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Abstract 

In society today, we are dependent on software in our daily lives. One key factor of success 

when creating this software is the use of automated testing. At the same time, we have a large 

challenge in reducing greenhouse gas emissions to prevent global warming. Every day, 

thousands of developers trigger automated tests, and each test uses some amount of energy.  

 

The electricity used for running these tests can be produced in many ways, some of them 

greener than others. Green energy often comes from intermittent renewable energy (IRE) 

sources, such as wind and solar power plants. The intermittent nature of these power sources 

means that they cannot supply one area with electricity throughout the whole day.  

 

This project explores the possibility of moving software testing jobs in time and geolocation 

(different data centers) to areas with green energy surplus, in order to minimize the 

greenhouse gas emissions caused by the tests. The results showed that it is possible to reduce 

the carbon footprint of automated tests by this method, but this requires sophisticated 

infrastructure along with a geography where data about the supply and demand of electricity 

and its production sources is available in sufficiently high resolution.  
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1. Introduction 

Today, most communities use digital products like bus ticketing apps, digital maps, newspapers, 

traffic control systems and digital communication in everyday life. Digital products are 

everywhere and provide us with access to services like education, health care and other human 

rights, as well as less critical but widely used services like social media and entertainment. We 

have made ourselves dependent on software because it increases our efficiency compared to 

analog methods. It is expected that the demand for digital products will increase as more 

domains become digitized and larger parts of the world's population gain access to the internet. 

Software lives in an ever-changing environment, with new requirements, hardware, laws and 

regulations and increasing user’s expectations. Therefore, the software must undergo rapid 

changes, and it is of great importance that it still behaves as expected when changes are 

introduced. Unplanned outages and unexpected behavior can have very costly consequences. 

One example is the opening of a new terminal at Heathrow airport in 2008, where a software 

bug caused thousands of bags to be left behind while their flights took off. Over 500 flights had 

to be cancelled, and the costs have been estimated to be around 50$ million. Another example 

is the Knight Capital trading glitch in 2012, where unexpected behavior in newly installed 

trading software caused the loss of $440 million.  

The antidote to new software failing, is to have a rigorous testing scheme in place.  It is not 

uncommon for testing activities to account for 50% of the development costs in a software 

project, and for projects where the consequences of a failure have massive impact, it can be 

even more (Dudekula Mohammad, Katam Reddy Kiran et al. 2012).  

A widely used way to ensure the consistency and quality of the software is to run a collection of 

automated tests, either after a change or at scheduled intervals. The size of the test collection 

can be as large or even larger than the production code.  

Running automated tests is necessary, but it has a cost. The most obvious cost is developing 

and maintaining the tests themselves, but there is also a cost associated with running the tests, 
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as they require hardware and energy to execute. Getting small pieces of code to production 

often is a key metric for successful software businesses, which means that small changes are 

done frequently, which triggers at least one run of the test suite each time. 

The resource usage associated with testing can become significant, and there is no reason to 

believe it will decrease in the future. Data centers that offer infrastructure as a service charge 

for the resources used and running tests can be a cost driver for software businesses. In 

addition, there are indirect costs associated with using computing power. Every time a 

computational calculation takes place, some amount of electric energy is used. In addition to 

monetary costs, the production of electric energy often releases carbon emissions that 

contribute to global warming. This cost is not necessarily reflected in software projects 

literature but is forwarded to those who experience the most dramatic effect of climate 

changes.  

Data centers have become more energy efficient in recent years, which helps stem their current 

impact on energy consumption. Virtualization has also contributed to reduced energy spending, 

as more VMs now run on each physical machine. Still, it is expected that energy usage from 

data centers and computing in general will increase in the coming years due to an increasing 

demand (Masanet, Shehabi et al. 2020). 

The amount of energy used is not the only relevant factor when in reducing the negative impact 

a test suite run will have on the climate. Electric energy is produced in numerous different 

ways, some causing large emissions while others have a small carbon footprint. Wind turbines 

and solar power plants are considered green production methods, but they also have varying 

production throughout the day of time and year. Hence, a data center placed near a wind 

turbine park will not always use green energy.  

Moving testing workloads dynamically between data centers based on the availability of green 

energy would require the combination of the complex and dynamic conditions for local energy 

production across a large region with the most advanced automated framework in software 

engineering - the continuous integration pipeline. Software projects have different constraints 

and requirements for their testing process. Still, they all would have to adapt to the same 
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conditions of the availability of green energy, which in turn can only be predicted for one day 

ahead. The aim of this thesis, in broad terms, is to build a bridge between these two concepts.   

1.1  Problem statements: 

1: Investigate the development of a model which attempts to optimize the organization of tests 

in an automated test suite with the objective of least energy greenhouse gas emissions.  

2: Evaluate whether the model is successful in making a significant reduction in the usage of 

non-green energy.  
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2. Background 

Imagine you just bought a new phone. You tear open the wrapping and ogle this shiny and 

expensive new companion which you will carry with you for years to come. You feel the heft of 

it, the cold metal and glossy screen which radiates performance. Oh, how you look forward to 

trying out all its new features! Fingerprint recognition, facial authentication and no more typing 

with human-sized fingers on mouse-sized keyboards. This new phone is progress. Then it 

happens. After all the apps are installed and your data is transferred, you want to log in to your 

banking app using your smirking, smiling, I-just-got-a-new-phone face. What? No support for 

the fingerprint reader? Not the other app either? Slowly, the smile turns sour. 

Users expect their apps and services to keep up with the development of new technology. 

Companies who manage to change their product as new requirements arise without 

introducing defects have a significant competitive advantage in today’s market. The ability to 

constantly deliver improvements and new features without the customers noticing instability is 

the key factor to make software that drive business value (Forsgren, Humble, & Kim, 2018).  

2.1  The rise of DevOps 

The term DevOps came to light in 2009 after a presentation named “10+ Deploys per Day: Dev 

and Ops Cooperation at Flickr” was held at the O’Reilly Velocity conference. The first DevOps 

days were held in Belgium the same year, and in 2013 the novel The Phoenix project was 

published. The book tells a story about an IT manager who uses ideas from lean manufacturing 

to break down the walls between development and operations to successfully deliver his 

seemingly hopeless project. This book is still used as a resource for understanding the DevOps 

and Continuous Integration (CI) methods, and at the time of writing it is ranked number three 

on the Amazon list of best sellers in Business production and Operations (Butgereit, 2019). 

The more traditional way of thinking, where code is delivered in bulk from the developer team 

to the operations team, is known to slow down delivery frequency as well as causing 

collaboration issues and finger-pointing between the teams. DevOps methods are designed to 
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turn the code a developer is writing into something that has value for the end user fast. This is 

done by streamlining and automating the processes build, test, and deploy in a Continuous 

Integration/Deploy pipeline.    

 

Figure 2.1: a continuous integration pipeline with deploy. 

When a developer writes a piece of code and commits it to the version control system, this 

action triggers a build software where the code is compiled and turned into running software 

on a server. Next, a series of automated tests are triggered, and the developer is notified as to 

whether the tests went well or not. If all tests pass, the new version of the software will deploy 

automatically, and can now be used by the customer.  

This process is followed through from end to end, even for the smallest changes. A developer 

typically wants to commit their work quite often, in order to have many possible points to 

restore from, so something like fixing spelling errors or changes to indentations can be run 

through the cycle.  

2.2  The importance of automated testing 

CI methods are widely used by successful businesses to deliver software fast and efficient 

(Haghighatkhah, Mäntylä, Oivo, & Kuvaja, 2018), but ensuring quality in a frequently changing 

code base is a challenge that only grows bigger with the rate of change, and it is complicated to 

design an appropriate testing scheme (Murugan Tanggiah, 2016). The automation of commit 

and deploy has been in focus since the beginning of DevOps, but fitting tests and quality 

assurance into the pipeline has received less focus. The deployment is quite similar for most 

projects, while tests suite collections are unique.  

The book Software Engineering by Ian Sommerville is used in educating software engineers and 

has been around in numerous editions since it first came out in 1982. Still, the topic of software 
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testing only gets a 23 pages long slot in the 755-page book, and automated testing is not a part 

of it. A 2017 study found that software engineering graduates had little or no knowledge of 

automated testing, and many professionals have stopped expecting graduates to know 

anything about it (Pham, Kiesling, Singer, & Schneider, 2017).  

““Automated testing is an entirely new concept to most new hires. High-level 

test suite design and real-world experience is universally lacking.”  

–  survey respondent (Pham, Kiesling, Singer, & Schneider, 2017) 

Automated testing, it seems, is not on the curriculum in most software engineer degree 

programs, but there are some highlights. Delft University has launched an online course in 

automated testing and several other universities have testing courses or DevOps courses where 

automated testing is a component. Knowledge and skill in automated testing are in high 

demand by the software industry, but it has gotten little attention at universities so far. 

2.3  The need for efficiency in automated testing 

Running automated tests with each iteration of the software is a natural part of any CI-pipeline. 

However, for the largest projects it can be too resource-consuming to run all tests every time 

changes are made. This would require far too much time, which will delay feedback to the 

developer and require significant computational resources. Fast feedback is useful, as a 

developer will spend less time fixing a bug in code that she recently worked on (Saff & Ernst, 

2003). Reducing computational resource usage is important, both for saving direct costs and 

reducing carbon emissions associated with energy consumption. Choosing which tests to run 

and how to order them are the key factors to testing performance, and some interesting 

research has been done on these issues. Most research before 2012 has been focused on code 

coverage-based techniques for bug discovery (Catal & Mishra, 2012), but in later years research 

on model-based techniques like Test Suite Minimization, Tests Case Selection and Test Case 

Prioritization have gotten more attention.  
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Previous findings indicate that the order in which the tests are run is of importance as to how 

fast a failure is detected. This is important because one can stop the test suite from proceeding 

further once a test has failed, saving time and costs. There are two main methods of 

determining the order; historically based test case prioritization (HBTCP) and diversity-based 

test case prioritization (DBTCP).  

HBTCP is based on the idea that tests that have failed before are more likely to fail again and 

should therefore be prioritized to provoke test failures faster. This hypothesis is supported by 

research that show significant improvements in running time for test suites that uses HBTCP in 

continuous integration environments (Hematti, Fang, Mäntylä, & Adams, 2016). Diversity based 

test prioritization is based upon the idea that if one runs tests that are the most different from 

each other first, one can find bugs faster.  

2.4  Computing and power consumption 

Getting feedback fast is one motivation behind making the tests run as efficiently as possible, 

cost savings is another. Most cloud vendors bill for virtual machines on an hourly basis, so from 

a cost perspective it is preferable to use as little as possible. In addition, there is the 

environmental aspect. The fact that computing causes greenhouse gas emissions has gotten 

more attention during recent years, and headings like “How thank you emails are polluting the 

planet” and “The dark side of cloud computing: soaring carbon emissions” have been observed 

in newspapers and magazines (World Economic Forum, 2019) (Schmidt, 2010).  

Today, roughly 1% of the electric energy produced is consumed by data centers. A study from 

2018 estimated that the ICT industry will contribute between 7 and 14% of the total global 

greenhouse gas emissions by 2035, whereas 44% will come from data centers (Belkhir & 

Elmeligi, 2018). Other projections are more optimistic, and the industry has done a lot to 

increase efficiency over the later years. Placing data centers in cooler places to reduce the need 

for heating, more efficient technology and smart virtualization software makes it possible to do 

more with less electricity. In fact, data center energy usage has remained almost the same for 

the last ten years, even though their workflow has increased twelvefold. Still, the International 
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Energy Agency expects a high increase in demand for data center services in the coming years 

and state that it is still much needed to keep the focus on data center energy efficiency. 

Strong government and industry efforts on energy efficiency, renewables 

procurement, and RD&D are necessary to limit growth in energy demand and 

emissions over the next decade. - (International Energy Agency, 2020) 

 

Figure 2.2: IEA, Global trends in internet traffic, data centre workloads and data centre energy use, 2010-2019, IEA, Paris 
https://www.iea.org/data-and-statistics/charts/global-trends-in-internet-traffic-data-centre-workloads-and-data-centre-
energy-us 

Many of the larger cloud service providers, like Google and Microsoft buy green certificates to 

ensure the energy they use comes from green sources. Some of them, like Amazon Web 

Services also invest heavily in green energy projects like wind and solar power plants (Amazon, 

2020). Even so, they cannot guarantee that the electricity they use at any given time comes 

from a green source, as the production of green energy is variable and does not always match 

the demand of the data centers.  

  

https://www.iea.org/data-and-statistics/charts/global-trends-in-internet-traffic-data-centre-workloads-and-data-centre-energy-us
https://www.iea.org/data-and-statistics/charts/global-trends-in-internet-traffic-data-centre-workloads-and-data-centre-energy-us
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2.5  The properties of electricity as a commodity 

Electricity is the energy carrier used to power the data centers, and it has some special 

properties compared with other commodities. Unlike oil, corn, or water, it cannot be stored in 

larger quantities for later consumption. There are batteries, but with today’s battery 

technology they lack the capacity to store large quantities of energy in a cost-efficient manner. 

Hydropower can also be stored in dams (impounded hydropower), but this requires special 

geographical characteristics. Electricity, as a rule of thumb, must be produced and consumed at 

the same time.  

In addition to the production and the consumption happening simultaneously, there are also 

constraints in the power grid systems which limit where electricity can be used. Exports from 

one grid area to another are made possible with high-capacity power lines, but only up to a 

certain capacity. This means that a region that produces a lot of electricity must consume all of 

its surplus which cannot be exported. Conversely, a region must always produce whatever 

electricity it needs that exceeds the import capacity. 

 

Figure 2.3: map showing the exchange capacities in the Nordic region. Source: nordpoolgroup.com 
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In countries with mature energy markets, the current energy price is a product of supply and 

demand. The supply of electricity is composed of a multitude of different production sources, 

which is commonly referred to as the power systems energy mix. Some of the production 

sources deliver steadily at all hours of the day and time of year (constant energy sources), such 

as thermal power plants which use coal or nuclear power sources. Ramping production up or 

slowing it down takes a long time with these technologies, and they are usually most effective 

when producing at a particular level. Other sources are more unreliable, like wind and solar 

based plants where the production output varies with the weather (intermittent renewable 

energy, IRE).  

We also have some production types that can regulate their output on short notice, such as 

gas-powered and impounded hydropower plants (controllable energy sources). Impounded 

hydropower depends on the presence of mountains and lakes, which are not available in most 

parts of the globe. Gas-powered plants are therefore often used to regulate production on 

short notice.  

On the demand side, there are also large variations which are affected by factors such as 

temperature, light and daily consumption patterns. A typical day has a peak in demand at 

around 0730 when people take a shower and cook breakfast, and a second and slightly larger 

spike at around 1630 when people are preparing dinner. This pattern is often referred to as a 

devil-heads curve.  

2.6  The role of renewables 

Renewable energy is becoming increasingly popular and with wind turbines and solar panels 

being installed at a rapid pace in Europe and the US.  From 2000 to 2020, the production from 

wind turbines in the U.S. increased from 6 to 338 TWh (U. S. Energy Information 

Administration, 2021). This is still a small part of the global energy mix, 8.4% of total production 

in 2020, but it has already surpassed hydropower as the largest renewable energy source in the 

United States. The numbers are similar in Europe where wind production was 311TWh in 2017, 

which amounts to 11% of the total production.  
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Electricity production from solar and wind is expected to increase in the years to come. In the 

United States they have introduced a production tax credit for these types of production. In the 

European Union, the target is to have 32% of production from renewable sources by 2030 

(European commission, 2021).   

2.7   Supply and demand imbalance 

An increased share of renewables in the energy production mix is beneficial for reducing co2-

emissions that come from fossil-fuel powered energy production, but it also brings certain 

challenges. The wind does not necessarily blow at the same time we need electricity to cook 

dinner. This means that there is a mismatch between supply and demand, and unlike what we 

do with other commodities, storing the commodity until demand catches up is not an option. 

Too little production will cause a black or brown-out, and too high production will cause 

overheating of the power grid. A study done on the power grid of the Hokkaido region of Japan 

concluded that when the production of IRE amounts to more than 20% of the production in an 

area, the need for balancing measures increases significantly (Outsuki, Komiyama, & Fuji, 2017).  

Traditionally, there are five types of solutions proposed for this mismatch: 

1: Regulate demand by price differentiation. By making electricity more expensive when 

production is low, consumers have an incentive to move their consumption to a particular time. 

This can nudge people to charge electric cars at nighttime and turn down the heat at certain 

times of the day. Still, little can be done about the fact that most people shower in the morning 

and make dinner in the afternoon, so this can only solve parts of the problem.  

2: Regulate supply by ramping up and down production. This can be done by regulating the 

water flow in an impounded hydropower plant, or more commonly by ramping up the 

production from a natural gas-powered plant. As natural gas is not a renewable energy source, 

it is preferable to minimize the use of this possibility. It is also possible to regulate production 

from thermal plants like coal and nuclear, but the regulation is slow, and the plants normally 

only operate at full efficiency at certain levels.   
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3: Expand transmission capacity. Due to various climate and geographical conditions, energy 

production from renewable sources will differ from area to area. By moving the energy to 

where it is most needed at any given time, mismatches between supply and demand can be 

reduced. This is the most widely used solution, and most energy systems have some sort of 

exchange towards their neighbors.  

An example of what can happen without exchange was seen in Texas, USA, in February 2021. 

For political reasons, Texas is not connected to the national power grids, they run an isolated 

system without exchange. When unusually cold weather caused their production units to fail, 

they could not get power from their neighbors. The result was a massive blackout, leaving 4.5 

million homes and businesses without electricity for several days. Prices for those who could 

access electricity rose to a level that would be impossible to pay for the middleclass household.   

Transmission capacity is effective, but it cannot remedy the problem completely. Sending large 

amounts of electricity across multiple time zones is not viable with today’s technology, both 

due to high building costs and energy loss during transportation.  

4: Move demand to where the production is. This is not a realistic path when it comes to 

household consumption, but it is a good fit for energy-intensive industries. An example is 

Iceland, where they have easy access to geothermal energy that can be used for electricity 

production. This electricity cannot be exported from Iceland directly, but it can be used to 

produce aluminum, which is a process that requires large amounts of energy. Exporting 

aluminum becomes a way of exporting energy. This is, however, most useful where there are 

power sources that can produce a steady load, like geothermal or hydro. Data centers could 

also be placed near such sources of renewable energy, but there are other considerations to 

take as well when placing a data center, like infrastructure, climate, regulations, and security.  

5: Produce where the demand is. De-centralizing production by putting solar panels on the 

roofs of homes, offices and industrial buildings have been done for some time and this 

development is still ongoing. This is especially popular in sunny areas with high energy costs like 

California, US. Some also build small scale hydropower plants near farms or production facilities 
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where this is a possibility. This kind of production can help with the geographical distribution, 

but it does not solve the problem of supply and demand imbalance over the hours of the day. 

All in all, there are myriads of different causes and remedies for supply and demand imbalance, 

and we know that one of the causes, intermittent renewable energy (IRE), will grow larger in 

the coming years. Hence, it is necessary to increase the efforts on mitigating actions in order to 

successfully reach the goals of a higher share of green energy in the years to come.  

2.8   Can testing become a part of the solution? 

As there are financial and practical gains to getting fast feedback from tests to the developers, 

it is not advised to schedule the tests to times with a high supply of green energy. However, 

with today’s vendors providing multiple datacenters at different locations, it becomes possible 

to increase demand in areas with a currently high production by running tests in data centers 

located in these areas. This ability to dynamically shift the geographical location of the demand 

of a commodity is quite unique to the IT industry. Like what is done with aluminum production 

in Iceland, re-locating the workload of software testing becomes a way of exporting energy, but 

much more dynamic.  

Automated software testing is particularly well suited to be moved around following green 

energy production. The tests are independent in nature, one test does not depend on another. 

They also do a considerable workload, so there is some energy usage involved. The software to 

test must be built new for each test, making it easier to move it around than other parts of the 

IT system like a mail server or a database. Because of the need for fast feedback, tests cannot 

be shuffled around in time like one can with maintenance batch jobs either, so a movement 

across geographical areas is a better candidate for ensuring green energy usage.  

Some research has been done on the topic of data center allocation and energy savings. A 2012 

study showed possible financial savings of 15% for a cloud provider that could forward requests 

from its end users to the data center with the lowest energy price at the time (T. Sakamoto, 

Yamada, Horie, & Kono, 2012). Other studies have looked at how a cloud provider can “follow 

the green energy” by routing traffic to the areas with the highest production of IRE.  
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One study used numerical experiments on data from real traffic to data centers and renewable 

energy production in the US to investigate how data centers could be powered with as much 

green energy as possible without large-scale storage. They found that wind was more useful 

than solar power for this purpose because wind production has low correlation across 

geographical locations and is available at all hours of the day. They also found that geographical 

load balancing could significantly reduce the required capacity of renewable energy to power 

the data centers (Liu, Wierman, Ling, & Low, 2011). 

Another study designed a prototype for applying geographical load balancing to web 

application requests using the available renewable power and estimated electricity price at 

each data center. The study used real meteorological data and realistic workloads from logs of 

web requests to Wikipedia. Their simulations showed reduced use of gray energy, under the 

assumption that the data centers produced their own green energy from local installed 

production capacity (Toosi, Qu, Assunuco, & Buyya, 2017). 

A study from 2011 found that it was possible to use 95% energy from green sources without 

delaying processes or jobs by geographical load balancing of incoming requests. The study used 

the data center power consumption ratio to the effective wind production as the allocation 

criteria. (Gao, Zeng, Liu, & Kumar, 2013).  
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3. Approach 

To investigate the effect allocating test runs could have on greenhouse gas emissions, an 

exploratory approach will be used.  Experiments with different variations of a model will be 

done before analysis of the results.  Testing the same scenario with different inputs and 

threshold variables can also be done to reveal how different factors affect the outcome.  

To make discoveries that could be relevant in a business setting, an imagined case scenario will 

be used to guide the design work. The case can be described as envisioning being a DevOps 

engineer given the task of making the test pipeline as green as possible with minimal delay to 

the development process. This will require that the engineer balances many considerations at 

once.  

One must consider the energy usage and greenhouse gas emission from testing. At the same 

time, one must consider the operational part of it. As previously discussed, rapid deployments 

are a key success factor for an IT business. Neither colleagues nor management would accept 

slower processes and code being delayed on its way to the customer. Lastly, the cost 

perspective is important. One cannot ignore the fact that some ways of doing things are more 

expensive than others. An efficient solution for climate footprint reduction will probably not be 

acceptable if the costs are too high. Most likely, the DevOps engineer will have to compromise 

in the search for a green but viable solution. Having these constraints in mind while 

experimenting will hopefully lead to knowledge that is usable within the constraint that 

businesses operate within.   

Which exact algorithm to use will be explored in the design phase, but it will need to provide 

useful data for analyzing the greenhouse gas emissions in simulations, both with different 

patterns of tests and with and different approaches for allocating the workload in areas with a 

low carbon footprint.  

In the design phase different sources of input data will be looked at, and a procedure for 

fetching and transforming data to a useful format will be described.  
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In addition to exploring results in what can be considered normal operations, the model must 

be tested for robustness under more unusual conditions by looking at edge cases. What 

happens if a lot of tests are being triggered at the same time? Or what will it do in periods with 

little or no intermittent green energy production? Things like this do happen so testing for such 

cases is important to make an algorithm that could perform under real-life conditions.  

Different data sources must be examined to find suitable data for the task. We need realistic 

data on the following in order to achieve meaningful results: 

- Surplus of green energy from intermittent green energy sources relative to the locations 

of different data centers. There are many energy markets in the world where one can 

find data for production of electricity from different sources, consumption, and 

exchange. Because of this, it should be possible to use realistic data for this part of the 

project. For an experiment to give useful results, it is important to look at data that is 

representative for a real-life scenario in an existing electricity market.   

- Greenhouse gas emissions caused by running the tests. This will probably have to be 

calculated as a function of CPU usage or server minutes, or stipulated as a function of 

certain factors, like the comprehensiveness of the test.  

The model will not be implemented in a tool for automated testing, as this would not 

contribute any useful information towards the problem statements. However, it is still an 

ambition to create something which could be used in a CI tool like Jenkins, Travis CI or 

TestProject for JenkinsX, eventually.   
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4. Design 

This chapter describes the steps that were undertaken in order to form a working model, the 

model itself and the data collection. Decisions about which data to use and how to generate 

data where realistic data could not be obtained are also explained here.  

4.1  Geographical area for test data 

Electricity is provided all over the world with different pricing schemes and market regulations. 

Some of them are considered primitive, with no dynamic price mechanisms. Others are closed 

towards their neighbors and have no exchange. For this project, we need to assume that there 

is a market that employs market-based pricing for each area and where data is publicly 

available. It also needs to have a significant amount of installed production capacity for IRE 

(intermittent renewable energy, like wind and solar).  

The Nordic power exchange NordPool fits with these criteria and is therefore suited for the 

project. In real life, a software developer can choose from data centers across the globe, but for 

this model the assumption is that tests must be run within a limited geographical scope. This is 

not an unlikely situation, as many will choose to stay within one area due to regulations like the 

GDPR, trust between countries and areas, or local legislation. Even though the Nordics is 

chosen for this project, another area with publicly available data and a sufficient amount of IRE 

could have been used.  

NordPool calculates the electricity spot prices for Denmark, Estonia, Finland, Latvia, Lithuania, 

Norway, and Sweden. Norway, Sweden, and Denmark are divided into multiple grid areas based 

on transmission capacity constraints (see figure 2.3). This leaves us with the following areas 

that can be used for the model: 

  



20 
 

 

Country Grid area codes 

Finland FI 

Estonia EE 

Latvia LV 

Lithuania LT 

Sweden SE1, SE2, SE3, SE4 

Norway NO1, NO2, NO3, NO4, NO5 

Denmark DK1, DK2 
Table 4-1: the different grid area codes in the NordPool electricity trading system. 

There are data centers in most of these areas. Data from Baxtel, a commercial data center 

information site, show that cloud data centers are placed in all areas except Latvia and 

Lithuania. It is not realistic that a software developer has access to all these data centers, as 

most stick to one or perhaps two cloud vendors. Still, for the sake of the model, we will include 

all areas except Latvia and Lithuania.  

 

Figure 4.1: map showing cloud data centers in the Nordic countries and the Baltics. Source: baxtel.com/map. 

The geographical areas available for placing a server for testing is defined in the model as a list: 

𝐴𝑅𝐸𝐴𝑆 = [𝐴1, 𝐴2, … , 𝐴𝑛] 
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4.2  The relationship between exchange cables, IRE surplus and energy prices.   

To measure where energy consumption causes the least carbon emissions, one approach is to 

look at the carbon intensity in the area. The carbon intensity represents the total emission per 

unit of energy consumed (grams of CO2 equivalents per kWh). However, in the Nordic 

countries, this would not be ideal. Because of its mountains, Norway has a large percentage of 

hydropower in the mix. Where other countries use nuclear and coal to supply the base load, 

Norway is one of the few countries in the world that uses hydropower for this purpose. If one 

looked at carbon intensity alone, all workloads could simply be placed in western Norway.  

Simply placing the data center near a hydropower-plant would ensure that the supplied energy 

causes no greenhouse gas emissions, but it would not be helpful towards incentivizing more 

green energy investments. Neither does it consider the demand side of the equation: maybe 

the citizens and industry in this area already need the energy that is being produced? If that is 

the case, placing the load here would simply result in an increase in energy prices, and energy 

being imported from areas that could have less green production. 

What we are looking for is a surplus of intermittent green energy in an area that can be utilized 

for running tests. Energy production is the obvious factor to look at but looking at production 

alone will not be representative for where there is a surplus. We know that demand in an area 

varies greatly, so a production level that causes surplus at night might not be sufficient to cover 

demand in the daytime. In addition, there are neighboring areas that could also use the 

produced energy if they have an energy deficiency at the time, as well as exchange cables 

allowing it to happen. Energy will flow from areas with a surplus to areas with a deficit, until the 

constraints on energy transportation are met.  

If the cables are not fully utilized, the neighboring areas will have the same energy price. 

Similarly, different prices in two areas mean that the cables are fully utilized, and the area with 

the lower price has a surplus compared to its neighbors. A surplus of intermittent renewable 

energy is characterized by the following properties: 

- The production of IRE is a significant portion of the total production. Previous studies 

have calculated this to be around 20% (Outsuki, Komiyama, & Fuji, 2017). In the 
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simulations, 20% will be used as the base threshold for determining that an area has a 

significant share of IRE in the production mix, but experiments will also be done with 

other thresholds. This threshold will have the notation IRE_TRESHOLD 

- The neighboring areas cannot utilize the surplus because of transmission constraints, 

which causes higher prices in the neighboring areas.  

To express whether an area has a relevant share of IRE, the following is included in the model:  

𝐼𝑅𝐸_𝑆𝐻𝐴𝑅𝐸 =  
𝑃𝐴𝐼𝑅𝐸

𝑃𝐴𝑇𝑜𝑡𝑎𝑙
 

Where 𝑃𝐴𝐼𝑅𝐸  is the amount of electricity from wind and solar PV produced in an area, and 

𝑃𝐴𝑇𝑜𝑡𝑎𝑙  is the total production of electricity for that same area. The concept of neighbors is 

described as a nested set of values: 

𝑁𝐸𝐼𝐺𝐻𝐵𝑂𝑈𝑅𝑆 = {𝐴𝑎  [𝑁𝑎1, … , 𝑁𝑎𝑛], … , 𝐴𝑛[𝑁𝑛1, … , 𝑁𝑛𝑛]} 

Where 𝐴 is the production area, and 𝑁 is an area with exchange to A that is within the same 

price system.  

The price delta for an area is given by:  

∆𝑝 = ∑ 𝑝𝐴 − 𝑝𝑁𝑛

𝑆

𝑛=1

 

Where S is the number of neighboring areas with exchange, 𝑝𝐴 is the areas price and 𝑝𝑁𝑛 is the 

price in the neighboring area. A negative delta indicates a surplus of energy in the area.  

Based on the above, an IRE surplus is defined as an area where both the following conditions 

are met: 

𝐼𝑅𝐸_𝑆𝐻𝐴𝑅𝐸 ≥ 𝐼𝑅𝐸_𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷   

∆𝑝 < 0 
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4.2.1. Introducing the CAST algorithm 

The concepts of IRE_SHARE, NEIGHBOURS, and price delta, together with the conditions for IRE 

surplus, can be combined and used to locate areas with IRE surplus.  In this project, they are 

used to create the CAST-algorithm.  

The CAST-algorithm is used for deciding where to place the workload and it is described by the 

following pseudo-code: 

Listing 4.1: the CAST-algorithm 

______________________________________________________________________________ 

1 For each area with data center 

2  If energy IRE_SHARE >= IRE_THRESHOLD 

3   Add to array of candidates. 

4 Workload area = null 

5 For each area in array of candidates 

6  Calculate price delta to neighbors (∆p). 

7  if price delta to neighbors < 0 AND 

8   price delta to neighbors (∆p) < workload area price delta 

9   workload area = area 

10  return workload area. 

______________________________________________________________________________ 

After adding all areas where the condition of a surplus is met to a collection of data, the one 

with the lowest price delta is loaded to the variable workload area and returned. This variable 

holds the value of the area with the best conditions for using surplus IRE. If none of the areas 

have a surplus, the code will return null, which can be used to trigger the fallback option of 

starting a server in an area without IRE surplus.  

  



24 
 

4.3  Energy data sources 

To calculate surplus according to the previous section, we need the following data: 

- The production of IRE per area per hour 

- The total energy production per area per hour 

- The energy price per area per hour 

Many different APIs are available that could be used for obtaining production volume data from 

wind and solar power. Both Statnett and Energinet provide APIs that can be used to see the 

volume of production right now. These are the transmission system operators in Norway and 

Denmark and deliver reliable data. Statnett’s data, however, is aggregated per country and 

Energinet’s data is only available for Denmark. There are also vendors who supply real-time 

data per grid area, but accessing their APIs is quite expensive.  

Another approach could be to use the forecasts for production in each geographical area. Wind 

production forecasts are available for the next day, per hour divided per grid area from 

NordPool, except for the Norwegian areas. For the Norwegian areas, wind forecast data can be 

downloaded from Entso-E (European network of transfer system operators).  The forecast data 

together with the calculated spot prices could be used to calculate a profile of the most 

desirable area per hour for the coming day.  

On NordPool, both the producers and retailers must submit orders on how much electricity 

they plan to buy or sell for each hour in the coming day before 1200 hours CET. The day-ahead 

price for every hour of the coming day is then calculated for each area. Retailers are the 

companies the consumer buys electricity from, they operate as a link between Nordpool and 

the end user.  
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Figure 4.2: price calculation curves per area on NordPool. The arrows shows how the supply shifts when exports or imports are 
added to the calculation. Source: https://www.nordpoolgroup.com/trading/Day-ahead-trading/Price-calculation/ 

NordPool and Entso-E also supply data for historic hourly wind and solar photovoltaic 

production (PV) per price area which can be used for simulations. Solar PV is not always an 

indicator for where it is best to move the workload. High production of solar PV can be 

correlated with high temperatures, which again calls for more energy spent on cooling. One 

possibility is to include solar PV only when temperatures are below a given threshold. In this 

project, production data from solar is included entirely, as it amounts to less than 0.5% of the 

total production in the area used. Data for solar PV production and for wind production in the 

Norwegian areas are obtained from Entso E.  

4.4  The cost of deploying a test server. 

In DevOps, rapid deployments are considered beneficial and there are many systems and 

technologies developed with this in mind. Container-technology like Docker makes it easy to 

deploy new and changed software with little effort. Still, a deployment is not without costs. 

Large and complex systems can have an overhead to each deployment, and deployments can 

fail, which makes it preferable to limit the number of deployments during a day. Implementing 

a model that allocates tests to different servers requires the user to have the complex 

infrastructure in place that enables deploying without manual intervention.  
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A central question any model in our context must answer, is whether the test infrastructure 

should be expanded to a new location preemptively based on pre-planning, or if it should be 

done ad-hoc as part of the test.  

 

Figure 4.3: matrix showing the pros and cons of choosing ad hoc or preemptive methods for deciding allocation and deploying 
the test environment. 

The table above illustrates four different approaches as to when to decide upon allocation and 

when to deploy the test environment. As we cannot deploy the test environment before we 

have decided where to deploy it, the upper right quadrant of the matrix is crossed out. This 

leaves us with the following options: 

Decide allocation on demand and deploy on demand: 

This would be the method most in compliance with the DevOps philosophy, and it would 

require a simple algorithm without prediction. However, depending on the overhead associated 

with a deployment, this option might be costly. One also risks that there is no available capacity 

at the optimal location at the time. This approach would be good in cases where the cost of 

deployments is moderate.  
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Decide allocation preemptively and deploy on demand: 

This approach would call for a more complex algorithm that calculates the best allocation for a 

coming period and reserves data center capacity at the optimal placement, thus securing 

capacity at a lower price. However, this requires forecasting the need for deploys, which might 

not be feasible. Also, one would risk reserving and paying for capacity that was never used, and 

the number of deploys still is the same as with the previous approach. Doing it this way would 

be suitable in a situation where the cost of deploying is moderate, there is a predictable pattern 

of tests, and data center capacity constraints is a problem.  

Decide allocation and deploy preemptively: 

To do this one would have to reserve capacity in the forecasted optimal allocation for several 

time periods, for instance the next 6 hours, and deploy there. Doing this comes with the risk of 

paying for unused capacity. An approach like this could be a solution for projects where 

deploying is costly. 

4.5  The significance of the hour of the day 

Energy demand follows a pattern, where the demand is higher in the mornings and afternoons 

on weekdays, and less during nighttime and on weekends. Energy prices are highly volatile, and 

even in the Nordics, which are considered to have relatively low volatility it is normal that the 

most expensive hour of the day is double the price of the cheapest one.  

 

Figure 4.4: Spot prices on Nordpool for the area DK2 on March 2nd 2021. The graph shows a typical "devils head" curve, where 
increasing demand causes prices to rise in the morning and afternoon. Source: nordpoolspot.com 
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It is expected that the volatility will increase in the coming years, as the fraction of IRE is 

increasing (Statnett, 2018). In the scenario where an engineer is committing some code at the 

end of her workday, seeing the results right away is not important. The same goes for other 

types of tests like scheduled tests for performance and security.  Moving these workloads to a 

less busy time could make it possible to utilize more IRE.  

Traditionally, a DevOps pipeline does not have any concept of waiting. The whole idea is to get 

fast feedback and ship code rapidly. Looking at the curve presented above it is clear that during 

peak hours, there can be gains from waiting, especially if one can wait for hours. The NordPool 

markets spot pricing is per hour. Other markets, like the German, trades in 15-minute intervals. 

There are ongoing discussions about moving to 15 minutes resolution for the Nordics, but no 

plans are made at the time of writing. This means that for this model, a short delay of a few 

minutes will only be useful if the tests are ordered right before the hour changes.  

Data centers also bill per hour, so that once a server is running it makes little economic sense to 

take it down before one hour has passed. We might see a change in the billing system of cloud 

providers, but this project will use the current scheme in order to make the conditions as 

realistic as possible. From an operations perspective it therefore makes sense to group tests 

together and run as much as possible within one server-hour. If we considered green energy 

alone, we might start and stop servers without consideration for what was already running and 

what tests are expected to be triggered in the future. This can be an option in the future, when 

low/no energy operating systems are more widely used. Still for this model the economics of 

operating in the cloud will also be addressed. The model must consider which servers are 

already running, and whether we have other tests waiting to be executed.  



29 
 

 

Figure 4.5: CI/CD pipeline with waiting time inserted between code commit and build. 

 

To investigate the possible gains of waiting, the concept of delay tolerance is included in the 

model. Delay tolerance is defined as the amount of time it is acceptable to wait before running 

the tests. The delay tolerance will be considered when the algorithm decides where and when 

to start a new server. 

In a real-life scenario there might be some hours of the day that are off limits for running tests. 

For instance, it is not uncommon that database indexing jobs are scheduled to run during night 

hours, or other infrastructure maintenance to take place. This will affect performance, and tests 

running time. For tests that query the database, this can cause false positives due to timeouts.  

4.6  Data center capacity and pricing 

To run tests, one does not only need energy which is what has been discussed so far. One also 

needs free capacity in a data center. The cloud providers all market that they can scale up and 

down on short notice. They can do this, but they still want their users to spread the load across 

the hours of the day and to reserve capacity beforehand. This is reflected in their pricing 

schemes. A common price strategy is to bill the computing units per hour which discourages 

rapid up and downscaling (Mazrekaj, Shabani, & Sejdiu, 2016). Some cloud providers also offer 

to bill per minute or second, but this is priced at a significantly higher rate and will only be cost 

effective in cases where one needs the VM for a very short amount of time. Amazon Web 

Services also has spot pricing, where prices are dynamically determined based on supply and 
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demand. The model used for this project will consider the most common strategy, billing per 

hour. 

Most cloud providers also operate with different prices for each data center. These variations 

are usually small within a limited area, and larger if one compares prices in different continents. 

The CAST algorithm will in this project operate within a limited geographical area, and the price 

differences between data centers will therefore not be considered.  

4.7  Status and reservations of virtual machines in the cloud 

As most cloud providers bill for one hour each time a server has started, it makes economic 

sense to run it for one hour once it is started. Because of this it can be assumed that it is always 

better to run tests on a server that is already up if the test can be completed before the end of 

the current server-hour.  

On the other hand, it is preferable to not have idle servers running for the sake of saving 

energy, which means the model should aim to shut down servers where it is not expected that 

more tests will be triggered before the hour is done. The model needs to decide upon the 

following questions each time there is a commit: 

- Is there a running server or a scheduled server that can be used for this test run? 

- Should the server be shut down after the test run, or left running for the remainder of 

an hour? 

The following initial assumptions are made: 

- How long a test will run is known before running it. 

- A server has a defined capacity. 

- The testing tools will use the full available capacity of the server. 

- When a test has very low or no delay tolerance, we expect more test orders to come in 

soon.  

- There are no hours that are unusable due to scheduled jobs running. 

- We can reserve capacity in data centers. 
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The implemented model will check for possible utilization of running or reserved servers before 

ordering new servers.  

 

Figure 4.1: the diagram illustrates how the proposed model will check for running or planned servers before either running the 
decision algorithm described in chapter 4.2 or adding the tests to a server already planned for.  

This design relies on a database that records all ordered servers along with a parameter that is 

set for whether the server should be kept running after the test is done. The algorithm for 

checking for usable servers is described in the following pseudo-code (all time variables are in 

epoch-time format): 
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Listing 4.1: Algorithm for finding booked servers 

______________________________________________________________________________ 

1 Input: commit time, delay tolerance and test duration 

2 Query the database for records where: 

3     Shutdown variable == false AND 

4     end of planned tests on server <= time of commit + delay tolerance AND 

5     Server startup + 60 minutes >= time of commit 

6 If query returns results: 

7         Variable Start_time_for_incoming_test = min. value of planned server  

     test end or commit time 

8 Variable time_Left_To_Run_Tests = (Server startup + 60 minutes) - 

         Start time for incoming test 

9      If time time_Left_To_Run_Tests >= test duration 

10      Return query result 

11 Query the database for records where: 

12     Shutdown variable == true AND 

13     Server start time <= time of commit + delay tolerance AND 

14     end of planned tests on server >= time of commit 

15 If query returns results: 

16  Variable time_Left_To_Run_Tests = (Server startup + 60 minutes) –  

      Start time for incoming test 

17    If time time_Left_To_Run_Tests >= test duration 

18      Return query result 

19 Else return 0 

____________________________________________________________________________ 
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4.8  Scenarios for test triggering 

In order to analyze the outcome of using the proposed model, it is necessary to find data that 

represent a realistic series of tests being triggered from developers on a project. This can be 

accomplished by obtaining the logs from the version control system. For this project, it is 

desirable to explore the possible outcomes from different types of situations. It is therefore 

decided to obtain data from three kinds of projects:  

- Project 1: A large open-source project with commits coming in from different parts of 

the world at a high frequency. 

- Project 2: A smaller commercial project where all developers work during office hours in 

one time zone. 

- Project 3: A smaller open-source project with little activity.  

4.9  Test plan 

In order to see how the different parameters affects the server placement and utilization, it is 

necessary to run several simulations with different parameters and input.  

 IRE_Threshold Delay 
tolerance 

Shutdown 
parameter 
limit 

Delay 
tolerance 
profiles 

Test duration Season 

Project 1  Baseline,  
Low,  
One 

Baseline,  
Long,  
Short 

Baseline,  
Zero,  
long 

Static / 
variable 

Baseline,  
Short, long,  
High variance 

all 

Project 2 Baseline,  
Low,  
One 

Baseline,  
Long,  
Short 

Baseline,  
Zero,  
long 

variable Baseline,  
Short, long,  
High variance 

all 

Project 3 Baseline,  
Low,  
One 

Baseline,  
Long,  
Short 

Baseline,  
Zero,  
long 

static Baseline,  
Short, long,  
High variance 

all 

 

Table 4-2: all variations that will be explored in the analysis phase of the project. 

The baseline scenario is the one where the most realistic data is used.  
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4.10  Calculating greenhouse gas emissions from test runs 

There are countless ways of estimating the carbon footprint from server usage, but they all 

depend on information that is unavailable to the consumer of cloud services. To precisely figure 

out how much energy a computational task uses, one need to know what kind of server is used, 

how much energy is used for cooling and other information of the hardware and utilization of 

the hardware that is installed in the data centers (Mytton, 2020). The organization GoClimate 

has developed a carbon calculator based on commonly used servers energy usage, server life 

span of four years, data center energy efficiency and the carbon footprint of the Nordic Energy 

Mix (GoClimate, 2019). They arrived at the following conclusion: 

- A cloud server using 100% green energy will account for 160kg co2 per year. 

- A cloud server using non-green energy will account for 458kg co2 per year. 

The numbers from GoClimate will be used to estimate carbon footprint effect of the 

experiments. This will provide an estimate of the emissions, but it will be quite unprecise, as it 

uses an average and does not separate active CPU minutes and idle server minutes.  
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5. Implementation 

This chapter describes the process and choices that were made to transform the model 

described in the previous chapter into code that can produce useful outputs. The aim is to be 

able to explore how allocation and management of test servers can impact the environmental 

effects of testing, in order to answer the problem statement.  

5.1  Tools 

To transform the described model to code that can be used for simulating different scenarios of 

testing, a Python script was written.  

The TinyDB library for Python was used to construct a database with production data, prices, 

and server reservations. In a real-life scenario, one would use an API to request production and 

price data for each calculation, but this is not viable if we want to see how the model works at 

different times of year. Historical data is therefore written to json-files that can be accessed by 

querying. This also enables us to repeat experiments on the same time period. For transforming 

data to database-files a combination of excel, notepad++ and python scripting was used.  

For data visualizations, the python tools NumPy and Seaborn were used for heatmaps, as well 

as Excel for tables and line charts. Accessibility was given the high priority when choosing colors 

for the visualizations.  

5.2  Data sources for production volumes and prices 

5.2.1. Time period selection 

To get test data for the model, four weeks spread throughout the year were selected as sample 

data. The weeks 31, 43, and 51 of year 2020, as well as week 12 from 2021 were chosen.  The 

selection was done by taking the latest week from the time of writing and iterating backwards 

per three months in order to get one sample per season of the year. This is important for 

capturing the different seasonal patterns of IRE production. Because commit history data is 

used to simulate test orders, it is preferable to avoid holiday weeks. Therefore, week 31 was 

chosen for summer season data.  
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5.2.2. Production volume data selection and transformation 

To calculate the share of IRE, data on total production and IRE production per area for each 

hour in the time period selections is needed. Not all necessary data was available from one 

source, so different sources had to be combined. All data on production totals was collected 

from Nordpool. Wind production data from areas Estonia, Denmark and Sweden was collected 

from Nordpool. For Norway and Finland, wind production data was not available from 

Nordpool, so they were gathered from Entso-E. Production from solar PV is only done in Estonia 

and Denmark, and the data on this was collected from Entso-E as well.  

Downloaded data from Nordpool comes in an one excel-file per country. From Entso-E data is 

fetched over an API which returns an XML-file. Several tools were used in the process. Firstly, 

the data from Nordpool was pasted into one Excel-file with three tabs, one for total production, 

one for solar PV production and one for wind production. Thereafter, data for each time period 

and area was collected from Entso-E in separate XML-files. The files were stripped of all tags so 

that the timeseries-data of production volumes was all that remained. This was done by a series 

of regex-manipulations. After this, all the time series from the Entso-E data were pasted 

manually into the excel-spreadsheet. The data from wind and solar were added to produce one 

sheet of data for total production volumes of production from IREs.  

date hour SE1 SE2 SE3 SE4 FI DK1 

19.10.2020 0 2926 7278 8776 629 6223 1674 

19.10.2020 1 2555 7060 8738 606 6245 1566 

19.10.2020 2 2423 7047 8744 606 6358 1481 

19.10.2020 3 2375 7022 8725 612 6430 1516 

19.10.2020 4 2421 7236 8745 632 6663 1517 

19.10.2020 5 2742 7546 8779 665 7315 1674 

19.10.2020 6 2966 7884 8880 696 7975 1944 

19.10.2020 7 3024 7852 9265 770 8487 2065 

19.10.2020 8 3383 7661 9305 795 8699 1917 

19.10.2020 9 3377 7473 9183 802 8651 1933 
 

Table 5-1: example of production data. The table show total production volumes for the first 10 hours of October 19th 2020 for 6 
areas. The production volumes are in given in megawatt-hours (MWh). 
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To prepare the data for use in a python script, the data for IRE and total production was 

uploaded to a tool that converted it from excel to JSON format. Lastly, the json-files were run 

through a script that inserted each record of data into database-files readable by TinyDB 

querying.  

 

Figure 5.1: illustration of the process of transforming production volume data 

After completing this process, two database files were produced and ready for use:  

- Volumes_IRE.json 

- Volumes_total.json 

5.2.3. Price data selection and transformation 

Price data was collected from NordPool for all countries included in the model and countries 

with exchange to these countries, except for Poland and Russia. Prices from the day-ahead 

market was used, as these carry the largest volumes and best reflects the price for the end 

user. Data comes in one file per year, and a manual process was done to extract the chosen 

areas and time ranges and fit them into one file. 
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For Poland, the day-ahead prices were not available on NordPool, so the local exchange PSE 

were used. Data from PSE were downloaded for each week. Prices on PSE are given in local 

currency, so historical exchange rate from XEcurrency was used to convert the prices to euro in 

Excel. Because the Russian market is partly regulated and will not adhere to the same price 

mechanisms as the Nordpool system, Russian prices are omitted from the delta calculation.  

When all prices had been collected into one spreadsheet, the data was converted on to a json-

file readable by TinyDB in the same way as with the production data.  

5.3  Test activity data 

For simulating testing activity, the commit logs from three different projects were used. These 

were chosen to represent different types of development.  

Visual studio Code (VSC), an integrated development environment project: This is one of the 

largest open-source projects on GitHub, with over 19.000 contributors. It was chosen as a 

representative of a large open-source project with many commits coming in from all over the 

world.  

Medium Sized Commercial project (MSC), software for handling memberships, insurances and 

training for a large Norwegian union: The project was chosen to represent a commercial 

software project, with developers working in one time zone only. The project has 5 developers 

working full time based in Oslo.  

The Algorithms – Python, a library of algorithms: This is a smaller open-source project with less 

activity. It has about 1300 contributors and can sometimes go several days without any 

commits. It was chosen to represent a smaller project with less activity.  

The data were recorded to text files containing only the timestamp for the commits, one per 

new line. One file was made for each project for each of the seasons, a total of 12 different files 

with commit logs.  
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5.4  Constructing input data on delay tolerance 

As in order to check for planned servers and calculate the most desirable area to run tests in, 

three data entries are needed: the time the test was triggered, test duration and delay 

tolerance. The time the test was triggered is available from the commit logs, but the other two 

have to be constructed.  

For projects that follow a steady daily rhythm of commits being done mainly during work hours, 

the following assumptions are used for constructing delay tolerance data:   

- the developers want to have fast feedback during work hours, the delay tolerance is 

short. 

- if a commit is done during nighttime or very early morning it is due to an urgent fix and 

the developer cannot wait for feedback, the delay tolerance is short. 

- if a commit is done between 11 and 1200 hours it can wait a moderate amount of time 

due to lunch break, the delay tolerance is moderate. 

- if a commit is done between 16 and 19, feedback can wait until the next day because 

the developer is finishing her workday and feedback can wait until the next day.  

The files with the commit times are run through a script that appends either short, moderate or 

long delay tolerance to each line in a csv file, according to the assumptions.  

For projects without a particular pattern of commits during the workday the method from the 

previous chapter cannot be used. These will be given one static delay tolerance value for all 

commits. For these projects, the files with the commit times are run through a script that 

appends the same delay tolerance value to each line in a csv file.  

5.5  Test duration 

For collecting as realistic data as possible on the two open-source projects, they were 

downloaded and built on a local environment. Both projects contain tests that could be used in 

a pipeline. 
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The larger project, VScode, had unit tests, integration tests and an automated UI-test available. 

The tests were run three times in Electron, and the average times were: 

• UI-test: 1 minute, 51 seconds 

• Integration test: 8 minutes 50 seconds 

• Unit tests: 15 seconds 

In addition, the build took 4 minutes and 41 seconds. Each commit to the pipeline needs a new 

build, so this will be added to the total test duration.  

The smaller project was written in python, with a tiny test suite to be executed by the tool 

pytest. The tests took an average of 41 seconds to run.  

With this in mind, it was determined to use 16 minutes for VScode and 1 minute for The 

Algorithms as the test duration for the baseline test scenario. For MSC, historical test run data 

was available, and the average run time of 22 minutes will be used.  

5.6  Determining surplus areas and their price delta 

For the calculation of surplus energy price and production volume, data as described above is 

used. In addition, the model needs to have a concept of which price areas have energy 

exchange with each other. A python dictionary listing the neighbors of each area is registered 

as a global variable, excluding Russia. The data comes from Nordpool, and reflects the exchange 

illustrated in figure 5.1. Threshold of how large a fraction of the produced energy must come 

from IRE (IRE_SHARE) to define it a relevant contribution to the surplus, is also added as a 

global variable.  
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Figure 5.2: map from nordpoolspot.com showing the exchange between the Nordics and surrounding areas and list over 
neighboring areas. 

5.7  Simulation script 

The data and scripts described above is utilized by a simulation script that iterates through the 

commits and runs each of them through the decision algorithms. Each commit that is read into 

the script goes through the algorithm for checking for planned servers. If no suitable server is 

found, it will proceed to find the best time and place to run the test by using the CAST-

algorithm. Thereafter, it will record the database booking with the appropriate time and place 

to the server database.  
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Figure 5.3: flowchart describing the process of simulating test runs and recording the results. The solid lines illustrate the actions 
of the processes, while dotted lines illustrate interaction with the database files. Green boxes illustrate python-scripts or 
functions while white icons illustrate files.  
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After the simulation script has looped through all of the lines in the file with the commit-times, 

delay tolerance and estimated test duration, it will call on a function that goes through the 

database with server bookings. The outcome of this process is a list with the following 

parameters: 

• Name of the project 

• Season (winter/spring/autumn/summer) 

• Scenario (which of the scenarios were tested) 

• Average delay tolerance 

• Test duration 

• Number of commits 

• Number of servers started in an area without IRE surplus (gray servers) 

• Number of servers started in an area with IRE surplus (green servers) 

• Number of re-uses: how many times multiple tests were run on one server. 

• Minutes of tests running on a gray server. 

• Minutes of tests running on a green server. 

• Minutes where a green server was idle.  

• Minutes where a gray server was idle. 

• The number of servers started in each area.  
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Project MSC MSC VSC PA 

Season Summer Winter Winter Summer 

Scenario Baseline Baseline Baseline Baseline 

AVG delay 
tolerance 

230 
 

176 183 10 

Avg test 
duration 

22 22 16 1 

Commits 35 42 538 17 

Gray servers 4 0 1 4 

Green servers 27 37 370 13 

Re-use 4 5 167 0 

Gray minutes 110 0 32 4 

Green minutes 660 924 8576 13 

Green waste 504 1014 7692 0 

Gray waste 130 0 28 0 

SE1 0 0 0 0 

SE2 0 0 0 1 

SE3 0 0 0 0 
 

Table 5-2: the first lines and rows of the csv-file with results from the simulation script run. 

The file will be used to further analyze how the outcome changes when there are changes to 

the different parameters used in the script (global variables) or changes to the data input 

(different seasons, projects, test duration and delay tolerance).  

5.8  Constructing test scenarios 

5.8.1. The baseline test scenario 

In order to observe the effect of altering the different variables, such as delay tolerance, test 

duration and share of IRE, a baseline scenario was established. This was constructed with the 

most realistic data in mind, considering all available information. The following was used: 

IRE_SHARE: 20% is used as the baseline scenario, as this is what previous research suggests as 

being the point where IRE production contributes significantly to the power mix.  

Test duration: average test run times are used, either from running tests locally several times 

and calculating the average or by collecting historical data. The process of finding these times 

were described in chapter 5.5. 
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Delay tolerance: here, it would be necessary to do some experiments either with surveys or 

experiments involving humans in order to record real data. This is not in scope of this project, 

so assumptions are made as to how much delay can be tolerated in different situations. For the 

profiled distribution of delay tolerance as described in chapter 5.4, the baseline input has been 

chosen to be 5 minutes delay tolerance during work hours, 30 minutes before lunch and 720 

minutes at the end of the workday. For the static input, 10 minutes delay tolerance is chosen as 

a baseline scenario.  

Shutdown parameter limit: the shutdown parameter decides whether the server will be kept 

running after the test is done or not and is an expression of whether we expect new tests to 

come in before the server hour is over. Assuming that new tests are most likely to come in 

when there is active development going on, the baseline limit is set to the same amount of time 

as the delay tolerance during working hours: 5 minutes.  

5.8.2. Other scenarios 

Including the base scenario, 9 different scenarios were constructed to look at how variations in 

the parameters affected the outcome. There are four variants of test scenarios:  

IRE_SHARE adjustments: The share of IRE decides how much of the total energy in an area 

must be IRE in order to consider it to be significant enough to conclude that the energy surplus 

in an area is a surplus of IRE. The base threshold is set based on previous research, but looking 

at scenarios with a lower threshold can give an indication as to what will happen when a larger 

share of the energy produced comes from IRE. The two scenarios constructed for this purpose 

is one where the threshold is lowered to 15% and one where the threshold is set to 1%. 

Delay tolerance variations:  Based on analysis of the data sets, it is determined to use a 

dynamic profile as described in 5.4 for the projects MSC and VSC (explained further in chapter 

6.2).  For the smallest project, Python Algorithms, no daily rhythm of commits was found, so it 

is decided to use the same delay tolerance for all commits. In order to analyze how delay 

tolerance affects the outcome, two scenarios were added. The fist had significantly longer delay 

tolerance than the base scenario, while the other significantly shorter. The shutdown 
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parameter is set to the same value as the shortest delay tolerance, in order for these scenarios 

to be similar to the base scenario in which servers are kept running or not.  

Shutdown parameter variations: the algorithm uses the shutdown parameter to decide 

whether the server should be shut down after the end of a test run. The algorithm sets the 

shutdown-variable to true or false based on whether the delay tolerance is longer or shorter 

than the shutdown parameter. Adjusting this parameter will give insight on the effects of 

keeping servers running. Two scenarios are added, one with shutdown parameter of 60 

minutes, and one with shutdown parameter zero.  

Test duration variations: Altering the test durations will provide information about how much 

there is to gain from refining the test suite to run faster. Two variations with static test duration 

were added, one with significantly longer test duration and one with significantly shorter. The 

data set for Python Algorithms were not given a short test duration scenario, as the tests there 

already are very fast (one minute) in the base scenario. In addition, one scenario with variable 

test duration was added, in order to have a look at how this would affect the outcome. Each 

commit was assigned a random normally distributed test duration value, with a mean of the 

base value and quite high standard deviations in order to achieve a large spread. The values 

were converted to absolute values in order to avoid negative test durations.   

Scenario 
Data-
set 

IRE 
Delay 
tolerance 

Delay 
tolerance 

Delay-
tolerance 

Delay-
tolerance 

Test 
duration 

Test 
duration 

Test 
duration 

Shutdown 

share 
work 
hours 

lunch 
After 
work 

Static 
(PA) 

VSC MSC PA 
Para- 
meter 

BASE base 0.2 5 30 720 10 16 22 1 5 

IRE_ 
low 

base 0.15                 

IRE_ 
one 

base 0                

DelayT  
long 

DT_ 
long 

  60 120 720 120       60/119 

DelayT  
short 

DT_s 
hort 

  1 15 120 1       1/0 

Shutdown 
_short 

base                 0 

Shutdown 
_long 

base                 60 
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TestDur_ 
short 

TD_ 
short 

          6 6    

TestDur_ 
Long 

TD_ 
long 

          45 45 45   

TestDur_ 
noisy- 

TD_ 
noisy 

          16 / 8 22 / 11 3/1.5   

 

Table 5-3: the parameters for the different scenarios. Empty cells illustrate that the value is equal to the base scenario. On the 
last row, the first value is the test duration, while the second is the standard deviation. 

5.9  Analyzing input data. 

To better understand the outputs of the simulation script, it is useful to have a closer look at 

the input data.  

To see how the supply of IRE varies throughout the day, and if the surplus moves around to 

different areas like expected, a script is made to produce heatmaps that illustrate the energy 

situation throughout the day. The script uses the data on IRE production, total production and 

prices per area/hour, and calculates the price delta for each area with a significant production 

of IRE. The result of the calculations is stored in a CSV file which is used to draw a heatmap over 

the situation using the Python libraries NumPy and Seaborn. 

To have a look at the chosen projects commit-patterns, the commit logs were imported to excel 

which was used to do some basic analysis and the excel tools for visualization were used to 

make diagrams and figures. 
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6. Results/observations 

6.1  Are some areas really better than others? – a closer look at the energy data. 

Is there any benefit to moving the workload around in time and space? To determine this a 

series of heatmaps have been created to illustrate the surplus or deficit of IRE. 

 

Figure 6.1: heat map illustrating the energy situation in the Nordics, December 16th 2020. Green indcates a surplus while purple 
indicates a deficit. The scale on the right show the accumulated price difference between the area and its neighbours in Euros 
per MWh.  

The threshold for significant production og IRE is set to 20%, which means that hours where the 

share of IRE is less than 20% are without color. Where there is a significant share of IRE, the 

difference in price between the area and its neighbors are calculated in order to determine 

whether the area has a surplus of energy.  

The hours that have lower prices than the neighbors are colored green. This means that there is 

a surplus of IRE. For hours with a deficit the color is purple. A purple hour means that there is a 

significant share of IRE in the area, but the demand high, and the IRE production is not large 
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enough to make more energy than the area consumes.  The darkest color indicates the largest 

surplus or deficit.  

The figure above illustrates a 24-hours period where only three of the areas have more than 

20% IRE. Also, all three areas have a deficit in some hours, and surplus in others. This is not in 

any way uncommon and it suggests that moving test activity could help both in utilizing more 

green energy, and relieve areas with energy deficit.  

 

Figure 6.2: heat map showing surplus (green) and deficit (purple) of energy for areas with a significant share of IRE from March 
18th to March 21st 2021. 

This image shows a combination of the energy production and market situation for each hour 

of four days, from March 19th to March 21st of 2021. 

Looking at the figure proves that it does indeed vary which area has the highest surplus of IRE. 

While many areas do not have significant shares of IRE at any time, others have it most of the 

day. The largest surplus is found in 5 different areas over the course og these four days.  

This figure also illustrates the effect of new installed capacity. The area NO3 is colored white 

until midday March 19th2021. At this time, new wind turbines on Fosen, Trøndelag started 

delivering energy to the grid. Similar effects are expected in the future, as more wind parks are 

introduced. One can therefore assume that the occurrence of hours with no surplus will lessen 

in the coming years.  

In the data set we see that the seasons that are lower on wind have quite a few hours where no 

area has a significant share of IRE. During the summer week, 40 hours were without IRE surplus 
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in any area. During spring week there were 58 hours, while autumn had four and winter had 

only one.  

6.2  Test distribution. 

As expected, the three projects had very different commit logs. VC code had an average of 59.3 

commits per day, MSC had 6.7 and Python Algorithms had 1.8. There was no clear pattern as to 

which season were most busy. VS code had the highest activity in the winter week, and Python 

Algorithms had the lowest activity that same week with only two commits for the whole week.  

One interesting observation was that the commit log for VS code followed a pattern consistent 

with a normal work week when looking at the amount of commits per day of the week.  

 

Figure 6.3 line diagram illustrating how many commits the project VS code has per day of the week, on average. 

The weekdays are quite busy, and most commits are being done on Fridays. Almost no changes 

are done on Saturdays and Sundays. This indicates that this project is probably being worked on 

by professionals who do it during their workday. When we look at how the commits are spread 

throughout the day, it seems that for VS code there is also a pattern that can look somewhat 

like a workday, where there is more activity in the hours of 9 and 19. Still, there is activity in all 

hours of the day. This is not the case for MSC, and the assumption that the commits mainly 

happen during the workday holds true. MSC has no commits during night hours, and most 

commits happen before lunch and at the end of the workday.  
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Figure 6.4: diagram showing how many percentages of the commits in each project are done in each hour of the day. The PA-
project is illustrated with the gray dotted line, MSC is orange and VSC blue.  

6.3  Approach for manual analysis 

Looking back at the scenario of the DevOps-engineer set out to optimize the pipeline, it is clear 

that success must be measured by several different parameters. One goal was to make the 

pipeline as green as possible. Looking at the number og servers that were deployed in a green 

area or maybe more so, lack of servers deployed in gray areas will give an indication of the 

achieved effect on greenhouse gas emissions. Another goal was to avoid unnecessary delays. In 

the baseline scenario the assumption is that there is some tolerance for waiting, and the effects 

of waiting longer or shorter will be explored in the scenarios that cover delay tolerance. Cost is 

also a factor. Running the tests with as few servers as possible is therefore also something to 

look at when assessing whether a scenario has had successful results or not. Due to startup-

costs of a deploy and the per hour pricing model, it is assumed that it is better to run two tests 

on the same server, even though this results in some waste (idle server time). This means that 

the overall number of servers started must be considered when assessing the cost.  

From all simulations, it is expected to see significant seasonal effects. Previous analysis of the 

data showed that during the spring week there were 58 hours with no green surplus, while 

during the winter week there was only one. The results will therefore be analyzed per season 

and project.  
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6.4  Results of the baseline simulation 

As expected, the spring week is the one which utilizes the lowest share of green servers. On the 

other hand, we see that for the winter week, there is only one gray server deployed for all 

projects combined.  

In order to measure the effects of the CAST-algorithm, one simulation was run of the base 

scenario where all servers were placed in SE4, the area with the most hours with IRE surplus. 

This will provide some insight as to what results would be without the CAST-algorithm. This 

simulation resulted in 282 gray servers being deployed, for all four weeks and all projects 

summarized. In the simulation with the CAST-algorithm, 150 gray servers were deployed.  

Of the 1848 commits that were made, 793 of them were tested on a previously reserved server. 

86% of the servers are placed in a green area (905 out of 1055).  

project season 

Avg 
delay 
tolerance 

avg test 
duration commits 

gray 
servers 

green 
servers re-use 

gray 
minutes 

gray 
waste 

green 
minutes 

green 
waste 

PA winter 10 1 2 0 2 0 0 0 2 0 

PA summer 10 1 17 4 13 0 4 0 13 0 

PA autumn 10 1 18 0 18 0 0 0 18 0 

PA spring 10 1 14 1 13 0 1 0 13 0 

MSC winter 176 22 42 0 35 7 0 0 924 1014 

MSC summer 230 22 35 4 23 8 110 130 660 504 

MSC autumn 210 22 56 1 44 11 22 38 1210 1204 

MSC spring 204 22 51 27 11 13 836 584 286 190 

VSC winter 183 16 538 1 260 277 32 28 8576 6040 

VSC summer 153 16 185 17 93 75 368 652 2592 2360 

VSC autumn 178 16 476 0 253 223 0 0 7616 6776 

VSC spring 165 16 414 95 140 179 2592 2824 4032 3616 

SUM     150 905 793     
 

Table 6-1: the output of the simulation of the base scenario for all projects and seasons. The gray and white rows alternate 
between the projects. 
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6.5  Results of the IRE_share scenarios 

For these simulations, the data set from the baseline scenario was sent through the allocation-

algorithm with IRE_shares of 0.2 (baseline), 0.15 (low) and 0.01 (one). Reducing the threshold 

will give the allocation algorithm more green hours to choose from. It is expected that a 

decrease of the threshold will increase the number of servers that are placed in an area with 

surplus IRE, green servers. It is also expected that it will have a more significant effect in the 

summer and spring than in the winter and autumn.  

project season scenario commits gray servers 
green 
servers re-use 

gray 
minutes gray waste 

MSC spring base 51 27 11 13 836 584 

MSC spring IRE_low 51 16 22 13 484 276 

MSC spring IRE_one 51 0 37 14 0 0 

MSC winter base 42 0 35 7 0 0 

MSC winter IRE_low 42 0 35 7 0 0 

MSC winter IRE_one 42 0 35 7 0 0 

VSC spring base 414 95 140 179 2592 2824 

VSC spring IRE_low 414 75 159 180 1968 2260 

VSC spring IRE_one 414 0 231 183 0 0 

VSC winter base 538 1 260 277 32 28 

VSC winter IRE_low 538 1 260 277 32 28 

VSC winter IRE_one 538 0 264 274 0 0 
Table 6-2: selected values from spring and winter simulations of scenarios with different IRE threshold. The gray and white rows 
alternate between the combination of project and season. 

The results are as expected. In the spring we see significant effects of lowering the threshold, 

the number of gray servers used is significantly reduced. For brevity, only spring and winter for 

two projects are included in the table above, but the results for the summer and autumn week 

show the same effect. When accepting as little as one percent IRE as significant, we see that the 

number of gray servers is reduced to zero. These results can give an indication about what to 

expect when more production capacity for IRE is installed. A higher share of IRE will increase 

the selection of green areas, leading to lower greenhouse gas emissions.  

  



55 
 

6.6  Results of different thresholds for keeping server open. 

The shutdown parameter defines whether a server should be kept open after the first test run 

is finished or not. The rationale behind this parameter is that if there is a short delay tolerance, 

it is expected that more tests will come in soon. In the base scenario the parameter is set to 5, 

which means that for all commits with a delay tolerance of 5 minutes or less, the server will be 

kept open in case of more commits before the server hour is over. In the shutdown_short 

scenario, the parameter is set to 0, which means all servers will be shut down after the test is 

done, unless another test comes in while it is still running that can be scheduled to start once 

the running test is done. In the shutdown_long scenario the parameter is set to 60. For the PA 

project, this means that all servers will be kept running, and for the other projects all commits 

during working hours will be kept running.  

project scenario 

Avg 
delay 
tolerance 

avg test 
duration 

gray 
servers 

green 
servers 

re-
use 

gray 
min 

green 
min 

green 
waste 

gray 
waste 

Server 
total 

PA base 10 1 4 13 0 4 13 0 0 17 

PA long 10 1 3 11 3 4 13 647 176 14 

MSC base 230 22 4 23 8 110 660 504 130 27 

MSC short 230 22 5 24 6 110 660 0 0 29 

MSC long 230 22 4 23 8 110 660 542 130 27 

VSC base 153 16 17 93 75 368 2592 2360 652 110 

VSC short 153 16 23 106 56 416 2544 0 0 129 

VSC long 153 16 17 90 78 368 2592 2500 652 107 
Table 6-3: results of the shutdown scenarios for all projects, summer week. The gray and white rows alternate between the 
projects. 

For the PA project, there is no difference between the base and short scenario, as the delay 

tolerance is a static value of 10, which means all servers will be shut down after the test runs. 

For this project, increasing the shutdown parameter to 60 means that all servers are kept open. 

As expected, this causes a reduction in the number of servers started, but it is small, the total 

number of serves decreases from 17 to 14. The amount of time where servers have been idle 

(green and gray waste) has increased significantly, from zero to 823 minutes. So, there is a 

decrease in cost, but an increase in energy spent.  

For the two larger projects, we also see the expected increase in how many servers were used 

and reduction in waste when we set the shutdown parameter to zero.  
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6.6.1. The cost of eliminating waste in a large project. 

Waste can be eliminated by setting shutdown to zero, but whether it is worth it or not depends 

on how the prioritizations are done. For VSC, the total amount of severs used increases from 

107 in the long scenario to 129 in the short scenario in the summer week.  

season 
scenario gray 

servers 
green 
servers 

gray 
minutes 

green 
minutes 

green 
waste 

gray 
waste 

servers 
total 

autumn Long 0 252 0 7616 6932 0 252 

spring Long 94 142 2592 4032 3832 2864 236 

summer Long 17 90 368 2592 2500 652 107 

winter Long 1 259 32 8576 6288 28 260 

autumn Short 0 332 0 7616 0 0 332 

spring Short 120 169 2592 4032 0 0 289 

summer Short 23 106 416 2544 0 0 129 

winter Short 1 318 32 8576 0 0 319 
 

Table 6-4: selected results for the shutdown long and shutdown short scenarios for the VSC project. The gray and white rows 
alternate between the scenarios. 

For all four weeks, the VSC project started 855 servers in the long-scenario, and 1069 in the 

short-scenario, a difference of 214 servers over 4 weeks. Extrapolated to a year, this amounts 

to a difference of 2782 servers. At the time of writing, the average price of an on-demand Linux 

VM in the Nordic data centers of Microsoft, Google and AWS were 0.039$ US. This means that 

the monetary cost of eliminating waste amounts to roughly 108.5$ per year.  

If we look at the amount of waste, the sum is 23096 minutes for the four weeks measured for 

VSC, approximately 5004 hours per year. 4236 hours is green waste and 768 is gray waste. 

Using the calculations from GoClimate, the estimated savings of eliminating this waste is 118kg 

of CO2 per year. This would be the equivalent of driving 677 kilometers with a petrol fueled car 

(UK Department for Business, Energy & Industrial Strategy, 2020).  

These savings are quite expensive, and there can also be a cost of time depending on how fast a 

new server is provisioned. If there is some overhead energy use to start a VM, this is not 

accounted for, so the savings can be less than this estimate. Still, the result of shutting the VMs 

down after a test run is most likely beneficial towards lessening the carbon footprint, and 

“eliminating waste” does sound good in reports and marketing efforts.  
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6.7  The effects of different delay tolerances. 

A longer tolerance for waiting is expected to have two relevant effects. Firstly, it is expected 

that more servers will be green because the allocation algorithm gets more hours to choose 

from. Secondly, it is expected that more servers will be used for more than one test. The delay 

tolerances have been altered quite dramatically. In the “short” scenario, the daytime delay 

tolerance has been reduced from 5minutes (base) to 1 minute. For the “long” scenario, the 

daytime delay tolerance is increased to 60 minutes.  

proj season scen Avg 
delay 
toler 

gray 
servers 

green 
servers 

re-
use 

gray 
waste 

green 
waste 

total 
servers waste 

factor 
MSC autumn base 210 1 44 11 38 1204 45 1.01 

MSC autumn long 251 0 32 24 0 484 32 0.39 

MSC autumn short 36 1 45 10 38 1204 46 1.01 

MSC spring base 204 27 11 13 584 190 38 0.69 

MSC spring long 247 22 10 19 328 146 32 0.42 

MSC spring short 35 28 11 12 584 190 39 0.69 

VSC autumn base 178 0 253 223 0 6776 253 0.89 

VSC autumn long 222 0 178 299 0 2196 178 0.29 

VSC autumn short 30 0 268 209 0 7480 268 0.98 

VSC spring base 165 95 140 179 2824 3616 235 0.97 

VSC spring long 209 61 103 250 992 1388 164 0.36 

VSC spring short 28 99 155 160 2976 4500 254 1.13 
 

Table 6-5: selected results of the delay tolerance scenario simulations. The green cells mark the most optimal outcomes. The 
gray and white rows alternate between the combination of project and season. 

The data show that the results are as expected, gray servers and total servers decrease with a 

longer delay tolerance. The movement from gray to green is quite modest for the medium sized 

project. For the MSC project, increasing delay tolerance by 59 during working hours saves one 

gray server from running in the autumn week and six in the spring week. For the larger project 

the effect is more significant in the spring week, with a 38% decrease in gray servers.  

A more significant effect is observed on the number of servers deployed and the waste. In all 

seasons and for all project we see that a longer delay tolerance leads to significantly less 

resource use. On the left side of the table above, a column of waste factor is added. The waste 

factor is given as the total minutes of waste over total minutes of active server time.  The waste 
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factor decreases as the delay tolerance increases. The decrease in waste is not caused by 

servers shutting down more often. The increase in delay tolerance allows the algorithm to re-

use servers more often and which is seen from the decrease in number of servers used.  

These simulation results support the idea that there are possible savings to both greenhouse 

gas emissions and cost for those who are willing to wait.   

6.8  The results with different test durations 

In all the previous scenarios, the test durations have been based on actual processing times for 

the tests in the different projects. As explained in the background chapter, different techniques 

can be used to speed up the duration of testing. Running the simulations with different test 

durations provides some insight on the importance of test duration. The “noisy” scenario with 

varying test durations was added to see if this made any significant difference to the results.  

project season scenario 

avg test 
duratio
n 

gray 
server
s 

green 
server
s 

re-
use 

green 
waste 

gray 
waste 

waste 
factor 

Ops 
cost 

MSC summer base 22 4 23 8 504 130 0.76 27 

MSC summer long 45 5 30 0 270 75 0.20 35 

MSC summer noisy 22 4 23 8 510 132 0.78 27 

MSC summer short 6 2 14 19 432 90 2.40 16 

MSC winter base 22 0 35 7 1014 0 1.10 35 

MSC winter long 45 0 42 0 465 0 0.25 42 

MSC winter noisy 23 0 35 7 858 0 0.88 35 

MSC winter short 6 0 22 20 810 0 3.21 22 

VSC summer base 16 17 93 75 2360 652 0.91 110 

VSC summer long 45 27 158 0 1620 405 0.23 185 

VSC summer noisy 15 16 92 77 2568 604 1.07 108 

VSC summer short 6 13 65 107 2346 630 2.44 78 

VSC winter base 16 1 260 277 6040 28 0.70 261 

VSC winter long 45 1 537 0 5340 15 0.22 538 

VSC winter noisy 15 1 250 287 5903 29 0.71 251 

VSC winter short 6 1 137 400 4134 42 1.29 138 
 

Table 6-6: selected results from the simulations with different test durations. The gray and white rows alternate between the 
combination of project and season. 

For the smallest project, the test duration made little difference except from altering the 

number of active server minutes.  
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The results for the larger projects were in line with what could be expected. The noisy scenarios 

result in values close to the base scenario, it does not seem to have any significant impact. The 

longer test duration of 45 minutes makes quite good use of each server, resulting in low waste 

factors, but only one test can run per server, so the costs are high. The winter week with long 

test duration for the VSC project has the highest cost of all simulations done in this project, 538 

servers deployed in one week. With the short test duration, the same week results in 138 

servers being deployed. The ratio between green and gray servers does not appear to be 

influenced by the different test durations.  

6.9  Summary of cost / benefit analysis  

To compare the performance og the different scenarios, a comparison of the annualized values 

for emissions and cost was made.  

   VSC MSC PA 

Row # scenario emissions cost emissions cost emissions cost 

1 base 238.2 11167 43.2 1885 0.24 663 

2 base-se4 282.1 11180 47.5 1885 0.34 663 

3 delay tolerance long 166.2 8112 33.1 1495 0.24 585 

4 delay tolerance short 257.9 12194 43.9 1937 0.24 663 

5 IRE threshold 15% 227.5 11167 38.3 1885 0.22 663 

6 IRE threshold 1% 190.7 11193 30.5 1872 0.20 663 

7 shutdown long 241.7 11115 44.3 1872 10.32 468 

8 shutdown short 124.5 13897 23.2 2054 0.24 663 

9 test duration long 434.2 20982 58.4 2392 10.74 663 

10 test duration noisy 226.1 20982 43.6 2392 0.64 663 

11 test duration short 128.0 10634 23.6 1781 - - 

 

Table 6-7: table showing the annual emissions in kilograms of CO2 and cost in number of servers started. For each column, the 
higher numbers are colored red, while the lower numbers are blue.  

Two scenarios stand out as good performers in both cost and emissions: long delay tolerance 

and short test duration. For all projects, both emissions and cost are on the lower end with 

these two scenarios compared to the others. The short shutdown scenario shows the expected 

result of low emissions with increased cost for all VSC and MSC, compared to the baseline (see 
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row 8). There are no significant differences between the projects, the algorithm has the same 

relative outcome for a busy project as for a small one using these parameters.  

For the smallest project, the emission in most scenarios is negligible, the difference between 

the base scenario and where all servers are placed in SE4 is only 10 grams of CO2 over one year. 

The emissions in the base and in the long delay tolerance scenario are the same. Still, the long 

delay tolerance is favorable due to reduced costs. Because of the very short test duration in this 

project, keeping servers up after the test is done causes a large amount of waste which leads to 

a dramatic increase in energy use.  

For MSC and VSC, the effects of longer delay tolerance or shorter test durations is more 

significant. For both projects, reducing the test duration is the most effective way of reducing 

the carbon footprint, but this is more costly in financial terms than increasing waiting time. 

However, reducing the test duration also have a nice side effect of giving faster feedback to the 

developers which might be beneficial for the productivity in the project. The cost of a developer 

waiting for test results is probably higher than that of extra server time.  

6.10  Delay tolerance versus actual waiting time 

The results show that there are large potential benefits to having longer delay tolerances. This 

raises the question of how much longer does the developer have to wait for feedback, in order 

to gain these benefits? To answer this question, some code was added to record the waiting 

time between the time of a commit and the actual start of the test run.  

When preparing the data, delay tolerance for the two larger projects were divided in three 

different categories:  

- short delay tolerance during the hours when it is assumed that the developers are 

working actively. 

- Long delay tolerances at the end of the workday, when it is assumed that the 

developers are going home and do not need feedback until the next day. 

- Medium delay tolerance during lunch hour. 
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The most relevant metric with respect to developer feedback is found when looking at the 

waiting time during the active working hours.   

  MSC VSC 

  

Base, 
delay 
tolerance 
5 minutes 

Short, 
delay 
tolerance  
1 minute 

Long, 
delay 
tolerance  
60 minutes 

Base, 
delay 
tolerance 
5 minutes 

Short, 
delay 
tolerance  
1 minute 

Long, 
delay 
tolerance  
60 minutes 

Average waiting time 0.02 0.00 17 0.38 0.00 16 

Median waiting time 0 0 11 0 0 11 

75-percentile 0 0 31 0 0 25 

90-percentile 0 0 49 2 0 48 
Table 6-8: statistic values for the waiting time during active working hours for the scenarios base, short delay tolerance and long 
delay tolerance. The waiting time is recorded in minutes.  

The results show that there is little difference between the base scenario, where delay 

tolerance is 5 minutes, and the scenario with short delay tolerance, one minute. The average 

waiting time during working hours was reduced to zero from 0.02 (MSC) and 0.38 seconds 

(VSC). 90 percent of the tests had waiting time of zero already for the MSC project, and less 

than 2 seconds for the VSC project, so the gain of a small reduction in delay tolerance is 

negligible.  

In the long delay tolerance scenario, the delay tolerance is 60 minutes, but the results show 

that one rarely has to wait that long. The median waiting time is approximately 11 minutes for 

both projects, meaning that for half of the commits the waiting time was less than that. 10% of 

the commits had a waiting time of more than 49 minutes for MSC and 48 minutes for VSC. This 

is a long time to wait for feedback if one is working and need as fast as possible in order to 

continue working, but in many cases, it can be perfectly acceptable, for instance if one is 

attending a meeting or working on something else while the tests are running.  
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Figure 6.5: diagram illustrating how cost, emissions and actual waiting time develops as delay tolerance increases for the VSC 
project. Commit logs with commits only during active working hours are used for the simulation.  

The diagram above show that the relationship between delay tolerance and actual waiting time 

is non-linear. The 75-percentile stays at 13 minutes up until the delay tolerance is 6o minutes. 

When delay tolerance increases from 2 to 30, there seems to also be an increase in waiting 

time, but this development flattens, and for delay tolerance between 28 and 58 minutes the 

waiting time does not increase. When delay tolerance reaches 60 minutes there is a dramatic 

spike in waiting time.  

The data show that the gain is biggest for delay tolerance up to 14 minutes, after this the cost 

and emission curves flatten and there is no further reduction in emissions or cost until the delay 

tolerance reaches 60 minutes where there is a small reduction. The graph for MSC show a 

similar effect, but with a breaking point at 22 minutes. This corresponds with the test duration 

of 22 minutes.  
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Figure 6.6: diagram illustrating how cost, emissions and actual waiting time develops as delay tolerance increases for the MSC 
project. Commit logs with commits only during active working hours are used for the simulation. 

 

 The 90-percentile for MSC stays at 20 minutes until the test duration reaches 60, which 

indicates that the developers rarely have to wait for the full extent og the delay tolerance 

during working hours.  

Having a closer look at the commit log gives some insight to why there seems to be high gains 

of waiting up to the point where delay tolerance equals test duration.  
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Figure 6.7: frequency diagram illustrating the frequency of different distances in minutes between one commit and the next. The 
orange line shows cumulative percentage. 

66.8% of the tests during working hours were triggered 16 or less minutes after the last test. 

With low delay tolerances, these tests will lead to increased costs, because they are not willing 

to wait until the previous test is done and a new server will be started.   
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7. Discussion 

Looking back at the results, can they be transferred to business value in a real-world use case? 

Can the CAST-algorithm have a life after this project? This project has sought to find a useful 

contribution in the fight for a greener future through investigating, building, and testing 

different variations of a model using the CAST-algorithm.  

In this chapter the findings from this investigation and the choices made along the way will be 

discussed.  

7.1  How does these findings answer the problem statements? 

The problem statements were written in the very first chapter of this thesis and have been the 

background for all of the work done. In this sub-chapter they are revisited and the extent to 

which they were successfully answered is discussed.  

7.1.1. Problem statement 1 

The first problem statement was: investigate the development of a model which attempts to 

optimize the organization of tests in an automated test suite with the objective of least energy 

greenhouse gas emissions. Throughout the background and design chapter it was shown that 

such a model can be made, but it requires some special conditions which are only present in 

some parts of the world. It will only be useful within geographical areas that have a relevant 

share of IRE. The area must also have a well-functioning, dynamic, high-resolution and 

transparent energy market, where data on prices and production is available to the public.  

The algorithms used in previous research found and presented in the background chapter used 

only IRE production or meteorological data for finding the optimal area. This makes the 

algorithm available in more areas as it removes the requirement of market data. This is 

sufficient if the only objective is to ensure that the data center uses energy where there is 

available IRE. However, in this project, the objective is to reduce emissions overall. In this case 

it is not helpful if one uses green energy where the demand for energy in the area is so large 

that it causes imports of gray energy from other areas or starts up gas-powered balancing 

power plants. In areas with large surplus of IRE, there is a risk that wind turbines can be shut 
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down to prevent overload on the grid if no-one will use the power. In order to locate areas with 

actual surplus of green energy, one needs dynamic pricing data from a transparent energy 

market. 

This transparency is not so much a technical prerequisite, as a political one.  Hopefully, more 

areas will meet these conditions in the future.  

What makes the CAST-algorithm special is that it will consider the entire electricity production 

and distribution system. This enables it to pursue real greenhouse gas emissions savings, by 

taking energy from areas with a surplus. But this also limits the commercial potential of this 

kind of solution. Adding an algorithm like this will increase the complexity in the DevOps-

pipeline, an area that is already conceived by many as complex and difficult to manage. At the 

same time, the immediate benefits are not obvious to the business’s stakeholders. To market a 

business as “green”, it is common to make commitments to buy 100% renewable energy, which 

means buying an equivalent amount og the businesses energy needs from green production 

sources. This does not guarantee that the energy the business actually use is green, but for 

marketing purposes it is good enough, and it does not put a strain on the resources of DevOps 

engineers.  

7.1.2. Problem statement 2 

The second problem statement was: evaluate whether the model is successful in making a 

significant reduction in the usage of non-green energy. No definition of successful has been 

made beforehand, but one measure og success is whether the CAST algorithm can be used for 

other purposes than this research. The algorithm is fairly simple and fast and could be 

implemented without using a lot of work hours or much computing power. Still, it does add 

more complexity to a CI/CD pipeline. A large obstacle of using the algorithm in practice, is the 

limited selection of data centers from each cloud provider.  

The extent to which it has made a significant reduction in the usage of non-green energy is 

more easily observed. A comparison was done where one simulation placed all servers in the 

area SE4, which is the one with the most installed IRE production capacity in the research area, 
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and the other with full CAST-algorithm. The number of servers deployed in an area without IRE 

surplus was reduced by 47% by using the algorithm, which is a significant reduction.  

There has been no shortage of data to test on, and three projects were selected as 

representatives for different types of software development. Even though VS Code is one of the 

most active projects on GitHub, the automated tests in the repository are small compared to 

the test suites of some of the larger enterprise solutions. The effects on a large commercial 

software project with an extensive test suite has not been examined.  

The results also indicated that there is a goldilocks-zone of sorts, where delay tolerance is 

getting near the test duration. At this point data from both MSC and VSC showed that the cost 

and emissions were significantly reduced. This could be explored further to see whether this is 

a pattern across all projects, and if it is something that can be detected and used to improve 

the algorithm. 

Also, only four weeks were chosen for representatives of one year. Some manual inspection of 

the data was done, and holiday weeks were avoided. Still, there extrapolations from these four 

weeks to annual values have a high degree of uncertainty. Another weakness is the synthetic 

data used for delay tolerance. In a real-life situation this probably would be a lot more dynamic, 

and developers would choose delay tolerances based on what they are planning to do in the 

immediate future after a commit. 

7.2  Takeaways from the process 

This project followed an exploratory approach, which enabled fast turnarounds and changes 

along the way as more insight were gained. The approach gives great freedom to the author, 

something which can be frustrating because it results in unlimited options that one wants to 

investigate. In the ongoing work the turns and events have been discussed and evaluated 

frequently along the way. This has made it possible to make full use of the freedom of the 

exploratory approach and minimizing frustration.  
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7.2.1. The importance if interdisciplinary backgrounds for this type of projects 

In this project, the two disciplines of energy economics and information technology has been 

combined. The experience and knowledge from my master’s degree in Energy Economics has been 

used actively throughout the process. Having this domain knowledge ready at hand has enabled faster 

progress than what would otherwise be possible, as the time span of a short thesis is insufficient to 

consult experts or learn a new domain to the degree where one can be creative and make swift 

decisions. Future projects with the same type of interdisciplinary form will always have a need to 

consolidate expertise from several fields. The experience from this project is how important it is to 

have access to both fields and the advantage of knowing both of them well. 

7.3  Deploy overhead. 

This model operates under the assumption that there is a cost associated with starting up a 

new test server, and that it is necessary to shut down the server running the test environment 

to save energy while no tests are running. In the future it might be possible to keep 

environments ready in all areas without using energy by utilizing tiny operating system for 

running only one application that can start up in milliseconds. One such initiative is IncludeOS 

which was granted research funds from the European Unions Program Horizon (CORDIS EU 

research results, 2019).   
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7.4  Data center availability 

In this project, the assumption has been made that one can choose to run the tests in any 

region in the Nordics. This is, however, not practical today, even though there are data centers 

in all grid areas. A software company will usually stick to one cloud provider, and today none of 

the providers have data centers in all the Nordic countries. This is likely to change in the future. 

Today, Google has one data center that is publicly available in the Nordics, in Finland. They are 

building one new data center in Denmark and they have bought land in Sweden in order to 

secure an option to build there (Google, 2019) (Moss, 2017). Microsofts Azure has data centers 

in two areas in Norway today, but they will open in two locations in Sweden in 2021, and plan 

to build data centers in Denmark as well (Microsoft, 2020) (Microsoft, 2020). Choosing between 

areas within the same cloud provider will probably be a more accessible option in the future.  

Also, there will hopefully be tools in place to help "abstract" the cloud interface to some 

degree, just like configuration management systems mask the actual operating system which it 

is running on. 

7.5  The future of automated software testing 

As mentioned in the background chapter, software testing gets little attention in the education 

of software developers. Still, automated software testing is gaining popularity, and although 

many companies are yet to introduce it, the expectations are that the market for automated 

software testing will grow by 18% a year until 2024 (Markets and Markets, 2019). Tools like 

Katalon TestOps and Github Actions are making it easier to include automated software testing 

even in smaller project without dedicated test or DevOps engineers to set it up. This indicates 

that there is future potential for an algorithm like CAST. 
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7.6  Electricity production in the future 

7.6.1. More wind and solar power 

At the time of writing, the share of IRE production in the countries Nordic system is 

approximately 17%. The share of intermittent renewables will increase dramatically in the 

coming years, and it is forecasted that by 2040, 37% of all electricity delivered to the grid will 

come from wind and solar powered plants. Parts of the capacity will probably be installed 

offshore, introducing wind power to areas that have previously not had a large share of IRE. 

At the same time, it is planned to reduce production capacity of thermal powered plants (The 

Norwegian water resources and energy directorate, 2020). This means that in the future, it is 

likely that most hours of the day have a surplus of IRE in one or more areas. 

 

Figure 7.1: Forecast of share of production from different energy sources in the Nordic countries (The Norwegian water 
resources and energy directorate, 2020).  

7.6.2. Thermal production sources - A comeback for nuclear power? 

Thermal production plants are delivering large parts of the electricity in the Nordic countries 

today, and they are important due to their ability to deliver large and steady loads throughout 

the day. It is a clear political goal to remove all production that causes greenhouse gas 

emissions, like coal, oil and gas. However, there is no consensus when it comes to nuclear 

power plants. Germany have decided to completely eradicate nuclear power from their energy 

mix, due to concern about nuclear disasters and waste disposal accidents. Sweden has been a 
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bit back and forth on the issue, but the current status is that existing newer reactors shall be 

kept operational. Nuclear power plants supply over 40% of Sweden’s electricity production, so 

phasing it out would require massive installations of alternative production sources, such as 

wind and solar (International Atomic Energy Agency, 2020).  

Others go in the opposite direction. Nuclear power plants can produce very large quantities of 

energy without any greenhouse gas emissions, which is why Finland is building new nuclear 

power plants to support their future energy needs. Either way, the future of nuclear will have a 

significant impact on the future energy production profile.  

7.7  Other applications 

Similar models for allocating workloads based on renewable energy supply can be applied to 

other parts of the software ecosystem. One possible application is to move the process of 

analyzing the best areas and shift workloads to the cloud providers.  In April 2020, Google 

launched the first version of their carbon-intelligent computing platform, which moves certain 

non-urgent tasks to the “greenest” hour of the day based on wind and solar forecasts. Analysis 

of the performance is ongoing, and Google has promised to release research publications on the 

topic. A second version that moves workloads both in time and location is under development 

(Radovanovic, 2020). Another possibility is to use the algorithm in testing-as-a-service platforms, 

where testing from different projects is performed by one party.  

Another possibility for the data center customer, would be to apply methods like the one from 

this project on other parts of the software operations process. Scheduled jobs like indexing and 

batch data processing could be good candidates. These are inherently easier to schedule than 

tests in the pipeline, but perhaps more difficult to move between locations.  

In this project, the effects were analyzed per project, but the results show that the outcomes 

are similar in all projects. The smallest project had little to gain from introducing such an 

algorithm, but there are quite a few smaller projects out there. Commonly used collaboration 

platforms like GitHub and GitLab offer built-in CI/CD tools with free testing for smaller projects 

(limited to 2000 minutes a month), larger projects can pay to use the service.  If actors who 

supply these kinds of products were to include an algorithm like CAST, even small projects 
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would be able to use it. If a small percentage of the projects do, the savings could become 

significant. GitHub has more than 100 million projects, but how many of these are active is 

difficult to say.  

As previously mentioned, the CAST-algorithm ensures that one uses actual green energy in a 

way that is not strictly necessary in for branding a company as green after today’s standards. 

This might change in the future, and governments can impose cap-and-trade schemes that limit 

the amount og gray energy a company can use. The CAST algorithm could be used in a reporting 

tool, keeping track og how much one has used of the gray quota, in addition to ensuring as 

much green consumption as possible.  

7.8  Possible improvements and further work 

7.8.1. Parallelization and sectioning for advanced users 

In this project, an underlying assumption has been that a test suite will run on one server only. 

In order to get faster feedback, it is not unusual to run tests in parallel over several servers. This 

is faster than running tests in parallel on one server. If one wanted to make a solution that can 

be used in projects that uses parallelization techniques, it would need to also handle parallel 

test runs on multiple servers.  

For projects with a sophisticated setup for larger test suites, it could also be possible to divide 

the test suite into smaller subsets and apply the CAST-algorithm for each subset, placing each 

subset in the most optimal area.  

7.8.2. Combine with test ordering algorithms. 

Sub test ordering techniques are used mainly to get feedback to the developers faster in 

projects with large test suites. These work by setting up each test in the test suite in an order 

designed to provoke test fails as early as possible in the process. Research mentioned in the 

background chapter has found these methods to be very effective in reducing test duration. 

From the simulations with different test durations, it was evident that shortening the test 

duration also can lead to significant benefits related to greenhouse gas emissions and cost 
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savings. Combining the CAST algorithm with test case prioritization algorithms could be 

interesting to investigate in a future project.  

7.8.3. Further examine the relationship between test frequency and waiting time. 

When looking at actual waiting times, the results showed that the distance between commits 

and the test duration has an impact on the cost and emissions.  Queues of tests cause by rapid 

commits are present in the two largest projects examined, and it is not unlikely that this is a 

common trait in larger projects. Further work could have a closer look at these patterns and 

attempt to identify profiles that can be used to suggest optimal delay tolerances.  

7.8.4. Apply nudging features to increase delay tolerance. 

The experiments have all been done under the assumption that there is a pre-defined number 

of minutes that a developer can accept to wait before the test starts (delay tolerance). There 

are different ways that this variable can be set. The initial thought has been that the developer 

adds how long they can wait as a parameter when committing the code. Other ways can also be 

explored, for instance one can analyze the coming hours and give some options to the 

developer, like a pop-up asking “postponing your test start by 15 minutes will make it run in a 

server that uses pure green energy. Would you like to wait?”. Another possibility could be a 

menu of possible run times, where the coming hours are displayed with different carbon 

footprint and the developer can choose at which our to schedule the tests.  

7.8.5. Include data center pricing as a decision parameter. 

The CAST algorithm does not consider data center prices in its current form. When examining 

the pricing scheme, it was found that the price difference of data centers from the same vendor 

was very small. Prices across vendors had more variation. Some vendors offer spot pricing for 

consumers that can plan ahead, which is something that can be used in an improved version of 

the CAST-algorithm to drive cost reduction.  

7.8.6. Build a prototype. 

So far, nothing has been discovered to indicate that one could not implement the CAST-

algorithm as part of a DevOps pipeline. Still, there are several ways one could go forward with 
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such work. The allocation and server management could be added as a script in a tool like 

Jenkins or Azure DevOps, or one could build it as a service that is called upon from the pipeline. 

This, or other options could be explored and tested in a prototyping experiment to learn more 

about how to best implement an algorithm like CAST.   
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8. Conclusion 

Automated software testing is one of the many energy consuming activities in software 

development. This thesis has sought to explore the possibility of reducing the carbon footprint 

from this activity by dynamically placing the test activity in areas where there is a surplus of 

green energy generated by wind and solar power plants. 

The result of the background and design phase is the Carbon-free Automated Software Testing 

– CAST algorithm.  The algorithm considers the production of energy from different sources and 

the demand situation to determine where there is a surplus of green energy that can be 

utilized.  

Simulations using a combination of real and synthetic data showed that the CAST algorithm is 

successful in reducing the carbon footprint of automated testing for both small and large 

projects. An essential condition for the success of the algorithm is the availability of data from a 

well-functioning electricity market with high resolution dynamic pricing. At the moment, this is 

not available across the globe, however, the availability and sophistication of that data is 

increasing. 

The simulations showed that reducing the test duration had a large positive impact on the 

carbon footprint of the test. It would therefore be interesting to look closer at combining the 

CAST-algorithm with techniques to shorten the test duration, like parallelization and test 

ordering in future work.  
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10. Appendices 

Appendix A  Python files 

A1 globalVariables.py 

AREAS = [ 'SE1', 'SE2', 'SE3', 'SE4', 'FI', 'DK1', 'DK2', 'NO1', 'NO2', 'NO3', 'N

O4', 'NO5', 'EE'] 

IRE_THRESHOLD = 0.2 

NEIGHBORS = {'DK1':['DK2', 'SE3', 'NO2', 'DE-

LU', 'NL'], 'DK2':['DK1', 'SE4', 'DE-

LU'], 'SE1': ['FI', 'SE2', 'NO4'], 'SE2': ['SE1', 'SE3', 'NO4', 'NO3'], 'SE3': ['

SE2', 'FI', 'SE4', 'NO1'], 'SE4': ['SE3', 'LT', 'DK2', 'DE-

LU', 'PL'], 'NO1': ['SE3', 'NO2', 'NO3', 'NO5'], 'NO2': ['NL', 'DE-

LU', 'DK1', 'NO1', 'NO5'], 'NO3': ['NO4', 'SE2', 'NO1', 'NO5'], 'NO4': ['SE1', 'S

E2', 'NO3'], 'NO5': ['NO3', 'NO1', 'NO5'], 'EE':['LV', 'FI'], 'FI':['SE3', 'EE', 

'SE1']} 

KEEP_UP_THRESHOLD = 5 

 

A2 simulate.py 

import datetime 

from tinydb import TinyDB, Query 

from decideServer import checkIfWeHaveServer, orderServer, addTestCollectionToSer

ver 

from decideArea import findOptimalArea 

from globalVariables import AREAS 

import csv 

import os 

from shutil import copyfile 

 

# script for feeding commit-logs into the servercheck and allocation algorithms 

# in order to simulate traffic to the "green testing module" 

# the results are recorded in two files, server_order.json (server log) and resul

ts.csv 

 

serverDB = TinyDB('storage/server_orders.json') 

Ask = Query() 

project = 'UDF' 

indata = 'base' 

scenario = 'WT60' 

season = 'all' 

filename = 'storage/commitlogs/'+ indata + "/" + project + '_' + season + '.csv' 

fileOutput = [project, season, scenario] 

dbStored = 'storage/db_files/'+ scenario + "_" + project + '_' + season + '.json' 
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waitingTime = 0 

waitingTimeFileName = 'storage/'+ scenario + "_" + project + '_' + season + '.txt

' 

 

def countServersPerArea(): 

    areaCountList = [] 

    for area in AREAS: 

        count = serverDB.count(Ask.area == area) 

        areaCountList.append(count) 

    return areaCountList 

 

def CalculateServerminutes(testingMinutes): 

    greenServerMinutes = 0 

    grayServerMinutes = 0 

    greenWaste = 0 

    grayWaste = 0 

    outputList = [] 

    for n in range (1, (len(serverDB)+1)): 

        serverOrder = dict(serverDB.get(doc_id=n)) 

        if serverOrder['green'] == 1: 

            greenServerMinutes += serverOrder['tests'] * testingMinutes 

            if serverOrder['shutdown'] == 0: 

                greenWaste += 60 - (serverOrder['tests'] * testingMinutes) 

        else:  

            grayServerMinutes +=  serverOrder['tests'] * testingMinutes 

            if serverOrder['shutdown'] == 0: 

                grayWaste += 60 - (serverOrder['tests'] * testingMinutes) 

    outputList.extend([grayServerMinutes, greenServerMinutes, greenWaste, grayWas

te]) 

    return outputList 

 

# loops through a file with commitlog timestamps and prints the output of each co

mmit 

with open(filename) as f: 

    csvReader = csv.reader(f) 

    commits = 0 

    delayTolerance = 0 

    testDuration = 0 

    greenServers = 0 

    grayServers = 0 

    utilizedServers = 0 

    for line in csvReader: 

        commits +=1 

        delayTolerance += int(line[1]) 
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        testDuration += int(float(line[2])) 

        timeOfCommit = datetime.datetime.fromtimestamp(int(line[0])) 

        haveServer = checkIfWeHaveServer(int(line[0]), int(line[1]), int(float(li

ne[2]))) 

        if haveServer != 0: 

            waitingTime = addTestCollectionToServer(haveServer.doc_id, timeOfComm

it, int(float(line[2])), line[1]) 

            utilizedServers += 1 

        else: 

            where = findOptimalArea(int(line[0]), int(line[1])) 

            if where != "no surplus area": 

                x = orderServer(where["date"], where["hour"], where["minute"], wh

ere["area"], int(line[1]), int(float(line[2])), 1) 

                startTimeString = where['date'] + '-' + str(where['hour'])+ '-

' + str(where['minute']) # added for waiting time count 

                startTime = datetime.datetime.strptime(startTimeString, '%d.%m.%Y

-%H-%M') # added for waiting time count 

                waitingTime = int((startTime - timeOfCommit).total_seconds() / 60

.0)   # added for waiting time count 

                greenServers += 1 

            else:  

                x = orderServer(timeOfCommit.strftime('%d.%m.%Y'), timeOfCommit.h

our, timeOfCommit.minute, "NO1", int(line[1]), int(float(line[2])), 0) 

                grayServers += 1 

        waitingTimeFile = open(waitingTimeFileName, "a") 

        waitingTimeFile.write(str(waitingTime)+ "\n") 

        waitingTimeFile.close() 

        print(waitingTime) 

    delayTolerance = delayTolerance/commits 

    testDuration = testDuration / commits 

    fileOutput.extend([delayTolerance, testDuration, commits, grayServers, greenS

ervers, utilizedServers]) 

 

f.close() 

 

minutes = CalculateServerminutes(fileOutput[4]) 

fileOutput.extend(minutes) 

fileOutput.extend(countServersPerArea()) 

 

outfile = open('storage/results.csv', "a") 

csv_writer = csv.writer(outfile) 

csv_writer.writerow(fileOutput) 

 

outfile.close() 
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copyfile('storage/server_orders.json', dbStored) 

os.remove('storage/server_orders.json') 

 

print(fileOutput) 

 

A3 decideServer.py 

import json 

from tinydb import TinyDB, Query 

import datetime 

import json 

import ast 

from globalVariables import KEEP_UP_THRESHOLD 

 

serverDB = TinyDB('storage/server_orders.json') 

Ask = Query() 

 

# calculate remaining time on server-hour and record reservation in database 

# if delay tolerance is less than 15 minutes, expect more tests, don't shut down 

server after execution.  

def orderServer(date, hour, minute, area, delayTolerance, testDuration, green): 

    timeString= date + ' ' + str(hour) + ':' + str(minute) 

    startTime = datetime.datetime.strptime(timeString, '%d.%m.%Y %H:%M') 

    testEndTime = startTime + datetime.timedelta(minutes=testDuration) 

    timeOut = startTime + datetime.timedelta(minutes=60) 

    timeLeft = (timeOut-testEndTime).total_seconds() /60 

    shutdown = 1 

    if delayTolerance <= KEEP_UP_THRESHOLD: 

        shutdown = 0 

    x = serverDB.insert({"area": area, "start": int(startTime.timestamp()), "end"

: int(testEndTime.timestamp()), "timeout": int(timeOut.timestamp()), "shutdown": 

shutdown, "timeleft":int(timeLeft), "green": green, "tests": 1}) 

    return x 

 

# See if server is available that can complete the test within acceptable delay, 

and before the one hour mark 

# returns server reservation from database or zero 

def checkIfWeHaveServer(timestamp, delayTolerance, testDuration): 

    commitTime = datetime.datetime.fromtimestamp(int(timestamp)) 

    maxTestStart = commitTime + datetime.timedelta(minutes=delayTolerance) 

 

    optionsNoShutdown = serverDB.get( 

        (Ask.shutdown == 0) &  
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        (Ask.end <= maxTestStart.timestamp()) &  

        (Ask.timeout >= int(timestamp)) & 

        (Ask.timeleft >= testDuration) 

    ) 

     

    if optionsNoShutdown: 

        startTimeForIncomingTest = max(optionsNoShutdown['end'], timestamp) 

        timeLeftToRunTests = (datetime.datetime.fromtimestamp(optionsNoShutdown['

timeout'])-

datetime.datetime.fromtimestamp(startTimeForIncomingTest)).total_seconds() /60 

        if timeLeftToRunTests >= testDuration: 

            return optionsNoShutdown        

 

    optionsWithShutdown = serverDB.get( 

        (Ask.shutdown == 1) & 

        (int(timestamp) <= Ask.end) & 

        (maxTestStart.timestamp() >= Ask.end) & 

        (Ask.timeleft >= testDuration) 

    ) 

 

    if optionsWithShutdown: 

        return optionsWithShutdown 

     

    return 0 

 

     

     

# Add a test run to a server that is alerady ordered 

def addTestCollectionToServer(orderID, timeOfCommit, testDuration, delayTolerance

):  

    serverOrder = serverDB.get(doc_id=orderID) 

    endTime = datetime.datetime.fromtimestamp(serverOrder['end']) 

    startTimeForIncomingTest = max(endTime, timeOfCommit) 

    waitingTime = int((startTimeForIncomingTest - timeOfCommit).total_seconds() /

 60.0)    # added for waiting time count 

    newEndTime = startTimeForIncomingTest + datetime.timedelta(minutes=testDurati

on) 

    newTImeLeft = (datetime.datetime.fromtimestamp(serverOrder['timeout'])-

newEndTime).total_seconds() /60 

    newNumberOfTests = serverOrder['tests'] + 1 

    serverDB.update({'end': int(newEndTime.timestamp()), "timeleft": newTImeLeft,

 "tests": newNumberOfTests }, doc_ids=[orderID]) 

    return(waitingTime) # added for waiting time count 
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A4 CAST.py 

import json 

from tinydb import TinyDB, Query 

import datetime 

from collections import defaultdict  

from globalVariables import AREAS, IRE_THRESHOLD, NEIGHBORS 

 

IREDB = TinyDB('storage/volumes_IRE.json') 

priceDB = TinyDB('storage/prices.json') 

totalProductionDB = TinyDB('storage/volumes_total.json') 

 

Ask = Query() 

 

def calculateDelta(date, hour, area): 

    neighbors = NEIGHBORS[area] 

    prices = dict(priceDB.get((Ask.date == date) & (Ask.hour == hour))) 

    delta = 0 

    for n in neighbors: 

        difference = float(prices[area]) - float(prices[n]) 

        delta += difference 

    return delta 

 

def findOptimalArea(timestamp, delayTolerance):     

    firstTime = datetime.datetime.fromtimestamp(int(timestamp)) 

    timeEnd = firstTime + datetime.timedelta(minutes=delayTolerance) 

    surplusDays = dict() 

    counter = 0 

    time = firstTime 

    minutes = 0 

    while time <= timeEnd: 

        nowDate = time.strftime("%d.%m.%Y") 

        productionIRE = dict(IREDB.get((Ask.date == nowDate) & (Ask.hour == str(t

ime.hour)))) 

        productionTotal = dict(totalProductionDB.get((Ask.date == nowDate) & (Ask

.hour == str(time.hour)))) 

        areas = AREAS 

        for item in areas: 

            fractionOfIRE = int(productionIRE[item]) / int(productionTotal[item]) 

            if fractionOfIRE >= IRE_THRESHOLD: 

                delta = calculateDelta(nowDate, str(time.hour), item) 

                if delta < 0: 
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                    counter += 1 

                    instance = {"date": time.strftime("%d.%m.%Y"), "hour": time.h

our, "minute": minutes, "area": item, "delta": delta} 

                    surplusDays[counter]=instance 

        time = time + datetime.timedelta(minutes=60) 

    if surplusDays: 

        lowestDelta = min(surplusDays, key=lambda v: surplusDays[v]['delta']) 

        bestAllocation = surplusDays[lowestDelta] 

        if bestAllocation["hour"] == firstTime.hour:  #make sure we start right a

way if the first hour is the best 

            bestAllocation["minute"] = firstTime.minute 

    else: 

        bestAllocation = "no surplus area" 

    return bestAllocation 
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A5 delayTolerances.py 

import datetime 

import csv 

from numpy import random 

 

# loops thorugf txt file with commitlog timestamps 

# adds delay tolerance based on the hour of the day 

# writes to csv-file for use in simulations 

 

def addDelayTolerance(filename, mean, standardDeviation): 

    splitFileName = filename.split("/") 

    newFileName = splitFileName[2][:-3] 

    outFileName = "storage/commitlogs/withDelayTolerance/" + newFileName + "csv" 

    outfile = open(outFileName, "a") 

    delayTolerance = 0 

    csvWriter = csv.writer(outfile) 

    with open(filename) as f: 

        for line in f: 

            testDuration =  abs(random.normal(loc=mean, scale=standardDeviation)) 

            timeOfCommit = datetime.datetime.fromtimestamp(int(line)) 

            if timeOfCommit.hour == 11: 

                record = [int(line), "30", testDuration] 

                csvWriter.writerow(record) 

            elif timeOfCommit.hour >= 16 and timeOfCommit.hour < 20: 

                record = [int(line), "720", testDuration] 

                csvWriter.writerow(record) 

            else: 

                record = [int(line), "5", testDuration] 

                csvWriter.writerow(record) 

    outfile.close() 

 

# Test Duration is the second argument 

# Standard deviation third argument, set to 0 for non-noisy test durations 

 

seasons = ["summer", "winter", "spring", "autumn"] 

projectname = "UDF" 

 

for n in seasons: 

    filename = "storage/commitlogs/" + projectname + "_" + n + ".txt" 

    addDelayTolerance(filename, 22, 11) 
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A6 heatmap.py 

import json 

from tinydb import TinyDB, Query 

import datetime 

from collections import defaultdict  

from globalVariables import AREAS, IRE_THRESHOLD, NEIGHBORS 

import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

from matplotlib import colors 

import numpy as np 

 

IREDB = TinyDB('storage/volumes_IRE.json') 

priceDB = TinyDB('storage/prices.json') 

totalProductionDB = TinyDB('storage/volumes_total.json') 

 

Ask = Query() 

 

# returns a nested list with price deltas and time for all areas 

def calculateDelta(date, hour, area): 

    neighbors = NEIGHBORS[area] 

    prices = dict(priceDB.get((Ask.date == date) & (Ask.hour == hour))) 

    delta = 0 

    for n in neighbors: 

        difference = float(prices[area]) - float(prices[n]) 

        delta += difference 

    return delta 

 

def findOptimalArea(year, month, day, hour): 

    time = datetime.datetime(year, month, day, hour, 0, 0, 0) 

    surplusDays = "" 

    counter = 0 

    nowDate = time.strftime("%d.%m.%Y") 

    productionIRE = dict(IREDB.get((Ask.date == nowDate) & (Ask.hour == str(time.

hour)))) 

    productionTotal = dict(totalProductionDB.get((Ask.date == nowDate) & (Ask.hou

r == str(time.hour)))) 

    areas = AREAS 

    for item in areas: 

        fractionOfIRE = int(productionIRE[item]) / int(productionTotal[item]) 

        if fractionOfIRE >= IRE_THRESHOLD: 

            delta = calculateDelta(nowDate, str(time.hour), item) 

            if delta < 0: 
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                counter += 1 

                instance = str(time.hour) + ", " + str(item) + ", " + str(delta) 

+ "\n" 

                surplusDays+=instance 

            else:  

                counter += 1 

                instance = str(time.hour) + ", " + str(item) + ", " + str(delta) 

+ "\n" 

                surplusDays+=instance     

        else: 

            counter += 1 

            instance =  str(time.hour) + ", " + str(item) + ", " + "0" + "\n" 

            surplusDays+=instance 

    time = time + datetime.timedelta(minutes=60)       

    return surplusDays 

     

def background_gradient(s, m, M, cmap='PuBu', low=0, high=0): 

    rng = M - m 

    norm = colors.Normalize(m - (rng * low), 

                            M + (rng * high)) 

    normed = norm(s.values) 

    c = [colors.rgb2hex(x) for x in plt.cm.get_cmap(cmap)(normed)] 

    return ['background-color: %s' % color for color in c] 

 

def generateHeatmapOneDay(date): 

    filenameCSV="heatmaps/" + date.replace(".", "") + ".csv" 

 

    f = open(filenameCSV, "a") 

 

    for n in range(0, 24): 

        gold = str(findOptimalArea(int(date[6:10]), int(date[3:5]), int(date[:2])

, n)) 

        f.write(gold) 

 

    f.close() 

 

    imageFileName = "heatmaps/" + date.replace(".", "") + ".png" 

    dfData = pd.read_csv(filenameCSV, names=['hour', 'area', 'delta']) 

    sbdata= dfData.pivot("area", "hour", "delta") 

    colormap = sns.diverging_palette(145, 300, s=60, as_cmap=True) 

 

    ax = sns.heatmap(sbdata, cmap=colormap, center=0, mask=(sbdata==0)) 

    plt.savefig(imageFileName) 

 

def generateHeatmapsOneWeek(weekstart): 
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    startDay = datetime.datetime.strptime(weekstart, '%d.%m.%Y') 

    for n in range(0, 7): 

        generateHeatmapOneDay(startDay.strftime('%d.%m.%Y')) 

        startDay += datetime.timedelta(days=1)   

       

A7  convert.py 

import json 

import tinydb 

 

# convert from json-files to files readable by tinyDB 

 

db = tinydb.TinyDB("storage/volumes_total.json")  # create a new storage for the 

database 

 

with open("data.txt", "r") as f:  # open the unmodified file 

    json_data = json.load(f)  # parse its JSON 

 

for entry in json_data:   

    print(entry) 

    db.insert(entry)  
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Appendix B – results 

B1 Simuation result data Python Algorithms 

project season scenario 
Avg delay 
tolerance 

avg test 
duration commits 

gray 
servers 

green 
servers 

re-
use 

gray 
minutes 

green 
minutes 

PA autumn base 10 1 18 0 18 0 0 18 

PA summer base 10 1 17 4 13 0 4 13 

PA spring base 10 1 14 1 13 0 1 13 

PA winter base 10 1 2 0 2 0 0 2 

PA autumn base-se4 10 1 18 1 17 0 1 17 

PA summer base-se4 10 1 17 7 10 0 7 10 

PA spring base-se4 10 1 14 11 3 0 11 3 

PA winter base-se4 10 1 2 0 2 0 0 2 

PA winter DT_long 120 1 2 0 2 0 0 2 

PA summer DT_long 120 1 17 4 12 1 4 13 

PA autumn DT_long 120 1 18 0 17 1 0 18 

PA spring DT_long 120 1 14 1 9 4 1 13 

PA summer DT_short 1 1 17 4 13 0 4 13 

PA autumn DT_short 1 1 18 0 18 0 0 18 

PA spring DT_short 1 1 14 1 13 0 1 13 

PA winter DT_short 1 1 2 0 2 0 0 2 

PA autumn IRE_low 10 1 18 0 18 0 0 18 

PA summer IRE_low 10 1 17 2 15 0 2 15 

PA spring IRE_low 10 1 14 0 14 0 0 14 

PA winter IRE_low 10 1 2 0 2 0 0 2 

PA autumn IRE_one 10 1 18 0 18 0 0 18 

PA summer IRE_one 10 1 17 0 17 0 0 17 

PA spring IRE_one 10 1 14 0 14 0 0 14 

PA winter IRE_one 10 1 2 0 2 0 0 2 

PA summer sdwn_long 10 1 17 3 11 3 4 13 

PA autumn sdwn_long 10 1 18 0 13 5 0 18 

PA spring sdwn_long 10 1 14 1 6 7 1 13 

PA winter sdwn_long 10 1 2 0 2 0 0 2 

PA autumn sdwn_short 10 1 18 0 18 0 0 18 

PA summer sdwn_short 10 1 17 4 13 0 4 13 

PA spring sdwn_short 10 1 14 1 13 0 1 13 

PA winter sdwn_short 10 1 2 0 2 0 0 2 

PA autumn TD_long 10 45 18 0 18 0 0 810 

PA summer TD_long 10 45 17 4 13 0 180 585 

PA spring TD_long 10 45 14 1 13 0 45 585 

PA winter TD_long 10 45 2 0 2 0 0 90 

PA summer TD_noisy 10 2 17 4 13 0 10 32 

PA autumn TD_noisy 10 3 18 0 17 1 0 45 
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project season scenario 
Avg delay 
tolerance 

avg test 
duration commits 

gray 
servers 

green 
servers 

re-
use 

gray 
minutes 

green 
minutes 

PA spring TD_noisy 10 3 14 1 10 3 3 40 

PA winter TD_noisy 10 4 2 0 2 0 0 7 

 

Continued 

project season scenario 
green 
waste 

gray 
waste se1 se2 se3 se4 fi dk1 dk2 no2 no3 

PA autumn base 0 0 4 0 0 12 0 2 0 0 0 

PA summer base 0 0 0 1 0 10 0 0 0 2 0 

PA spring base 0 0 0 0 0 3 0 2 0 0 8 

PA winter base 0 0 0 0 0 1 0 1 0 0 0 

PA autumn base-se4 0 0 0 0 0 17 0 0 0 0 0 

PA summer base-se4 0 0 0 0 0 10 0 0 0 0 0 

PA spring base-se4 0 0 0 0 0 3 0 0 0 0 0 

PA winter base-se4 0 0 0 0 0 2 0 0 0 0 0 

PA winter DT_long 0 0 0 0 0 1 0 1 0 0 0 

PA summer DT_long 0 0 0 0 0 11 0 0 0 1 0 

PA autumn DT_long 0 0 3 0 0 11 1 2 0 0 0 

PA spring DT_long 0 0 0 0 0 3 0 2 0 0 4 

PA summer DT_short 0 0 0 1 0 10 0 0 0 2 0 

PA autumn DT_short 0 0 4 0 0 12 0 2 0 0 0 

PA spring DT_short 0 0 0 0 0 3 0 2 0 0 8 

PA winter DT_short 0 0 0 0 0 1 0 1 0 0 0 

PA autumn IRE_low 0 0 3 0 1 12 0 2 0 0 0 

PA summer IRE_low 0 0 0 0 1 7 0 0 0 7 0 

PA spring IRE_low 0 0 1 0 0 3 0 2 0 0 8 

PA winter IRE_low 0 0 0 0 0 1 0 1 0 0 0 

PA autumn IRE_one 0 0 0 0 0 10 0 2 0 5 0 

PA summer IRE_one 0 0 0 0 1 3 0 0 0 13 0 

PA spring IRE_one 0 0 0 0 8 4 0 0 0 0 1 

PA winter IRE_one 0 0 0 0 0 1 0 1 0 0 0 

PA summer sdwn_long 647 176 0 1 0 9 0 0 0 1 0 

PA autumn sdwn_long 762 0 2 0 0 9 0 2 0 0 0 

PA spring sdwn_long 347 59 0 0 0 3 0 1 0 0 2 

PA winter sdwn_long 118 0 0 0 0 1 0 1 0 0 0 

PA autumn sdwn_short 0 0 4 0 0 12 0 2 0 0 0 

PA summer sdwn_short 0 0 0 1 0 10 0 0 0 2 0 

PA spring sdwn_short 0 0 0 0 0 3 0 2 0 0 8 

PA winter sdwn_short 0 0 0 0 0 1 0 1 0 0 0 

PA autumn TD_long 0 0 4 0 0 12 0 2 0 0 0 
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project season scenario 
green 
waste 

gray 
waste se1 se2 se3 se4 fi dk1 dk2 no2 no3 

PA summer TD_long 0 0 0 1 0 10 0 0 0 2 0 

PA spring TD_long 0 0 0 0 0 3 0 2 0 0 8 

PA winter TD_long 0 0 0 0 0 1 0 1 0 0 0 

PA summer TD_noisy 0 0 0 1 0 10 0 0 0 2 0 

PA autumn TD_noisy 0 0 3 0 0 12 0 2 0 0 0 

PA spring TD_noisy 0 0 0 0 0 3 0 1 0 0 6 

PA winter TD_noisy 0 0 0 0 0 1 0 1 0 0 0 

 

Continued 

project season scenario no4 no5 ee 
waste 
factor Ops cost 

Gray 
emissions 

Green 
emissions 

Emissions 
total 

PA autumn base 0 0 0 0.00 18 0.00 0.01 0.01 

PA summer base 0 0 0 0.00 17 0.00 0.00 0.01 

PA spring base 0 0 0 0.00 14 0.00 0.00 0.00 

PA winter base 0 0 0 0.00 2 0.00 0.00 0.00 

PA autumn base-se4 0 0 0 0.00 18 0.00 0.01 0.01 

PA summer base-se4 0 0 0 0.00 17 0.01 0.00 0.01 

PA spring base-se4 0 0 0 0.00 14 0.01 0.00 0.01 

PA winter base-se4 0 0 0 0.00 2 0.00 0.00 0.00 

PA winter DT_long 0 0 0 0.00 2 0.00 0.00 0.00 

PA summer DT_long 0 0 0 0.00 16 0.00 0.00 0.01 

PA autumn DT_long 0 0 0 0.00 17 0.00 0.01 0.01 

PA spring DT_long 0 0 0 0.00 10 0.00 0.00 0.00 

PA summer DT_short 0 0 0 0.00 17 0.00 0.00 0.01 

PA autumn DT_short 0 0 0 0.00 18 0.00 0.01 0.01 

PA spring DT_short 0 0 0 0.00 14 0.00 0.00 0.00 

PA winter DT_short 0 0 0 0.00 2 0.00 0.00 0.00 

PA autumn IRE_low 0 0 0 0.00 18 0.00 0.01 0.01 

PA summer IRE_low 0 0 0 0.00 17 0.00 0.00 0.01 

PA spring IRE_low 0 0 0 0.00 14 0.00 0.00 0.00 

PA winter IRE_low 0 0 0 0.00 2 0.00 0.00 0.00 

PA autumn IRE_one 1 0 0 0.00 18 0.00 0.01 0.01 

PA summer IRE_one 0 0 0 0.00 17 0.00 0.01 0.01 

PA spring IRE_one 1 0 0 0.00 14 0.00 0.00 0.00 

PA winter IRE_one 0 0 0 0.00 2 0.00 0.00 0.00 

PA summer sdwn_long 0 0 0 49.77 14 0.16 0.20 0.36 

PA autumn sdwn_long 0 0 0 42.33 13 0.00 0.24 0.24 

PA spring sdwn_long 0 0 0 26.69 7 0.05 0.11 0.16 

PA winter sdwn_long 0 0 0 59.00 2 0.00 0.04 0.04 
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project season scenario no4 no5 ee 
waste 
factor Ops cost 

Gray 
emissions 

Green 
emissions 

Emissions 
total 

PA autumn sdwn_short 0 0 0 0.00 18 0.00 0.01 0.01 

PA summer sdwn_short 0 0 0 0.00 17 0.00 0.00 0.01 

PA spring sdwn_short 0 0 0 0.00 14 0.00 0.00 0.00 

PA winter sdwn_short 0 0 0 0.00 2 0.00 0.00 0.00 

PA autumn TD_long 0 0 0 0.00 18 0.00 0.25 0.25 

PA summer TD_long 0 0 0 0.00 17 0.16 0.18 0.33 

PA spring TD_long 0 0 0 0.00 14 0.04 0.18 0.22 

PA winter TD_long 0 0 0 0.00 2 0.00 0.03 0.03 

PA summer TD_noisy 0 0 0 0.00 17 0.01 0.01 0.02 

PA autumn TD_noisy 0 0 0 0.00 17 0.00 0.01 0.01 

PA spring TD_noisy 0 0 0 0.00 11 0.00 0.01 0.01 

PA winter TD_noisy 0 0 0 0.00 2 0.00 0.00 0.00 

 

B2 Simulation results MSC 

project season scenario 

Avg 
delay 
tolerance 

avg test 
duration commits 

gray 
servers 

green 
servers 

re-
use 

gray 
minutes 

green 
minutes 

MSC autumn base 210 22 56 1 44 11 22 1210 

MSC spring base 204 22 51 27 11 13 836 286 

MSC winter base 176 22 42 0 35 7 0 924 

MSC summer base 230 22 35 4 23 8 110 660 

MSC autumn base-se4 210 22 56 1 44 11 22 1210 

MSC spring base-se4 204 22 51 29 9 13 880 242 

MSC winter base-se4 176 22 42 8 27 7 198 726 

MSC summer base-se4 230 22 35 5 22 8 132 638 

MSC autumn DT_long 251 22 56 0 32 24 0 1232 

MSC spring DT_long 247 22 51 22 10 19 814 308 

MSC winter DT_long 219 22 42 0 28 14 0 924 

MSC summer DT_long 269 22 35 2 21 12 88 682 

MSC autumn DT_short 36 22 56 1 45 10 22 1210 

MSC spring DT_short 35 22 51 28 11 12 836 286 

MSC winter DT_short 30 22 42 0 35 7 0 924 

MSC summer DT_short 39 22 35 6 23 6 176 594 

MSC autumn IRE_low 210 22 56 1 44 11 22 1210 

MSC spring IRE_low 204 22 51 16 22 13 484 638 

MSC winter IRE_low 176 22 42 0 35 7 0 924 

MSC summer IRE_low 230 22 35 4 23 8 110 660 

MSC autumn IRE_one 210 22 56 0 45 11 0 1232 

MSC spring IRE_one 204 22 51 0 37 14 0 1122 

MSC winter IRE_one 176 22 42 0 35 7 0 924 
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project season scenario 

Avg 
delay 

tolerance 
avg test 

duration commits 
gray 

servers 
green 

servers 
re-

use 
gray 

minutes 
green 

minutes 

MSC summer IRE_one 230 22 35 0 27 8 0 770 

MSC autumn sdwn_long 210 22 56 1 44 11 22 1210 

MSC spring sdwn_long 204 22 51 27 10 14 836 286 

MSC winter sdwn_long 176 22 42 0 35 7 0 924 

MSC summer sdwn_long 230 22 35 4 23 8 110 660 

MSC autumn sdwn_short 210 22 56 1 46 9 22 1210 

MSC spring sdwn_short 204 22 51 33 11 7 836 286 

MSC winter sdwn_short 176 22 42 0 38 4 0 924 

MSC summer sdwn_short 230 22 35 5 24 6 110 660 

MSC autumn TD_long 210 45 56 1 55 0 45 2475 

MSC spring TD_long 204 45 51 38 13 0 1710 585 

MSC winter TD_long 176 45 42 0 42 0 0 1890 

MSC summer TD_long 230 45 35 5 30 0 225 1350 

MSC autumn TD_noisy 210 24 56 1 37 18 49 1310 

MSC spring TD_noisy 204 23 51 28 9 14 883 302 

MSC winter TD_noisy 176 23 42 0 35 7 0 970 

MSC summer TD_noisy 230 22 35 4 23 8 108 651 

MSC autumn TD_short 210 6 56 1 25 30 18 318 

MSC spring TD_short 204 6 51 17 8 26 228 78 

MSC winter TD_short 176 6 42 0 22 20 0 252 

MSC summer TD_short 230 6 35 2 14 19 30 180 

 

Continued 

project season scenario 
green 
waste 

gray 
waste se1 se2 se3 se4 fi dk1 dk2 

MSC autumn base 1204 38 2 0 0 42 0 0 0 

MSC spring base 190 584 2 2 0 5 0 2 0 

MSC winter base 1014 0 0 0 0 18 0 17 0 

MSC summer base 504 130 0 0 0 20 0 3 0 

MSC autumn base-se4 1204 38 0 0 0 44 0 0 0 

MSC spring base-se4 152 622 0 0 0 9 0 0 0 

MSC winter base-se4 770 244 0 0 0 27 0 0 0 

MSC summer base-se4 466 168 0 0 0 22 0 0 0 

MSC autumn DT_long 484 0 1 0 0 31 0 0 0 

MSC spring DT_long 146 328 2 2 0 4 0 2 0 

MSC winter DT_long 594 0 0 0 0 14 0 14 0 

MSC summer DT_long 384 32 0 0 0 20 0 1 0 

MSC autumn DT_short 1204 38 6 0 0 39 0 0 0 
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project season scenario 
green 
waste 

gray 
waste se1 se2 se3 se4 fi dk1 dk2 

MSC spring DT_short 190 584 3 1 0 5 0 2 0 

MSC winter DT_short 1014 0 0 0 0 18 0 17 0 

MSC summer DT_short 564 130 0 0 0 21 0 2 0 

MSC autumn IRE_low 1204 38 2 0 0 42 0 0 0 

MSC spring IRE_low 498 276 13 2 0 5 0 1 0 

MSC winter IRE_low 1014 0 0 0 0 18 0 17 0 

MSC summer IRE_low 504 130 0 0 1 18 0 2 0 

MSC autumn IRE_one 1242 0 0 0 0 18 0 0 0 

MSC spring IRE_one 774 0 6 0 0 5 0 1 0 

MSC winter IRE_one 1014 0 0 0 1 3 0 14 0 

MSC summer IRE_one 634 0 0 0 1 10 0 2 0 

MSC autumn sdwn_long 1242 38 2 0 0 42 0 0 0 

MSC spring sdwn_long 206 638 2 2 0 4 0 2 0 

MSC winter sdwn_long 1052 0 0 0 0 18 0 17 0 

MSC summer sdwn_long 542 130 0 0 0 20 0 3 0 

MSC autumn sdwn_short 0 0 2 0 0 44 0 0 0 

MSC spring sdwn_short 0 0 2 2 0 5 0 2 0 

MSC winter sdwn_short 0 0 0 0 0 20 0 18 0 

MSC summer sdwn_short 0 0 0 0 0 21 0 3 0 

MSC autumn TD_long 555 15 2 0 0 53 0 0 0 

MSC spring TD_long 75 405 3 3 0 5 0 2 0 

MSC winter TD_long 465 0 0 0 0 23 0 19 0 

MSC summer TD_long 270 75 0 0 0 27 0 3 0 

MSC autumn TD_noisy 818 11 2 0 0 35 0 0 0 

MSC spring TD_noisy 184 706 2 1 0 4 0 2 0 

MSC winter TD_noisy 858 0 0 0 0 17 0 18 0 

MSC summer TD_noisy 510 132 0 0 0 20 0 3 0 

MSC autumn TD_short 978 42 1 0 0 24 0 0 0 

MSC spring TD_short 210 540 1 1 0 4 0 2 0 

MSC winter TD_short 810 0 0 0 0 10 0 12 0 

MSC summer TD_short 432 90 0 0 0 12 0 2 0 

 

Continued 

project season scenario no2 no3 no4 no5 ee 
waste 
factor 

Ops 
cost 

Gray 
emissions 

Green 
emissions 

Emissions 
total 

MSC autumn base 0 0 0 0 0 1.00 45 0.05 0.73 0.79 

MSC spring base 0 0 0 0 0 0.66 38 1.24 0.14 1.38 

MSC winter base 0 0 0 0 0 1.10 35 0.00 0.59 0.59 

MSC summer Base 0 0 0 0 0 0.76 27 0.21 0.35 0.56 
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project season scenario no2 no3 no4 no5 ee 
waste 
factor 

Ops 
cost 

Gray 
emissions 

Green 
emissions 

Emissions 
total 

MSC autumn base-se4 0 0 0 0 0 1.00 45 0.05 0.73 0.79 

MSC spring base-se4 0 0 0 0 0 0.63 38 1.31 0.12 1.43 

MSC winter base-se4 0 0 0 0 0 1.06 35 0.39 0.46 0.84 

MSC summer base-se4 0 0 0 0 0 0.73 27 0.26 0.34 0.60 

MSC autumn DT_long 0 0 0 0 0 0.39 32 0.00 0.52 0.52 

MSC spring DT_long 0 0 0 0 0 0.47 32 1.00 0.14 1.13 

MSC winter DT_long 0 0 0 0 0 0.64 28 0.00 0.46 0.46 

MSC summer DT_long 0 0 0 0 0 0.56 23 0.10 0.32 0.43 

MSC autumn DT_short 0 0 0 0 0 1.00 46 0.05 0.73 0.79 

MSC spring DT_short 0 0 0 0 0 0.66 39 1.24 0.14 1.38 

MSC winter DT_short 0 0 0 0 0 1.10 35 0.00 0.59 0.59 

MSC summer DT_short 0 0 0 0 0 0.95 29 0.27 0.35 0.62 

MSC autumn IRE_low 0 0 0 0 0 1.00 45 0.05 0.73 0.79 

MSC spring IRE_low 0 1 0 0 0 0.78 38 0.66 0.35 1.01 

MSC winter IRE_low 0 0 0 0 0 1.10 35 0.00 0.59 0.59 

MSC summer IRE_low 2 0 0 0 0 0.76 27 0.21 0.35 0.56 

MSC autumn IRE_one 19 0 8 0 0 1.01 45 0.00 0.75 0.75 

MSC spring IRE_one 11 14 0 0 0 0.69 37 0.00 0.58 0.58 

MSC winter IRE_one 17 0 0 0 0 1.10 35 0.00 0.59 0.59 

MSC summer IRE_one 14 0 0 0 0 0.82 27 0.00 0.43 0.43 

MSC autumn sdwn_long 0 0 0 0 0 1.03 45 0.05 0.75 0.80 

MSC spring sdwn_long 0 0 0 0 0 0.72 37 1.28 0.15 1.43 

MSC winter sdwn_long 0 0 0 0 0 1.14 35 0.00 0.60 0.60 

MSC summer sdwn_long 0 0 0 0 0 0.82 27 0.21 0.37 0.58 

MSC autumn sdwn_short 0 0 0 0 0 0.00 47 0.02 0.37 0.39 

MSC spring sdwn_short 0 0 0 0 0 0.00 44 0.73 0.09 0.82 

MSC winter sdwn_short 0 0 0 0 0 0.00 38 0.00 0.28 0.28 

MSC summer sdwn_short 0 0 0 0 0 0.00 29 0.10 0.20 0.30 

MSC autumn TD_long 0 0 0 0 0 0.22 56 0.05 0.92 0.97 

MSC spring TD_long 0 0 0 0 0 0.13 51 1.84 0.20 2.04 

MSC winter TD_long 0 0 0 0 0 0.25 42 0.00 0.72 0.72 

MSC summer TD_long 0 0 0 0 0 0.20 35 0.26 0.49 0.75 

MSC autumn TD_noisy 0 0 0 0 0 0.62 38 0.05 0.65 0.70 

MSC spring TD_noisy 0 0 0 0 0 0.61 37 1.38 0.15 1.53 

MSC winter TD_noisy 0 0 0 0 0 0.88 35 0.00 0.56 0.56 

MSC summer TD_noisy 0 0 0 0 0 0.78 27 0.21 0.35 0.56 

MSC autumn TD_short 0 0 0 0 0 3.08 26 0.05 0.39 0.45 

MSC spring TD_short 0 0 0 0 0 2.69 25 0.67 0.09 0.76 

MSC winter TD_short 0 0 0 0 0 3.21 22 0.00 0.32 0.32 

MSC summer TD_short 0 0 0 0 0 2.40 16 0.10 0.19 0.29 
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B3 Simulation results VSC 

project season scenario 

Avg 
delay 
tolerance 

avg test 
duration commits 

gray 
servers 

green 
servers 

re-
use 

gray 
minutes 

green 
minutes 

VSC winter base 183 16 538 1 260 277 32 8576 

VSC autumn base 178 16 476 0 253 223 0 7616 

VSC spring base 165 16 414 95 140 179 2592 4032 

VSC summer base 153 16 185 17 93 75 368 2592 

VSC winter base-se4 183 16 538 34 227 277 1184 7424 

VSC autumn base-se4 178 16 476 5 248 223 112 7504 

VSC spring base-se4 165 16 414 157 77 180 4368 2256 

VSC summer base-se4 153 16 185 24 88 73 512 2448 

VSC winter DT_long 227 16 538 0 196 342 0 8608 

VSC autumn DT_long 222 16 477 0 178 299 0 7632 

VSC spring DT_long 209 16 414 61 103 250 2416 4208 

VSC summer DT_long 199 16 185 11 75 99 336 2624 

VSC winter DT_short 31 16 538 1 290 247 16 8592 

VSC autumn DT_short 30 16 477 0 268 209 0 7632 

VSC spring DT_short 28 16 414 99 155 160 2592 4032 

VSC summer DT_short 26 16 185 25 100 60 528 2432 

VSC winter IRE_low 183 16 538 1 260 277 32 8576 

VSC autumn IRE_low 178 16 476 0 253 223 0 7616 

VSC spring IRE_low 165 16 414 75 159 180 1968 4656 

VSC summer IRE_low 153 16 185 12 99 74 288 2672 

VSC winter IRE_one 183 16 538 0 264 274 0 8608 

VSC autumn IRE_one 178 16 476 0 255 221 0 7616 

VSC spring IRE_one 165 16 414 0 231 183 0 6624 

VSC summer IRE_one 153 16 185 0 111 74 0 2960 

VSC winter sdwn_long 183 16 538 1 259 278 32 8576 

VSC autumn sdwn_long 178 16 476 0 252 224 0 7616 

VSC spring sdwn_long 165 16 414 94 142 178 2592 4032 

VSC summer sdwn_long 153 16 185 17 90 78 368 2592 

VSC autumn sdwn_short 178 16 476 0 332 144 0 7616 

VSC winter sdwn_short 183 16 538 1 318 219 32 8576 

VSC spring sdwn_short 165 16 414 120 169 125 2592 4032 

VSC summer sdwn_short 153 16 185 23 106 56 416 2544 

VSC winter TD_long 183 45 538 1 537 0 45 24165 

VSC autumn TD_long 178 45 477 0 477 0 0 21465 

VSC spring TD_long 165 45 414 160 254 0 7200 11430 

VSC summer TD_long 153 45 185 27 158 0 1215 7110 

VSC winter TD_noisy 183 15 538 1 250 287 31 8305 

VSC autumn TD_noisy 178 16 477 0 236 241 0 7634 
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project season scenario 

Avg 
delay 

tolerance 
avg test 

duration commits 
gray 

servers 
green 

servers 
re-

use 
gray 

minutes 
green 

minutes 

VSC spring TD_noisy 165 15 414 86 137 191 2489 3871 

VSC summer TD_noisy 153 15 185 16 92 77 356 2391 

VSC winter TD_short 183 6 538 1 137 400 18 3210 

VSC spring TD_short 165 6 414 59 75 280 990 1494 

VSC autumn TD_short 178 6 477 0 130 347 0 2862 

VSC summer TD_short 153 6 185 13 65 107 150 960 

 

Continued 

project season scenario 
green 
waste 

gray 
waste se1 se2 se3 se4 fi dk1 dk2 no2 no3 

VSC winter base 6040 28 0 0 0 177 0 77 0 0 6 

VSC autumn base 6776 0 14 0 0 226 0 9 4 0 0 

VSC spring base 3616 2824 22 23 0 35 0 9 0 0 51 

VSC summer base 2360 652 0 2 0 81 0 6 0 3 0 

VSC winter base-se4 5292 776 0 0 0 227 0 0 0 0 0 

VSC autumn base-se4 6588 188 0 0 0 248 0 0 0 0 0 

VSC spring base-se4 1832 4564 0 0 0 77 0 0 0 0 0 

VSC summer base-se4 2316 740 0 0 0 88 0 0 0 0 0 

VSC winter DT_long 2264 0 0 0 0 133 0 61 0 0 2 

VSC autumn DT_long 2196 0 12 0 0 158 0 6 2 0 0 

VSC spring DT_long 1388 992 16 21 0 20 0 6 0 0 40 

VSC summer DT_long 1428 324 0 1 0 67 0 4 0 3 0 

VSC winter DT_short 7708 44 0 0 0 190 0 91 0 0 9 

VSC autumn DT_short 7480 0 22 0 0 231 0 11 4 0 0 

VSC spring DT_short 4500 2976 24 18 0 40 0 12 0 0 61 

VSC summer DT_short 3020 756 0 2 0 84 0 11 0 2 0 

VSC winter IRE_low 6040 28 0 0 0 177 0 77 0 0 6 

VSC autumn IRE_low 6776 0 33 4 0 207 0 9 0 0 0 

VSC spring IRE_low 4180 2260 56 18 0 18 0 5 0 0 62 

VSC summer IRE_low 2624 432 0 0 7 74 0 2 0 15 0 

VSC winter IRE_one 6112 0 1 0 18 104 0 56 0 84 0 

VSC autumn IRE_one 6776 0 2 0 1 150 0 9 0 57 2 

VSC spring IRE_one 6440 0 12 0 28 26 0 1 0 95 61 

VSC summer IRE_one 3056 0 0 0 6 62 0 2 0 41 0 

VSC winter sdwn_long 6288 28 0 0 0 176 0 77 0 0 6 

VSC autumn sdwn_long 6932 0 14 0 0 225 0 9 4 0 0 

VSC spring sdwn_long 3832 2864 22 23 0 37 0 9 0 0 51 

VSC summer sdwn_long 2500 652 0 1 0 79 0 6 0 3 0 
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project season scenario 
green 
waste 

gray 
waste se1 se2 se3 se4 fi dk1 dk2 no2 no3 

VSC autumn sdwn_short 0 0 21 0 0 296 0 11 4 0 0 

VSC winter sdwn_short 0 0 0 0 0 209 0 101 0 0 8 

VSC spring sdwn_short 0 0 26 25 0 41 0 13 0 0 64 

VSC summer sdwn_short 0 0 0 2 0 94 0 6 0 3 0 

VSC winter TD_long 5340 15 0 0 0 359 0 169 0 0 9 

VSC autumn TD_long 4950 0 24 0 0 433 0 16 4 0 0 

VSC spring TD_long 2685 1935 36 54 0 58 0 19 0 0 87 

VSC summer TD_long 1620 405 0 2 0 139 0 9 0 7 0 

VSC winter TD_noisy 5903 29 0 0 0 163 0 80 0 0 7 

VSC autumn TD_noisy 5891 0 15 0 0 209 0 9 3 0 0 

VSC spring TD_noisy 3761 2368 21 21 0 34 0 12 0 0 49 

VSC summer TD_noisy 2568 604 0 1 0 80 0 5 0 5 0 

VSC winter TD_short 4134 42 0 0 0 94 0 38 0 0 5 

VSC spring TD_short 2232 1842 11 11 0 21 0 6 0 0 26 

VSC autumn TD_short 4596 0 8 0 0 115 0 5 2 0 0 

VSC summer TD_short 2346 630 0 1 0 55 0 5 0 3 0 

 

Continued 

project season scenario no4 no5 ee 
waste 
factor 

Ops 
cost 

Gray 
emissions 

Green 
emissions 

Emissions 
total 

VSC winter base 0 0 0 0.70 261 0.05 4.45 4.50 

VSC autumn base 0 0 0 0.89 253 0.00 4.38 4.38 

VSC spring base 0 0 0 0.90 235 4.72 2.33 7.05 

VSC summer base 0 0 1 0.91 110 0.89 1.51 2.40 

VSC winter base-se4 0 0 0 0.71 261 1.71 3.87 5.58 

VSC autumn base-se4 0 0 0 0.88 253 0.26 4.29 4.55 

VSC spring base-se4 0 0 0 0.81 234 7.78 1.24 9.03 

VSC summer base-se4 0 0 0 0.95 112 1.09 1.45 2.54 

VSC winter DT_long 0 0 0 0.26 196 0.00 3.31 3.31 

VSC autumn DT_long 0 0 0 0.29 178 0.00 2.99 2.99 

VSC spring DT_long 0 0 0 0.33 164 2.97 1.70 4.67 

VSC summer DT_long 0 0 0 0.54 86 0.58 1.23 1.81 

VSC winter DT_short 0 0 0 0.90 291 0.05 4.96 5.01 

VSC autumn DT_short 0 0 0 0.98 268 0.00 4.60 4.60 

VSC spring DT_short 0 0 0 1.12 254 4.85 2.60 7.45 

VSC summer DT_short 0 0 1 1.24 125 1.12 1.66 2.78 

VSC winter IRE_low 0 0 0 0.70 261 0.05 4.45 4.50 

VSC autumn IRE_low 0 0 0 0.89 253 0.00 4.38 4.38 

VSC spring IRE_low 0 0 0 0.90 234 3.68 2.69 6.37 
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project season scenario no4 no5 ee 
waste 
factor 

Ops 
cost 

Gray 
emissions 

Green 
emissions 

Emissions 
total 

VSC summer IRE_low 0 0 1 0.98 111 0.63 1.61 2.24 

VSC winter IRE_one 1 0 0 0.71 264 0.00 4.48 4.48 

VSC autumn IRE_one 34 0 0 0.89 255 0.00 4.38 4.38 

VSC spring IRE_one 8 0 0 0.97 231 0.00 3.98 3.98 

VSC summer IRE_one 0 0 0 1.03 111 0.00 1.83 1.83 

VSC winter sdwn_long 0 0 0 0.73 260 0.05 4.52 4.58 

VSC autumn sdwn_long 0 0 0 0.91 252 0.00 4.43 4.43 

VSC spring sdwn_long 0 0 0 0.95 236 4.75 2.39 7.15 

VSC summer sdwn_long 0 0 1 0.96 107 0.89 1.55 2.44 

VSC autumn sdwn_short 0 0 0 0.00 332 0.00 2.32 2.32 

VSC winter sdwn_short 0 0 0 0.00 319 0.03 2.61 2.64 

VSC spring sdwn_short 0 0 0 0.00 289 2.26 1.23 3.49 

VSC summer sdwn_short 0 0 1 0.00 129 0.36 0.77 1.14 

VSC winter TD_long 0 0 0 0.22 538 0.05 8.98 9.03 

VSC autumn TD_long 0 0 0 0.23 477 0.00 8.04 8.04 

VSC spring TD_long 0 0 0 0.23 414 7.96 4.30 12.26 

VSC summer TD_long 0 0 1 0.23 185 1.41 2.66 4.07 

VSC winter TD_noisy 0 0 0 0.71 251 0.05 4.33 4.38 

VSC autumn TD_noisy 0 0 0 0.77 236 0.00 4.12 4.12 

VSC spring TD_noisy 0 0 0 0.97 223 4.23 2.32 6.55 

VSC summer TD_noisy 0 0 1 1.07 108 0.84 1.51 2.35 

VSC winter TD_short 0 0 0 1.29 138 0.05 2.24 2.29 

VSC spring TD_short 0 0 0 1.49 134 2.47 1.13 3.60 

VSC autumn TD_short 0 0 0 1.61 130 0.00 2.27 2.27 

VSC summer TD_short 0 0 1 2.44 78 0.68 1.01 1.69 
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