Migrating stateful containers using

an autonomous collector

Kjetil Madsen Knutsen

Thesis submitted for the degree of
Master in Applied Computer and Information
Technology - ACIT
(Cloud-based Services and Operations)
30 credits

Department of Computer Science

Faculty of Technology, Art and Design

Oslo Metropolitan University — OsloMet

Spring 2021

Migrating stateful containers

using an autonomous collector

Kjetil Madsen Knutsen

© 2021 Kjetil Madsen Knutsen

Migrating stateful containers using an autonomous collector

http://www.oslomet.no/

Printed: Oslo Metropolitan University — OsloMet

http://www.oslomet.no/

Abstract

With the growth of cloud computing and Infrastructure as a Service, and the
need to keep costs low many companies tries to utilize all their available
resources as much as possible. Today, there is not currently any solution

that allows you to move services based the available resources.

This thesis compares a machine learning approach to create a autonom-
ous collector against using a round robin approach. It creates a solution
on how to live migrate containers using these types of selecting what host

to visit next, and to select where the containers should be moved to.

Using our solution, we have found a way to visit the servers with the most
change on the most, and visit those with the least change less. During our
experiments, we have gotten data that supports our algorithm, and solu-
tion. In a run of 180 iterations, 71 of the visits where on the host with the

most change.

Key words: containers, autonomous, cloud computing, container migra-

tion, criu, podman, machine learning

Acknowledgments

| wish to show my gratitude to my supervisors, Associate Professor Harek
Haugerud, and Professor Anis Yazidi, without their assistance, patience,
motivation, and involvement, this thesis would not be were it is today. |
would like to thank them very much for their feedback, and guidance dur-

ing this project. It has been a joy to be working with you.

I would also like to thank my co-student, and friend Anne Igeltjgrn for her
support throughout the thesis, especially acting as a “sounding board” in

the later stages.

Thanks to Oslo Metropolitan University for offering this Masters degree pro-

gram, and giving us this chance.

Lastly, | would like to thanks my parents, and the rest of my close family for
not only their support this semester during the thesis, but also for all their

support during my bachelor and master studies.

Knutsen, Kjetil Madsen
May 14, 2021

Oslo, Norway

Contents

[Abstract

IAcknowledgments|

(1.2 Chapter Ou

thnel.

[2 Background|

2.1.1 What| ntainen,

[2.1.2 Whyuse containers?

[2.1.3 Container types, and standards|.

[2.2 Checkpointing & Restoring|

[2.2.1 CRIU: Checkpoint/Restore In Userspace|

[2.3 LearningAutomata|

[2.3.1 Whatis an Learning Automatal

[2.4 Learning Automata based Polling|

[2.4.1 Learningwithbarriers|

[2.4.2 Summary of how the learning automata works| . . .

[2.6 Papers mentioned inthischapter

[2.7 Summary|

(@8

[3 Approach|

4.1 Preliminary Migration fests|

411 ExpermentResults|

4.2 Collector using round-robin|

4.3 Collector with Learning Automata|

4.3.1 ExpermentResults|

4.4 Summary of Resultschaptery

5D ion

6 Conclusionl

[7_Future Works|

"oo 0

A1 Code&Scripts|

[Collectorscriptl

[Learning Algorithm|o

[Cleanupscriptf

tressscript].

[Loggingscript|.,
.2 _Additional Attached Files|.

Vi

List of Figures

2.1 How an host running containerized services looks.| [7]
[2.2 'How a machine running virtualized application looks.| 9
4.1 _Shows transfer from hostAtoBl. 27]
4.2 Figure of what order the hostcomesin| 36

Pr litlesinrun 11. 41
4.4 Probabilitesinrun2]. L. 42
4.5 Probabiliftesinrun31. 43
4.6 Overview of visits through the differentruns| 44
.7 Overview of the averages for all three runs. Including both |

LA, Round Robin and Round Robin with memory usage.|. . 49
4.8 Screenshot from the running of experiment 3, run 3. 46

Vii

viii

List of Tables

2.1 Overview of articles that are mentioned In this chapter|. . . [19
4.1 Overview ofthe25testt 30
4.2 Overview of second experimentresults| 37
4.3 Total times of hosts during second experiment| 38

Chapter 1

Introduction

With the growth of Infrastructure as a Service (‘Global Infrastructure as a
Service (laaS) Market 2021-2025: Market is Poised to Grow by $136.21
Billion, at a CAGR of 27% - ResearchAndMarkets.com’,2021)), many com-
panies have started to move to the cloud. Often this leads to having many

servers to monitor the different resource usages.

As Infrastructure as a Service can tend to be expensive, especially if you
need higher end specifications or need many of them, you usually want to
keep a record of what usage you have and turn off services on servers that
you do not need or move services to a common server to have less servers

up and about.

Today, for this reason many people use containers to keep their services
on, as this allows you to keep many services side by side, without them
interfering with each other. Of course this is as long as you have the avail-

able resources.

What we propose is a framework to respond to some of those problems.
Mainly the migration of containers based on metrics from monitoring your

services.

We have however chosen to do this in a way that allows you to not need
any containers that collect metrics 24/7, but instead send a scout that will
come collect, depending on former resource usage of said server. In this
we have decided to see if using machine learning to control where the
scout goes will improve the efficiency of the scout compared to running it

in a round robin approach.

1.1 Problem Statement

P1: To what extent can machine learning be utilized to create a
autonomous collector, that can be used for the migration of live con-

tainers.

To what extent can machine learning be utilized refers to if a machine learn-
ing algorithm can be utilized to improve a collectors visits compared to a

round robin.

to create a autonomous collector refers to designing, and implementing a
autonomous collector based on research, and earlier work.
that can be used for the migration of live containers refers to migrating con-

tainers from host to host in a automated way.

based on data from a autonomous collector refers to using data that are
being collected using a collector, to move containers to the most suitable

location.

1.2 Chapter Outline

1. Introduction:

This chapter will introduce us to my motivation, to the problem statement,
and will show the papers outline.

2. Background:

This chapter goes through what a container is, what checkpointing and
restoring is, and will go through different papers in relation to the paper.
3. Approach:

This chapter will go through how we are going to forward to solve our
problem statement.

4. Results:

This chapter will go through, the results from the different tests both
preliminary tests and the main tests.

5. Discussion:

This chapter contains our afterthoughts on how the project went, what we
have seen that is working, and what could be improved upon.

6. Conclusion:

This chapter will go through how the project has gone, what we mean we
have succeeded in, and what the solution in the end contains.

7. Future works:

This chapter will go through what we did not have the time to do, and what

can be expanded upon on a later date.

Chapter 2

Background

2.1 Containerization: An introduction

In this section | am going to go through what a container is, and why we

use them.

2.1.1 What is a container

A container is a way of packaging different services and its dependencies
in a standard package. It allows you to run the services reliably from one

environment to another, as it comes pre-configured ready to work.

This is done so that any container can be used on as many platforms that
you can without changing anything. Which means you can setup an con-
tainer that you are able to use on Linux distributions, but also on Windows

servers.

It also allows you to deploy your software faster than previously, as itis less
configuration that you have to do yourself, and that many containers come
ready out of the box. It allows you also to easily remove and redeploy a

service when necessary.

As said earlier, a container packages everything you need to run a con-
tainer. That includes code, run time, system tools, system libraries, setting
and configurations. These containers usually come shipped as a image

file, which many container managers use, including Docker and Podman.

Most container managers uses the container standard OCI, Open Con-
tainer Initiative. This means that most containers will work the same on
different managers. So, you are able to use the same images on both

Docker, Podman, and other container managers.

One upside of using containers is that in addition to what we have talked
about, is that containers are completely isolated from each other, unless
you want them to know of each other. This means that it is only the host
operating system, and the container manager that would know of all the

containers currently running.

This is something which does not only have a positive impact when it comes
to security, but also it is something which allows us to have setups which
were not available for us before. Such as running conflicting software side

by side on the same host.

Now you would instead just run them on one container each. It also allows
you to run multiple instances of the same software, spread again on mul-
tiple containers, where you route the traffic to different ports. So now, you

can for example easily host multiple web servers on the same host.

Another thing that you can use containers for is to run larger systems,
which you then split into multiple parts, containers instead. An example

here is the radio software, “Azuracast” (AzuraCast, n.d.), which launches

six containers for its program.

App A App B AppC App D App E App F

Container Manager

Host Operating System

Infrastructure

Figure 2.1: How an host running containerized services looks.

In the figure above, we are looking at how containerized applications works.
On the bottom of the picture, we can see the first layer, which is the infra-
structure. By infrastructure we here mean, the physical hardware of the

machine.

Either if you have your own physical server, or if you rent server space.
On the next layer, we have the host operating system. This is the main
operating system that is installed on the physical hardware, either be it any

Linux distributions, windows, macOS or other operating systems

On the next layer we have the container manager. This is the software
which controls our containers, and here are multiple to choose from. Some
of the known ones are, Docker and Podman. In this project, we have

chosen to use Podman specifically.

Lastly we have the application, which come on the top layer. Here is any
applications that we want to run in a containerized form. So any container,

be it a web server or operating system itself, will come here.

2.1.2 Why use containers?

So, while we talked a little about why you can use containers, and some
specific examples, lets try to talk a little more in-depth. So, what are the
main upsides to run containers? One thing is that containerization is more

lightweight than for example virtualization (Baeldung, 2020).

In virtualization you virtualize at the hardware level, and then run full op-
erating systems on top. This is something that makes virtualization more
heavy, and use more time. For containers, they are more lightweight be-
cause you share the OS kernel with the host operating system and can use

much less memory compared to booting an entire operating system.

Another upside is the ability to run separate and consistent environments
that are isolated from other applications. Containers include all the de-

pendencies they need inside of their own container.

When it comes to isolation, it is not only that a containers are isolated from
each other on a file level, but also when it comes CPU, memory, storage

and network resources. All of these are virtualized on a os-level.

App A App B App C App D App E App F

Guest Guest Guest Guest Guest Guest
0S5 0S5 0S5 0S5 05 05
Hypervisor

Infrastructure

Figure 2.2: How a machine running virtualized application looks.

In the figure above, we can see what a virtualized machine would look like.
Here we see that still, like earlier we have our infrastructure at the bottom.
Next we have the hypervisor instead of a main operating system. On top
of the hypervisor we have guest operating systems, which then run the ap-

plications that you want.

This brings us to another point, the ability to run a container anywhere, this
especially combined with CRIU is powerful. Since a container is having all
its dependencies already, and is packed in the way it is, means that you
can run the same containers, from everything from Linux, to Windows as

long as you have a container manager installed which supports it.

2.1.3 Container types, and standards

When it comes to containers, there are many different software that you

can use to run containers off. These we normally call “Container man-

9

agers”. Some of these are Docker , Podman, LXC, and OpenVZ.

In this paper | am mainly going to talk about Docker and Podman which
supports OCI, Open Container Initiative. Of all those container managers
that | mentioned, all of the are also supporting check pointing and restoring

using CRIU, although to different degrees.

In this paper the main focus is going to be on the containers which use the
OCl standard. The Open Container Initiative is an attempt to create an in-
dustry standard around container formats and run times. OCI was started
in 2015 by Docker, and other leaders in the industry. Currently it has two

specifications, the run-time spec, and the Image specification.

When the project was first started, we started by using Docker together
with CRIU. To able to use Docker’s implementation of check pointing, we
had to use an outdated version, namely version 17.03 together with CRIU

2.6. This was done running on a virtual machine running Ubuntu 16.04.

Also, as check pointing in Docker is seen as an experimental version, this
feature does not always work, and has to be enabled. It were not possible

to use later versions of Ubuntu.

While we got the basic functionality up and working with Docker in Ubuntu,
and had CRIU’s main example working, not every container that we tried
was functioning correctly. Some had problems check pointing, while some

had problems restoring.

To be able to mitigate this, but also not lose any progress it was decided
to move over to Podman, which not only uses almost the same syntax

as Docker, but it also supports the same OCI standards. That meant we

10

could continue to use the same container images as previously, and also

the same scripts, with some small modifications.

After having changed to Podman running in Fedora 33, instead of Docker
running in Ubuntu 16.04, we found out that Podman’s implementation func-
tions better, and was better implemented as the feature was better de-
veloped. Here we also did not have any problems running our containers,

as we found out earlier through our limited research.

2.2 Checkpointing & Restoring

Checkpointing and restoring is the act freezing a container, and saving all
the process of a specified container into a checkpoint. This checkpoint can
then be used later to restore said container either on the same host or an-

other.

After it has been restored it will continue off, where it had left of when it
had been checkpointed. This means that if you use this to checkpoint and
restore an counter, the counter will first be checkpointed where it was when

first running, and then restored on its latest state.

So that means that it will continue to count from where it was last. When
you do the checkpointing, you save all the processes and information either

to a folder or to a compressed file.

With this we are to use it for different use cases, like live migration of con-
tainers, seamless kernel upgrades, process duplication where you would
checkpoint a container so you can launch a second instance of it, you are

able to take snapshots of apps, and more. (Al-Dhuraibi et al., |[2017)

1

Depending on what you want to do, one or the other option might be better
for your use case. As stated with live migration, check pointing and restor-
ing does not only enable you to restore it on the same host, that it was
check pointed on, but it is also possible to transfer it to another host and

restore it there.

Here is where the ability in Podman, to checkpoint to a compressed file
comes in handy. This use of check pointing, transferring and restoration

on another host is what this paper is going to focus the most on.

2.2.1 CRIU: Checkpoint/Restore In Userspace

Checkpoint/Restore In Userspace, or CRIU as it is also called, is an open-
source software tool based on Linux with the ability to checkpoint and re-

store containers.

It's functions is currently integrated into multiple container managers, in-
cluding Docker, and Podman. CRIU supports many Linux distributions,
thereby including many of the popular ones such as Ubuntu, Fedora, Arch,
OpenSUSE and more (‘Packages - CRIU’, |n.d.).

CRIU started as a project of the company Virtuozzo and grew there with the
help of its community. It started as a way to do live migration of OpenVZ

containers but has in later times grown.(‘CRIU’, n.d.)

The initial version was presented in July of 2011, and had its first stable
release on the 23rd of July 2012. As of this writing, the latest stable re-
lease, version 3.14 was released on the 29th of April 2020. The software

is distributed using the GNU GPL v.2 license. Its code can be found on

12

GitHub. (Checkpoint-Restore, n.d.)

2.3 Learning Automata

For the autonomous part of this project, we are going to use a Learning
Automata to choose which host that it visits next. In this section, we are

going to go through what a learning automata is.

2.3.1 What is an Learning Automata

ALearning Automata is a type of machine learning algorithm, that has been
around since the 1970’s. This algorithm uses their past experience, to
choose what their next action is going to be. An learning automatas ac-

tions, are chosen by a set of probabilities.

In our case, they way that we use our learning automata is to feed it with
the absolute difference in memory available. From this it, it calculates the
probabilites for the different hosts, and chooses one of them to be the next

host visited.

2.4 Learning Automata based Polling

In this section we are going to go through, how our selected learning

algorithm works and functions.

241 Learning with barriers

As stated by (Yazidi et al., 2020) instead of having the limits of the prob-
ability space to be zero and unity, we are going to work with a constraint

that says that no probability can have a value lower than a specified level

13

of p.in, OF have a higher value than the specified level of p,,.-

According to (Yazidi et al., 2020), the action choosing probabilities, which
usually move proportionally between zero and unity for the Lz; scheme,
are now going to move towards pmin and pmax instead. This minor change
is renders the scheme to be ergodic, making the analysis also to be cor-

respondingly distinct from that of the Ly; and simillar schemes.

(Yazidi et al., 2020) said that to be able to do this, we are forcing a min-
imal value p,.;,, where 0 < p,.., < 1 for each selection probability z;,
where 1 < i < r and r is the number of actions. From this the max-
imum value any selection probability p;, where 1 < i < r, can achieve is
Pmaz = 1 — (r — 1)pmin- This is going to happen, when other r — 1 actions
take their minimum value p,,;,, while the action with the highest probability
takes the value p,,... Consequently, p;, for 1 < i < r, will take values in

the interval [piin, Pmaz)-

According to (Yazidi et al., 2020)) when continuing with the formula, let «(t)
be the index of the chosen action at time instant ¢. Then, the value of p;(t)
is updated as per the following simple rule (the rules for other values of

p;(t),j # i, are analogous):

pi(t+1) <« pi(t) + eri(pmax - pi(t))
when «(t) = i and
when «a(t) = j,j # ¢ and

where 0 is a user-defined parameter 0 < 6 < 1, typically close to zero.

Further, r; is a reward function indicator defined by the amount of change.

14

2.4.2 Summary of how the learning automata works

To simplify, the algorithm works in the way that takes a positive value,
checks if it is larger than the max value that they currently have, and then
puts it through a formula that calculates the probabilities. What is interest-
ing about our formula, is that we are setting a minimum and a maximum

probability, that is lower than the range.

This creates barriers that stops a host from reaching 100 % probability.
This means that there is always a chance for every host to be visited, and

that the algorithm is never going to be stuck on one, forever.

2.5 Related Works

There are many articles which touch upon the topic of containerization and
the usage on CRIU: Checkpoint/Restore in Userspace. The following are

some of them.

The article “Efficient service handoff across edge servers via docker con-
tainer migration” (Ma et al., 2017) is an article that present an service han-
doff system, which they claim are able to seamlessly migrate services to

the closest edge server.

This is done via the use of Docker container migration. They have pro-
posed a migration method which leverages layered storage to reduce file
system synchronization overhead. They have implemented and tested

their prototype using world product applications.

15

Another article is “Sledge: Towards Efficient Live Migration of Docker Con-
tainers” (Xu et al., 2020). The article talks about that modern cloud plat-
forms that are on the large side, need live migration techniques with state-
ful workload on Docker containers that gives them the possibility to support

load balancing, host maintenance and Quality of Service.

In their paper they present a live migration system that they claim are
highly efficient, called Sledge. Their solution has shown that compared
to state-of-the-art solutions, their solution reduces 57 percent of total mi-

gration time, 55 percent of image migration time, and 70 percent downtime.

The article “Migrating LinuX Containers Using CRIU” (Pickartz et al.,
2016)is an article which talks about how process migration is one of the
most important techniques in modern computing centers, as it enables the
implementation of load balancing strategies and eases the system admin-

istration.

They talk about that migration is usually accomplished by the use of
hypervisor-based virtualization, and that container-based approaches is an
attractive alternative. In the article, they present a prototype implementa-

tion of a libvirt driver, enabling migration of Linux containers using CRIU.

The article “Live Migration of Docker Containers through Logging and Re-
play” (Yu & Huan, |2015)talks about that lightweight virtualization tech-
niques has made virtual machines more portable, work more efficient, and
easier to management. It presents an approach to logging and replay for

live migration of containers, specifically Docker.

With their approach they have been able to reduce not only the downtime,

but also the total migration time. This have they been able to do through

16

the use of base images, an NFS server, and log files that gets replayed on

the image.

The last article “Checkpoint and Restore of Micro-service in Docker Con-
tainers” (Chen, [2015) talks about the rapid adoption of micro-services, and
talks about that it is imperative to build a system to support and ensure high

performance and high availability for micro services.

The article addresses about the ability to checkpoint, restore and using live
migration tools. The article goes through a proposed approach, namely us-

ing CRIU to checkpoint Docker containers.

Afterwards it also had an evaluation on the performance of the check point-
ing, and restoring, where it presented how much time it took to checkpoint

and restoring it, depending on how large the container was.

The article "Adaptive Monitoring: A systematic mapping” (Zavala et al.,
2019) is a survey that is written by Edith Zavala, Xavier Franch, and Jordi
Marco. The survey is a mapping survey about the current state of art of

adaptive monitoring.

It does this by specifically, by identiifying the main concepts in the topic, de-
termine the demographic characteristics of studies published in this topic,
identify how adaptive monitoring is conducted and evaluated by different
approaches. In the survey they have evaluated 110 studies, organized in

81 approaches.

The article "Self-adaptive cloud monitoring with online anomaly detection”
(Wang et al., 2018), is an article that talks about the monitoring of cloud

computing systems.

17

They address the issue of having enourmous and complex sturctures of
cloud computing which gives a significant performance overhead, which
also increase the difficulty of analyzing useful information. To address this
problem, they are proposing a self-adaptive monitoring approach for cloud

computing systems.

18

2.6 Papers mentioned in this chapter

Year | Title Author Venue Topic
2017 | Efficient service handoff | Lele Ma, Shanhe Yi, | SEC ’17: Proceedings of | Container
across edge servers via | Qun Li the Second ACM/IEEE | Migration
docker container migration Symposium on Edge
Computing
2020 | Sledge: Towards Efficient | Bo Xu, Song Wu, | 2020 IEEE 13th Interna- | Live Mi-
Live Migration of Docker | Jiang Xiao, Hai | tional Conference on Cloud | gration
Containers Jin, Yingxi Zhang, | Computing
Guogiang Shi, Tingyu
Lin, Jia Rao, Li Vi,
Jizhong Jiang
2016 | Migrating LinuX Contain- | Simon Pickartz, Nik- | High Performance Com- | Migration
ers Using CRIU las Eiling, Stefan | puting
Lankes, Lukas Razik,
Antonello Monti
2015 | Live Migration of Docker | Chenying Yu, Fei | Proceedings of the 3rd In- | Live Mi-
Containers through Log- | Huan ternational Conference on | gration
ging and Replay Mechatronics and Indus-
trial Informatics
2015 | Checkpoint and Restore | Yang Chen Proceedings of the 3rd In- | Migration
of Micro-service in Docker ternational Conference on
Containers Mechatronics and Indus-
trial Informatics
2019 | Adaptive Monitoring: A | Edith Zavala, Xavier | Information and Software | Adaptive
systematic mapping Franch, Jordi Marco | Technology Monitoring
2018 | Self-adaptive cloud monit- | Tao Wang, Jiwei Xy, | Future Generation Com- | Adaptive
oring with online anomaly | Wenbo Zhang, Zeyu | puter Systems Monitoring

detection

Gu, Hua Zhong

Table 2.1: Overview of articles tL%t are mentioned in this chapter.

2.7 Summary

In this chapter, we have gone through what containers, and containeriza-
tion is compared to virtualization, we have gone through what it means to

checkpoint and restore containers using CRIU, and what it requires.

We have also gone through, what a learning automata is, including
explaining how the algorithm that we are planning to use works. In addition
to that, we have also gone through papers that touch upon the theme of

containerization and checkpointing/restoring.

20

Chapter 3

Approach

In this chapter we will go through our project’s objective, the experiments

that we are planning to have, and what scripts that our solution contains.

3.1 Objective

As stated earlier in this paper, the aim of this project is to design, imple-
ment, and test a framework for migration of stateful containers, based on

data from a autonomous collector.

To be able to solve our problem statement, we require infrastructure that
run our solution. For this the project is mainly planning to use OsloMet’s
own cloud service ALTO, which is currently the largest OpenStack deploy-
ment in Norwegian higher education, with 1024 cores, and 4TB of ram ac-
cording to the university’s own site (‘Autonomous Systems and Networks
(ASNY)’, |n.d.).

In addition to ALTO, we are also planning to use public cloud services, such

as Amazon Web Services, and Google Cloud Engine.

21

3.2 Experiments

As for the experiments that we are planning doing, we are currently plan-
ning to perform three main experiments. The first one is going to be a basic
checkpoint and restore operation from one host to another. This will give
us data on the performance of both the transfer, and its speed, but also

how check-pointing and restoring a container continuously went.

As for the second experiment, we will testing our collector script without
our learning automata. This collector script does mainly x things. Firstly, it
sends our collector which consists of two Podman containers between the

hosts, which are specified in the hosts.txt file.

On each hosts, it will restore itself, use Telegraf to collect metrics, and then

checkpoint itself. It will then go to the next host, and repeat itself.

Afterwards it will send itself back to the host that the script initially was star-
ted from. From here it will first restore itself, then it will making queries to
the database, and based on those queries it will give out the ip address of
the host that has the most available memory. This will be repeated x times

to have a good dataset.

The last experiment is going to be very similar to the second one. This one
will still test the collector script, but this time with a learning automata. This
means that after running the initial rounds with a round robin approach, it
will then go over to using the learning automata to decide what host it will

visit next.

To be able to use the learning automata, with the collector, there are a

couple of things that are added in addition. The first thing is a calc script

22

which calculates the difference in available memory between to runs on

the same host.

This data is then feed to the learning automata algorithm, which then out-
puts a index numbers, which corresponds to which host is going to be vis-
ited next. In addition to this, we will also need to create a timestamp, which
is created before each host is visited. This gives us the ability to know
exactly what data to pick out, so that we can get the correct data about

available memory.

To be able to do these experiments, we are using Podman together with
CRIU: Checkpoint/Restore in Userspace. Our experiments will also be run-
ning on Fedora 33, with Podman v3.1.0 and CRIU v1.15. In the addition
to these our scripts contains the use of rsync, scp, sed, and awk among

others. These are programs witch normally are preinstalled.

3.3 Scripts

Our finished solution is going to contain these main files:
1. collector.sh

2. trigger.sh

3. LA_with_barriers.py

4. hosts.txt

5. Telegraf.conf

In addition to these main files, we will also be creating files to save different
information. These will be in its own folder, bin. As of now, this folder is
going to container a timestamp file, a counter file, a calc file, a ip file, and

three results files.

23

1. Collector.sh This file is the main bash script which will run our solution.
This file is what decides what to run on each host. It is also going to do
the necessary queries needed, including finding what host has the most
available memory, but also the queries need for calculating the difference

in memory.

The script will also do the calculations for finding the difference in memory.

Lastly this script is going to do the migration of the main application.

2. Trigger.sh The trigger.sh script is going to be a simple script which is
run every x minutes by a cron job. This script will then check for example
the available amount of ram on the current host, where the main applica-
tion is. If the memory is below a certain threshold, it is going to start the

collector.sh script.

3. LA with_barries.py Our LA with_barries.py is our learning automata
algorithm. This is what calculates what host to go next to, after the col-
lector script has run its initial runs. This algorithm takes in the difference in
memory, and gives out what index number to visit next. From this we can

know the next ip to visit.

4. Hosts.txt Our hosts.txt file, is the file that decides what hosts can be
visited and not. This file is a simple list, with the ip addresses of our hosts.
For the initial rounds, this file is used as a round robin, but later it is only

used for checking which ip, the index from LA_with_barriers refers to.

5. Telegraf.conf The Telegraf.conf file is our Telegraf config. This is the
config that Telegraf is going to use when starting up on each host. This also

decides what is being recorded by Telegraf. As of now, that is memory.

24

All of the scripts, are available in the Appendices. The project is also
available at github. (Knutsen, 2021)

25

26

Chapter 4

Results

In this chapter we will have a look at the different migrations tests that have
been done in this paper. First we will start of with the Preliminary Migration
Test, which will give us an idea for how much time a migration takes, and

how reliable it is.

4.1 Preliminary Migration Tests

For the preliminary migration test, we started with setting up two virtual
machines that were going to be our test machines. In this test we will call
them “A” and “B”. On both virtual machines, we are running Fedora running

on version 33.

IR I = 111 (=] Cr

wa===" 0 BRI T e e

Host A Host B

Figure 4.1: Shows transfer from host Ato B

27

To be able to run the script, A has ssh access to B through ssh-keys. Both
of the machines have Podman and CRIU installed on them. As for Pod-
man, the version that is being used is version 3.0.1, and as for CRIU we

are running version 3.14, which is the latest stable version as of this writing.

As for the script itself, it mainly consist of three parts. The first part is the
check pointing of the selected container, and the export of the checkpoint

tar.gz file. This is done through Podmans container checkpoint command.

As for the second part, we are going to transfer the tar.gz file that we cre-
ated in the last step. This is done through the use of rsync. Rsync was
chosen as it is possible to log its output to a file. The file is transferred then
from Ato B.

For the last step, we are going to restore and start the container. Here we
are restoring the container on B, using Podman container restore. Here we

are restoring the container using the file that we transferred in the last step.

For all of the steps, we have added the time command in front, this so we
could see how long it took for each part when running the script. All the
parts are also setup to log its output to a log file. This is done using the tee

command.

When testing, we have decided we wanted to run the script many times to
be able to see if the tests were stable. This was done through an additional
script. This script is mainly to set a loop that runs the amount of times that

you want. Here we chose 25.

In addition to this, this script also resets the environment ready for the next

test. This includes starting the container again on A, so it could be check-

28

pointed, and removing the container on B after the test was done.
As for the container that was chosen to be used in this preliminary test, we

choose to use the Ubuntu container with the 18.04 tag. This container, is

about 50MB large, and has been made no modifications on.

29

Test Time Transfer (s) | Time Checkpoint (s) | Time Restore (s) | Time Total (s) | MB/s
1 0.651 2.064 1.724 4.439 17.35

2 0.296 1.920 1.709 3.925 17.32

3 0.342 1.953 1.642 3.937 17.21
4 0.349 1.927 1.609 3.885 17.40

5 0.338 1.821 1.639 3.798 17.32

6 0.338 1.982 1.687 4.007 17.36

7 0.289 1.966 1.673 3.928 17.32

8 0.300 2.007 1.684 3.991 17.38

9 0.285 1.913 1.638 3.836 17.39
10 0.353 1.987 1.691 4.031 17.36
11 0.348 1.892 1.663 3.903 17.36
12 0.293 1.942 1.768 4.003 17.35
13 0.316 1.853 1.659 3.828 17.20
14 0.342 1.820 1.657 3.819 17.28
15 0.349 1.925 1.655 3.929 17.40
16 0.336 1.930 1.665 3.931 17.34
17 0.274 1.844 1.673 3.791 17.30
18 0.300 1.925 1.593 3.818 17.29
19 0.301 1.946 1.604 3.851 17.37
20 0.285 1.867 1.614 3.766 17.22
21 0.320 1.771 1.738 3.829 17.23
22 0.303 1.945 1.637 3.885 17.19
23 0.285 2.065 1.628 3.978 17.33
24 0.329 1.966 1.624 3.919 17.35
25 0.337 1.946 1.721 4.004 17.31
Median 0.320 1.930 1.659 3.919 17.33
Average 0.330 1.927 1.664 3.921 17.32
Mode 0.285 1.925 1.673 3.885 17.32

Table 4.1: Overview of the 25 test

30

4.1.1 Experiment Results

After the preliminary tests, we have gotten some results. In this part, we
are going to try to go through those numbers. All of the results can be seen

in the table 4.1 on the page above.

As previously said, we ran the test 25 times, and in those tests we have
recorded five things. The time it took to transfer the tar.gz file from host A
to host B. The time it took to checkpoint the container on host A, the time it
took to restore the the container, and start it, The total time the script took
each time, adding all the previous together, and the MB/s rate that rsync

took when transferring.

At the total time it took, we have times ranging from shortest time of 3.766
seconds, and the longest of 4.439 seconds. This means that largest dif-
ference between the runs was at 0.673 seconds. This compared to some
of the tests that were done when first started, that had time difference up

to 6 seconds, shows that the test were had less irregular times than earlier.

This can be because of a few different reasons. The first that mainly pops
up, is that originally scp was used instead of rsync, but this was changed
out because scp’s progress bar turns off, when logging to a file. Another
reason could be that in the early tests, the tests were done manually without

a loop script.

This meant since the tests did not automatically start after each other, there
could be a change on network traffic or other hardware differences. It is
hard to be able to know for sure, as in the start we only recorded the total

time, and not the part times.

31

For the total time, the average time ended up on 3.921, with the mode be-
ing 3.885 and median being 3.919.

For the checkpoint time, we can see that off the 25 tests, the shortest time
was 1.771, and the longest time was 2.065. This means that the difference
was the maximum at 0.294. This means that the checkpoint time held it-
self stable, and did not have any large changes throughout the tests. The
average of the checkpoint times, ended up on 1.927, with the mode being
1.925 and median being 1.930.

For the restore time, we can see that the shortest time was 1.593, and that
the longest time was 1.768. This means that the difference between them
were at 0.175, which has an even smaller difference than the checkpoint
times. The average was at 1.664, the mode at 1.673 and the median at
1.659.

For the transfer times, we would think that it would somewhat match up to
to the MB/s. From the table, this seems to not always to be the case. For
example, the shortest transfer has a MB/s rate of 17.30, but the longest
transfer had a rate of 17.35 MB/s. From this we can see that that the

longest transfer had the faster rate, even if it was only by a little.

The fastest transfer speed that was had, is at 17.40 MB/s, with the slowest
at the 17.19 MB/s. This shows that the speed itself does not change much
throughout the tests. The transfer time, also show this. Here the shortest

time was at 0.274, and the longest was at 0.651.

From the table, we can also see that the longest time here, is also a outlier,
with the next up being at 0.353 seconds. It can also seem to be just natural

fluctuations in the transfer speed, as the MB/s speed did not change much,

32

and stayed from 17.1 to 17.4 throughout all the tests.

For the transfer time, the average was at 0.330, with a mode of 0.285 and
a median at 0.320. For the MB/s speed, the average was at 17.32, with a

mode of the same, and a median of 17.33

4.2 Collector using round-robin

For the second experiment | have decided to test our collector. The col-
lector is what is sent between different hosts to collect metrics about said

hosts.

The metrics are collected through the use of InfluxDB version 2.0.4 and
Telegraf version 1.8. The first thing that the collector does is to check if
any export files already exists, and if it does not it will start an instance of

InfluxDB, and checkpoint it to a export.tar.gz file.

Then we come to the main part of the script which is a for loop which ex-
ecutes a number of commands on each host, which are specified in a hosts

file. To be exact the actions which are done on each host are:

1. Creating the folder /Thome/fedora/MVAC if it does not exist.

2. Transferring export.tar.gz file to host

3. Transferring Telegraf config file to host.

4. Replacing IP in Telegraf config with the hosts, using sed.

5. Restoring influxdb container on host, using the export.tar.gz which was
transferred earlier.

6. Start said container, if it did not want to start properly.

7. Start a instance of Telegraf container using the Telegraf.conf file that

was transferred earlier.

33

8. Sleeps for x seconds, to give it time to collect metrics. 9. Removes
Telegraf from host.

10. Checkpointing influxdb container to export.tar.gz file.

11. Transferring the newly created export.tar.gz file back.

12. Removes influxdb container.

13. Removes all volumes which are on the host.

After all of these actions are done on each host, we start by restoring the
influxdb container on the main host. To do this, we first check if there is

any influxdb container already running, and if so removes it.

It will then also remove all of the volumes. It will then start restoring the

container using the export.tar.gz file which was transferred back earlier.

Lastly it will start the migrate.sh script. This script does two main things.
The first one is to query from the InfluxDB container, to see which host is

the most suitable. It will then pull out that’s host’s IP address.

Afterwards it will start to transferring the scripts, and the main container to

said IP. It will also perform a cleanup, of the host it was on.

For the first run of the test, it was decided to run the test from a virtual ma-
chine on OsloMet’s ALTO. In hosts file, we added three hosts addresses.
The first one added is the same as the one the script is running on, a virtual
machine on ALTO.

This is to good base to start with. The second host which was added a

virtual machine running on Amazon Web Services, located in London, run-

ning a t2.micro vm.

34

For the third and last host, that one is also running on Amazon Web Ser-
vices, but this one is located in Ohio instead, and as the previous one is

also running a t2.micro vm.

As for what the three hosts have in common are that all of them are run-
ning Fedora Cloud 33, with Linux kernel 5.8.15-301.fc33.x86_64. All of

them are also running Podman 3.1.0 and Criu 3.15.

In all the runs, the hosts are visited according to a round-robin schedule.
As for the second run of the test, we ran the same test again, but now on 9
hosts, where three of them are located on ALTO. The other six are located

on Amazon Web Services. Three in Ohio and three in London.

Experiment Results

As for the results, we are going to a look at the numbers that we got from

the two runs that we did.

For the first run, we noticed something interesting when it comes to the
transferring speed, but which also makes sense. Of the three hosts in the
first run, host 1 had the fastest transferring speed at 57.7MB/s when trans-

ferring the export file.

This was much faster than what host 2 had at 7MB/s and host 3 had at
2.6MB/s. These differences has probably a lot to do with that the three

hosts, were put in three different countries, Norway, England and USA.

This makes sense as, the distance between the transfers are longer for the
last host compared to the two others, as you transfer the export file from

the main host were the script is run to the selected host. In this case the

35

main host is located in Norway.

Host 1 Host 2 Host 3
“ T ‘
1 2 3 4 5 i

Main Host o

Figure 4.2: Figure of what order the host comes in.

The above figure shows how the transfer of the export file happens.

However what made intrigued me even more, was the total time for each
host. While host 1 and 2 where quite even at 55.71 seconds and 54.75s,
host 3 ended up at 1m20.82s. This is very interesting as host 2 and 3
should run on equally similar hardware as both run on Amazons t2.micro

instances.

The difference in transfer here, is also not big enough to have a that big

impact.

For the second run, we decided to up the numbers of hosts from each loc-
ation. Also note that this run was done at a different time of day, so the top

transfer speed is for some reason higher here.

The second run shows about the same as the first one, where we can see

36

that the hosts that are located in Oslo have the highest speeds when it

comes to transfers, and that Ohio has the slowest transfer speeds. This

both in MB per second, but in total time for the transfers.

We also found some interesting things. For example, when first starting

to run the script on AWS, we had some problems that the restoring of the

InfluxDB would not work.

All were setup the same as the other hosts, the only exception were that

the image that we first used had a kernel version that was newer than the

other hosts. When we used an image which has the same kernel version,

that problem was gone.

Transfer: Export.tar.gz to host

Transfer: Telegraf.conf to host

Run | Location | Host Speed Time Speed Time
1 Oslo Host 1 | 57.7MB/s 00:00 40.2MB/s 00:00
1 London | Host2 | 7MB/s 00:00 1.7MB/s 00:00
1 Ohio Host 3 | 2.6MB/s 00:02 367.4KB/s 00:00
2 Oslo Host 1 | 79.7MB/s 00:00 33.7MB/s 00:00
2 Oslo Host 2 | 81.9MB/s 00:00 35.7MB7s 00:00
2 Oslo Host 3 | 85.6MB/s 00:00 40.2MB/s 00:00
2 London | Host4 | 7.7MB/s 00:00 2.1MB/s 00:00
2 London | Host5 | 16.1MB/s 00:00 1.7MB/s 00:00
2 London | Host6 | 8.4MB/s 00:00 1.5MB/s 00:00
2 Ohio Host7 | 3.7MB/s 00:01 484 .1KB/s 00:00
2 Ohio Host 8 | 2.9MB/s 00:02 404.9KB/s 00:00
2 Ohio Host9 | 3.3MB/s 00:01 352.2KB/s 00:00

Table 4.2: Overview of second experiment results

Table [4.2] above shows all the results for the two runs, in the second

37

experiment. Below is also the total time for each of the hosts that was

run during the experiment.

Run 1 1 1 2 2 2 2 2 2 2 2
Host 1 2 3 1 2 3 4 5 6 7 9
Time | 55.71 | 54.75 | 80.82 | 44.58 | 48.83 | 43.62 | 41.72 | 41.65 | 42.05 | 61.56 | 62.17 | 62.17

Table 4.3: Total times of hosts during second experiment

4.3 Collector with Learning Automata

In our third experiment, we are going to take a little different route. This time
we are going to compare our collector with the learning automata versus

what a run without it would look like.

When doing the run without the learning automata, we are going to do a
simulation of a round robin. The reason as for why we are not actually
running it, is that we want our recorded metrics to be as close to each
other as possible. Since a run with 180 iterations takes approximately 4 to
5 hours, doing them each for itself is not possible.

When doing this test, we are going to be using three hosts, which we will
be calling host 1 through 3. All of them are going to be hosted on Oslo-
Met's ALTO Cloud. The main reason for this, is that we are currently not
looking for transfer speeds or times in general, but what the results are for
the hosts that have been visited. Of course, you would be able to perform

the experiment on other cloud providers as well.

In this experiment our collector will run a set of iterations, this time 180 as
specific earlier, and between each time it will choose one of the hosts to go
to next. When running this experiment, we are going to generate variable

ram usage on 2 and 3, while host one will not have any ram generated.

38

This is so if the learning algorithm will choose to visit the hosts with more
change on, than not. This ram will generated using stress-ng. This is done

with a stress.sh script, an example is shown below.

#!/bin/bash

while :

do
stress-ng --vm-bytes $(awk '/MemAvailable/{printf "%d\n", $2 * 0.5;}' \
< /proc/meminfo)k --vm-keep -m 1 -q -t 10
sleep 15

done

As we said we are going to run the round robin as a simulation. With that |
mean that we are going to record the available ram on the hosts, as if the
collector using round robin was visiting. Below is an example script of how

we have done that.

#!/bin/bash

while :
do
sleep 10
date=$(date +%s)
mem=3 (free -b | awk '{print $6}' | sed -n 2p)
echo $date $mem >> ~/MVAC/logfile
sleep 230\\
done\\

In the script above, what we have done is to run this in aloop as long as the
collector script runs, as it both stops it and starts it. The first thing is that it

sleeps for 10 seconds, this is the amount of time it takes before it records

39

any metrics, when you have first arrived on the host. Then we have the
recording of unix time, and what the available ram is. This is then written

to a file.

Lastly, we have that it sleeps for 230 seconds, this is the total amount of
time that it takes before we believe that a round robin will appear again on
this host minus 10, as we have calculated that a normal time usage is 80
seconds. To get the total amount of sleep time, we can then just time 80

with the number of hosts, which is in our case 3.
To be able to see if there is any difference in results, depending on how the
Learning Algorithm is configured, we are going to do three different runs.

In the first run, 6 is going to be set at 0.1, at the second run it is going to be

at 0.15, and on the last run it is going to be at 0.2

4.3.1 Experiment Results

As said earlier, we are going to do 3 runs, each with different values as 6.
For the first round, we are running with 6 as 0.1. In Figure[4.3] we are able

to see from the graph below, what probability each host have throughout

the iterations.

40

Probability

0.6

05

04

0.3

02

01

0

{ ‘_\ —Host 1

—Host 2
Host 3

L BN S e oo oy o "y A oy " { I e Moo o " " Ao
WD PR PR PR EED LD E PP HEF DD S PP P S E

lterations

Figure 4.3: Probabilities in run 1

From the graph we are able to see that after the first iteration, that host 1
and 3, are at approximately the same probability, while host 2 has gone up

to just below 0.4, ending at 0.398, while host 1 and 3 is at 0.301.

If we go further out into the graph, we can see that around iteration 26, that
also host 1 and 3 is separating. We see that host 1 is gaining probability,
while host 3 is losing. In the end though, we see that host 3 and 1 has

found each other again, and is both at around 0.24, while host 2 is at 0.51.

This is something that makes sense, as the algorithm is suppose to visit
those with much change, more. Here host 1 has been at a standstill with
available ram, and host 2 and 3 is having ram usage generated throughout

the run.

41

Prabability

0.6

0.5

0.4

0.3
—Host1

=—=Host 2
Host 3

0.2

0.1

0

lterations

Figure 4.4: Probabilities in run 2

If we now look at the second run, in the graph at figure [4.4] we can see
that got a bit of a different story. In this run, we have set the # at 0.15. In
this run, we can see in total that there is much more variation, and that the

probabilities tend to not stand much at the same values.

We can see here that host 3 is now the one who takes the headstart, while
host 1 and 2 stays behind. However, this changes a lot until around iteration
number 67. From there on out, we can see that host 3 is skyrocketing up,

while host 1 is trying to stay stable, and host 2 is going down.

42

Prabability

0.9

08

0.7

0.6

0.5

04

0.3

0.2

0.1

0

S

S BNy e Ay Aoy Moo N " " AL iy Y e TG G I oo oy o oy
P PRD PR PSR EDL PP LI PRSP S EL

Iterations

Figure 4.5: Probabilities in run 3

In the graph above at figure we see what the run with ¢ as 0.2 looks
like. What we can see here is that in the start host 3 is the one getting a
high probability first. We can see that it keeps that not to long, being over-

taken by host 2 around iteration 11.

From iteration 11 and outwards we can see that host 2 goes up in the be-
ginning, and then flattens for a while, before coming to a peak and going
back down a bit. For host 1 and 3 we can see that they are going down-
wards in the start before keeping fairly stable, but in the end host 1 goes

upwards towards 0.3, and host 1 at 0.1.

What is interesting here is that host 1 has through all the runs, come in the

middle place, or at the same value as the last one, while one of the ones

43

——Host 1
=——=Host 2
Host 3

Iterations

with memory generation has been having the highest probability each time.

Below in Figure [4.6|we can see the number of visits for each host, during
each run. As we can see with run 1, that host 2 is the most visited with 89
visits, while host 1 comes at 59 visits and host 3 comes at 32 visits. This

seems to mirrors the probabilities, very well.
140
120
100

80

W Host1l
M Host 2

60
Host 3

40

20

Run

Figure 4.6: Overview of visits through the different runs

From what we can see, we can see that host 1 is visited a total of 59 times,
while host 2 is visited 89 times, and lastly host 3 is visited 32 times to a
total of 180 visits. Here we can see that the one host that were visited the
most is host 2, as we know host 2 is one of the hosts which has the stress

script generating memory usage.

What is interesting here, is that the second most visited is not the one with
the highest memory generated on, however it is the one were we did not

generate any usage. It will be interesting if this changes when ¢ is set to

44

Average of Memory Available (Bytes)

0.15 instead.

When looking at the run with 0 set at 0.15 we can see that it choose the
one with the most memory change, but on the one with 0.2 6, we can see
that it choose host 2 instead. This might be because there was not enough

memory difference between host 2 and 3.

If we look at the available ram throughout the runs, which we can see in
Figure [4.7] below, we see interesting, which is that the average memory
available when using the learning automata is always higher than the ones
with the round robin. This confirms to us that, the learning algorithm is
choosing the ones where the most change happens, and that makes them

visit the ones with higher available ram more.

1600000000
1400000000
1200000000
1000000000

800000000 B Learning Automata

B Round Robin

Round Robin with memory usage
600000000

400000000

200000000

Run

Figure 4.7: Overview of the averages for all three runs. Including both LA,

Round Robin and Round Robin with memory usage.

45

Below in figure [4.8] is a screenshot of the last iteration in run 3. From it
we can first see a couple of things. First is that the last iteration was run
at host 2, which was at 172.16.0.70. We can also see the transfer speeds
for the different transfers done, both to the host, and back to the host were
the script is running. In addition to this we also see how long the process

took on the host, which in this case was 50 seconds.

Lastly we see the restoring of the database on the main host, where we
can see the database being setup, so we can access it via curl. In the end,

we see the probabilities for the next iteration.

export.tar.gz 100% 7765KB 44.8MB/s 00:00
telegraf.conf 100% 294KB 37.0MB/s 00:00
25dcad43c08a78ba0b3d3a265d63b69c692b9493a8cfff80e44107fe22c89005
6b0ddaBc9788480d3e33dalf91f139826cf37aa760f93alef90a381aal9c@5dc
6b0dda8c9788480d3e33dalf91f{39826cf37aa760f93alef90a381aal9cO5dc
25dcad3c08a78balb3d3a265d63b69c692b9493a8cffff80ed4107Te22c89005
Checkpoint succeeded

export.tar.gz 100% 7749KB 92.0MB/s 00:00
25dcad43c08a78balb3d3a265d63b69c692h9493a8cffff80e44107fe22c89005
0cfe828519e12a21d68785e3b1e28da9e99222d740de6fad6d68d4630aab7aec
€8288d2c63b4944a4td32b62b951d78e635b7a5b7ebca53cdab30a87099f87ef

0m49.964s
Om0.429s
OmO. 198s

25dcad3c08a78balb3d3a265d63b69c692b9493a8c T ff80e44107Te22¢c89005
0cfeB28519e12a21d68785e3b1e28da9e99222d740de6fadb6d68d4630aab7aec
€8288d2c63b4944a4Td32b62b951d78e635b7a5b7ebca53cdab30a87099t87ef
25dcad43c08a78ba0b3d3a265d63b69c692b9493a8cfff80e44107fe22c89005

ID Database Bucket ID Retention Policy Default Organization ID
0783969287384000 telegraf d5cd55f271c59eb2 telegraf true 36dcOfbc384bbala
curl: (52) Empty reply from server

influxdb

[0.27302372608159564, 0.6774573658581201, 0.049518908060284514] 2

Figure 4.8: Screenshot from the running of experiment 3, run 3
Here we can see the different probabilities together with the number for

which host it wants to go to. So here it chose to go to host 2 next, which
has the probability of 0.6774573658581201.

46

[0.27302372608159564, 0.6774573658581201, 0.049518908060284514]
2.

4.4 Summary of Results chapter

To summarize this chapter, we have gone through three different experi-
ments. In the first experiment we tested what it was like checkpoint and
transfer repeatedly, between two hosts. For the second experiment we
tested our collector script without the learning algorithm, and compared

the transfer speeds between different locations.

Lastly, in experiment three, we tested our collector with the learning al-
gorithm. In this test we ran it 3 times, with 180 iterations. Here we have
compared the different probabilities against each other, and looked at the

total average of the available ram, and total visits for each host.

47

48

Chapter 5

Discussion

In this chapter, an overview of the project will be presented. It will go
through the different chapters as well, as a comparison with existing
projects, and take up issues that we have encountered throughout the
project.

When working with the project, we have gathered a good amount of data
when doing the experiments. We have gathered this data through our ex-
periments using our collector. This collector is entirely self-written, as be-

cause of that, we have to look to see if our results are reliable.

When looking at the results from the first two experiments, we can see that
those experiments have repeatedly gathered data about transfer speeds
from one host to another. The first experiment gathered specifically data
from host A to B repeatedly, while experiment two did it in a round robin
approach.

In the experiments, the main software that has been in use to do the trans-
fers has been rsync, and scp. Using these widely used software, we can
see that our experiment 1 and 2 results were relatively consistent and ac-

curate.

What can cause a difference if someone tried to do the experiment again,

49

is network speeds. As it would be necessary to have virtual machines
with similar networks and specifications, which might not be the easiest for

everyone to acquire.

In the third experiment, we measure what hosts are visiting when using the
learning algorithm compared to using round-robin. The results are here ac-
curate when it comes to the learning algorithm, but less so on the simulated
round-robin. The reason for this is that in the round-robin approach, we use
the time it takes to visit one host when there is no memory usage. This is
less accurate, as some of the hosts that were in use are having memory

usage generated on them.

To be able to generate memory usage on two of the hosts, we have been
using stress-ng. This makes it hard to calculate how much memory usage
each have, and how long time the collector would use, as it would vary.
This means that, while it is accurate initially, the simulated round-robin will

get more inaccurate towards the end.

This is because of both varying memory usage and if anyone the iterations
need to restart underway. This is probably still the most accurate way to
do it. For example, if it had been done through the collector script instead,

it would have gotten numbers from many hours previously.

In experiment three, we have put the learning automata up against a round
robin approach. The reason for why we have used a learning automata in-
stead of just running round robin, is so we can check if we can use machine
learning to be more efficient about what hosts are visited and not. This is

especially important if using many hosts.

From the experiment we have gathered some interesting data. In the first

50

run, we have seen that of the three hosts used, host2 was the one that
was chosen the most by the learning automata. We can both see this in
the probabilites chart, but we can also see it in the overview of the visits,

where host 2 was visited 89 times out of 180.

This tells us that it has chosen to visit host 2 more than a round robin ap-

proach would have. A round robin would have visited 60 times.

When looking at the second run, we can see something similar, where host
3 is now the one being chosen the most. With now, it being visited 71 times
of 180.

From the averages that we have gathered, we can also see that averages
are higher in the learning automata than the round-robin all over. This is
something which is interesting, especially when the numbers are so differ-

ent.

From the data from experiment 3, it could be interesting to test the learning
automata, with more hosts, and more iterations. This could be done we

could see if it would bring any change.

Especially, after we have now tested different values of 6. The reason this
was not done now is that it is time-consuming, as just running 180 itera-

tions takes 4 to 5 hours.

During the experiments, some interesting finds were done. One of them
was about Amazon’s servers during experiment 2. Not only did the transfer
take longer to Ohio than to London, which was expected, but the check-

point and restoring of the containers also took longer, which was not ex-

51

pected.

As the different AWS virtual machines were running on the same tier in-
stance, this is interesting. Running on comparable hardware should have

given them similar performance.

During the experiments, and also when first creating the collector we have
had some problems. During experiment three, we had the problem that the
execution of the collector would crash after 1 to 2 hours. This was weird,
as the script runs in a loop. What was found out was that the InfluxDB con-
tainer was crashing more when doing larger runs. To mitigate this, the best
solution was to check if the container was up running and, if not, restart it.

These were, however, only quick fixes.

Early on, there were also some issues when starting to create and test
containers for checkpointing and restoring. This was that Docker that we
initially used would not correctly migrate containers using CRIU. Also, the
only supported versions of it, where it worked at all was older ones. To
fix this, we changed to use Podman instead, which has better support for

migration.

Because of our project’s nature, there are not many papers out there that
can confirm or deny or claims, at least when it comes to our collection script.

However, some papers touch upon similar topics and learning algorithms.

Some of them are "Migrating LinuX Containers Using CRIU” (Pickartz et
al., 2016), and "Sledge: Towards Efficient Live Migration of Docker Con-

tainers” (Xu et al., 2020), which we have talked about earlier in the thesis.

Because of how our project was made and how little is required to execute

52

it, it should be possible to replicate our prototype and data. To replicate it,

what is needed to replicate is a minimum of 2 to 3 virtual machines.

This can easily be acquired via Cloud Services such as Amazon Web
Services and Google Cloud Engine. It is also possible to use equipment

already available, such as running it in Virtualbox or a homelab.

When working on a project like this, something that always pops up is
updating software that has been in use. For our project, we were lucky
enough that instead of breaking something, it instead fixed something. This
happened when we had a Podman update, where it fixed the issue we had

with short exec commands not executing correctly.

When working with the project, balacing the available time is something
which is not always easy. Especially when it comes what part of a project
to work on. This became somewhat true, as the technical part took more
time that first estimated.

This has been a topic, especially now when it comes to a time where we
have less human contact, and almost only have contact over video due to
Covid-19. For example, during this period, | have meet one of my super-

visors once physically, and the rest over video.

This has made it a little different than usual. This has had both positive and
negative impacts, the positive have been that you at times have more time
available than normal, due to not many other things are happening, and
the negatives has been that while there is some extra time, it is not always

that easy to use it properly without getting tired out.

When it comes to our solution’s approach, we have chosen a not so typical

way to do it. Since one of the main tasks is collecting information and met-

53

rics, there are many ways to do it. The most common type is probably to
install an agent that gathers and sends to a central location when it comes

to servers.

This could be done with the tools that we have used, with each server hav-
ing a Telegraf instance each and a central location for the Influx database.
However, we choose to go a different route, more akin to how a web crawler

works, as we visit each server ourselves and bring the metrics back with us.

Our problem statement which is, "P1: To what extent can machine learning
be utilized to create a autonomous collector, that can be used for the mi-
gration of live containers.” is a problem statement that specifies to a certain
degree what our plan is, and such if it would be changed drastically, that

would probably change the project itself.

This is especially true when it comes to the two last parts of the problem
statement, as that is an integral part. Removing or editing these parts,

would drastically change what would be worked towards.

When working with projects such as these, you can always ask yourself
afterwards, if you would do anything different if you did the project again?
There are always things that you could try to do differently, but most of
them | would do the same. Though, there are some things that | would do
different, these things mainly comes down to research, especially when it

comes to the tools that | have been using.

| would probably try to research these things earlier, and try to get a more
in depth knowledge about them. This is especially true, if | had more time
on my hands, as there is only so much that you are able to do through one

semester.

54

Some of the interesting things that have emerged throughout the project,
is the thought about what other things you could use it for, especially when
it comes to different type of metrics, but also what kind of containers you

can move instead of InfluxDB and Telegraf.

When it comes to these thoughts, luckily the project should be manageable
to repeat. All of our tools and scripts are available online through GitHub,
and all of the software that has been used are free to use. People should be

able to follow us, chapter by chapter, especially through the results chapter.

55

56

Chapter 6

Conclusion

The initial idea of this project started with wanting to use the check-
point/restoring features of CRIU to migrate stateful containers from one
host to another, to be able to migrate a container to another host when
needed, easily. This expanded to include using an autonomous collector to
collect metrics, which then chooses where the container should be moved

depending on the metrics collected.

There has been performed three different experiments. Moving a container
from one host to another repeatedly, using a collector script to collect met-
rics from one host, and then go to another host and repeat in a round robin
approach. In the last experiment, we have tested to see if a learning al-
gorithm is the better approach for collecting metrics compared to a ap-

proach using only round-robin.

From the data from experiment 3, we can see that using a learning al-

gorithm greatly improves what host is visited based on the available ram.

Through the averages, we can see that the average is always higher on
the learning automata compared to the round robin approach, as such it

seems likes it visits those with higher available ram and those that has

57

more change in ram usage.

While the learning algorithm seems to work, as it repeatedly visits those
with the most change on the most, there seems to be a need to do more
adjusting and more experiments, especially with more hosts and more
iterations.

Our problem statement has been "P1: To what extent can machine learn-
ing be utilized to create an autonomous collector, that can be used for the
migration of live containers.” From this statement, we can go through what

has been achieved during this thesis.

We have performed experiments that check to what extent machine learn-
ing can be utilized. We have created a collector which has used our learn-
ing algorithm to decide where to go next. We have created a collector
which is capable of live migrating containers based on data that has been

collected using InfluxDB and Telegraf.

To conclude, we have achieved what our problem statement states. As we
have created a collector that uses a learning algorithm to be autonomous,
we have performed experiments on said learning algorithm to see what
approach is better to utilize and can also migrate live containers when

needed.

58

Chapter 7

Future Works

Due to the time limit when working with this project, there are multiple things
that we could not cover this time, and are things that can be done at a later

date.

The first thing comes to the use of Telegraf plugins. In this project, we have
only tested a couple and used one of the standard plugins. A thing that is
possible to work on in the future is the testing and use of other plugins, as

Telegraf has many plugins that can record metrics in different ways.

Since there are many plugins available, you could create a function that
lets you change what metric you want to be recorded without changing
any of the script directly. This is something that could be done, and could

be for example used using command arguments.

One expansion of this is using a plugin that can record the metrics of the
main running containers, instead of recording the host. This can be done
through the use of the plugins "Docker” and "Docker Logs” which records

metrics and logs.

One thing that we wanted to implement, but did not have enough time for,

59

is the ability to instead of only moving the collector between already exist-
ing hosts, is to make the script able to create new virtual machines as it

seems fit.

For example if none of the hosts come back with satisfactory data, that
it could then create a new virtual machine instead of just staying on the
old host. This can be done through different API’s, and would need to be
setup up differently depending on where the virtual machines is hosted.
This is something that should be possible on most cloud providers, and

also OpenStack.

One thing that should be possible to do is expand the system by adding
more options to what is already there. This can for example be moving
more than one container, or have the system do other things than just mov-

ing containers.

One such things can be turning on/off containers based the metrics col-
lected. Another is starting up duplicates, if that is needed. Also, because
of the way the system is made, you can also have it run any script and
commands you want. So if you want it to, you can have it run a set of tasks

after the metrics have been collected.

In addition to these it should be looked upon if there is any better databases
to store the metrics on, as InfluxDB tends to be somewhat unstable, and
crash a lot. Especially on longer runs.

It should also possible to test the prototype on more operating systems

than it currently is. Today it is only tested on Fedora 33

Lastly, one part of future work is performing more tests on the collector

script with the learning automata, because today it has only tested with

60

180 iterations. If possible, increasing the number of iterations and number
of hosts would give you more reliable data. This could easily done, the
main part why it has not been done, is that it is time consuming, and has
had a tendency to crash underway. If you could fix the crashing, running it

over more iterations would easily be done.

61

62

Bibliography

Al-Dhuraibi, Y., Paraiso, F., Djarallah, N. & Merle, P. (2017). Autonomic
vertical elasticity of docker containers with elasticdocker. 2017 IEEE
10th International Conference on Cloud Computing (CLOUD), 472—
479. https://doi.org/10.1109/CLOUD.2017.67

Autonomous systems and networks (asn). (n.d.). Retrieved April 12, 2021,
from https://www . oslomet. no/en/research/research - groups /
autonomous-systems-networks

AzuraCast. (n.d.). Azuracast is a free and open-source self hosted web
radio management suite. Retrieved April 12, 2021, from https://
www.azuracast.com/

Baeldung. (2020). Virtualization vs containerization. Retrieved April 12,
2021, from https : // www . baeldung . com / cs / virtualization - vs -
containerization

Checkpoint-Restore. (n.d.). Checkpoint-restore/criu. Retrieved April 12,
2021, from https://github.com/checkpoint-restore/criu

Chen, Y. (2015). Checkpoint and restore of micro-service in docker
containers. Proceedings of the 3rd International Conference on
Mechatronics and Industrial Informatics. https://doi.org/10.2991/
icmii-15.2015.160

Criu. (n.d.). https://criu.org/Main_Page

Global infrastructure as a service (iaas) market 2021-2025: Market is
poised to grow by $136.21 billion, at a cagr of 27% - researchand-

markets.com. (2021). https://www.businesswire.com/news/home/

63

https://doi.org/10.1109/CLOUD.2017.67
https://www.oslomet.no/en/research/research-groups/autonomous-systems-networks
https://www.oslomet.no/en/research/research-groups/autonomous-systems-networks
https://www.azuracast.com/
https://www.azuracast.com/
https://www.baeldung.com/cs/virtualization-vs-containerization
https://www.baeldung.com/cs/virtualization-vs-containerization
https://github.com/checkpoint-restore/criu
https://doi.org/10.2991/icmii-15.2015.160
https://doi.org/10.2991/icmii-15.2015.160
https://criu.org/Main_Page
https://www.businesswire.com/news/home/20210402005093/en/Global-Infrastructure-as-a-Service-IaaS-Market-2021-2025-Market-is-Poised-to-Grow-by-136.21-Billion-at-a-CAGR-of-27---ResearchAndMarkets.com
https://www.businesswire.com/news/home/20210402005093/en/Global-Infrastructure-as-a-Service-IaaS-Market-2021-2025-Market-is-Poised-to-Grow-by-136.21-Billion-at-a-CAGR-of-27---ResearchAndMarkets.com

20210402005093/en/ Global - Infrastructure - as - a - Service - 1aaS -
Market-2021-2025-Market-is-Poised-to-Grow-by-136.21-Billion-at-
a-CAGR-of-27---ResearchAndMarkets.com

Knutsen, K. M. (2021). Kjetilknutsen/migration-via-autonomous-collector.
https : // github . com / KjetilKnutsen / Migration - via - autonomous -
collector

Ma, L., Yi, S. & Li, Q. (2017). Efficient service handoff across edge
servers via docker container migration. Proceedings of the Second
ACM/IEEE Symposium on Edge Computing. https://doi.org/10.
1145/3132211.3134460

Packages - criu. (n.d.). Retrieved April 12, 2021, from https://criu.org/
Packages

Pickartz, S., Eiling, N., Lankes, S., Razik, L. & Monti, A. (2016). Migrating
linux containers using criu. Lecture Notes in Computer Science,
674—684. https://doi.org/10.1007/978-3-319-46079-6_47

Wang, T., Xu, J., Zhang, W., Gu, Z. & Zhong, H. (2018). Self-adaptive cloud
monitoring with online anomaly detection. Future Gener. Comput.
Syst., 80(100), 89-101. https://doi.org/10.1016/j.future.2017.09.
067

Xu, B., Wu, S., Xiao, J., Jin, H., Zhang, Y., Shi, G., Lin, T., Rao, J., Yi,
L. & Jiang, J. (2020). Sledge: Towards efficient live migration of
docker containers. 2020 IEEE 13th International Conference on
Cloud Computing (CLOUD), 321-328. https://doi.org/10.1109/
CLOUD49709.2020.00052

Yazidi, A., Hassan, I., Hammer, H. & Oommen, B. (2020). Achieving fair
load balancing by invoking a learning automata-based two-time-
scale separation paradigm. I[EEE Transactions on Neural Networks
and Learning Systems, PP, 1-14. https://doi.org/10.1109/TNNLS.
2020.3010888

64

https://www.businesswire.com/news/home/20210402005093/en/Global-Infrastructure-as-a-Service-IaaS-Market-2021-2025-Market-is-Poised-to-Grow-by-136.21-Billion-at-a-CAGR-of-27---ResearchAndMarkets.com
https://www.businesswire.com/news/home/20210402005093/en/Global-Infrastructure-as-a-Service-IaaS-Market-2021-2025-Market-is-Poised-to-Grow-by-136.21-Billion-at-a-CAGR-of-27---ResearchAndMarkets.com
https://www.businesswire.com/news/home/20210402005093/en/Global-Infrastructure-as-a-Service-IaaS-Market-2021-2025-Market-is-Poised-to-Grow-by-136.21-Billion-at-a-CAGR-of-27---ResearchAndMarkets.com
https://www.businesswire.com/news/home/20210402005093/en/Global-Infrastructure-as-a-Service-IaaS-Market-2021-2025-Market-is-Poised-to-Grow-by-136.21-Billion-at-a-CAGR-of-27---ResearchAndMarkets.com
https://github.com/KjetilKnutsen/Migration-via-autonomous-collector
https://github.com/KjetilKnutsen/Migration-via-autonomous-collector
https://doi.org/10.1145/3132211.3134460
https://doi.org/10.1145/3132211.3134460
https://criu.org/Packages
https://criu.org/Packages
https://doi.org/10.1007/978-3-319-46079-6_47
https://doi.org/10.1016/j.future.2017.09.067
https://doi.org/10.1016/j.future.2017.09.067
https://doi.org/10.1109/CLOUD49709.2020.00052
https://doi.org/10.1109/CLOUD49709.2020.00052
https://doi.org/10.1109/TNNLS.2020.3010888
https://doi.org/10.1109/TNNLS.2020.3010888

Yu, C. & Huan, F. (2015). Live migration of docker containers through
logging and replay. Proceedings of the 3rd International Conference
on Mechatronics and Industrial Informatics. https://doi.org/10.2991/
icmii-15.2015.106

Zavala, E., Franch, X. & Marco, J. (2019). Adaptive monitoring: A system-
atic mapping. Information and Software Technology, 105, 161-189.
https://doi.org/https://doi.org/10.1016/j.infsof.2018.08.013

65

https://doi.org/10.2991/icmii-15.2015.106
https://doi.org/10.2991/icmii-15.2015.106
https://doi.org/https://doi.org/10.1016/j.infsof.2018.08.013

66

Appendices

67

O © 00 N O O »~h W N -

—_

12
13

14
15
16
17

18
19
20

21
22
23

24
25

A.1 Code & Scripts

Listing 1: Collector script

#!/bin/bash
function collect {
time (
if ["$line” = "$host_ip”]
then
tput setaf 4
echo ${line} LOCALHOST

tput setaf 7
sed —i "94s/.x/ hostname = \"${line}\”"/” /home/fedora/
MVAC/ telegraf.conf
sudo podman rm —f influxdb
sudo podman volume prune -f
sudo podman container restore —--tcp-established -i /home
/fedora /MVAC/ export.tar.gz
sleep 5
sudo podman start influxdb
sleep 5
influx=$(sudo podman ps | grep -o influxdb | sed -e ’1d’
)
if ["influxdb” = "$influx”]
then
sudo podman run -v /home/fedora/MVAC/telegraf.conf:/
etc/telegraf/telegraf.conf:Z -d —-name telegraf
—-—net=container:influxdb docker.io/library/
telegraf:1.18
sleep 20
sudo podman rm -f telegraf
sudo podman container checkpoint influxdb --tcp-
established -e /home/fedora/MVAC/export.tar.gz
else

sudo podman start influxdb

69

26

27
28
29

30
31
32
33
34
35
36
37
38

39

40

41

42

43

44

45
46

47
48
49

sudo podman run -v /home/fedora/MVAC/telegraf.conf:/
etc/telegraf/telegraf.conf:Z -d —-name telegraf
-—net=container:influxdb docker.io/library/
telegraf:1.18
sleep 20
sudo podman rm -f telegraf
sudo podman container checkpoint influxdb --tcp-
established -e /home/fedora/MVAC/export.tar.gz
fi
sudo podman rm —f influxdb

sudo podman volume prune -f

tput setaf 4
echo "${line}”

tput setaf 7

ssh —i ./id_rsa fedora@${line} "mkdir —-p /home/fedora/
MVAC”

scp —i ./id_rsa /home/fedora/MVAC/export.tar.gz fedora@$
{line }:/home/fedora/MVAC/export.tar.gz

scp —i ./id_rsa /home/fedora/MVAC/telegraf.conf fedora@$
{line }:/home/fedora/MVAC/ telegraf.conf

ssh —i ./id_rsa fedora@${line} "sed -i '94s/.x/ hostname
= \"${line}\”/’ /home/fedora/MVAC/telegraf.conf”

ssh —i ./id_rsa fedora@${line} ”sudo podman container

restore —-tcp-established -i /home/fedora/MVAC/export

.tar.gz”

ssh -i ./id_rsa fedora@${line} "sleep 5~

ssh —i ./id_rsa fedora@${line} "sudo podman start
influxdb”

ssh -i ./id_rsa fedora@${line} "sleep 5"

influx=$(ssh -i ./id_rsa fedora@${line} ”"sudo podman ps
| grep —o influxdb | sed -e '1d’")

if ["influxdb” = "$influx”]

then
set +e

70

50

51
52

53

54
55
56
57

58
59
60

61
62

63

64
65
66
67

68

ssh -i ./id_rsa fedora@${line} "sudo podman run -v
home/fedora /MVAC/ telegraf.conf:/etc/telegraf/
telegraf.conf:Z -d -—-name telegraf —--net=

container:influxdb docker.io/library/telegraf

:1.18”

ssh —-i ./id_rsa fedora@${line} "sleep 20~

ssh —i ./id_rsa fedora@${line} "sudo podman rm -f
telegraf”

ssh —-i ./id_rsa fedora@${line} "sudo podman

container checkpoint influxdb --tcp-established
e /home/fedora /MVAC/export.tar.gz”
if [$? -eq 0]; then
echo ”"Checkpoint succeeded”
else
ssh —i ./id_rsa fedora@${line} "sudo podman
start influxdb”
ssh —i ./id_rsa fedora@${line} "sleep 10~
echo "Trying again”
ssh —i ./id_rsa fedora@${line} ”sudo podman run
-v /home/fedora/MVAC/telegraf.conf:/etc/
telegraf/telegraf.conf:Z -d -—-name telegraf
-—net=container:influxdb docker.io/library/

telegraf:1.18”

ssh —i ./id_rsa fedora@${line} "sleep 20~

ssh —i ./id_rsa fedora@${line} ”sudo podman rm -
f telegraf”

ssh —i ./id_rsa fedora@${line} "sudo podman

container checkpoint influxdb --tcp-

established -e /home/fedora/MVAC/export.tar.

”

gz

fi

set -e

ssh -i ./id_rsa fedora@${line} "sudo podman start
influxdb”

ssh —i ./id_rsa fedora@${line} “sleep 10~

71

69

70
71

72

73
74

75

76

77
78
79
80
81
82
83
84

85
86
87
88
89
90

91
92

fi

ssh —-i ./id_rsa fedora@${line} "sudo podman run -v /
home/fedora /MVAC/ telegraf.conf:/etc/telegraf/
telegraf.conf:Z -d -—-name telegraf —--net=

container:influxdb docker.io/library/telegraf

:1.18”

ssh —i ./id_rsa fedora@${line} "sleep 20~

ssh —-i ./id_rsa fedora@${line} ”sudo podman rm -f
telegraf”

ssh —i ./id_rsa fedora@${line} "sudo podman

container checkpoint influxdb —--tcp-established -

e /home/fedora /MVAC/export.tar.gz”

fi

scp —-i ./id_rsa fedora@${line }:/home/fedora/MVAC/export.
tar.gz /home/fedora/MVAC/export.tar.gz

ssh —i ./id_rsa fedora@${line} "sudo podman rm -f
influxdb”

ssh —i ./id_rsa fedora@${line} “sudo podman volume prune
—f”

function migrate {

set +e

timestamp=%$(cat ./bin/timestamp)

bucket_id=$(sudo podman exec —it influxdb influx bucket list

if
then

fi

| grep bucket | awk '{print $1}’)

[-z "$bucket_id”]

echo ”InfluxDB down, restarting”

sudo podman start influxdb

sleep 5

bucket_id=$(sudo podman exec —-it influxdb influx bucket
list | grep bucket | awk '{print $1}")

echo $bucket_id

72

93

94

95
96
97

98
99
100
101

102
103
104

105

106

sudo podman exec —it influxdb influx v1 dbrp create —--db
telegraf ——rp telegraf —--bucket-id ${bucket id} ——default

sudo podman exec —it influxdb curl --get http://localhost
:8086/query?db=telegraf —-—header "Authorization: Token
mfindKMWpG8B3tVjjJYZm " —-—header "Accept: application/csv”
-—data-urlencode ”"q=SELECT time, host,max(available) FROM
telegraf.telegraf.mem WHERE time > ’'${timestamp}’”

if [$?2 -eq 0]; then
query=$(sudo podman exec -it influxdb curl -—get http://
localhost:8086/query?db=telegraf —-—header ”
Authorization: Token mfndKMWpG8B3tVjjJYZm ” --header
"Accept: application/csv” -—-data-urlencode "q=SELECT
time , host ,max(available) FROM telegraf.telegraf.mem
WHERE time > ’${timestamp}’” | awk -F’,’ '{print $4}’
)
else
sudo podman start influxdb

sleep 20

query=$(sudo podman exec -it influxdb curl —-—get http://
localhost:8086/query?db=telegraf -—header ”
Authorization: Token mfndKMWpG8B3tVjjJYZm ” --header

"Accept: application/csv” ——data—urlencode ”"q=SELECT

time ,host ,max(available) FROM telegraf.telegraf.mem

WHERE time > ’'${timestamp}’” | awk -F’,’ ’{print $4}’

)

if [$?2 -ne 0]; then

echo "RESTARTING”

bucket_id=$(sudo podman exec —it influxdb influx
bucket list | grep bucket | awk '{print $1}")

sudo podman exec -it influxdb influx v1 dbrp create
--db telegraf —-rp telegraf --bucket-id ${
bucket _id} —--default

query=$(sudo podman exec -it influxdb curl --get
http ://localhost:8086/query?db=telegraf -—header
”Authorization: Token mfndKMWpG8B3tVjjJYZm 7 --

73

107
108
109
110
111
112
113
114

115

116

117

118
119
120

121
122
123
124
125
126

127

header ”Accept: application/csv” —-—data—-urlencode
*q=SELECT time ,host,max(available) FROM telegraf
.telegraf.mem WHERE time > ’${timestamp}’” | awk
-F’,” ’{print $4}’)
fi
fi
ip=$(echo $query | awk "{print $2} ")

function move {

rsync —ahl /home/fedora/MVAC fedora@${ip }:/home/fedora/MVAC

sudo podman container checkpoint main—app -e /home/fedora/
MVAC/main-export. tar.gz

rsync —ah —--progress /home/fedora/MVAC/main—-export.tar.gz
fedora@${ip }:/home/fedora/MVAC/ main—-export.tar.gz

ssh fedora@${ip} ”"sudo podman restore —i /home/fedora/MVAC/
main—-export.tar.gz”

ssh —i ./id_rsa fedora@${ip} ”(sudo -u root crontab -1 2>/
dev/null; echo " * % = » ~/MVAC/trigger.shh”) | sudo

crontab -u root -

rm -r /home/fedora/MVAC
(sudo crontab -u root —-I | grep -v ’'trigger.hh’) | sudo

crontab -u root -

function query {

timestamp_2=$(cat ./bin/timestamp_2)

cp ./bin/results—-current ./bin/results-previous

sudo podman exec —-it influxdb curl ——get http://localhost
:8086/query?db=telegraf ——header ”Authorization: Token
mfndKMWpG8B3tVjjlYZm ” --header ”"Accept: application/csv”
—-—data-urlencode "q=SELECT time,b host,max(available) FROM
telegraf.telegraf.mem WHERE time > ’${timestamp_2}"’
GROUP by host” > ./bin/results-current

sed -i "1d” ./bin/results-current

74

128 if [$¢ —eq 1]

129 then

130 cp ./bin/results-current ./bin/results-list
131 fi

132}

133

134 function calc {

135 > ./bin/calc

136 while read line

137 do

138 ip1=$(echo $line | awk -F ’,’ ’{print $4}")
139 pre=$(cat ./bin/results-list | grep $ip1)
140 first=%$(echo $pre | awk -F ', ’{print int($5)})
141 second=$(echo $line | awk -F ', ’'{print int($5)}’)
142

143 calc=$(expr $first - $second)

144 echo " $first - $second = $calc”

145 if [[${calc:0:1} == "=-"]]

146 then

147 newcalc=$(echo $calc | sed ’'s/*-\(.x\)/\1/")
148 echo $newcalc >> ./bin/calc

149 else

150 echo $calc >> ./bin/calc

151 fi

152

153 sed —-i -e "s/$pre/$line/” ./bin/results-list
154

155 if [$7 -eq 1]

156 then

157 echo $line >> ./bin/results-list

158 fi

159

160 done < ./bin/results -current

161 var=$(sort -nrk1 ./bin/calc | head -1)

162 echo $var > ./bin/calc

163

75

164
165
166
167
168
169
170
171

172
173
174
175
176
177
178

179
180

181
182
183
184
185
186
187
188
189
190
191
192
193
194

195

calc_file=$(cat ./bin/calc)

function restore {

set

file
if [
then

tput setaf 4

echo "Restoring influx at host”

tput setaf 7

influxdb=$(sudo podman ps -a | grep -o influxdb | sed -e ’1d
")

if ["influxdb” = "$influxdb”]
then
sudo podman rm —f influxdb
sudo podman volume prune -f
sleep 5
sudo podman container restore —--tcp—-established -i /home
/fedora /IMVAC/ export.tar.gz
else
sudo podman container restore --tcp—established -i /home
/fedora /MVAC/ export.tar.gz
fi

—-e

=/home/fedora /MVAC/ export.tar.gz
I -f $file]

sudo podman run —-d —--name influxdb -p 8086:8086 \
—-e DOCKER_INFLUXDB_INIT_MODE=setup \
-e DOCKER_INFLUXDB_INIT_USERNAME=telegraf \
—e DOCKER_INFLUXDB_INIT_PASSWORD=telegraf \
—-e DOCKER_INFLUXDB_INIT_ORG=my-org \
—e DOCKER_INFLUXDB_INIT_BUCKET=bucket \
—e DOCKER_INFLUXDB_INIT_ADMIN_TOKEN=mfndKMWpG8B3tVjjJYZm
\
docker.io/library/influxdb:2.0.4

76

196

197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

214

215
216
217
218
219
220
221
222
223

224

225

sudo podman container checkpoint influxdb --tcp-
established -e /home/fedora/MVAC/export.tar.gz

sudo chown fedora:fedora /home/fedora/MVAC/export.
tar.gz

echo 0 > ./bin/counter

if [-f ./bin/calc*]; then
rm ./bin/calc*

fi

if [-f ./bin/pickle.p]; then
rm ./bin/pickle .*

fi

> ./bin/results-list

> ./bin/ip

fi

n=$(cat ./bin/counter)
m=$((n+ 1))

echo $m > ./bin/counter

#host ip=$(curl -s ifconfig.me) # use this if using public ip
addresses
host _ip=$(hostname -1 | awk ’'{print $1}) # use this if using

local ip addresses

FILES=" ./ hosts. txt”

c=$(cat ./bin/counter)
if [$c -1t 3]
then
ssh —-i ./id_rsa fedora@172.16.0.70 ~/MVAC/stress.sh &
ssh —i ./id_rsa fedora@172.16.0.71 ~/MVAC/stress.sh &
date --rfc-3339=seconds | sed 's/ /T/’ | sed 's/.\{6\}$//’
sed 's/$/Z/g’ > ./bin/timestamp
date --rfc -3339=seconds | sed ’'s/ /T/’ | sed ’s/.\{6\}$//’
sed 's/$/Z/g’ > ./bin/timestamp_2
LINES=$(cat $FILES)

77

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

251
252
253
254
255
256

257
258
259

fi

if [
then

for line in $LINES
do
collect
done
restore

migrate

query

if [$c -gt 1]

then
calc
py=$%(python3 LA_with_barriers.py)
echo $py

nr=$(echo $py | awk 'END {print $NF}’)

cat ./hosts.txt | sed -n "${nr}p” > ./bin/ip
fi
echo $ip
$c —gt 2]

r=$(cat ./hosts. txt
r=$(expr $r \x 2)
r=180

date —--rfc -3339=seconds

| we -1)

| sed s/ /T/”’

sed 's/$/Z/g’ > ./bin/timestamp

| sed 's/.\{6\}$//"

ssh —-i ./id_rsa fedora@172.16.0.69 ~/MVAC/log.sh &
ssh —-i ./id_rsa fedora@172.16.0.70 ~/MVAC/log.sh &
ssh —-i ./id_rsa fedora@172.16.0.71 ~/MVAC/log.sh &
for i in $(seq 1 $r)
do
date --rfc-3339=seconds | sed 's/ /T/’ | sed ’s/.\{6\}$

I’
line=$(cat ./bin/ip)
rc=$(cat ./bin/results-current)

collect

78

| sed 's/$/Z/g’ > ./bin/timestamp_2

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

N OO g~ WN -

time (

restore

migrate

query

if [-z "$rc”]

then
echo "Restarting restore, migrate and query”
restore
migrate
query

fi

calc

py=$(python3 LA_with_barriers.py)
echo $py
nr=$(echo $py | awk 'END {print $NF}’)
cat hosts.txt | sed -n "${nr}p” > ./bin/ip
echo $ip > ./bin/ip-2

)

done

ip=$(cat ./bin/ip-2)

echo $ip

ssh —i ./id_rsa fedora@172.16.0.69 ”"pkill -f log.sh”
ssh —i ./id_rsa fedora@172.16.0.70 ”pkill —-f log.sh”
ssh -i ./id_rsa fedora@172.16.0.71 ”pkill -f log.sh”
ssh -i ./id_rsa fedora@172.16.0.70 "pkill —f stress.sh”
ssh —-i ./id_rsa fedora@172.16.0.71 ”"pkill -f stress.sh”
fi

Listing 2: Learning Algorithm

import random, pickle, os

def weighted choice(weights):
totals = []

running_total = 0

for w in weights:

79

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38

39
40

running_total +=w

totals .append(running_total)

rnd = random.random() * running_total
for i, total in enumerate(totals):
if rnd < total:

return i

n=len(open(” ./ hosts.txt”).readlines()) #number of hosts to
monitor
reward=[0]*n

lamda=0.15 #learning parameter, between 0 and 1.

pmax=0.98 #barrier, limit that any probablity will not exceed

pmin=(1-pmax)/(n-1)

#if one is pmax, while the rest, n-1 are at pmin, then the prob

will sum to 1. pmax+(n-1)xpmin=pmax+(n—-1)*(1-pmax)/(n-1)=1

if os.path.exists(”./bin/pickle.p”):
prob = pickle.load(open(”./bin/pickle.p”,”rb”))
p = prob[0]

max_change = pickle.load(open(”./bin/pickle.m”,”rb”))

if not os.path.exists(”./bin/pickle.p”):
p=[1.0/n]*n

max_change = 0

chosen_index=weighted choice(p) #p is probablity, roulettte
wheel
#chosen_index=the host that we need to vist.

file = open(”./bin/calc”, "rt”)

80

41
42
43

44
45
46

47
48
49

50

51
52

53
54
55
56
57

58
59
60
61
62
63
64
65
66
67

contents = file.read()

change_chosen=int (contents) #this needs to be computed based on

amount of change, since last visit (absolute value)

if change_chosen>max_change:
max_change=change_chosen #to keep track of max change for

normalization

#updating the prob of the chosen wesite, we will increase the
prpb of the chosen host in a proportional manner to the
amount of change

pl[chosen_index]=p[chosen_index]+lamda*(change_chosen/max_change)

*(pmax-p[chosen_index])

#1 will reduce the prob for all hosts that were not chosen, bcs
I inreased the prob of the chosen.

for k in range(0,n):

if (k!=chosen_index):

plkl=p[k]+lamda=*(change_chosen/max_change) *(pmin-p[k]) #

note (pmin-p[k]) is negative

#print ”iteration”, |

print(p)
print(chosen_index+1)

pickle .dump([p], open(”./bin/pickle.p”, "wb”))

pickle .dump(max_change, open(”./bin/pickle.m”, "wb”))

81

A WO N - A WO N - © 00 N O 00 B~ WOWDN -

o

® N O o B~ WODN

Listing 3: Trigger script
#!/bin/bash
mem=$(free --mega | grep Mem: | awk '{print $7})
echo '+ * x x * touch ~/MVAC/trigger.sh’ | crontab -
if [$mem -1t 1000]
then

echo "Memory available is less than 1000mb, starting collector”

echo '’ | crontab -
bash /home/fedora/MVAC/ collector .sh
fi
Listing 4: Cleanup script
#!/bin/bash

sudo podman rm —-f influxdb
sudo podman volume prune -f

rm ./export.tar.gz

Listing 5: Stress script
#!/bin/bash

while

do

stress—-ng —--vm-bytes $(awk ’'/MemAvailable/{ printf "%d\n”, $2 =
0.4;}° < /proc/meminfo)k —-vm-keep -m 1 -t 25

sleep 15

done

Listing 6: Logging script
#!/bin/bash
while
do
date=$(date)
mem=$(free | awk '{print $6} | sed -n 2p)
echo $date $mem >> logfile
sleep 135

done

82

A.2 Additional Attached Files

Listing 7: Poster

Added as an additional attachment: See poster.png

Listing 8: Prototype

Added as an additional attachment: See prototype.zip

83

	Abstract
	Acknowledgments
	Introduction
	Problem Statement
	Chapter Outline

	Background
	Containerization: An introduction
	What is a container
	Why use containers?
	Container types, and standards

	Checkpointing & Restoring
	CRIU: Checkpoint/Restore In Userspace

	Learning Automata
	What is an Learning Automata

	Learning Automata based Polling
	Learning with barriers
	Summary of how the learning automata works

	Related Works
	Papers mentioned in this chapter
	Summary

	Approach
	Objective
	Experiments
	Scripts

	Results
	Preliminary Migration Tests
	Experiment Results

	Collector using round-robin
	Collector with Learning Automata
	Experiment Results

	Summary of Results chapter

	Discussion
	Conclusion
	Future Works
	Appendices
	Code & Scripts
	Collector script
	Learning Algorithm
	Trigger script
	Cleanup script
	Stress script
	Logging script

	Additional Attached Files
	Poster
	Prototype

