all of the lines in the file with the commit-times,

delay tolerance and estimated test duration, it will call on a function that goes through the

database with server bookings. The outcome of this process is a list with the following

parameters:

• Name of the project

• Season (winter/spring/autumn/summer)

• Scenario (which of the scenarios were tested)

• Average delay tolerance

• Test duration

• Number of commits

• Number of servers started in an area without IRE surplus (gray servers)

• Number of servers started in an area with IRE surplus (green servers)

• Number of re-uses: how many times multiple tests were run on one server.

• Minutes of tests running on a gray server.

• Minutes of tests running on a green server.

• Minutes where a green server was idle.

• Minutes where a gray server was idle.

• The number of servers started in each area.

44

Project MSC MSC VSC PA

Season Summer Winter Winter Summer

Scenario Baseline Baseline Baseline Baseline

AVG delay
tolerance

230

176 183 10

Avg test
duration

22 22 16 1

Commits 35 42 538 17

Gray servers 4 0 1 4

Green servers 27 37 370 13

Re-use 4 5 167 0

Gray minutes 110 0 32 4

Green minutes 660 924 8576 13

Green waste 504 1014 7692 0

Gray waste 130 0 28 0

SE1 0 0 0 0

SE2 0 0 0 1

SE3 0 0 0 0

Table 5-2: the first lines and rows of the csv-file with results from the simulation script run.

The file will be used to further analyze how the outcome changes when there are changes to

the different parameters used in the script (global variables) or changes to the data input

(different seasons, projects, test duration and delay tolerance).

5.8 Constructing test scenarios

5.8.1. The baseline test scenario

In order to observe the effect of altering the different variables, such as delay tolerance, test

duration and share of IRE, a baseline scenario was established. This was constructed with the

most realistic data in mind, considering all available information. The following was used:

IRE_SHARE: 20% is used as the baseline scenario, as this is what previous research suggests as

being the point where IRE production contributes significantly to the power mix.

Test duration: average test run times are used, either from running tests locally several times

and calculating the average or by collecting historical data. The process of finding these times

were described in chapter 5.5.

45

Delay tolerance: here, it would be necessary to do some experiments either with surveys or

experiments involving humans in order to record real data. This is not in scope of this project,

so assumptions are made as to how much delay can be tolerated in different situations. For the

profiled distribution of delay tolerance as described in chapter 5.4, the baseline input has been

chosen to be 5 minutes delay tolerance during work hours, 30 minutes before lunch and 720

minutes at the end of the workday. For the static input, 10 minutes delay tolerance is chosen as

a baseline scenario.

Shutdown parameter limit: the shutdown parameter decides whether the server will be kept

running after the test is done or not and is an expression of whether we expect new tests to

come in before the server hour is over. Assuming that new tests are most likely to come in

when there is active development going on, the baseline limit is set to the same amount of time

as the delay tolerance during working hours: 5 minutes.

5.8.2. Other scenarios

Including the base scenario, 9 different scenarios were constructed to look at how variations in

the parameters affected the outcome. There are four variants of test scenarios:

IRE_SHARE adjustments: The share of IRE decides how much of the total energy in an area

must be IRE in order to consider it to be significant enough to conclude that the energy surplus

in an area is a surplus of IRE. The base threshold is set based on previous research, but looking

at scenarios with a lower threshold can give an indication as to what will happen when a larger

share of the energy produced comes from IRE. The two scenarios constructed for this purpose

is one where the threshold is lowered to 15% and one where the threshold is set to 1%.

Delay tolerance variations: Based on analysis of the data sets, it is determined to use a

dynamic profile as described in 5.4 for the projects MSC and VSC (explained further in chapter

6.2). For the smallest project, Python Algorithms, no daily rhythm of commits was found, so it

is decided to use the same delay tolerance for all commits. In order to analyze how delay

tolerance affects the outcome, two scenarios were added. The fist had significantly longer delay

tolerance than the base scenario, while the other significantly shorter. The shutdown

46

parameter is set to the same value as the shortest delay tolerance, in order for these scenarios

to be similar to the base scenario in which servers are kept running or not.

Shutdown parameter variations: the algorithm uses the shutdown parameter to decide

whether the server should be shut down after the end of a test run. The algorithm sets the

shutdown-variable to true or false based on whether the delay tolerance is longer or shorter

than the shutdown parameter. Adjusting this parameter will give insight on the effects of

keeping servers running. Two scenarios are added, one with shutdown parameter of 60

minutes, and one with shutdown parameter zero.

Test duration variations: Altering the test durations will provide information about how much

there is to gain from refining the test suite to run faster. Two variations with static test duration

were added, one with significantly longer test duration and one with significantly shorter. The

data set for Python Algorithms were not given a short test duration scenario, as the tests there

already are very fast (one minute) in the base scenario. In addition, one scenario with variable

test duration was added, in order to have a look at how this would affect the outcome. Each

commit was assigned a random normally distributed test duration value, with a mean of the

base value and quite high standard deviations in order to achieve a large spread. The values

were converted to absolute values in order to avoid negative test durations.

Scenario
Data-
set

IRE
Delay
tolerance

Delay
tolerance

Delay-
tolerance

Delay-
tolerance

Test
duration

Test
duration

Test
duration

Shutdown

share
work
hours

lunch
After
work

Static
(PA)

VSC MSC PA
Para-
meter

BASE base 0.2 5 30 720 10 16 22 1 5

IRE_
low

base 0.15

IRE_
one

base 0

DelayT
long

DT_
long

 60 120 720 120 60/119

DelayT
short

DT_s
hort

 1 15 120 1 1/0

Shutdown
_short

base 0

Shutdown
_long

base 60

47

TestDur_
short

TD_
short

 6 6

TestDur_
Long

TD_
long

 45 45 45

TestDur_
noisy-

TD_
noisy

 16 / 8 22 / 11 3/1.5

Table 5-3: the parameters for the different scenarios. Empty cells illustrate that the value is equal to the base scenario. On the
last row, the first value is the test duration, while the second is the standard deviation.

5.9 Analyzing input data.

To better understand the outputs of the simulation script, it is useful to have a closer look at

the input data.

To see how the supply of IRE varies throughout the day, and if the surplus moves around to

different areas like expected, a script is made to produce heatmaps that illustrate the energy

situation throughout the day. The script uses the data on IRE production, total production and

prices per area/hour, and calculates the price delta for each area with a significant production

of IRE. The result of the calculations is stored in a CSV file which is used to draw a heatmap over

the situation using the Python libraries NumPy and Seaborn.

To have a look at the chosen projects commit-patterns, the commit logs were imported to excel

which was used to do some basic analysis and the excel tools for visualization were used to

make diagrams and figures.

48

49

6. Results/observations

6.1 Are some areas really better than others? – a closer look at the energy data.

Is there any benefit to moving the workload around in time and space? To determine this a

series of heatmaps have been created to illustrate the surplus or deficit of IRE.

Figure 6.1: heat map illustrating the energy situation in the Nordics, December 16th 2020. Green indcates a surplus while purple
indicates a deficit. The scale on the right show the accumulated price difference between the area and its neighbours in Euros
per MWh.

The threshold for significant production og IRE is set to 20%, which means that hours where the

share of IRE is less than 20% are without color. Where there is a significant share of IRE, the

difference in price between the area and its neighbors are calculated in order to determine

whether the area has a surplus of energy.

The hours that have lower prices than the neighbors are colored green. This means that there is

a surplus of IRE. For hours with a deficit the color is purple. A purple hour means that there is a

significant share of IRE in the area, but the demand high, and the IRE production is not large

50

enough to make more energy than the area consumes. The darkest color indicates the largest

surplus or deficit.

The figure above illustrates a 24-hours period where only three of the areas have more than

20% IRE. Also, all three areas have a deficit in some hours, and surplus in others. This is not in

any way uncommon and it suggests that moving test activity could help both in utilizing more

green energy, and relieve areas with energy deficit.

Figure 6.2: heat map showing surplus (green) and deficit (purple) of energy for areas with a significant share of IRE from March
18th to March 21st 2021.

This image shows a combination of the energy production and market situation for each hour

of four days, from March 19th to March 21st of 2021.

Looking at the figure proves that it does indeed vary which area has the highest surplus of IRE.

While many areas do not have significant shares of IRE at any time, others have it most of the

day. The largest surplus is found in 5 different areas over the course og these four days.

This figure also illustrates the effect of new installed capacity. The area NO3 is colored white

until midday March 19th2021. At this time, new wind turbines on Fosen, Trøndelag started

delivering energy to the grid. Similar effects are expected in the future, as more wind parks are

introduced. One can therefore assume that the occurrence of hours with no surplus will lessen

in the coming years.

In the data set we see that the seasons that are lower on wind have quite a few hours where no

area has a significant share of IRE. During the summer week, 40 hours were without IRE surplus

51

in any area. During spring week there were 58 hours, while autumn had four and winter had

only one.

6.2 Test distribution.

As expected, the three projects had very different commit logs. VC code had an average of 59.3

commits per day, MSC had 6.7 and Python Algorithms had 1.8. There was no clear pattern as to

which season were most busy. VS code had the highest activity in the winter week, and Python

Algorithms had the lowest activity that same week with only two commits for the whole week.

One interesting observation was that the commit log for VS code followed a pattern consistent

with a normal work week when looking at the amount of commits per day of the week.

Figure 6.3 line diagram illustrating how many commits the project VS code has per day of the week, on average.

The weekdays are quite busy, and most commits are being done on Fridays. Almost no changes

are done on Saturdays and Sundays. This indicates that this project is probably being worked on

by professionals who do it during their workday. When we look at how the commits are spread

throughout the day, it seems that for VS code there is also a pattern that can look somewhat

like a workday, where there is more activity in the hours of 9 and 19. Still, there is activity in all

hours of the day. This is not the case for MSC, and the assumption that the commits mainly

happen during the workday holds true. MSC has no commits during night hours, and most

commits happen before lunch and at the end of the workday.

0

50

100

150

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

average commmits per day

52

Figure 6.4: diagram showing how many percentages of the commits in each project are done in each hour of the day. The PA-
project is illustrated with the gray dotted line, MSC is orange and VSC blue.

6.3 Approach for manual analysis

Looking back at the scenario of the DevOps-engineer set out to optimize the pipeline, it is clear

that success must be measured by several different parameters. One goal was to make the

pipeline as green as possible. Looking at the number og servers that were deployed in a green

area or maybe more so, lack of servers deployed in gray areas will give an indication of the

achieved effect on greenhouse gas emissions. Another goal was to avoid unnecessary delays. In

the baseline scenario the assumption is that there is some tolerance for waiting, and the effects

of waiting longer or shorter will be explored in the scenarios that cover delay tolerance. Cost is

also a factor. Running the tests with as few servers as possible is therefore also something to

look at when assessing whether a scenario has had successful results or not. Due to startup-

costs of a deploy and the per hour pricing model, it is assumed that it is better to run two tests

on the same server, even though this results in some waste (idle server time). This means that

the overall number of servers started must be considered when assessing the cost.

From all simulations, it is expected to see significant seasonal effects. Previous analysis of the

data showed that during the spring week there were 58 hours with no green surplus, while

during the winter week there was only one. The results will therefore be analyzed per season

and project.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Daily distribution of commits

VSC MSC PA

53

6.4 Results of the baseline simulation

As expected, the spring week is the one which utilizes the lowest share of green servers. On the

other hand, we see that for the winter week, there is only one gray server deployed for all

projects combined.

In order to measure the effects of the CAST-algorithm, one simulation was run of the base

scenario where all servers were placed in SE4, the area with the most hours with IRE surplus.

This will provide some insight as to what results would be without the CAST-algorithm. This

simulation resulted in 282 gray servers being deployed, for all four weeks and all projects

summarized. In the simulation with the CAST-algorithm, 150 gray servers were deployed.

Of the 1848 commits that were made, 793 of them were tested on a previously reserved server.

86% of the servers are placed in a green area (905 out of 1055).

project season

Avg
delay
tolerance

avg test
duration commits

gray
servers

green
servers re-use

gray
minutes

gray
waste

green
minutes

green
waste

PA winter 10 1 2 0 2 0 0 0 2 0

PA summer 10 1 17 4 13 0 4 0 13 0

PA autumn 10 1 18 0 18 0 0 0 18 0

PA spring 10 1 14 1 13 0 1 0 13 0

MSC winter 176 22 42 0 35 7 0 0 924 1014

MSC summer 230 22 35 4 23 8 110 130 660 504

MSC autumn 210 22 56 1 44 11 22 38 1210 1204

MSC spring 204 22 51 27 11 13 836 584 286 190

VSC winter 183 16 538 1 260 277 32 28 8576 6040

VSC summer 153 16 185 17 93 75 368 652 2592 2360

VSC autumn 178 16 476 0 253 223 0 0 7616 6776

VSC spring 165 16 414 95 140 179 2592 2824 4032 3616

SUM 150 905 793

Table 6-1: the output of the simulation of the base scenario for all projects and seasons. The gray and white rows alternate
between the projects.

54

6.5 Results of the IRE_share scenarios

For these simulations, the data set from the baseline scenario was sent through the allocation-

algorithm with IRE_shares of 0.2 (baseline), 0.15 (low) and 0.01 (one). Reducing the threshold

will give the allocation algorithm more green hours to choose from. It is expected that a

decrease of the threshold will increase the number of servers that are placed in an area with

surplus IRE, green servers. It is also expected that it will have a more significant effect in the

summer and spring than in the winter and autumn.

project season scenario commits gray servers
green
servers re-use

gray
minutes gray waste

MSC spring base 51 27 11 13 836 584

MSC spring IRE_low 51 16 22 13 484 276

MSC spring IRE_one 51 0 37 14 0 0

MSC winter base 42 0 35 7 0 0

MSC winter IRE_low 42 0 35 7 0 0

MSC winter IRE_one 42 0 35 7 0 0

VSC spring base 414 95 140 179 2592 2824

VSC spring IRE_low 414 75 159 180 1968 2260

VSC spring IRE_one 414 0 231 183 0 0

VSC winter base 538 1 260 277 32 28

VSC winter IRE_low 538 1 260 277 32 28

VSC winter IRE_one 538 0 264 274 0 0
Table 6-2: selected values from spring and winter simulations of scenarios with different IRE threshold. The gray and white rows
alternate between the combination of project and season.

The results are as expected. In the spring we see significant effects of lowering the threshold,

the number of gray servers used is significantly reduced. For brevity, only spring and winter for

two projects are included in the table above, but the results for the summer and autumn week

show the same effect. When accepting as little as one percent IRE as significant, we see that the

number of gray servers is reduced to zero. These results can give an indication about what to

expect when more production capacity for IRE is installed. A higher share of IRE will increase

the selection of green areas, leading to lower greenhouse gas emissions.

55

6.6 Results of different thresholds for keeping server open.

The shutdown parameter defines whether a server should be kept open after the first test run

is finished or not. The rationale behind this parameter is that if there is a short delay tolerance,

it is expected that more tests will come in soon. In the base scenario the parameter is set to 5,

which means that for all commits with a delay tolerance of 5 minutes or less, the server will be

kept open in case of more commits before the server hour is over. In the shutdown_short

scenario, the parameter is set to 0, which means all servers will be shut down after the test is

done, unless another test comes in while it is still running that can be scheduled to start once

the running test is done. In the shutdown_long scenario the parameter is set to 60. For the PA

project, this means that all servers will be kept running, and for the other projects all commits

during working hours will be kept running.

project scenario

Avg
delay
tolerance

avg test
duration

gray
servers

green
servers

re-
use

gray
min

green
min

green
waste

gray
waste

Server
total

PA base 10 1 4 13 0 4 13 0 0 17

PA long 10 1 3 11 3 4 13 647 176 14

MSC base 230 22 4 23 8 110 660 504 130 27

MSC short 230 22 5 24 6 110 660 0 0 29

MSC long 230 22 4 23 8 110 660 542 130 27

VSC base 153 16 17 93 75 368 2592 2360 652 110

VSC short 153 16 23 106 56 416 2544 0 0 129

VSC long 153 16 17 90 78 368 2592 2500 652 107
Table 6-3: results of the shutdown scenarios for all projects, summer week. The gray and white rows alternate between the
projects.

For the PA project, there is no difference between the base and short scenario, as the delay

tolerance is a static value of 10, which means all servers will be shut down after the test runs.

For this project, increasing the shutdown parameter to 60 means that all servers are kept open.

As expected, this causes a reduction in the number of servers started, but it is small, the total

number of serves decreases from 17 to 14. The amount of time where servers have been idle

(green and gray waste) has increased significantly, from zero to 823 minutes. So, there is a

decrease in cost, but an increase in energy spent.

For the two larger projects, we also see the expected increase in how many servers were used

and reduction in waste when we set the shutdown parameter to zero.

56

6.6.1. The cost of eliminating waste in a large project.

Waste can be eliminated by setting shutdown to zero, but whether it is worth it or not depends

on how the prioritizations are done. For VSC, the total amount of severs used increases from

107 in the long scenario to 129 in the short scenario in the summer week.

season
scenario gray

servers
green
servers

gray
minutes

green
minutes

green
waste

gray
waste

servers
total

autumn Long 0 252 0 7616 6932 0 252

spring Long 94 142 2592 4032 3832 2864 236

summer Long 17 90 368 2592 2500 652 107

winter Long 1 259 32 8576 6288 28 260

autumn Short 0 332 0 7616 0 0 332

spring Short 120 169 2592 4032 0 0 289

summer Short 23 106 416 2544 0 0 129

winter Short 1 318 32 8576 0 0 319

Table 6-4: selected results for the shutdown long and shutdown short scenarios for the VSC project. The gray and white rows
alternate between the scenarios.

For all four weeks, the VSC project started 855 servers in the long-scenario, and 1069 in the

short-scenario, a difference of 214 servers over 4 weeks. Extrapolated to a year, this amounts

to a difference of 2782 servers. At the time of writing, the average price of an on-demand Linux

VM in the Nordic data centers of Microsoft, Google and AWS were 0.039$ US. This means that

the monetary cost of eliminating waste amounts to roughly 108.5$ per year.

If we look at the amount of waste, the sum is 23096 minutes for the four weeks measured for

VSC, approximately 5004 hours per year. 4236 hours is green waste and 768 is gray waste.

Using the calculations from GoClimate, the estimated savings of eliminating this waste is 118kg

of CO2 per year. This would be the equivalent of driving 677 kilometers with a petrol fueled car

(UK Department for Business, Energy & Industrial Strategy, 2020).

These savings are quite expensive, and there can also be a cost of time depending on how fast a

new server is provisioned. If there is some overhead energy use to start a VM, this is not

accounted for, so the savings can be less than this estimate. Still, the result of shutting the VMs

down after a test run is most likely beneficial towards lessening the carbon footprint, and

“eliminating waste” does sound good in reports and marketing efforts.

57

6.7 The effects of different delay tolerances.

A longer tolerance for waiting is expected to have two relevant effects. Firstly, it is expected

that more servers will be green because the allocation algorithm gets more hours to choose

from. Secondly, it is expected that more servers will be used for more than one test. The delay

tolerances have been altered quite dramatically. In the “short” scenario, the daytime delay

tolerance has been reduced from 5minutes (base) to 1 minute. For the “long” scenario, the

daytime delay tolerance is increased to 60 minutes.

proj season scen Avg
delay
toler

gray
servers

green
servers

re-
use

gray
waste

green
waste

total
servers waste

factor
MSC autumn base 210 1 44 11 38 1204 45 1.01

MSC autumn long 251 0 32 24 0 484 32 0.39

MSC autumn short 36 1 45 10 38 1204 46 1.01

MSC spring base 204 27 11 13 584 190 38 0.69

MSC spring long 247 22 10 19 328 146 32 0.42

MSC spring short 35 28 11 12 584 190 39 0.69

VSC autumn base 178 0 253 223 0 6776 253 0.89

VSC autumn long 222 0 178 299 0 2196 178 0.29

VSC autumn short 30 0 268 209 0 7480 268 0.98

VSC spring base 165 95 140 179 2824 3616 235 0.97

VSC spring long 209 61 103 250 992 1388 164 0.36

VSC spring short 28 99 155 160 2976 4500 254 1.13

Table 6-5: selected results of the delay tolerance scenario simulations. The green cells mark the most optimal outcomes. The
gray and white rows alternate between the combination of project and season.

The data show that the results are as expected, gray servers and total servers decrease with a

longer delay tolerance. The movement from gray to green is quite modest for the medium sized

project. For the MSC project, increasing delay tolerance by 59 during working hours saves one

gray server from running in the autumn week and six in the spring week. For the larger project

the effect is more significant in the spring week, with a 38% decrease in gray servers.

A more significant effect is observed on the number of servers deployed and the waste. In all

seasons and for all project we see that a longer delay tolerance leads to significantly less

resource use. On the left side of the table above, a column of waste factor is added. The waste

factor is given as the total minutes of waste over total minutes of active server time. The waste

58

factor decreases as the delay tolerance increases. The decrease in waste is not caused by

servers shutting down more often. The increase in delay tolerance allows the algorithm to re-

use servers more often and which is seen from the decrease in number of servers used.

These simulation results support the idea that there are possible savings to both greenhouse

gas emissions and cost for those who are willing to wait.

6.8 The results with different test durations

In all the previous scenarios, the test durations have been based on actual processing times for

the tests in the different projects. As explained in the background chapter, different techniques

can be used to speed up the duration of testing. Running the simulations with different test

durations provides some insight on the importance of test duration. The “noisy” scenario with

varying test durations was added to see if this made any significant difference to the results.

project season scenario

avg test
duratio
n

gray
server
s

green
server
s

re-
use

green
waste

gray
waste

waste
factor

Ops
cost

MSC summer base 22 4 23 8 504 130 0.76 27

MSC summer long 45 5 30 0 270 75 0.20 35

MSC summer noisy 22 4 23 8 510 132 0.78 27

MSC summer short 6 2 14 19 432 90 2.40 16

MSC winter base 22 0 35 7 1014 0 1.10 35

MSC winter long 45 0 42 0 465 0 0.25 42

MSC winter noisy 23 0 35 7 858 0 0.88 35

MSC winter short 6 0 22 20 810 0 3.21 22

VSC summer base 16 17 93 75 2360 652 0.91 110

VSC summer long 45 27 158 0 1620 405 0.23 185

VSC summer noisy 15 16 92 77 2568 604 1.07 108

VSC summer short 6 13 65 107 2346 630 2.44 78

VSC winter base 16 1 260 277 6040 28 0.70 261

VSC winter long 45 1 537 0 5340 15 0.22 538

VSC winter noisy 15 1 250 287 5903 29 0.71 251

VSC winter short 6 1 137 400 4134 42 1.29 138

Table 6-6: selected results from the simulations with different test durations. The gray and white rows alternate between the
combination of project and season.

For the smallest project, the test duration made little difference except from altering the

number of active server minutes.

59

The results for the larger projects were in line with what could be expected. The noisy scenarios

result in values close to the base scenario, it does not seem to have any significant impact. The

longer test duration of 45 minutes makes quite good use of each server, resulting in low waste

factors, but only one test can run per server, so the costs are high. The winter week with long

test duration for the VSC project has the highest cost of all simulations done in this project, 538

servers deployed in one week. With the short test duration, the same week results in 138

servers being deployed. The ratio between green and gray servers does not appear to be

influenced by the different test durations.

6.9 Summary of cost / benefit analysis

To compare the performance og the different scenarios, a comparison of the annualized values

for emissions and cost was made.

 VSC MSC PA

Row # scenario emissions cost emissions cost emissions cost

1 base 238.2 11167 43.2 1885 0.24 663

2 base-se4 282.1 11180 47.5 1885 0.34 663

3 delay tolerance long 166.2 8112 33.1 1495 0.24 585

4 delay tolerance short 257.9 12194 43.9 1937 0.24 663

5 IRE threshold 15% 227.5 11167 38.3 1885 0.22 663

6 IRE threshold 1% 190.7 11193 30.5 1872 0.20 663

7 shutdown long 241.7 11115 44.3 1872 10.32 468

8 shutdown short 124.5 13897 23.2 2054 0.24 663

9 test duration long 434.2 20982 58.4 2392 10.74 663

10 test duration noisy 226.1 20982 43.6 2392 0.64 663

11 test duration short 128.0 10634 23.6 1781 - -

Table 6-7: table showing the annual emissions in kilograms of CO2 and cost in number of servers started. For each column, the
higher numbers are colored red, while the lower numbers are blue.

Two scenarios stand out as good performers in both cost and emissions: long delay tolerance

and short test duration. For all projects, both emissions and cost are on the lower end with

these two scenarios compared to the others. The short shutdown scenario shows the expected

result of low emissions with increased cost for all VSC and MSC, compared to the baseline (see

60

row 8). There are no significant differences between the projects, the algorithm has the same

relative outcome for a busy project as for a small one using these parameters.

For the smallest project, the emission in most scenarios is negligible, the difference between

the base scenario and where all servers are placed in SE4 is only 10 grams of CO2 over one year.

The emissions in the base and in the long delay tolerance scenario are the same. Still, the long

delay tolerance is favorable due to reduced costs. Because of the very short test duration in this

project, keeping servers up after the test is done causes a large amount of waste which leads to

a dramatic increase in energy use.

For MSC and VSC, the effects of longer delay tolerance or shorter test durations is more

significant. For both projects, reducing the test duration is the most effective way of reducing

the carbon footprint, but this is more costly in financial terms than increasing waiting time.

However, reducing the test duration also have a nice side effect of giving faster feedback to the

developers which might be beneficial for the productivity in the project. The cost of a developer

waiting for test results is probably higher than that of extra server time.

6.10 Delay tolerance versus actual waiting time

The results show that there are large potential benefits to having longer delay tolerances. This

raises the question of how much longer does the developer have to wait for feedback, in order

to gain these benefits? To answer this question, some code was added to record the waiting

time between the time of a commit and the actual start of the test run.

When preparing the data, delay tolerance for the two larger projects were divided in three

different categories:

- short delay tolerance during the hours when it is assumed that the developers are

working actively.

- Long delay tolerances at the end of the workday, when it is assumed that the

developers are going home and do not need feedback until the next day.

- Medium delay tolerance during lunch hour.

61

The most relevant metric with respect to developer feedback is found when looking at the

waiting time during the active working hours.

 MSC VSC

Base,
delay
tolerance
5 minutes

Short,
delay
tolerance
1 minute

Long,
delay
tolerance
60 minutes

Base,
delay
tolerance
5 minutes

Short,
delay
tolerance
1 minute

Long,
delay
tolerance
60 minutes

Average waiting time 0.02 0.00 17 0.38 0.00 16

Median waiting time 0 0 11 0 0 11

75-percentile 0 0 31 0 0 25

90-percentile 0 0 49 2 0 48
Table 6-8: statistic values for the waiting time during active working hours for the scenarios base, short delay tolerance and long
delay tolerance. The waiting time is recorded in minutes.

The results show that there is little difference between the base scenario, where delay

tolerance is 5 minutes, and the scenario with short delay tolerance, one minute. The average

waiting time during working hours was reduced to zero from 0.02 (MSC) and 0.38 seconds

(VSC). 90 percent of the tests had waiting time of zero already for the MSC project, and less

than 2 seconds for the VSC project, so the gain of a small reduction in delay tolerance is

negligible.

In the long delay tolerance scenario, the delay tolerance is 60 minutes, but the results show

that one rarely has to wait that long. The median waiting time is approximately 11 minutes for

both projects, meaning that for half of the commits the waiting time was less than that. 10% of

the commits had a waiting time of more than 49 minutes for MSC and 48 minutes for VSC. This

is a long time to wait for feedback if one is working and need as fast as possible in order to

continue working, but in many cases, it can be perfectly acceptable, for instance if one is

attending a meeting or working on something else while the tests are running.

62

Figure 6.5: diagram illustrating how cost, emissions and actual waiting time develops as delay tolerance increases for the VSC
project. Commit logs with commits only during active working hours are used for the simulation.

The diagram above show that the relationship between delay tolerance and actual waiting time

is non-linear. The 75-percentile stays at 13 minutes up until the delay tolerance is 6o minutes.

When delay tolerance increases from 2 to 30, there seems to also be an increase in waiting

time, but this development flattens, and for delay tolerance between 28 and 58 minutes the

waiting time does not increase. When delay tolerance reaches 60 minutes there is a dramatic

spike in waiting time.

The data show that the gain is biggest for delay tolerance up to 14 minutes, after this the cost

and emission curves flatten and there is no further reduction in emissions or cost until the delay

tolerance reaches 60 minutes where there is a small reduction. The graph for MSC show a

similar effect, but with a breaking point at 22 minutes. This corresponds with the test duration

of 22 minutes.

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

0

5

10

15

20

25

30

35

40

45

50

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

C
o

st
 /

 e
m

is
si

o
n

s

w
ai

ti
n

g
ti

m
e

 m
in

u
te

s

Delay tolerance

VSC

Median 75-percentile 90-percentile Cost US$ Kg CO2 / year

63

Figure 6.6: diagram illustrating how cost, emissions and actual waiting time develops as delay tolerance increases for the MSC
project. Commit logs with commits only during active working hours are used for the simulation.

 The 90-percentile for MSC stays at 20 minutes until the test duration reaches 60, which

indicates that the developers rarely have to wait for the full extent og the delay tolerance

during working hours.

Having a closer look at the commit log gives some insight to why there seems to be high gains

of waiting up to the point where delay tolerance equals test duration.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0

10

20

30

40

50

60

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

C
o

st
 /

 e
m

is
si

o
n

s

W
ai

ti
n

g
ti

m
e

 in
 m

in
u

te
s

Delay tolerance

MSC

Median 75-percentile 90-percentile Kg CO2 / year Cost US$

64

Figure 6.7: frequency diagram illustrating the frequency of different distances in minutes between one commit and the next. The
orange line shows cumulative percentage.

66.8% of the tests during working hours were triggered 16 or less minutes after the last test.

With low delay tolerances, these tests will lead to increased costs, because they are not willing

to wait until the previous test is done and a new server will be started.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0

50

100

150

200

250

1 3 5 10 16 30 60 120 240 more

Fr
e

q
u

e
n

cy

minutes between commits

Time between commits, VSC working hours

Frequency Cumulative %

65

7. Discussion

Looking back at the results, can they be transferred to business value in a real-world use case?

Can the CAST-algorithm have a life after this project? This project has sought to find a useful

contribution in the fight for a greener future through investigating, building, and testing

different variations of a model using the CAST-algorithm.

In this chapter the findings from this investigation and the choices made along the way will be

discussed.

7.1 How does these findings answer the problem statements?

The problem statements were written in the very first chapter of this thesis and have been the

background for all of the work done. In this sub-chapter they are revisited and the extent to

which they were successfully answered is discussed.

7.1.1. Problem statement 1

The first problem statement was: investigate the development of a model which attempts to

optimize the organization of tests in an automated test suite with the objective of least energy

greenhouse gas emissions. Throughout the background and design chapter it was shown that

such a model can be made, but it requires some special conditions which are only present in

some parts of the world. It will only be useful within geographical areas that have a relevant

share of IRE. The area must also have a well-functioning, dynamic, high-resolution and

transparent energy market, where data on prices and production is available to the public.

The algorithms used in previous research found and presented in the background chapter used

only IRE production or meteorological data for finding the optimal area. This makes the

algorithm available in more areas as it removes the requirement of market data. This is

sufficient if the only objective is to ensure that the data center uses energy where there is

available IRE. However, in this project, the objective is to reduce emissions overall. In this case

it is not helpful if one uses green energy where the demand for energy in the area is so large

that it causes imports of gray energy from other areas or starts up gas-powered balancing

power plants. In areas with large surplus of IRE, there is a risk that wind turbines can be shut

66

down to prevent overload on the grid if no-one will use the power. In order to locate areas with

actual surplus of green energy, one needs dynamic pricing data from a transparent energy

market.

This transparency is not so much a technical prerequisite, as a political one. Hopefully, more

areas will meet these conditions in the future.

What makes the CAST-algorithm special is that it will consider the entire electricity production

and distribution system. This enables it to pursue real greenhouse gas emissions savings, by

taking energy from areas with a surplus. But this also limits the commercial potential of this

kind of solution. Adding an algorithm like this will increase the complexity in the DevOps-

pipeline, an area that is already conceived by many as complex and difficult to manage. At the

same time, the immediate benefits are not obvious to the business’s stakeholders. To market a

business as “green”, it is common to make commitments to buy 100% renewable energy, which

means buying an equivalent amount og the businesses energy needs from green production

sources. This does not guarantee that the energy the business actually use is green, but for

marketing purposes it is good enough, and it does not put a strain on the resources of DevOps

engineers.

7.1.2. Problem statement 2

The second problem statement was: evaluate whether the model is successful in making a

significant reduction in the usage of non-green energy. No definition of successful has been

made beforehand, but one measure og success is whether the CAST algorithm can be used for

other purposes than this research. The algorithm is fairly simple and fast and could be

implemented without using a lot of work hours or much computing power. Still, it does add

more complexity to a CI/CD pipeline. A large obstacle of using the algorithm in practice, is the

limited selection of data centers from each cloud provider.

The extent to which it has made a significant reduction in the usage of non-green energy is

more easily observed. A comparison was done where one simulation placed all servers in the

area SE4, which is the one with the most installed IRE production capacity in the research area,

67

and the other with full CAST-algorithm. The number of servers deployed in an area without IRE

surplus was reduced by 47% by using the algorithm, which is a significant reduction.

There has been no shortage of data to test on, and three projects were selected as

representatives for different types of software development. Even though VS Code is one of the

most active projects on GitHub, the automated tests in the repository are small compared to

the test suites of some of the larger enterprise solutions. The effects on a large commercial

software project with an extensive test suite has not been examined.

The results also indicated that there is a goldilocks-zone of sorts, where delay tolerance is

getting near the test duration. At this point data from both MSC and VSC showed that the cost

and emissions were significantly reduced. This could be explored further to see whether this is

a pattern across all projects, and if it is something that can be detected and used to improve

the algorithm.

Also, only four weeks were chosen for representatives of one year. Some manual inspection of

the data was done, and holiday weeks were avoided. Still, there extrapolations from these four

weeks to annual values have a high degree of uncertainty. Another weakness is the synthetic

data used for delay tolerance. In a real-life situation this probably would be a lot more dynamic,

and developers would choose delay tolerances based on what they are planning to do in the

immediate future after a commit.

7.2 Takeaways from the process

This project followed an exploratory approach, which enabled fast turnarounds and changes

along the way as more insight were gained. The approach gives great freedom to the author,

something which can be frustrating because it results in unlimited options that one wants to

investigate. In the ongoing work the turns and events have been discussed and evaluated

frequently along the way. This has made it possible to make full use of the freedom of the

exploratory approach and minimizing frustration.

68

7.2.1. The importance if interdisciplinary backgrounds for this type of projects

In this project, the two disciplines of energy economics and information technology has been

combined. The experience and knowledge from my master’s degree in Energy Economics has been

used actively throughout the process. Having this domain knowledge ready at hand has enabled faster

progress than what would otherwise be possible, as the time span of a short thesis is insufficient to

consult experts or learn a new domain to the degree where one can be creative and make swift

decisions. Future projects with the same type of interdisciplinary form will always have a need to

consolidate expertise from several fields. The experience from this project is how important it is to

have access to both fields and the advantage of knowing both of them well.

7.3 Deploy overhead.

This model operates under the assumption that there is a cost associated with starting up a

new test server, and that it is necessary to shut down the server running the test environment

to save energy while no tests are running. In the future it might be possible to keep

environments ready in all areas without using energy by utilizing tiny operating system for

running only one application that can start up in milliseconds. One such initiative is IncludeOS

which was granted research funds from the European Unions Program Horizon (CORDIS EU

research results, 2019).

69

7.4 Data center availability

In this project, the assumption has been made that one can choose to run the tests in any

region in the Nordics. This is, however, not practical today, even though there are data centers

in all grid areas. A software company will usually stick to one cloud provider, and today none of

the providers have data centers in all the Nordic countries. This is likely to change in the future.

Today, Google has one data center that is publicly available in the Nordics, in Finland. They are

building one new data center in Denmark and they have bought land in Sweden in order to

secure an option to build there (Google, 2019) (Moss, 2017). Microsofts Azure has data centers

in two areas in Norway today, but they will open in two locations in Sweden in 2021, and plan

to build data centers in Denmark as well (Microsoft, 2020) (Microsoft, 2020). Choosing between

areas within the same cloud provider will probably be a more accessible option in the future.

Also, there will hopefully be tools in place to help "abstract" the cloud interface to some

degree, just like configuration management systems mask the actual operating system which it

is running on.

7.5 The future of automated software testing

As mentioned in the background chapter, software testing gets little attention in the education

of software developers. Still, automated software testing is gaining popularity, and although

many companies are yet to introduce it, the expectations are that the market for automated

software testing will grow by 18% a year until 2024 (Markets and Markets, 2019). Tools like

Katalon TestOps and Github Actions are making it easier to include automated software testing

even in smaller project without dedicated test or DevOps engineers to set it up. This indicates

that there is future potential for an algorithm like CAST.

70

7.6 Electricity production in the future

7.6.1. More wind and solar power

At the time of writing, the share of IRE production in the countries Nordic system is

approximately 17%. The share of intermittent renewables will increase dramatically in the

coming years, and it is forecasted that by 2040, 37% of all electricity delivered to the grid will

come from wind and solar powered plants. Parts of the capacity will probably be installed

offshore, introducing wind power to areas that have previously not had a large share of IRE.

At the same time, it is planned to reduce production capacity of thermal powered plants (The

Norwegian water resources and energy directorate, 2020). This means that in the future, it is

likely that most hours of the day have a surplus of IRE in one or more areas.

Figure 7.1: Forecast of share of production from different energy sources in the Nordic countries (The Norwegian water
resources and energy directorate, 2020).

7.6.2. Thermal production sources - A comeback for nuclear power?

Thermal production plants are delivering large parts of the electricity in the Nordic countries

today, and they are important due to their ability to deliver large and steady loads throughout

the day. It is a clear political goal to remove all production that causes greenhouse gas

emissions, like coal, oil and gas. However, there is no consensus when it comes to nuclear

power plants. Germany have decided to completely eradicate nuclear power from their energy

mix, due to concern about nuclear disasters and waste disposal accidents. Sweden has been a

71

bit back and forth on the issue, but the current status is that existing newer reactors shall be

kept operational. Nuclear power plants supply over 40% of Sweden’s electricity production, so

phasing it out would require massive installations of alternative production sources, such as

wind and solar (International Atomic Energy Agency, 2020).

Others go in the opposite direction. Nuclear power plants can produce very large quantities of

energy without any greenhouse gas emissions, which is why Finland is building new nuclear

power plants to support their future energy needs. Either way, the future of nuclear will have a

significant impact on the future energy production profile.

7.7 Other applications

Similar models for allocating workloads based on renewable energy supply can be applied to

other parts of the software ecosystem. One possible application is to move the process of

analyzing the best areas and shift workloads to the cloud providers. In April 2020, Google

launched the first version of their carbon-intelligent computing platform, which moves certain

non-urgent tasks to the “greenest” hour of the day based on wind and solar forecasts. Analysis

of the performance is ongoing, and Google has promised to release research publications on the

topic. A second version that moves workloads both in time and location is under development

(Radovanovic, 2020). Another possibility is to use the algorithm in testing-as-a-service platforms,

where testing from different projects is performed by one party.

Another possibility for the data center customer, would be to apply methods like the one from

this project on other parts of the software operations process. Scheduled jobs like indexing and

batch data processing could be good candidates. These are inherently easier to schedule than

tests in the pipeline, but perhaps more difficult to move between locations.

In this project, the effects were analyzed per project, but the results show that the outcomes

are similar in all projects. The smallest project had little to gain from introducing such an

algorithm, but there are quite a few smaller projects out there. Commonly used collaboration

platforms like GitHub and GitLab offer built-in CI/CD tools with free testing for smaller projects

(limited to 2000 minutes a month), larger projects can pay to use the service. If actors who

supply these kinds of products were to include an algorithm like CAST, even small projects

72

would be able to use it. If a small percentage of the projects do, the savings could become

significant. GitHub has more than 100 million projects, but how many of these are active is

difficult to say.

As previously mentioned, the CAST-algorithm ensures that one uses actual green energy in a

way that is not strictly necessary in for branding a company as green after today’s standards.

This might change in the future, and governments can impose cap-and-trade schemes that limit

the amount og gray energy a company can use. The CAST algorithm could be used in a reporting

tool, keeping track og how much one has used of the gray quota, in addition to ensuring as

much green consumption as possible.

7.8 Possible improvements and further work

7.8.1. Parallelization and sectioning for advanced users

In this project, an underlying assumption has been that a test suite will run on one server only.

In order to get faster feedback, it is not unusual to run tests in parallel over several servers. This

is faster than running tests in parallel on one server. If one wanted to make a solution that can

be used in projects that uses parallelization techniques, it would need to also handle parallel

test runs on multiple servers.

For projects with a sophisticated setup for larger test suites, it could also be possible to divide

the test suite into smaller subsets and apply the CAST-algorithm for each subset, placing each

subset in the most optimal area.

7.8.2. Combine with test ordering algorithms.

Sub test ordering techniques are used mainly to get feedback to the developers faster in

projects with large test suites. These work by setting up each test in the test suite in an order

designed to provoke test fails as early as possible in the process. Research mentioned in the

background chapter has found these methods to be very effective in reducing test duration.

From the simulations with different test durations, it was evident that shortening the test

duration also can lead to significant benefits related to greenhouse gas emissions and cost

73

savings. Combining the CAST algorithm with test case prioritization algorithms could be

interesting to investigate in a future project.

7.8.3. Further examine the relationship between test frequency and waiting time.

When looking at actual waiting times, the results showed that the distance between commits

and the test duration has an impact on the cost and emissions. Queues of tests cause by rapid

commits are present in the two largest projects examined, and it is not unlikely that this is a

common trait in larger projects. Further work could have a closer look at these patterns and

attempt to identify profiles that can be used to suggest optimal delay tolerances.

7.8.4. Apply nudging features to increase delay tolerance.

The experiments have all been done under the assumption that there is a pre-defined number

of minutes that a developer can accept to wait before the test starts (delay tolerance). There

are different ways that this variable can be set. The initial thought has been that the developer

adds how long they can wait as a parameter when committing the code. Other ways can also be

explored, for instance one can analyze the coming hours and give some options to the

developer, like a pop-up asking “postponing your test start by 15 minutes will make it run in a

server that uses pure green energy. Would you like to wait?”. Another possibility could be a

menu of possible run times, where the coming hours are displayed with different carbon

footprint and the developer can choose at which our to schedule the tests.

7.8.5. Include data center pricing as a decision parameter.

The CAST algorithm does not consider data center prices in its current form. When examining

the pricing scheme, it was found that the price difference of data centers from the same vendor

was very small. Prices across vendors had more variation. Some vendors offer spot pricing for

consumers that can plan ahead, which is something that can be used in an improved version of

the CAST-algorithm to drive cost reduction.

7.8.6. Build a prototype.

So far, nothing has been discovered to indicate that one could not implement the CAST-

algorithm as part of a DevOps pipeline. Still, there are several ways one could go forward with

74

such work. The allocation and server management could be added as a script in a tool like

Jenkins or Azure DevOps, or one could build it as a service that is called upon from the pipeline.

This, or other options could be explored and tested in a prototyping experiment to learn more

about how to best implement an algorithm like CAST.

75

8. Conclusion

Automated software testing is one of the many energy consuming activities in software

development. This thesis has sought to explore the possibility of reducing the carbon footprint

from this activity by dynamically placing the test activity in areas where there is a surplus of

green energy generated by wind and solar power plants.

The result of the background and design phase is the Carbon-free Automated Software Testing

– CAST algorithm. The algorithm considers the production of energy from different sources and

the demand situation to determine where there is a surplus of green energy that can be

utilized.

Simulations using a combination of real and synthetic data showed that the CAST algorithm is

successful in reducing the carbon footprint of automated testing for both small and large

projects. An essential condition for the success of the algorithm is the availability of data from a

well-functioning electricity market with high resolution dynamic pricing. At the moment, this is

not available across the globe, however, the availability and sophistication of that data is

increasing.

The simulations showed that reducing the test duration had a large positive impact on the

carbon footprint of the test. It would therefore be interesting to look closer at combining the

CAST-algorithm with techniques to shorten the test duration, like parallelization and test

ordering in future work.

76

9. Litterature

Amazon. (2020, 12 10). amazon. Hentet fra news:

https://www.aboutamazon.com/news/sustainability/amazon-becomes-the-worlds-

largest-corporate-purchaser-of-renewable-energy

Belkhir, L., & Elmeligi, A. (2018, 03 10). Assessing ICT global emissions footprint: Trends to 2040

& recommendations. Journa of Cleaner Production, ss. 448 - 463.

Butgereit, L. (2019). "Using Fiction to Inspire Agility in Information Technology and

Manufacturing: A Look at The Phoenix Project and The Goal. 2019 IEEE 10th

International Conference on Mechanical and Intelligent Manufacturing Technologies

(ICMIMT) (ss. 138-141). Cape Town: IEEE.

Catal, C., & Mishra, D. (2012, 07 26). Test case prioritization: a systematic mapping study.

Software quality yournal, ss. 445-478.

CORDIS EU research results. (2019, 11 11). Cordis Horizon 2020. Hentet fra cordis.europa.eu:

https://cordis.europa.eu/project/id/829668

European commission. (2021, 05 13). Climate strategies and targets. Hentet fra European

comission, energy, climate change, environment:

https://ec.europa.eu/clima/policies/strategies/2030_en

Forsgren, N., Humble, J., & Kim, G. (2018). Accellerate. Portland: IT revolution.

Gao, Y., Zeng, Z., Liu, X., & Kumar, P. (2013). The answer is blowing in the wind: Analysis of

powering Internet data centers with wind energy. Proceedings IEEE INFOCOM (ss. 520 -

524). Turin, Italy: IEEE.

GoClimate. (2019, 5 23). GoClimate. Hentet fra Blog: https://www.goclimate.com/blog/the-

carbon-footprint-of-servers/

77

Google. (2019). Hentet fra about:

https://www.google.com/about/datacenters/locations/fredericia/

Haghighatkhah, A., Mäntylä, M., Oivo, M., & Kuvaja, P. (2018, 12). Test prioritization in

continuous integration environments. Journal of Systems and Software, ss. 80-98.

Hematti, H., Fang, Z., Mäntylä, M. V., & Adams, B. (2016, 07 13). Prioritizing manual test cases

in rapid release environments. Journal of software: testing Verification and reliability.

International Atomic Energy Agency. (2020). Country Nuclear Power Profile (CNPP) Sweden.

IAEA.

International Energy Agency. (2020). Data Centres and Data Transmission Networks - Tracking

report. Paris: IEA.

Liu, Z., Wierman, A., Ling, M., & Low, S. (2011, 12). Geographical Load Balancing with

Renewables. Sigmetrics Performance Evaluation Reviw SIGMETRICS, ss. 62 - 66.

Markets and Markets. (2019). Automation Testing Market by Component (Testing Types (Static,

Dynamic (Functional, Non-functional)), Services), Endpoint Interface (Mobile, Web,

Desktop, Embedded Software), Organization Size, Vertical, and Region - Global Forecast

to 2024. Northbrook: Markets and Markets.

Mazrekaj, A., Shabani, I., & Sejdiu, B. (2016, 02 01). Pricing Schemes in Cloud Computing: An

Overview. International Journal of Advanced Computer Science and Applications.

Microsoft. (2020, dec 7). microsoft.com. Hentet fra news:

https://news.microsoft.com/europe/features/microsoft-announces-plans-to-establish-

a-new-datacenter-region-in-denmark-to-accelerate-the-countrys-green-digital-

transformation/

Microsoft. (2020, 11 24). microsoft.com. Hentet fra news:

https://news.microsoft.com/europe/2020/11/24/microsoft-announces-investments-to-

accelerate-swedens-digital-transformation-and-plans-to-open-its-sustainable-

datacenter-region-in-2021/

78

Moss, S. (2017, 10 16). Google aquires 109 hectares of land in rural sweden. Hentet fra Data

center dynamics: https://www.datacenterdynamics.com/en/news/google-acquires-109-

hectares-of-land-in-rural-sweden

Murugan Tanggiah, S. B. (2016). A preliminary analysis of various tesing techniques in agile

development - a systematic litterature review. International conference on computer

and information sciences (ss. 600-605). Kuala Lumpur: 3rd International Conference on

Computer and Information Sciences (ICCOINS).

Mytton, D. (2020, 08 08). Accessing the suitability of the Greenhouse Gas Protocol for

calculation of emissions from public cloud computing workloads. Journal of cloud

computing, s. Article number 45.

Outsuki, T., Komiyama, R., & Fuji, Y. (2017, 7 3). Study on Surplus Electricity under Massive

Integration of Intermittent Renewable Energy Sources. Electrical Engineering in Japan,

ss. 17-31.

Pham, R., Kiesling, S., Singer, L., & Schneider, K. (2017, 11 07). Onboarding inexperienced

developers: struggles and perceptions regarding automated testing. Software Quality

Journal, ss. 1239 - 1268.

Radovanovic, A. (2020, 04 22). company news: data centers and infrastructure. Hentet fra

Google : https://blog.google/inside-google/infrastructure/data-centers-work-harder-

sun-shines-wind-blows

Saff, D., & Ernst, M. (2003). Reducing wasted development time via continuous testing. 14th

International Symposium on Software Reliability Engineering (ss. 281 - 292). Denver,

Colorado: ISSRE.

Schmidt, S. (2010, 4 30). The Guardian. Hentet fra https://www.theguardian.com:

https://www.theguardian.com/environment/2010/apr/30/cloud-computing-carbon-

emissions#:~:text=According%20to%20a%20recent%20Greenpeace,emissions%20would

%20reach%201%2C034%20megatonnes

79

Statnett. (2018). Fleksibilitet i det nordiske kraftmarkedet 2018 - 2040. Oslo: Statnett.

T. Sakamoto, Yamada, H., Horie, H., & Kono, K. (2012). Energy-Price-Driven Request Dispatching

for Cloud Data Centers. 2012 IEEE Fifth International Conference on Cloud Computing

(ss. 974-976). Honolulu: IEEE.

The Norwegian water resources and energy directorate. (2020). Langsiktig kraftmarkedsanalyse

2020 . Oslo: NVE.

Toosi, A. N., Qu, C., Assunuco, M., & Buyya, R. (2017, February 6). Renewable-aware

Geographical Load Balancing of Web Applications for Sustainable Data Centers. Journal

of network and computer applications.

U. S. Energy Information Administration. (2021, 04 17). electricity-generation-from-wind:

webarea for EIA. Hentet fra EIA: https://www.eia.gov/energyexplained/wind/electricity-

generation-from-wind.php

UK Department for Business, Energy & Industrial Strategy. (2020, 06 17).

gov.uk/government/publications/. Hentet fra gov.uk/government:

https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-

factors-2020

World Economic Forum. (2019, 12 19). weforum.org. Hentet fra world economic forum:

https://www.weforum.org/agenda/2019/12/with-thank-you-emails-polite-britons-burn-

thousands-of-tonnes-of-carbon-a-

year/#:~:text=Britons%20send%20more%20than%2064,list%20of%20most%20common

%20offenders.&text=Sending%20one%20less%20%27thank%20you,tonnes%20of%

80

10. Appendices

Appendix A Python files

A1 globalVariables.py

AREAS = ['SE1', 'SE2', 'SE3', 'SE4', 'FI', 'DK1', 'DK2', 'NO1', 'NO2', 'NO3', 'N

O4', 'NO5', 'EE']

IRE_THRESHOLD = 0.2

NEIGHBORS = {'DK1':['DK2', 'SE3', 'NO2', 'DE-

LU', 'NL'], 'DK2':['DK1', 'SE4', 'DE-

LU'], 'SE1': ['FI', 'SE2', 'NO4'], 'SE2': ['SE1', 'SE3', 'NO4', 'NO3'], 'SE3': ['

SE2', 'FI', 'SE4', 'NO1'], 'SE4': ['SE3', 'LT', 'DK2', 'DE-

LU', 'PL'], 'NO1': ['SE3', 'NO2', 'NO3', 'NO5'], 'NO2': ['NL', 'DE-

LU', 'DK1', 'NO1', 'NO5'], 'NO3': ['NO4', 'SE2', 'NO1', 'NO5'], 'NO4': ['SE1', 'S

E2', 'NO3'], 'NO5': ['NO3', 'NO1', 'NO5'], 'EE':['LV', 'FI'], 'FI':['SE3', 'EE',

'SE1']}

KEEP_UP_THRESHOLD = 5

A2 simulate.py

import datetime

from tinydb import TinyDB, Query

from decideServer import checkIfWeHaveServer, orderServer, addTestCollectionToSer

ver

from decideArea import findOptimalArea

from globalVariables import AREAS

import csv

import os

from shutil import copyfile

script for feeding commit-logs into the servercheck and allocation algorithms

in order to simulate traffic to the "green testing module"

the results are recorded in two files, server_order.json (server log) and resul

ts.csv

serverDB = TinyDB('storage/server_orders.json')

Ask = Query()

project = 'UDF'

indata = 'base'

scenario = 'WT60'

season = 'all'

filename = 'storage/commitlogs/'+ indata + "/" + project + '_' + season + '.csv'

fileOutput = [project, season, scenario]

dbStored = 'storage/db_files/'+ scenario + "_" + project + '_' + season + '.json'

81

waitingTime = 0

waitingTimeFileName = 'storage/'+ scenario + "_" + project + '_' + season + '.txt

'

def countServersPerArea():

 areaCountList = []

 for area in AREAS:

 count = serverDB.count(Ask.area == area)

 areaCountList.append(count)

 return areaCountList

def CalculateServerminutes(testingMinutes):

 greenServerMinutes = 0

 grayServerMinutes = 0

 greenWaste = 0

 grayWaste = 0

 outputList = []

 for n in range (1, (len(serverDB)+1)):

 serverOrder = dict(serverDB.get(doc_id=n))

 if serverOrder['green'] == 1:

 greenServerMinutes += serverOrder['tests'] * testingMinutes

 if serverOrder['shutdown'] == 0:

 greenWaste += 60 - (serverOrder['tests'] * testingMinutes)

 else:

 grayServerMinutes += serverOrder['tests'] * testingMinutes

 if serverOrder['shutdown'] == 0:

 grayWaste += 60 - (serverOrder['tests'] * testingMinutes)

 outputList.extend([grayServerMinutes, greenServerMinutes, greenWaste, grayWas

te])

 return outputList

loops through a file with commitlog timestamps and prints the output of each co

mmit

with open(filename) as f:

 csvReader = csv.reader(f)

 commits = 0

 delayTolerance = 0

 testDuration = 0

 greenServers = 0

 grayServers = 0

 utilizedServers = 0

 for line in csvReader:

 commits +=1

 delayTolerance += int(line[1])

82

 testDuration += int(float(line[2]))

 timeOfCommit = datetime.datetime.fromtimestamp(int(line[0]))

 haveServer = checkIfWeHaveServer(int(line[0]), int(line[1]), int(float(li

ne[2])))

 if haveServer != 0:

 waitingTime = addTestCollectionToServer(haveServer.doc_id, timeOfComm

it, int(float(line[2])), line[1])

 utilizedServers += 1

 else:

 where = findOptimalArea(int(line[0]), int(line[1]))

 if where != "no surplus area":

 x = orderServer(where["date"], where["hour"], where["minute"], wh

ere["area"], int(line[1]), int(float(line[2])), 1)

 startTimeString = where['date'] + '-' + str(where['hour'])+ '-

' + str(where['minute']) # added for waiting time count

 startTime = datetime.datetime.strptime(startTimeString, '%d.%m.%Y

-%H-%M') # added for waiting time count

 waitingTime = int((startTime - timeOfCommit).total_seconds() / 60

.0) # added for waiting time count

 greenServers += 1

 else:

 x = orderServer(timeOfCommit.strftime('%d.%m.%Y'), timeOfCommit.h

our, timeOfCommit.minute, "NO1", int(line[1]), int(float(line[2])), 0)

 grayServers += 1

 waitingTimeFile = open(waitingTimeFileName, "a")

 waitingTimeFile.write(str(waitingTime)+ "\n")

 waitingTimeFile.close()

 print(waitingTime)

 delayTolerance = delayTolerance/commits

 testDuration = testDuration / commits

 fileOutput.extend([delayTolerance, testDuration, commits, grayServers, greenS

ervers, utilizedServers])

f.close()

minutes = CalculateServerminutes(fileOutput[4])

fileOutput.extend(minutes)

fileOutput.extend(countServersPerArea())

outfile = open('storage/results.csv', "a")

csv_writer = csv.writer(outfile)

csv_writer.writerow(fileOutput)

outfile.close()

83

copyfile('storage/server_orders.json', dbStored)

os.remove('storage/server_orders.json')

print(fileOutput)

A3 decideServer.py

import json

from tinydb import TinyDB, Query

import datetime

import json

import ast

from globalVariables import KEEP_UP_THRESHOLD

serverDB = TinyDB('storage/server_orders.json')

Ask = Query()

calculate remaining time on server-hour and record reservation in database

if delay tolerance is less than 15 minutes, expect more tests, don't shut down

server after execution.

def orderServer(date, hour, minute, area, delayTolerance, testDuration, green):

 timeString= date + ' ' + str(hour) + ':' + str(minute)

 startTime = datetime.datetime.strptime(timeString, '%d.%m.%Y %H:%M')

 testEndTime = startTime + datetime.timedelta(minutes=testDuration)

 timeOut = startTime + datetime.timedelta(minutes=60)

 timeLeft = (timeOut-testEndTime).total_seconds() /60

 shutdown = 1

 if delayTolerance <= KEEP_UP_THRESHOLD:

 shutdown = 0

 x = serverDB.insert({"area": area, "start": int(startTime.timestamp()), "end"

: int(testEndTime.timestamp()), "timeout": int(timeOut.timestamp()), "shutdown":

shutdown, "timeleft":int(timeLeft), "green": green, "tests": 1})

 return x

See if server is available that can complete the test within acceptable delay,

and before the one hour mark

returns server reservation from database or zero

def checkIfWeHaveServer(timestamp, delayTolerance, testDuration):

 commitTime = datetime.datetime.fromtimestamp(int(timestamp))

 maxTestStart = commitTime + datetime.timedelta(minutes=delayTolerance)

 optionsNoShutdown = serverDB.get(

 (Ask.shutdown == 0) &

84

 (Ask.end <= maxTestStart.timestamp()) &

 (Ask.timeout >= int(timestamp)) &

 (Ask.timeleft >= testDuration)

)

 if optionsNoShutdown:

 startTimeForIncomingTest = max(optionsNoShutdown['end'], timestamp)

 timeLeftToRunTests = (datetime.datetime.fromtimestamp(optionsNoShutdown['

timeout'])-

datetime.datetime.fromtimestamp(startTimeForIncomingTest)).total_seconds() /60

 if timeLeftToRunTests >= testDuration:

 return optionsNoShutdown

 optionsWithShutdown = serverDB.get(

 (Ask.shutdown == 1) &

 (int(timestamp) <= Ask.end) &

 (maxTestStart.timestamp() >= Ask.end) &

 (Ask.timeleft >= testDuration)

)

 if optionsWithShutdown:

 return optionsWithShutdown

 return 0

Add a test run to a server that is alerady ordered

def addTestCollectionToServer(orderID, timeOfCommit, testDuration, delayTolerance

):

 serverOrder = serverDB.get(doc_id=orderID)

 endTime = datetime.datetime.fromtimestamp(serverOrder['end'])

 startTimeForIncomingTest = max(endTime, timeOfCommit)

 waitingTime = int((startTimeForIncomingTest - timeOfCommit).total_seconds() /

 60.0) # added for waiting time count

 newEndTime = startTimeForIncomingTest + datetime.timedelta(minutes=testDurati

on)

 newTImeLeft = (datetime.datetime.fromtimestamp(serverOrder['timeout'])-

newEndTime).total_seconds() /60

 newNumberOfTests = serverOrder['tests'] + 1

 serverDB.update({'end': int(newEndTime.timestamp()), "timeleft": newTImeLeft,

 "tests": newNumberOfTests }, doc_ids=[orderID])

 return(waitingTime) # added for waiting time count

85

A4 CAST.py

import json

from tinydb import TinyDB, Query

import datetime

from collections import defaultdict

from globalVariables import AREAS, IRE_THRESHOLD, NEIGHBORS

IREDB = TinyDB('storage/volumes_IRE.json')

priceDB = TinyDB('storage/prices.json')

totalProductionDB = TinyDB('storage/volumes_total.json')

Ask = Query()

def calculateDelta(date, hour, area):

 neighbors = NEIGHBORS[area]

 prices = dict(priceDB.get((Ask.date == date) & (Ask.hour == hour)))

 delta = 0

 for n in neighbors:

 difference = float(prices[area]) - float(prices[n])

 delta += difference

 return delta

def findOptimalArea(timestamp, delayTolerance):

 firstTime = datetime.datetime.fromtimestamp(int(timestamp))

 timeEnd = firstTime + datetime.timedelta(minutes=delayTolerance)

 surplusDays = dict()

 counter = 0

 time = firstTime

 minutes = 0

 while time <= timeEnd:

 nowDate = time.strftime("%d.%m.%Y")

 productionIRE = dict(IREDB.get((Ask.date == nowDate) & (Ask.hour == str(t

ime.hour))))

 productionTotal = dict(totalProductionDB.get((Ask.date == nowDate) & (Ask

.hour == str(time.hour))))

 areas = AREAS

 for item in areas:

 fractionOfIRE = int(productionIRE[item]) / int(productionTotal[item])

 if fractionOfIRE >= IRE_THRESHOLD:

 delta = calculateDelta(nowDate, str(time.hour), item)

 if delta < 0:

86

 counter += 1

 instance = {"date": time.strftime("%d.%m.%Y"), "hour": time.h

our, "minute": minutes, "area": item, "delta": delta}

 surplusDays[counter]=instance

 time = time + datetime.timedelta(minutes=60)

 if surplusDays:

 lowestDelta = min(surplusDays, key=lambda v: surplusDays[v]['delta'])

 bestAllocation = surplusDays[lowestDelta]

 if bestAllocation["hour"] == firstTime.hour: #make sure we start right a

way if the first hour is the best

 bestAllocation["minute"] = firstTime.minute

 else:

 bestAllocation = "no surplus area"

 return bestAllocation

87

A5 delayTolerances.py

import datetime

import csv

from numpy import random

loops thorugf txt file with commitlog timestamps

adds delay tolerance based on the hour of the day

writes to csv-file for use in simulations

def addDelayTolerance(filename, mean, standardDeviation):

 splitFileName = filename.split("/")

 newFileName = splitFileName[2][:-3]

 outFileName = "storage/commitlogs/withDelayTolerance/" + newFileName + "csv"

 outfile = open(outFileName, "a")

 delayTolerance = 0

 csvWriter = csv.writer(outfile)

 with open(filename) as f:

 for line in f:

 testDuration = abs(random.normal(loc=mean, scale=standardDeviation))

 timeOfCommit = datetime.datetime.fromtimestamp(int(line))

 if timeOfCommit.hour == 11:

 record = [int(line), "30", testDuration]

 csvWriter.writerow(record)

 elif timeOfCommit.hour >= 16 and timeOfCommit.hour < 20:

 record = [int(line), "720", testDuration]

 csvWriter.writerow(record)

 else:

 record = [int(line), "5", testDuration]

 csvWriter.writerow(record)

 outfile.close()

Test Duration is the second argument

Standard deviation third argument, set to 0 for non-noisy test durations

seasons = ["summer", "winter", "spring", "autumn"]

projectname = "UDF"

for n in seasons:

 filename = "storage/commitlogs/" + projectname + "_" + n + ".txt"

 addDelayTolerance(filename, 22, 11)

88

A6 heatmap.py

import json

from tinydb import TinyDB, Query

import datetime

from collections import defaultdict

from globalVariables import AREAS, IRE_THRESHOLD, NEIGHBORS

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from matplotlib import colors

import numpy as np

IREDB = TinyDB('storage/volumes_IRE.json')

priceDB = TinyDB('storage/prices.json')

totalProductionDB = TinyDB('storage/volumes_total.json')

Ask = Query()

returns a nested list with price deltas and time for all areas

def calculateDelta(date, hour, area):

 neighbors = NEIGHBORS[area]

 prices = dict(priceDB.get((Ask.date == date) & (Ask.hour == hour)))

 delta = 0

 for n in neighbors:

 difference = float(prices[area]) - float(prices[n])

 delta += difference

 return delta

def findOptimalArea(year, month, day, hour):

 time = datetime.datetime(year, month, day, hour, 0, 0, 0)

 surplusDays = ""

 counter = 0

 nowDate = time.strftime("%d.%m.%Y")

 productionIRE = dict(IREDB.get((Ask.date == nowDate) & (Ask.hour == str(time.

hour))))

 productionTotal = dict(totalProductionDB.get((Ask.date == nowDate) & (Ask.hou

r == str(time.hour))))

 areas = AREAS

 for item in areas:

 fractionOfIRE = int(productionIRE[item]) / int(productionTotal[item])

 if fractionOfIRE >= IRE_THRESHOLD:

 delta = calculateDelta(nowDate, str(time.hour), item)

 if delta < 0:

89

 counter += 1

 instance = str(time.hour) + ", " + str(item) + ", " + str(delta)

+ "\n"

 surplusDays+=instance

 else:

 counter += 1

 instance = str(time.hour) + ", " + str(item) + ", " + str(delta)

+ "\n"

 surplusDays+=instance

 else:

 counter += 1

 instance = str(time.hour) + ", " + str(item) + ", " + "0" + "\n"

 surplusDays+=instance

 time = time + datetime.timedelta(minutes=60)

 return surplusDays

def background_gradient(s, m, M, cmap='PuBu', low=0, high=0):

 rng = M - m

 norm = colors.Normalize(m - (rng * low),

 M + (rng * high))

 normed = norm(s.values)

 c = [colors.rgb2hex(x) for x in plt.cm.get_cmap(cmap)(normed)]

 return ['background-color: %s' % color for color in c]

def generateHeatmapOneDay(date):

 filenameCSV="heatmaps/" + date.replace(".", "") + ".csv"

 f = open(filenameCSV, "a")

 for n in range(0, 24):

 gold = str(findOptimalArea(int(date[6:10]), int(date[3:5]), int(date[:2])

, n))

 f.write(gold)

 f.close()

 imageFileName = "heatmaps/" + date.replace(".", "") + ".png"

 dfData = pd.read_csv(filenameCSV, names=['hour', 'area', 'delta'])

 sbdata= dfData.pivot("area", "hour", "delta")

 colormap = sns.diverging_palette(145, 300, s=60, as_cmap=True)

 ax = sns.heatmap(sbdata, cmap=colormap, center=0, mask=(sbdata==0))

 plt.savefig(imageFileName)

def generateHeatmapsOneWeek(weekstart):

90

 startDay = datetime.datetime.strptime(weekstart, '%d.%m.%Y')

 for n in range(0, 7):

 generateHeatmapOneDay(startDay.strftime('%d.%m.%Y'))

 startDay += datetime.timedelta(days=1)

A7 convert.py

import json

import tinydb

convert from json-files to files readable by tinyDB

db = tinydb.TinyDB("storage/volumes_total.json") # create a new storage for the

database

with open("data.txt", "r") as f: # open the unmodified file

 json_data = json.load(f) # parse its JSON

for entry in json_data:

 print(entry)

 db.insert(entry)

91

Appendix B – results

B1 Simuation result data Python Algorithms

project season scenario
Avg delay
tolerance

avg test
duration commits

gray
servers

green
servers

re-
use

gray
minutes

green
minutes

PA autumn base 10 1 18 0 18 0 0 18

PA summer base 10 1 17 4 13 0 4 13

PA spring base 10 1 14 1 13 0 1 13

PA winter base 10 1 2 0 2 0 0 2

PA autumn base-se4 10 1 18 1 17 0 1 17

PA summer base-se4 10 1 17 7 10 0 7 10

PA spring base-se4 10 1 14 11 3 0 11 3

PA winter base-se4 10 1 2 0 2 0 0 2

PA winter DT_long 120 1 2 0 2 0 0 2

PA summer DT_long 120 1 17 4 12 1 4 13

PA autumn DT_long 120 1 18 0 17 1 0 18

PA spring DT_long 120 1 14 1 9 4 1 13

PA summer DT_short 1 1 17 4 13 0 4 13

PA autumn DT_short 1 1 18 0 18 0 0 18

PA spring DT_short 1 1 14 1 13 0 1 13

PA winter DT_short 1 1 2 0 2 0 0 2

PA autumn IRE_low 10 1 18 0 18 0 0 18

PA summer IRE_low 10 1 17 2 15 0 2 15

PA spring IRE_low 10 1 14 0 14 0 0 14

PA winter IRE_low 10 1 2 0 2 0 0 2

PA autumn IRE_one 10 1 18 0 18 0 0 18

PA summer IRE_one 10 1 17 0 17 0 0 17

PA spring IRE_one 10 1 14 0 14 0 0 14

PA winter IRE_one 10 1 2 0 2 0 0 2

PA summer sdwn_long 10 1 17 3 11 3 4 13

PA autumn sdwn_long 10 1 18 0 13 5 0 18

PA spring sdwn_long 10 1 14 1 6 7 1 13

PA winter sdwn_long 10 1 2 0 2 0 0 2

PA autumn sdwn_short 10 1 18 0 18 0 0 18

PA summer sdwn_short 10 1 17 4 13 0 4 13

PA spring sdwn_short 10 1 14 1 13 0 1 13

PA winter sdwn_short 10 1 2 0 2 0 0 2

PA autumn TD_long 10 45 18 0 18 0 0 810

PA summer TD_long 10 45 17 4 13 0 180 585

PA spring TD_long 10 45 14 1 13 0 45 585

PA winter TD_long 10 45 2 0 2 0 0 90

PA summer TD_noisy 10 2 17 4 13 0 10 32

PA autumn TD_noisy 10 3 18 0 17 1 0 45

92

project season scenario
Avg delay
tolerance

avg test
duration commits

gray
servers

green
servers

re-
use

gray
minutes

green
minutes

PA spring TD_noisy 10 3 14 1 10 3 3 40

PA winter TD_noisy 10 4 2 0 2 0 0 7

Continued

project season scenario
green
waste

gray
waste se1 se2 se3 se4 fi dk1 dk2 no2 no3

PA autumn base 0 0 4 0 0 12 0 2 0 0 0

PA summer base 0 0 0 1 0 10 0 0 0 2 0

PA spring base 0 0 0 0 0 3 0 2 0 0 8

PA winter base 0 0 0 0 0 1 0 1 0 0 0

PA autumn base-se4 0 0 0 0 0 17 0 0 0 0 0

PA summer base-se4 0 0 0 0 0 10 0 0 0 0 0

PA spring base-se4 0 0 0 0 0 3 0 0 0 0 0

PA winter base-se4 0 0 0 0 0 2 0 0 0 0 0

PA winter DT_long 0 0 0 0 0 1 0 1 0 0 0

PA summer DT_long 0 0 0 0 0 11 0 0 0 1 0

PA autumn DT_long 0 0 3 0 0 11 1 2 0 0 0

PA spring DT_long 0 0 0 0 0 3 0 2 0 0 4

PA summer DT_short 0 0 0 1 0 10 0 0 0 2 0

PA autumn DT_short 0 0 4 0 0 12 0 2 0 0 0

PA spring DT_short 0 0 0 0 0 3 0 2 0 0 8

PA winter DT_short 0 0 0 0 0 1 0 1 0 0 0

PA autumn IRE_low 0 0 3 0 1 12 0 2 0 0 0

PA summer IRE_low 0 0 0 0 1 7 0 0 0 7 0

PA spring IRE_low 0 0 1 0 0 3 0 2 0 0 8

PA winter IRE_low 0 0 0 0 0 1 0 1 0 0 0

PA autumn IRE_one 0 0 0 0 0 10 0 2 0 5 0

PA summer IRE_one 0 0 0 0 1 3 0 0 0 13 0

PA spring IRE_one 0 0 0 0 8 4 0 0 0 0 1

PA winter IRE_one 0 0 0 0 0 1 0 1 0 0 0

PA summer sdwn_long 647 176 0 1 0 9 0 0 0 1 0

PA autumn sdwn_long 762 0 2 0 0 9 0 2 0 0 0

PA spring sdwn_long 347 59 0 0 0 3 0 1 0 0 2

PA winter sdwn_long 118 0 0 0 0 1 0 1 0 0 0

PA autumn sdwn_short 0 0 4 0 0 12 0 2 0 0 0

PA summer sdwn_short 0 0 0 1 0 10 0 0 0 2 0

PA spring sdwn_short 0 0 0 0 0 3 0 2 0 0 8

PA winter sdwn_short 0 0 0 0 0 1 0 1 0 0 0

PA autumn TD_long 0 0 4 0 0 12 0 2 0 0 0

93

project season scenario
green
waste

gray
waste se1 se2 se3 se4 fi dk1 dk2 no2 no3

PA summer TD_long 0 0 0 1 0 10 0 0 0 2 0

PA spring TD_long 0 0 0 0 0 3 0 2 0 0 8

PA winter TD_long 0 0 0 0 0 1 0 1 0 0 0

PA summer TD_noisy 0 0 0 1 0 10 0 0 0 2 0

PA autumn TD_noisy 0 0 3 0 0 12 0 2 0 0 0

PA spring TD_noisy 0 0 0 0 0 3 0 1 0 0 6

PA winter TD_noisy 0 0 0 0 0 1 0 1 0 0 0

Continued

project season scenario no4 no5 ee
waste
factor Ops cost

Gray
emissions

Green
emissions

Emissions
total

PA autumn base 0 0 0 0.00 18 0.00 0.01 0.01

PA summer base 0 0 0 0.00 17 0.00 0.00 0.01

PA spring base 0 0 0 0.00 14 0.00 0.00 0.00

PA winter base 0 0 0 0.00 2 0.00 0.00 0.00

PA autumn base-se4 0 0 0 0.00 18 0.00 0.01 0.01

PA summer base-se4 0 0 0 0.00 17 0.01 0.00 0.01

PA spring base-se4 0 0 0 0.00 14 0.01 0.00 0.01

PA winter base-se4 0 0 0 0.00 2 0.00 0.00 0.00

PA winter DT_long 0 0 0 0.00 2 0.00 0.00 0.00

PA summer DT_long 0 0 0 0.00 16 0.00 0.00 0.01

PA autumn DT_long 0 0 0 0.00 17 0.00 0.01 0.01

PA spring DT_long 0 0 0 0.00 10 0.00 0.00 0.00

PA summer DT_short 0 0 0 0.00 17 0.00 0.00 0.01

PA autumn DT_short 0 0 0 0.00 18 0.00 0.01 0.01

PA spring DT_short 0 0 0 0.00 14 0.00 0.00 0.00

PA winter DT_short 0 0 0 0.00 2 0.00 0.00 0.00

PA autumn IRE_low 0 0 0 0.00 18 0.00 0.01 0.01

PA summer IRE_low 0 0 0 0.00 17 0.00 0.00 0.01

PA spring IRE_low 0 0 0 0.00 14 0.00 0.00 0.00

PA winter IRE_low 0 0 0 0.00 2 0.00 0.00 0.00

PA autumn IRE_one 1 0 0 0.00 18 0.00 0.01 0.01

PA summer IRE_one 0 0 0 0.00 17 0.00 0.01 0.01

PA spring IRE_one 1 0 0 0.00 14 0.00 0.00 0.00

PA winter IRE_one 0 0 0 0.00 2 0.00 0.00 0.00

PA summer sdwn_long 0 0 0 49.77 14 0.16 0.20 0.36

PA autumn sdwn_long 0 0 0 42.33 13 0.00 0.24 0.24

PA spring sdwn_long 0 0 0 26.69 7 0.05 0.11 0.16

PA winter sdwn_long 0 0 0 59.00 2 0.00 0.04 0.04

94

project season scenario no4 no5 ee
waste
factor Ops cost

Gray
emissions

Green
emissions

Emissions
total

PA autumn sdwn_short 0 0 0 0.00 18 0.00 0.01 0.01

PA summer sdwn_short 0 0 0 0.00 17 0.00 0.00 0.01

PA spring sdwn_short 0 0 0 0.00 14 0.00 0.00 0.00

PA winter sdwn_short 0 0 0 0.00 2 0.00 0.00 0.00

PA autumn TD_long 0 0 0 0.00 18 0.00 0.25 0.25

PA summer TD_long 0 0 0 0.00 17 0.16 0.18 0.33

PA spring TD_long 0 0 0 0.00 14 0.04 0.18 0.22

PA winter TD_long 0 0 0 0.00 2 0.00 0.03 0.03

PA summer TD_noisy 0 0 0 0.00 17 0.01 0.01 0.02

PA autumn TD_noisy 0 0 0 0.00 17 0.00 0.01 0.01

PA spring TD_noisy 0 0 0 0.00 11 0.00 0.01 0.01

PA winter TD_noisy 0 0 0 0.00 2 0.00 0.00 0.00

B2 Simulation results MSC

project season scenario

Avg
delay
tolerance

avg test
duration commits

gray
servers

green
servers

re-
use

gray
minutes

green
minutes

MSC autumn base 210 22 56 1 44 11 22 1210

MSC spring base 204 22 51 27 11 13 836 286

MSC winter base 176 22 42 0 35 7 0 924

MSC summer base 230 22 35 4 23 8 110 660

MSC autumn base-se4 210 22 56 1 44 11 22 1210

MSC spring base-se4 204 22 51 29 9 13 880 242

MSC winter base-se4 176 22 42 8 27 7 198 726

MSC summer base-se4 230 22 35 5 22 8 132 638

MSC autumn DT_long 251 22 56 0 32 24 0 1232

MSC spring DT_long 247 22 51 22 10 19 814 308

MSC winter DT_long 219 22 42 0 28 14 0 924

MSC summer DT_long 269 22 35 2 21 12 88 682

MSC autumn DT_short 36 22 56 1 45 10 22 1210

MSC spring DT_short 35 22 51 28 11 12 836 286

MSC winter DT_short 30 22 42 0 35 7 0 924

MSC summer DT_short 39 22 35 6 23 6 176 594

MSC autumn IRE_low 210 22 56 1 44 11 22 1210

MSC spring IRE_low 204 22 51 16 22 13 484 638

MSC winter IRE_low 176 22 42 0 35 7 0 924

MSC summer IRE_low 230 22 35 4 23 8 110 660

MSC autumn IRE_one 210 22 56 0 45 11 0 1232

MSC spring IRE_one 204 22 51 0 37 14 0 1122

MSC winter IRE_one 176 22 42 0 35 7 0 924

95

project season scenario

Avg
delay

tolerance
avg test

duration commits
gray

servers
green

servers
re-

use
gray

minutes
green

minutes

MSC summer IRE_one 230 22 35 0 27 8 0 770

MSC autumn sdwn_long 210 22 56 1 44 11 22 1210

MSC spring sdwn_long 204 22 51 27 10 14 836 286

MSC winter sdwn_long 176 22 42 0 35 7 0 924

MSC summer sdwn_long 230 22 35 4 23 8 110 660

MSC autumn sdwn_short 210 22 56 1 46 9 22 1210

MSC spring sdwn_short 204 22 51 33 11 7 836 286

MSC winter sdwn_short 176 22 42 0 38 4 0 924

MSC summer sdwn_short 230 22 35 5 24 6 110 660

MSC autumn TD_long 210 45 56 1 55 0 45 2475

MSC spring TD_long 204 45 51 38 13 0 1710 585

MSC winter TD_long 176 45 42 0 42 0 0 1890

MSC summer TD_long 230 45 35 5 30 0 225 1350

MSC autumn TD_noisy 210 24 56 1 37 18 49 1310

MSC spring TD_noisy 204 23 51 28 9 14 883 302

MSC winter TD_noisy 176 23 42 0 35 7 0 970

MSC summer TD_noisy 230 22 35 4 23 8 108 651

MSC autumn TD_short 210 6 56 1 25 30 18 318

MSC spring TD_short 204 6 51 17 8 26 228 78

MSC winter TD_short 176 6 42 0 22 20 0 252

MSC summer TD_short 230 6 35 2 14 19 30 180

Continued

project season scenario
green
waste

gray
waste se1 se2 se3 se4 fi dk1 dk2

MSC autumn base 1204 38 2 0 0 42 0 0 0

MSC spring base 190 584 2 2 0 5 0 2 0

MSC winter base 1014 0 0 0 0 18 0 17 0

MSC summer base 504 130 0 0 0 20 0 3 0

MSC autumn base-se4 1204 38 0 0 0 44 0 0 0

MSC spring base-se4 152 622 0 0 0 9 0 0 0

MSC winter base-se4 770 244 0 0 0 27 0 0 0

MSC summer base-se4 466 168 0 0 0 22 0 0 0

MSC autumn DT_long 484 0 1 0 0 31 0 0 0

MSC spring DT_long 146 328 2 2 0 4 0 2 0

MSC winter DT_long 594 0 0 0 0 14 0 14 0

MSC summer DT_long 384 32 0 0 0 20 0 1 0

MSC autumn DT_short 1204 38 6 0 0 39 0 0 0

96

project season scenario
green
waste

gray
waste se1 se2 se3 se4 fi dk1 dk2

MSC spring DT_short 190 584 3 1 0 5 0 2 0

MSC winter DT_short 1014 0 0 0 0 18 0 17 0

MSC summer DT_short 564 130 0 0 0 21 0 2 0

MSC autumn IRE_low 1204 38 2 0 0 42 0 0 0

MSC spring IRE_low 498 276 13 2 0 5 0 1 0

MSC winter IRE_low 1014 0 0 0 0 18 0 17 0

MSC summer IRE_low 504 130 0 0 1 18 0 2 0

MSC autumn IRE_one 1242 0 0 0 0 18 0 0 0

MSC spring IRE_one 774 0 6 0 0 5 0 1 0

MSC winter IRE_one 1014 0 0 0 1 3 0 14 0

MSC summer IRE_one 634 0 0 0 1 10 0 2 0

MSC autumn sdwn_long 1242 38 2 0 0 42 0 0 0

MSC spring sdwn_long 206 638 2 2 0 4 0 2 0

MSC winter sdwn_long 1052 0 0 0 0 18 0 17 0

MSC summer sdwn_long 542 130 0 0 0 20 0 3 0

MSC autumn sdwn_short 0 0 2 0 0 44 0 0 0

MSC spring sdwn_short 0 0 2 2 0 5 0 2 0

MSC winter sdwn_short 0 0 0 0 0 20 0 18 0

MSC summer sdwn_short 0 0 0 0 0 21 0 3 0

MSC autumn TD_long 555 15 2 0 0 53 0 0 0

MSC spring TD_long 75 405 3 3 0 5 0 2 0

MSC winter TD_long 465 0 0 0 0 23 0 19 0

MSC summer TD_long 270 75 0 0 0 27 0 3 0

MSC autumn TD_noisy 818 11 2 0 0 35 0 0 0

MSC spring TD_noisy 184 706 2 1 0 4 0 2 0

MSC winter TD_noisy 858 0 0 0 0 17 0 18 0

MSC summer TD_noisy 510 132 0 0 0 20 0 3 0

MSC autumn TD_short 978 42 1 0 0 24 0 0 0

MSC spring TD_short 210 540 1 1 0 4 0 2 0

MSC winter TD_short 810 0 0 0 0 10 0 12 0

MSC summer TD_short 432 90 0 0 0 12 0 2 0

Continued

project season scenario no2 no3 no4 no5 ee
waste
factor

Ops
cost

Gray
emissions

Green
emissions

Emissions
total

MSC autumn base 0 0 0 0 0 1.00 45 0.05 0.73 0.79

MSC spring base 0 0 0 0 0 0.66 38 1.24 0.14 1.38

MSC winter base 0 0 0 0 0 1.10 35 0.00 0.59 0.59

MSC summer Base 0 0 0 0 0 0.76 27 0.21 0.35 0.56

97

project season scenario no2 no3 no4 no5 ee
waste
factor

Ops
cost

Gray
emissions

Green
emissions

Emissions
total

MSC autumn base-se4 0 0 0 0 0 1.00 45 0.05 0.73 0.79

MSC spring base-se4 0 0 0 0 0 0.63 38 1.31 0.12 1.43

MSC winter base-se4 0 0 0 0 0 1.06 35 0.39 0.46 0.84

MSC summer base-se4 0 0 0 0 0 0.73 27 0.26 0.34 0.60

MSC autumn DT_long 0 0 0 0 0 0.39 32 0.00 0.52 0.52

MSC spring DT_long 0 0 0 0 0 0.47 32 1.00 0.14 1.13

MSC winter DT_long 0 0 0 0 0 0.64 28 0.00 0.46 0.46

MSC summer DT_long 0 0 0 0 0 0.56 23 0.10 0.32 0.43

MSC autumn DT_short 0 0 0 0 0 1.00 46 0.05 0.73 0.79

MSC spring DT_short 0 0 0 0 0 0.66 39 1.24 0.14 1.38

MSC winter DT_short 0 0 0 0 0 1.10 35 0.00 0.59 0.59

MSC summer DT_short 0 0 0 0 0 0.95 29 0.27 0.35 0.62

MSC autumn IRE_low 0 0 0 0 0 1.00 45 0.05 0.73 0.79

MSC spring IRE_low 0 1 0 0 0 0.78 38 0.66 0.35 1.01

MSC winter IRE_low 0 0 0 0 0 1.10 35 0.00 0.59 0.59

MSC summer IRE_low 2 0 0 0 0 0.76 27 0.21 0.35 0.56

MSC autumn IRE_one 19 0 8 0 0 1.01 45 0.00 0.75 0.75

MSC spring IRE_one 11 14 0 0 0 0.69 37 0.00 0.58 0.58

MSC winter IRE_one 17 0 0 0 0 1.10 35 0.00 0.59 0.59

MSC summer IRE_one 14 0 0 0 0 0.82 27 0.00 0.43 0.43

MSC autumn sdwn_long 0 0 0 0 0 1.03 45 0.05 0.75 0.80

MSC spring sdwn_long 0 0 0 0 0 0.72 37 1.28 0.15 1.43

MSC winter sdwn_long 0 0 0 0 0 1.14 35 0.00 0.60 0.60

MSC summer sdwn_long 0 0 0 0 0 0.82 27 0.21 0.37 0.58

MSC autumn sdwn_short 0 0 0 0 0 0.00 47 0.02 0.37 0.39

MSC spring sdwn_short 0 0 0 0 0 0.00 44 0.73 0.09 0.82

MSC winter sdwn_short 0 0 0 0 0 0.00 38 0.00 0.28 0.28

MSC summer sdwn_short 0 0 0 0 0 0.00 29 0.10 0.20 0.30

MSC autumn TD_long 0 0 0 0 0 0.22 56 0.05 0.92 0.97

MSC spring TD_long 0 0 0 0 0 0.13 51 1.84 0.20 2.04

MSC winter TD_long 0 0 0 0 0 0.25 42 0.00 0.72 0.72

MSC summer TD_long 0 0 0 0 0 0.20 35 0.26 0.49 0.75

MSC autumn TD_noisy 0 0 0 0 0 0.62 38 0.05 0.65 0.70

MSC spring TD_noisy 0 0 0 0 0 0.61 37 1.38 0.15 1.53

MSC winter TD_noisy 0 0 0 0 0 0.88 35 0.00 0.56 0.56

MSC summer TD_noisy 0 0 0 0 0 0.78 27 0.21 0.35 0.56

MSC autumn TD_short 0 0 0 0 0 3.08 26 0.05 0.39 0.45

MSC spring TD_short 0 0 0 0 0 2.69 25 0.67 0.09 0.76

MSC winter TD_short 0 0 0 0 0 3.21 22 0.00 0.32 0.32

MSC summer TD_short 0 0 0 0 0 2.40 16 0.10 0.19 0.29

98

B3 Simulation results VSC

project season scenario

Avg
delay
tolerance

avg test
duration commits

gray
servers

green
servers

re-
use

gray
minutes

green
minutes

VSC winter base 183 16 538 1 260 277 32 8576

VSC autumn base 178 16 476 0 253 223 0 7616

VSC spring base 165 16 414 95 140 179 2592 4032

VSC summer base 153 16 185 17 93 75 368 2592

VSC winter base-se4 183 16 538 34 227 277 1184 7424

VSC autumn base-se4 178 16 476 5 248 223 112 7504

VSC spring base-se4 165 16 414 157 77 180 4368 2256

VSC summer base-se4 153 16 185 24 88 73 512 2448

VSC winter DT_long 227 16 538 0 196 342 0 8608

VSC autumn DT_long 222 16 477 0 178 299 0 7632

VSC spring DT_long 209 16 414 61 103 250 2416 4208

VSC summer DT_long 199 16 185 11 75 99 336 2624

VSC winter DT_short 31 16 538 1 290 247 16 8592

VSC autumn DT_short 30 16 477 0 268 209 0 7632

VSC spring DT_short 28 16 414 99 155 160 2592 4032

VSC summer DT_short 26 16 185 25 100 60 528 2432

VSC winter IRE_low 183 16 538 1 260 277 32 8576

VSC autumn IRE_low 178 16 476 0 253 223 0 7616

VSC spring IRE_low 165 16 414 75 159 180 1968 4656

VSC summer IRE_low 153 16 185 12 99 74 288 2672

VSC winter IRE_one 183 16 538 0 264 274 0 8608

VSC autumn IRE_one 178 16 476 0 255 221 0 7616

VSC spring IRE_one 165 16 414 0 231 183 0 6624

VSC summer IRE_one 153 16 185 0 111 74 0 2960

VSC winter sdwn_long 183 16 538 1 259 278 32 8576

VSC autumn sdwn_long 178 16 476 0 252 224 0 7616

VSC spring sdwn_long 165 16 414 94 142 178 2592 4032

VSC summer sdwn_long 153 16 185 17 90 78 368 2592

VSC autumn sdwn_short 178 16 476 0 332 144 0 7616

VSC winter sdwn_short 183 16 538 1 318 219 32 8576

VSC spring sdwn_short 165 16 414 120 169 125 2592 4032

VSC summer sdwn_short 153 16 185 23 106 56 416 2544

VSC winter TD_long 183 45 538 1 537 0 45 24165

VSC autumn TD_long 178 45 477 0 477 0 0 21465

VSC spring TD_long 165 45 414 160 254 0 7200 11430

VSC summer TD_long 153 45 185 27 158 0 1215 7110

VSC winter TD_noisy 183 15 538 1 250 287 31 8305

VSC autumn TD_noisy 178 16 477 0 236 241 0 7634

99

project season scenario

Avg
delay

tolerance
avg test

duration commits
gray

servers
green

servers
re-

use
gray

minutes
green

minutes

VSC spring TD_noisy 165 15 414 86 137 191 2489 3871

VSC summer TD_noisy 153 15 185 16 92 77 356 2391

VSC winter TD_short 183 6 538 1 137 400 18 3210

VSC spring TD_short 165 6 414 59 75 280 990 1494

VSC autumn TD_short 178 6 477 0 130 347 0 2862

VSC summer TD_short 153 6 185 13 65 107 150 960

Continued

project season scenario
green
waste

gray
waste se1 se2 se3 se4 fi dk1 dk2 no2 no3

VSC winter base 6040 28 0 0 0 177 0 77 0 0 6

VSC autumn base 6776 0 14 0 0 226 0 9 4 0 0

VSC spring base 3616 2824 22 23 0 35 0 9 0 0 51

VSC summer base 2360 652 0 2 0 81 0 6 0 3 0

VSC winter base-se4 5292 776 0 0 0 227 0 0 0 0 0

VSC autumn base-se4 6588 188 0 0 0 248 0 0 0 0 0

VSC spring base-se4 1832 4564 0 0 0 77 0 0 0 0 0

VSC summer base-se4 2316 740 0 0 0 88 0 0 0 0 0

VSC winter DT_long 2264 0 0 0 0 133 0 61 0 0 2

VSC autumn DT_long 2196 0 12 0 0 158 0 6 2 0 0

VSC spring DT_long 1388 992 16 21 0 20 0 6 0 0 40

VSC summer DT_long 1428 324 0 1 0 67 0 4 0 3 0

VSC winter DT_short 7708 44 0 0 0 190 0 91 0 0 9

VSC autumn DT_short 7480 0 22 0 0 231 0 11 4 0 0

VSC spring DT_short 4500 2976 24 18 0 40 0 12 0 0 61

VSC summer DT_short 3020 756 0 2 0 84 0 11 0 2 0

VSC winter IRE_low 6040 28 0 0 0 177 0 77 0 0 6

VSC autumn IRE_low 6776 0 33 4 0 207 0 9 0 0 0

VSC spring IRE_low 4180 2260 56 18 0 18 0 5 0 0 62

VSC summer IRE_low 2624 432 0 0 7 74 0 2 0 15 0

VSC winter IRE_one 6112 0 1 0 18 104 0 56 0 84 0

VSC autumn IRE_one 6776 0 2 0 1 150 0 9 0 57 2

VSC spring IRE_one 6440 0 12 0 28 26 0 1 0 95 61

VSC summer IRE_one 3056 0 0 0 6 62 0 2 0 41 0

VSC winter sdwn_long 6288 28 0 0 0 176 0 77 0 0 6

VSC autumn sdwn_long 6932 0 14 0 0 225 0 9 4 0 0

VSC spring sdwn_long 3832 2864 22 23 0 37 0 9 0 0 51

VSC summer sdwn_long 2500 652 0 1 0 79 0 6 0 3 0

100

project season scenario
green
waste

gray
waste se1 se2 se3 se4 fi dk1 dk2 no2 no3

VSC autumn sdwn_short 0 0 21 0 0 296 0 11 4 0 0

VSC winter sdwn_short 0 0 0 0 0 209 0 101 0 0 8

VSC spring sdwn_short 0 0 26 25 0 41 0 13 0 0 64

VSC summer sdwn_short 0 0 0 2 0 94 0 6 0 3 0

VSC winter TD_long 5340 15 0 0 0 359 0 169 0 0 9

VSC autumn TD_long 4950 0 24 0 0 433 0 16 4 0 0

VSC spring TD_long 2685 1935 36 54 0 58 0 19 0 0 87

VSC summer TD_long 1620 405 0 2 0 139 0 9 0 7 0

VSC winter TD_noisy 5903 29 0 0 0 163 0 80 0 0 7

VSC autumn TD_noisy 5891 0 15 0 0 209 0 9 3 0 0

VSC spring TD_noisy 3761 2368 21 21 0 34 0 12 0 0 49

VSC summer TD_noisy 2568 604 0 1 0 80 0 5 0 5 0

VSC winter TD_short 4134 42 0 0 0 94 0 38 0 0 5

VSC spring TD_short 2232 1842 11 11 0 21 0 6 0 0 26

VSC autumn TD_short 4596 0 8 0 0 115 0 5 2 0 0

VSC summer TD_short 2346 630 0 1 0 55 0 5 0 3 0

Continued

project season scenario no4 no5 ee
waste
factor

Ops
cost

Gray
emissions

Green
emissions

Emissions
total

VSC winter base 0 0 0 0.70 261 0.05 4.45 4.50

VSC autumn base 0 0 0 0.89 253 0.00 4.38 4.38

VSC spring base 0 0 0 0.90 235 4.72 2.33 7.05

VSC summer base 0 0 1 0.91 110 0.89 1.51 2.40

VSC winter base-se4 0 0 0 0.71 261 1.71 3.87 5.58

VSC autumn base-se4 0 0 0 0.88 253 0.26 4.29 4.55

VSC spring base-se4 0 0 0 0.81 234 7.78 1.24 9.03

VSC summer base-se4 0 0 0 0.95 112 1.09 1.45 2.54

VSC winter DT_long 0 0 0 0.26 196 0.00 3.31 3.31

VSC autumn DT_long 0 0 0 0.29 178 0.00 2.99 2.99

VSC spring DT_long 0 0 0 0.33 164 2.97 1.70 4.67

VSC summer DT_long 0 0 0 0.54 86 0.58 1.23 1.81

VSC winter DT_short 0 0 0 0.90 291 0.05 4.96 5.01

VSC autumn DT_short 0 0 0 0.98 268 0.00 4.60 4.60

VSC spring DT_short 0 0 0 1.12 254 4.85 2.60 7.45

VSC summer DT_short 0 0 1 1.24 125 1.12 1.66 2.78

VSC winter IRE_low 0 0 0 0.70 261 0.05 4.45 4.50

VSC autumn IRE_low 0 0 0 0.89 253 0.00 4.38 4.38

VSC spring IRE_low 0 0 0 0.90 234 3.68 2.69 6.37

101

project season scenario no4 no5 ee
waste
factor

Ops
cost

Gray
emissions

Green
emissions

Emissions
total

VSC summer IRE_low 0 0 1 0.98 111 0.63 1.61 2.24

VSC winter IRE_one 1 0 0 0.71 264 0.00 4.48 4.48

VSC autumn IRE_one 34 0 0 0.89 255 0.00 4.38 4.38

VSC spring IRE_one 8 0 0 0.97 231 0.00 3.98 3.98

VSC summer IRE_one 0 0 0 1.03 111 0.00 1.83 1.83

VSC winter sdwn_long 0 0 0 0.73 260 0.05 4.52 4.58

VSC autumn sdwn_long 0 0 0 0.91 252 0.00 4.43 4.43

VSC spring sdwn_long 0 0 0 0.95 236 4.75 2.39 7.15

VSC summer sdwn_long 0 0 1 0.96 107 0.89 1.55 2.44

VSC autumn sdwn_short 0 0 0 0.00 332 0.00 2.32 2.32

VSC winter sdwn_short 0 0 0 0.00 319 0.03 2.61 2.64

VSC spring sdwn_short 0 0 0 0.00 289 2.26 1.23 3.49

VSC summer sdwn_short 0 0 1 0.00 129 0.36 0.77 1.14

VSC winter TD_long 0 0 0 0.22 538 0.05 8.98 9.03

VSC autumn TD_long 0 0 0 0.23 477 0.00 8.04 8.04

VSC spring TD_long 0 0 0 0.23 414 7.96 4.30 12.26

VSC summer TD_long 0 0 1 0.23 185 1.41 2.66 4.07

VSC winter TD_noisy 0 0 0 0.71 251 0.05 4.33 4.38

VSC autumn TD_noisy 0 0 0 0.77 236 0.00 4.12 4.12

VSC spring TD_noisy 0 0 0 0.97 223 4.23 2.32 6.55

VSC summer TD_noisy 0 0 1 1.07 108 0.84 1.51 2.35

VSC winter TD_short 0 0 0 1.29 138 0.05 2.24 2.29

VSC spring TD_short 0 0 0 1.49 134 2.47 1.13 3.60

VSC autumn TD_short 0 0 0 1.61 130 0.00 2.27 2.27

VSC summer TD_short 0 0 1 2.44 78 0.68 1.01 1.69

102

103

