Detecting Yo-Yo DoS attack in a
container-based environment

Viktor Danielsen

Thesis submitted for the degree of
Master in Applied Computer and Information
Technology - ACIT
(Cloud-based Services and Operations)
30 credits

Department of Computer Science
Faculty of Technology, Art and Design

Oslo Metropolitan University — OsloMet

Spring 2021

Detecting Yo-Yo DoS attack in a
container-based environment

Viktor Danielsen

© 2021 Viktor Danielsen
Detecting Yo-Yo DoS attack in a container-based environment
http://www.oslomet.no/

Printed: Oslo Metropolitan University — OsloMet

Abstract

Denial-of-Service (DoS) attacks are an ever persistent treath to IT environ-
ments and it occurs today at an ever-increasing rate from year to year. As
the world develops and companies migrate their systems from private loc-
ations to public clouds, cyber criminals continue to use their classic DoS
methods on cloud networks. Some clever cyber criminals also come up
with new ways of rendering services unavailable for the intended users by
exploring vulnerabilities in novel technologies such as clouds are. Still, typ-
ical attacks such as SYN floods and amplification attacks are the most popu-
lar attack vectors. There have been a big number of research on these classic
DoS approaches, but security firms that operate DoS mitigation solutions
continue to observe new trends in the DoS environment. More novel trends
differs from the classic attacks by utilizing multiple attack vectors at the
same time, hoarding big botnets and low-and-slow attacks among other. A
novel DoS attack is the Yo-Yo attack which sends bursts of traffic in order
to exploit cloud provider’s auto-scaling functionalities. Auto-scaling is a
very important line of defense against DoS attacks, but the Yo-Yo attack is
specialized at exploiting a mechanism that we first thought only as an ad-
vantage that now could be a concern for cloud providers. The Yo-Yo attack
is able to impact the victims web server with performance degradation as
well as economic loss. This research will try to contribute with a detection
mechanism against the Yo-Yo attack, as well as doing so in a container-
based environment. This research has not been conducted earlier with a
container-based environment as far as the author can tell, and it is highly
relevant for the time being as more and more users are choosing contain-
ers for their web services, due to their lightweight being. The hypothesis
is that (a) the Yo-Yo attack will not be able to determine the scaling phase
or scaling policy due to rapid deployment of container instances or (b) that
the Yo-Yo attack will induct rapid scaling of container instances and cause
further economic loss than previously.

ii

Acknowledgments

I'would like to thank my supervisors, Harek Haugerud and Anis Yazidi, for
guiding me through this master thesis and the last semester of my academic
career. Thank you for providing me with your advice.

I would also like to thank Oslo Metropolitan University for giving me
the opportunity to take this master’s program.

iii

iv

Contents

Abstract i
Acknowledgments iii
1 Introduction 1
1.1 Introduction 1

1.2 Problem statement 3

2 Background and Related Work 5
2.1 DDoS attack techniques 5
211 Network layerattacks 5

2.1.2 Transportlayerattacks 7

21.3 Application layer attacks 8

2.1.4 Fraudulent resource consumption attacks 8

215 Lowandslowattacks 8

22 DDoStrends 9
2.2.1 Ransom DDoS-attacks (rDDoS) 9

222 Kasperskyreports L 10

2.3 Famous DDoSattacks 15

24 Timeline 18

2.5 DDoS attack on cloud auto-scaling mechanisms 20

2.6 Exploring New Opportunities to Defeat Low-Rate DDoS
Attack in Container-Based Cloud Environment

2.7 Towards Yo-Yo attack mitigation in cloud auto-scaling mech-
ANiSIM e e

28 Glossary

Approach

31 Tools
32 HighLevel Design
33 Testenvironment
34 Data.......
35 Auto-scaling
3.6 How to simulate it in a VirtualBox environment
37 Howtodetect
38 Loadtest
3.9 Limitationstothistest

3.10 CPU utilization

Results
41 Assumptions.
42 Attack with auto-scaling

4.3 Detecting the adversarial requests

Discussion
5.1 Container vs. Virtual Machine
52 DoSvs.DDoS

5.3 Other variantsof theattack

6 Conclusion

Vi

27

27

28

28

29

30

30

30

30

31

31

35

35

36

37

41

41

41

42

43

List of Figures

1.1

2.1

2.2

2.3

3.1

3.2

3.3

4.1

4.2

4.3

44

Cloud computing search trends in Google [1]

The OSI-model and TCP/IP-model combined [2].

Ransom letter related to a DDoS attack against Telenor in
October 2020 [3].. o v e

Bitcoin value as of 16.04.2021[4]

High level design of the simulation environment.
Load test of the experimental environment.
Screen shot when running the top command on the web
server in case of the server being overloaded.
Request rate and reply rate under a no scale scenario.

CPU utilization of HAProxy under an attack with no auto-
scaling in use. The top command shows approximately 20%
which is transitioned into 80% usage.

The assumed load of web service with auto-scaling. The
response time stay below 100 ms and is hardly noticeable.

Pseudoscript for the detection mechanism.

vii

33

36

viii

Chapter 1

Introduction

1.1 Introduction

Denial-of-Service, or DoS for short, is a phenomenon within IT environ-
ments that occurs when a system becomes partially or completely inaccess-
ible due to overload caused by network traffic. DoS can occur as an eligible
cyber attack or accidentally, e.g. due to the release of a new product or
an event such as the release of concert tickets that are causing many users
going to the same web service in a short time space. For most of the time
we talk about Denial-of-Service as a cyber attack where the attacker’s goal
is to render a system (server/service) unavailable for legitimate users by
sending network traffic in such an amount that overloads the target sys-
tem. The target system can only handle a limited amount of load, defined
by the resource capacities in the CPU, memory, disk and network band-
width. There are many different types of DoS attacks. Foremost, DoS are
divided into two main parts which are Denial-of-Service and Distributed-
Denial-of-Service (DDoS). The difference between the two is that a DoS at-
tack originates from one machine only, whereas a DDoS attack originates
from multiple computers or devices, thus it being distributed. DDoS attacks
are not surprisingly a bigger issue because it has a many-to-one dimension
[20] and a DoS attack has a one-to-one dimension.

DDoS attacks is an ever-growing problem for IT infrastructures and if we
look at the last couple of years the number of attacks increased with 50%
in Q3 2020 in comparison with Q3 2019. Q2 2020 saw a huge spike with
a doubling compared to Q2 2019, believed to be a result of the corona
pandemic [22]. In the last three years, we’ve also seen the record for the
biggest DDoS attacks measured in bandwidth broken twice with Github
suffering an attack size of 1.3 TB/s in 2018 [42], and Amazon was hit by a
2.3 TB/s DDoS attack in early 2020 [8].

Following the emergence of cloud environments, both cybercriminals and

sysadmins have found new techniques and methods to conduct and defend
against Denial-of-Service attacks. As figure 1.1 illustrates, cloud computing
emerged as a term in late 2006 after Google’s CEO Eric Schmidt used the
term in a conference. The term had it’s peak for google searches in the
summer of 2011, and has since then been a hot topic [41].

Merk

Figure 1.1: Cloud computing search trends in Google [1]

When we want to know who who wins a DoS attack, it all breaks down
to the resources competition between the attacker and the victim. The
ones that has the most resources will most likely overcome the other part.
Especially, when we are talking about traditional flooding DDoS attacks
where the attacker sends too much traffic for the target system to handle,
resulting in an inaccessible system. There are also the attacks that turns
focus to another goal which is Economic Denial of Sustainability, or EDoS
for short, where the attacker wants to cause economic impact to the victim.
This can happen when a victim is renting compute resources from a cloud
provider which usually has some sort of scaling mechanism depending
on the load of e.g. a website. The attacker can then exploit the scaling
mechanism by launching an attack that will scale up the target system,
which will result in a higher billing for the victim [9].

EDoS is typically a result of clever attackers that conduct low-rate Denial
of Service attacks. This means that the rate of traffic received at the target
victim is of a so low rate that it won’t be detected by traditional mitigation
or detection mechanisms. An example of a low-rate DoS attack is the Yo-
Yo-attack where the attack is conducted in a on-attach/off-attack phase
resulting in a scale-up/scale-down at the target’s cloud environment as
well. This particular attack will first send a burst of overload traffic and
then try to detect when the target system is scaling up, and what kind of
scaling policy it utilizes. When the attack senses that the victim has started
its scale-up phase the overload traffic will stop. When this happens, the
scaling mechanism at the victim will first have to wait for the scaling to
finish, then it will scale down again to adjust to the drop in traffic. Then
the attacker will send overload traffic again. This could go on for a while
and the victim will be billed when the environment is scaling up because
of additional VMs [9].

Container-based cloud environments gives us a new look on virtualization

which is more lightweight than virtual machines. Containers can utilize
resources more efficiently than VM-based environments and may pave the

2

way for new defensive mechanisms and new attack methods.

1.2 Problem statement

How to create a detection mechanism to prevent low-rate Yo-Yo attacks in a
container-based environment.

There aren’t any other attacks than the Yo-Yo attack that explicitly
targets auto-scaling functionalities in cloud environments. As more and
more users are deploying services in cloud datacenters, an attack such as
the Yo-Yo attack could potentially cost huge amounts of reputation and
economy, and is putting many users at risk. Therefore, it is crucial that
more research is put into creating detection and mitigation techniques, as
well as policy evaluations of auto-scalers.

Chapter 2

Background and Related Work

This chapter will provide the reader with all the information that is needed
to get a lay of the Denial-of-Service land. It is important to know about
different attack techniques and defense methods, as well as the history
of Denial-of-Service. The chapter includes DDoS attack techniques, DDoS
trends, Famous DDoS attacks, Relevant research and a Glossary to help the
reader with understanding certain terms and phrases.

2.1 DDoS attack techniques

In order to understand how DDoS attacks occur, we have to have
knowledge about the different techniques that are used. Traditionally,
DDoS attacking techniques can be categorized based on the layers of the
OSI-model as seen in figure 2.1. The layers that we typically observe DDoS
attacks within are the network layer, transport layer and the application
layer. We can also describe DDoS attacking techniques in matter of size and
sophistication, e.g. there are the overwhelming TCP SYN floods that can
send massive amounts of traffic, and there are the low-rate based attacks
that aims at sending smaller amounts of traffic but more efficient requests
that holds up more resources than more basic requests. As cloud became
popular over the last decade, the attack landscape of DDoS attacks has
changed, introducing novel techniques which we will come back to later
in this chapter.

2.1.1 Network layer attacks

The network layer is the third layer of the OSI-model and the most
important protocol here is the Internet Protocol(IP). Other protocols in
Layer 3 are IPsec, ICMP, IGMP and ARP. DDoS attacks in this layer

5

OSI Model TCP/IP Model

Application Layer

Presentation Layer Application layer

Session Layer

Transport Layer Transport Layer

Network Layer Internet Layer

Datalink layer

Link Layer
Physical layer

Figure 2.1: The OSI-model and TCP/IP-model combined [2].

typically targets network equipment and infrastructure. Layer 3(L3) DDoS
attacks differs from other layer attacks in the way it does not target layer 4
and layer 7 processes, and they doesn’t have to use TCP connections with
the target first. Layer 3 attacks does not target specific ports [14].

Known L3 attacks are:

¢ Ping flood: the attacker sends vast amounts of ICMP ping requests.

¢ Smurf attack: another ICMP based attack where the attacker sends
spoofed ICMP packets to network devices, typically a router, which
broadcasts the ICMP echo request to every device inside that
network. The devices behind the router will respond with an ICMP
reply packet, resulting in an efficient increase in number of packets
that will be sent to the spoofed IP address. This attack use a technique
called amplification, meaning that one request results in a much
higher number of replies, thus the request is being amplified. This
attack has been restricted in most network equipment today [17][24].

* "Ping of Death": the attacker sends a ping request to the target that
is larger than what is allowed. The intermediary network equipment
will fragmentize the packets in order to send it forward, but when the
target system receives the packet for reassembling, it will crash. This
flaw is not vulnerable in modern devices [14].

¢ DNS amplification attack: Amplification attacks in general are based
on exploiting common stateless networking protocols like DNS (UDP
based) and NTP by sending queries with spoofed IP addresses to
the respective servers, which will then send responses that are many
times bigger to the victim’s clients or servers. In a DNS amplification
attack, also called DNS reflection attack, the attacker exploits open
DNS resolvers by querying them with small packets that becomes
many times bigger. The source IP address is spoofed with the target’s
address. A simple demonstration shows that querying for a domain
with the ANY record, a DNS resolver will respond with a size that
can be 50 times bigger than the initiating request [40].

* NTP reflection attack: works in the same way as a DNS reflection
attack where the attacker sends small queries that results in amplified
responses, targeted at a victim. An attacker can query a NTP server
that has the ‘'monlist’ command enabled, with a spoofed address, and
the NTP server will respond with a size that can be 206 times larger
than the request [16].

2.1.2 Transport layer attacks

e TCP SYN flood: is by far the most popular DDoS technique observed
on the internet today with 94.6% of all DDoS attack types as of
Kaspersky’s DDoS reports [28]. This technique exploits the TCP
three-way handshake by leaving half-open TCP connections with the
target system. The TCP three-way handshake is a mechanism for
ensuring stateful communication between two devices. In a regular
handshake, the initiator sends a SYN packet to start communicating
with another client or server. The receiver will answer with a
SYN+ACK packet and then wait for an ACK packet back to end the
handshake and establish a proper connection between them. The
initiator responds to the SYN+ACK packet with an ACK packet.
To exploit the three-way handshake, the attacker can choose not to
answer the SYN+ACK packet, thus leaving the connection half-open.
This will hold up resources at the victim’s system and eventually
cause a buffer overflow if it can’t process the traffic. There are
different apporaches to this technique, but the main idea is for the
attacker to not send the last ACK packet that ends the handshake
[18].

e UDP flood: is about sending a huge amount of UDP packets
preferably with spoofed source IP addresses. When the target system
receives the UDP packets, it has to check if there is any service
on the specific port that was requested and reply with ICMP "host
unreachable"” message if there isn’t. As the target system has to check
and respond to each UDP packet, this will quickly hold up resources
and eventually a denial-of-service [19].

7

2.1.3 Application layer attacks

Application layer attacks, or layer 7 (L7) DDoS attacks, targets the top
layer of the OSI model, popoular is the HTTP protocol. L7 attacks tend
to consume more resources than its relatives in L3 DDoS attacks, as they
consume both network resources and server resources. Thus, it does
not require as much bandwidth to conduct a L7 DDoS attack than in
lower layers. Most websites are running on webservers which do a lot
of processing even for a regular benign request, this being API calls,
authentication or database calls [12].

e HTTP flood: HTTP is the basis of requests made towards browser-
based web requests, mostly HTTP GET and HTTP POST requests.
Thus, there are two types of HTTP DDoS attacks. HTTP GET floods
consists of requests that request web content such as images and files
that the targeted server will have to allocate resources in order to
reply. HTTP POST is often used with forms that users have to fill out.
Attackers can exploit this by sending HTTP POST that the server have
to push to a database of some sort. To defend against HTTP POST
requests, many webpages can be seen with a CAPTCHA challenge
that the user have to respond to. Eventually, if the amount of requests
is high enough, this will lead to a denial-of-service [15].

2.1.4 Fraudulent resource consumption attacks

Attacks where the goal is to consume resources of a cloud environment,
causing financial losses to the victim [6]. A fraudulent resource consump-
tion (FRC) attack differs from all of the traditional denial-of-service attacks
described above, in the way that the goal has shifted from causing denial-
of-service by overwhelming the target system with network traffic, to in-
stead targeting the finances of the victim. FRC attacks are specialized to
target customers of cloud service providers (CSP) and exploit the pricing
models that the CSPs utilize. By sending low amounts of network traffic
over a longer period of time, the attacker can go undetected by traditional
DDoS detection mechanisms because the number of requests isn’t high
enough. If the attack can go on for a while, the victim will receive a sig-
nificant bill from its CSP [6].

2.1.5 Low and slow attacks

Low and slow DDoS attacks are a type of attack that requires little
bandwidth and attacks at a low rate to avoid detection by traditional
DDoS mitigation mechanisms. Instead of relying on a quick takedown,
the attacker unleash a slow trafficstream that is high enough to cause

enough interference on a server to deny or slow down service, or inflict
economical losses to a company which gets DDoS involved with EDoS.
Low and slow attacks are hard to detect because they are very similar to
normal traffic. Slowloris and R.U.D.Y are tools that can be used to conduct
low and slow attacks. Slowroris for instance, is a tool that doesn’t require a
lot of bandwidth. It's HTTP based and aims at reserving all available HTTP
connections/threads at the targeted server until legitimate users aren’t able
to. RU.D.Y (R U Dead Yet?) exploits web forms by sending HTTP POST
packets at a very slow pace, holding up resources [21].

2.2 DDoS trends

2.2.1 Ransom DDoS-attacks (rDDoS)

An increasing number of DDoS attacks have been known to be related to
ransom DDoS-attacks, which will be talked more about in the Kaspersky
reports. Figure 2.2 is an excerpt from a ransom letter that Telenor in
Norway received as a DDoS treath, allegedly from cyber criminal imposters
hiding behind the APT group name «Lazarus Bear Armada»."[38].

we are the Lazarus and we have chosen Telenor as target for our next DDoS attack.

Please perform a google search for "Lazarus Group" to have a look at some of our
previous work.

Also, perform a search for "NZX" or "New Zealand Stock Exchange" in the news. You
don't want to be like them, do you?

Your whole network will be subject to a DDoS attack starting in in 7 days at Monday
next week. (This is not a hoax, and to prove it right now we will start a small
attack on your DNS servers that will last for about 6© minutes. It will not be
heavy attack, and will not cause you any damage, so don't worry at this moment.)
There's no counter measure to this, because we will be attacking your IPs directly
and our attacks are extremely powerful (peak over 2 Tbps)

Your network is large so we might not be able to completely shut it down, but we

will attack crucial parts and many customers will suffer. wWe have done our
research.

we will refrain from attacking your network a small fee. The current fee is 20
Bitcoin (BTC). It's a small price for what will happen when your network goes down.
Is it worth it? You decide!

we are giving you time to buy Bitcoin if you don't have enough already and enough
time for this message to hopefully reach someone from your management.

If you don't pay attack will start, fee to stop will increase to 30 BTC and will
increase by 10 Bitcoin for each day after deadline that passed without payment.

Please send Bitcoin to the following Bitcoin address:
16rZwzxkae8FYjjalu73lgyaDxx2dwAaei

Once you have paid we will automatically get informed that it was your payment.

Please note that you have to make payment before the deadline or the attack WILL
start!

If you decide not to pay, we will start the attack on the indicated date and uphold
it until you do. wWe will completely destroy your reputation and make sure your
network will remain offline until you pay.

Po not reply to this email, don't try to reason or negotiate, we will not read any
replies.

Once you have paid we won't start the attack and you will never hear from us again.

Please note we will respect your privacy and reputation, so no one will find out
that you have complied.

Figure 2.2: Ransom letter related to a DDoS attack against Telenor in
October 2020 [3].

2.2.2 Kaspersky reports

These reports are produced by Kaspersky Lab, a security company that
delivers security solutions within many fields, including DDoS protection.
More than 400 million users are protected by some sort of Kaspersky
solution [25]. They collect statistics from the DDoS Protection system that
monitors botnets, meaning that the reports are limited to numbers from
these botnets. DDoS attacks gets measured by number of attacks, duration,
attack vector, geographical origin and target, target sector amongst other.

TL;DR

This is a summary of all reports that are provided after the summary.

By looking at Kaspersky Lab’s reports over the last 5 years we can safely
conclude that the DDoS market is highly dynamic in the number of attacks
and sort of stable in other indicators like distribution of countries. The
overall number of DDoS attacks are increasing from year to year except
from some abnormalities (e.g. 2018), and the most common attack type is
by far SYN flooding with a share of over 50% each year.

The use of IoT botnets boomed in 2015/2016 with the emergence of the
Mirai botnet that was observed in Q3 2016 which eventually led to huge
attacks on DYN’s DNS servers in the U.S.

The last couple of years have seen Docker services becoming more
popular and DDoS criminals have found their ways to utilize them as
well. Kaspersky has observed malware that infects Docker containers with
botnet malware and cryptominers.

What motivates DDoS activity is a handful and the target sectors
are many. Politics, money, "hacktivism", protests, gaming, educational
institutions among others. Ransom DDoS was a popular threat in 2020
where cybercriminals sent out ransom letters by email, demanding bitcoins
in exchange of them not attacking the victim. These mails were followed
by a demonstration attack to prove the threats were real. The attackers
allegedly faked their identity under famous APT groups like Lazarus and
Fancy Bear.

China and the United States are topping the charts every year on origin
of attack and attack target. The lower places on the list are changing from
quarter to quarter but common countries are Great Britain, Hong Kong,
South Africa, South Korea and India.

10

DDoS attacks in Q4, 2020 [33]

News overview Cybercriminals are always on the lookout for new
methods to conduct attacks, and in Q4 of 2020 attackers found an exploit
in Citrix products that utilized the DTSL, a protocol for secure connections
over UDP, which could be used for amplification attacks, amplifying up to
36 times the request size.

Bitcoin.org was hit by a DDoS attack which is normal when the bitcoin
value is increasing.

Q4 retained within the trends of 2020 where ransom DDoS hit Telenor,
a telecommunications company in Norway. The attackers pretended to be
a famous APT (advanced persistent threat) group, demanding ransom to
prevent an upcoming attack.

Further, schools in the US and gaming platforms where popular targets
in Q4.

The Internet Engineering Task Force (IETF) published a proposal for
NTS in RFC8915, a secure protocol for NTP, just like HTTPS for HTTP. NTP
is a popular attack vector for amplification attacks.

Bitcoin and DDoS symbiosis Bitcoin and DDoS seems to be living in
relation to each other as when one is low the other one is high. The bitcoin
value rose in the last quarter of 2020 which resulted in a decrease in DDoS
attacks. The reason for this is that cybercriminals that usually utilize their
computing power to conduct DDoS attacks, switch over to mining bitcoins
instead.

No decrease in smart attacks However, smart attacks did not decrease.
Smart attacks are mostly conducted by sophisticated criminals that are
more focused on other results that financial winnings, so these attacks
won’t be infcluenced by the bitcoin value as much as other attacks
conducted by individual hacksters.

The number of DDoS attacks slightly less than doubled in 2020 from
2019 while the number of smart attacks was more or less unchanged.

Average attack duration declined by a third while the maximum
durations increased. Short attacks are getting shorter and long attacks
longer.

The top attack vectors for Q4 2020 had UDP flooding (15%) at second
place and GRE flooding, not previously mentioned in Kaspersky’s reports,
on fourth.

The number of DDoS attacks per day increased throughout Q4 with
December 31. being the most hectic day with 1349 attacks. The increase in

11

PRICE 24 HOUR % CHANGE MARKET CAP VOLUME (24H)

$60,632.96 --3.186% $113T $68.49B UsSD -

Linear ® AV]

04/16/2021 1y

$40000

$30000

$10000

Jul Oct Jan Apr

Figure 2.3: Bitcoin value as of 16.04.2021 [4]

December is usually due to the holiday shopping bonanza.

Distribution of DDoS attacks types: SYN (78%), UDP (15%), TCP
attacks (5%), GRE (0,69%) and HTTP (0,39%).

Almost all botnets were comprised of Linux machines (99,8%).

DDoS attacks in Q3, 2020 [28]
News overview More malware targeting Docker containers, infecting them
with cryptominers and botnet malware.

Extortion attacks: attackers that seems to be hiding behind infamous
APT groups sends out ransom emails, demanding bitcoin ransom and
threatening to launch a DDoS attack.

New Zealand Stock Exchange hit by DDoS and taken offline for days.
Also attacks against famous financial companies, media firms and schools.

Decline in DDoS attacks, may be due to companies having adapted
to the coronavirus pandemic. The cryptocurrency market grew in Q3 and
may also be a cause for the decline.

Distribution of attack vectors: SYN attacks is by far the most popular

12

attack method with 94,6% usage. Following are ICMP (3,4%), HTTP
flooding (0,1%).

Linux machines comprise 94,6% of all botnets.
Number of attacks per day peaked at 323 attacks on July 2.

An increase since last year, but a decrease since last quarter.

DDoS attacks in Q2, 2020 [27]

News overview Two new amplification methods discovered by Israel and
China, utilizing DNS and HTTP.

Docker containers vulnerable to botnet malware and cryptom-
iners: (https://unit42.paloaltonetworks.com/lucifer-new-cryptojacking-
and-ddos-hybrid-malware/).

DDosS attacks finding its way to the news were targeting human rights
organizations in the U.S, Russian Central Election Commission and Media
firms.

Quarter statistics Top three most attacked countries: China 65,12%, U.S
20,28% and Hong Kong 6,08%.

The number of attacks tripled from last year’s Q2. This is abnormal as
Q2 usually sees a drop in numbers from Q1.

Linux botnets holds the majority at 94,78% to Windows at 5,22%.

Distribution of attack vectors: SYN flooding 94,7%, ICMP attacks 4,9%
and other methods were below 1%.

DDoS attacks in Q1, 2020 [26]

News overview COVID-19 struck the entire world in march and has
affected the internet since. People work, shop and entertain themselves
online like never before which is reflected in the DDoS environment.
Most DDoS targets in Q1 were websites of medical organizations, delivery
services, and gaming and educational platforms.

Attacks that made the headlines in Q1 were attacks against the
US Department of Health and Human Services, trying to disrupt the
information flow about e.g. quarantine. Other victims were a hospital-
group in Paris, two food delivery services in Germany and Netherlands,
an educational web platform in Germany on the first day of remote school,
gaming servers owned by Battlenet and Eve Online. There were also

13

politically motivated attacks the most noteworthy against Greece.
Ransom DDoS attacks.

The total number of DDoS attacks nearly doubled from Q1 2019 (80%
up).

Distribution of attack vector: SYN flooding 92,57%, ICMP attacks
3,62%, UDP 1,84%, TCP 1,68% and HTTP 0,29%.

DDoS attacks in Q4, 2019 [32]

News overview Ransom DDoS attacks.

Distribution of attack vectors: SYN flooding 84,60%, TCP 5,90%, UDP
5,80%, HTTP 2,20% and ICMP 1,60%.

Quarter and year statistics Total amount of attacks doubled over the
year from Q4 2018.

Compared to 2018, the DDoS activity increased in all indicators in 2019.
Total number of attacks increased by 33%, as did smart attacks by 43%.
Average duration increased with 35% and average duration with smart
attacks increased with 44%.

Predictions for 2020 Kaspersky’s experts predicts that the DDoS
market stabilizes in 2020 as there haven’t been any exposure of serious
vulnerabilities or growth in the cryptocurrency market.

DDoS attacks in Q4, 2018 [31]

News overview

Distribution of attack vectors: SYN flooding 58,2%, UDP 31,1%, TCP
flooding 8,40%, HTTP 2,20% and ICMP 0,10%.

Quarter and year statistics There was a decrease in overall activity in
2018 compared to 2017, by 13%.

DDoS attacks in Q4, 2017 [30]

Distribution of attack vectors: SYN flooding 55,63%, UDP 15,24%, TCP
13,06%, HTTP 12,70% and ICMP 3,37%.

14

DDoS attacks in Q4, 2016 [29]

News overview "The year of DDoS" as more cybercriminals are utilizing
botnets with the Mirai botnet first observed in Q3 2016 causing a lot of
disruptions, ending Q4 with a bang with a series of attacks against DYN’s
DNS servers in the U.S., cauing 85 web sites to go down, among them
Netflix, Twitter and PayPal.

Amplification attacks are decreasing and seems to be going out of date,
as there have been a decline over the last half of 2016.

IoT botnets on the rise. Kaspersky Lab has observed a rise in IoT
botnets over 2016 after the Mirai botnet demonstrated how powerful it can
be.

Distribution of attack vectors: SYN flooding 75,3%, TCP 10,7%, HTTP
10,3%, ICMP 2,2% and UDP 1,4%.

2.3 Famous DDoS attacks

This is a list of the most famous DDoS attacks that have occurred. The
attacks are famous because of their size, motivation behind the attack,
and/or the impact they had on the society.

Panix, 1996

The DDoS attack against Panix, an ISP in New York, was the first known
DDoS attack. The ISP was offline for days, and the attack utilized a SYN
flood.

Mafiaboy, 2000

A 15-year high school hacker under the nickname "Mafiaboy" amassed the
computers of several universities and schools into a DDoS attack that took
down big sites CNN, Yahoo!, Ebay and Dell among others. The attack also
created chaos on the stock market. Later, several cybercrime laws were
created as a direct consequence to this attack [13].

Estonia attack, 2007

The Estonian government’s web services was hit in 2007 in relevance with
a dispute with Russia about a statue called "The Bronze Soldier of Tallin"

15

that commemorates a Soviet World War 2 soldier. Estonia was early on with
online governmental information and elections making them susceptible to
DDosS attacks. After the attack, several international laws on cyber warfare
was created [13].

The six bank attack, 2012

An attack that utilized the Brobot botnet targeting U.S banks Bank of
America, JPMorgan Chase, U.S. Bank, Citigroup, Wells Fargo, and PNC
Bank. The attack was a bit unique at the time because it used several attack
methods rather than backing down after one failed method. This costed
the banks money and revenue. The attack was allegedly conducted by a
group within Palestinian Hamas [37].

Spamhaus, 2013

An attack against Spamhaus that peaked at a size of 300 Gbps, conducted
by a teenage hacker-for-hire. The web site responded to the attack by
signing up to Cloudflare DDoS protection which mitigated the attack.
The attacker had to re-target the attack which in turn disrupted internet
exchange of London. Spamhaus is an organization that combats spam
activity [13].

Occupy Central, Hong Kong DDoS Attack in 2014

Largest attack at the time at a peak of 500 Gbps hitting Occupy Central’s
web sites, a pro-democracy ogranization in Hong Kong. Two other
sites, Popvote and Apply Daily, that were supporting Occupy Central’s
cause were also hit by the attacks. Presumably conducted by Chinese
government or someone else that doesn’t like the democracy concept in
Hong Kong [37][39].

The CloudFlare DDoS Attack in 2014

A single customer of CloudFlare was hit by a DDoS attack in 2014 that
created implications in CloudFlare’s infrastructure as well. The attack
reached a size of 400 Gbps, a record at the time. The attack was a NTP
reflection attack[37].

16

Github, 2015

Another attack against Github, and the largest recorded at the time. It’s said
that the attack originated in China as the attack targeted two specific URLs
that led to Github projects against Chinese state censorship. The attack
was a Javascript injection attack where the infected browsers sent HTTP
requests [13].

Dyn DNS, Mirai, 2016

In 2016, an attack against Dyn’s DNS servers occurred, disrupting the
services of about 80 major web sites in the U.S such as PayPal, Netflix,
AirBnB. The attacker utilized the Mirai botnet which consists of Internet-
of-Things devices, and demonstrated the powers of such a botnet, reaching
a size of up to 1,5 Tbps. The Mirai botnet had unleashed attacks earlier the
same year, and the source code for the Mirai malware had been released to
the public. The motivation behind the attack is unknown [13][37].

Google, 2017

The biggest attack known to us today is a DDoS attack against Google
services in 2017. The attack lasted for about six months, culminating at
a size of 2,54 Tbps. The attack was allegedly conducted by Chinese actors,
according to Google. The attack was an UDP amplification attack where
the attackers used spoofed packets targeted at exposed CLDAP, DNS and
SMTP servers [11][13][23].

Github, Memcached, 2018

Github contracted a big DDoS attack in 2018 where the attackers exploited
the memcached service. The attackers did not use a botnet, instead the
memcached service made it possible to amplify the requests sent to the
servers up to 50000 times. The attack reached 1,3 Tbps, but was mitigated
quickly, after 20 minutes. Memcached is a database service used to speed
up web sites and networks [13][37].

AWS, 2020

Amazon Web Services mitigated an attack peaking at a size of 2,3 Tbps
which utilized the CLDAP protocol [13][37].

17

2.4 Timeline

e 1989

— Tim Berners Lee at CERN, invented the World Wide Web (W3C,
n.d.).

* 1993
— Mosaic, the first web browser to display text and images.
* 1995

— First phishing attack, targeting America Online (Nollinger,
1995).

— CERT/CC released an advisory about the growing phenomenon
TCP SYN flooding and IP spoofing [10].

* 1996

— DDoS attack against Panix.

— Internet Explorer 3 was launched, becoming the most popular
web browser.

— Microsoft released the email service Hotmail.
e 1997

— The first blacklist, created by Paul Vixie as a response to spam
(Caldwell, 2017).

* 1998
— Google was founded.
e 2000

— Mafiaboy DDoS attack.
- Nokia 3310.

— mnemonic was founded.
e 2001

— The dotcom bubble bursts (Wollscheid, 2012).
— 3G mobile broadband.

e 2003
- APWG, The Anti-Phishing Working Group was founded.

— Number of spam emails exceed the number of legitimate emails
for the first time (Wallace B., 2019).

e 2004

18

— Mozilla Firefox.
— Facebook was founded.

— FireEye was founded.
2005

- Palo Alto was founded.
2006

— Rustock Botnet, infected systems acted as proxy servers to send
further spam. Was responsible for almost all spam emails
worldwide. Taken down in 2011 (Leyden, 2011).

— Gmail and Google Apps.

— Twitter was founded.

2007

— Estonia DDoS attack.
— First email phishing filter (Fette, Sadeh, & Tomasic, 2006).

— Safari.
2008

- Google Chrome
2009

- Stuxnet attack on Iranian nuclear factories (Zetter, 2014).
2010

— Operation Aurora, a series of cyberattacks originating in China,
targeting firms Adobe and Akamai among others.

— 4G mobile broadband.
2011

— RSA breached by phishing attacks, exposing master keys for all
RSA SecurelD security tokens (Markoff, 2011).

— Office 365 cloud services.
2012
— The six banks DDoS attacks.

— Launch year of IP version 6.
2013

— DDoS attack against Spamhaus, 300 Gbps.
— Target’s data breach. 110 million customers affected (Bing, 2013).

19

— CryptoLocker ransomware attacks.
e 2014

— Cloudflare DDoS attack, 400 Gbps.
— Occupy Central, Hong Kong DDoS Attack, 500 Gbps.

— Emotet, first discovered. A trojan that primarily spreads through
email and Is still active today (Malwarebytes, n.d.).

e 2015
— Github DDoS attack,

— Ukrainian power grid attack conducted by Russian cyberintelli-
gence. The initial attack vector was email phishing (BBC, 2017).

e 2016

— Dyn DNS, Mirai DDoS attack, 1,5 Tbps.
* 2017

— Google DDoS attack, 2,54 Tbps.

— WannaCry ransomware attacks.
e 2018

— Github Memcached DDoS attack, 1,3 Tbps.
e 2019

— Close to 4.7 billion phishing emails are sent every day (Wallace,
2019).

— Threats to cloud-security in Office 365 have increased by 63%
since 2017 (Wallace, 2019).

— 90% of businesses are using cloud hosted email or are planning
to (Wallace, 2019).

— 5G mobile broadband.
e 2020

— Amazon Web Services DDoS attack, 2,3 Tbps.

2.5 DDoS attack on cloud auto-scaling mechanisms

Bremler-Barr et al.[9] demonstrated how clever attackers could bypass
detection mechanisms with low-rate DDoS attacks and exploit auto-scaling
mechanisms in cloud environments. The nature of a low-rate DDoS attack
is that it sends out a smaller amount of network traffic than the more

20

classical flooding DDoS attacks where the victim is overwhelmed with
traffic (add reference).

Auto-scaling mechanisms is an important weapon to counter DDoS
attacks in cloud environments. With an unlimited budget, a user of a cloud
provider basically has unlimited resources. Because of this, many believe
that DDoS rather turns over to Economic Denial of Sustainability (EDoS)
attacks since it is the cost of scaling up more machines that the victim
suffers from.

The authors present and analyze a new kind of DDoS attack, the
YoYo-attack, which penalises both performance and economy. This attack
exploits the use of auto-scaling in the cloud and is doing so by sending
bursts of overload traffic to trigger the scale-up and scale-down phases.

Cloud auto-scaling;:

Auto-scaling is a cloud computing feature that automatically adds or
removes computing resources depending on the actual usage, usually
measured in CPU utilization and other criteria (reference). Every cloud
solution comes with its own auto-scaling service which the user can
customize to adapt to their own needs by tweaking thresholds.

Users need to define when the auto-scaling should happen by defining

rules for the scale-up and scale-down phases, as well as the maximum and
minimum number of machines allowed. The user also need to choose
auto-scaling policy, discrete or adaptive. The discrete policy increases or
decreases the number of machines iteratively according to a predefined
value, e.g. 10. If the load is too high, the auto-scaling service will scale-
up and add 10 machines to the environment. Then the service have to
determine if the issue have been resolved or not. The adaptive policy
increases or decreases differentially, and tries to adapt to the load. This is
achieved by defining different increase and decrease in machines according
to different thresholds, e.g. increase with 10 machines at a total load of 50%,
and increase with 30 machines at a total load of 90%.
After a scale-up decision has been made it takes time before the machines
are ready to be utilized. This is called the Warming time and differs
depending on the infrastructure provider, operating system, service
initialization time and other factors [36]. Scaling down takes time as well.

The YoYo-attack:

The YoYo-attack switches between an on-attack phase and an off-attack
phase In the on-attack phase the attacker is sending bursts of overload
traffic, causing the victim’s auto-scaling feature to scale up its environment.
The attacker is able to determine when the victim is scaling up and down,
so when a scale-up has been triggered in victim’s cloud, the attack will

21

switch to the off-attack phase, waiting for the victim to scale down again,
and so it continues. The attacker is in this case able to exploit the benefits
from auto-scaling.

There have been several attempts at combating EDoS attacks but most,
or all of them, are ignoring the auto-scaling effects, and the impact of an
attack such as the YoYo-attack.

The YoYo-attack can also be described as a kind of Reduction of Quality
(RoQ) attack, and other mechanisms, such as load balancing are vulnerable
to such attacks. Several papers discuss how to have an efficient auto-scaling
policy but they do not keep an eye on the security vulnerabilities.

Analysis of the YoYo-attack

Econmic and performance damages are larges when the victim is using
an adaptive auto-scaling policy. The YoYo-attack potentially does more
damage per unit cost than the DDoS attack. The DDoS attack causes the
auto-scaling to deploy more machines, but the load on each machine does
not increase noteworthy, while the YoYo-attack increases the load by 100%.

Detecting scale policy

The attacker can send probe packets and check their response time in
order to detect when the scale-up process has ended. Higher response time
on each request tells the attacker that there aren’t enough machines in the
victim’s environment yet, thus the scale-up process hasn’t ended. When the
response time dropped beneath 1000ms the attacker in this case would stop
the attack in order for the victim’s auto-scaler to scale down. A simmilar
method is used to detect when scale-down has ended.

Defense strategies against the YoYo-attack

- Scale up early - Scale down slowly
- Restrictions - Limiting the resources This will be to avoid sudden
expenses, butt may cause Denial of Service

They conclude that system administrators have to compromise between
DDoS and EDoS, high service cost or low performance. [9]

22

2.6 Exploring New Opportunities to Defeat Low-Rate
DDoS Attack in Container-Based Cloud Environ-
ment

In this reasearch paper, Li et al.[35] investigates mitigation methods in
container-based cloud enviornments, specifically methods against low-rate
DDoS attacks. As container-based clouds are growing in numbers, it is
natural to find out if such environments are better at resource usage and if
there are new methods to mitigate attacks.

Containers are more lightweight than virtual machines, therefore it will
be faster to scale up and down a cloud service. Together witt a microservice
architecture, there are other scaling possibilities than with a monolithic VM
architecture.

Resources competition. Containers can scale quicker and more effi-
ciently than VMs. Intrusion Detection Systems can be used to detect flood
based DDoS, but low-rate DDoS attacks can evade such systems. Each re-
quest in a low-rate attack can consume more resources than a traditional
attack.

Many mitigation techniques have been developed due to the shortcom-
ings of detection systems. Resource-scaling, to automatically extend addi-
tional resources to the victim instance. The isolation mechanism, isolates
the victim service. The limitation mechanism, limits the resources of the
victim service to ensure usability of other services. With these techniques,
one can successfully mitigate a low-rate DDoS attack, but the research these
techniques have come from are all based on virtual machine based cloud
environments, not container-based environments, and that’s why Li et al.
wants to do this research.

Contributions:
"We explore the possibility that utilizing the new features in container-
based cloud environment defeats the low-rate DDoS attack. And we point
out the strengths and weaknesses to mitigate low-rate DDoS attack in the
container-based cloud environment.

We establish a mathematical model based on queueing theory to form-
alize the low-rate DDoS attack scenario in container-based cloud environ-
ment and analyze the capacity of container-based cloud environment in
defeating against low-rate DDoS attack.

Guided by this model, we propose a dynamic mitigation mechanism
to optimize and coordinate the resource allocation and the number of
containers for mitigating the low-rate DDoS attack."

23

Related work:

DDoS Attacks Mitigation in Cloud Environment

The main goal of a DDoS attack is to exhaust the victim’s resources to en-
sure Denial of Service. Several techniques have been developed to fight at-
tacks in cloud environments. Using an abundance of resources is one tech-
nique. Using idle resources and a queueing theory based model is another.
Since resources aren’t free in cloud environments, DDoS attacks usually
turn over to EDoS attacks. Sqalli et al. proposed a filtering approach with a
Turing test to counter EDoS, and amazon has its own service, "Cloudwatch"
to reduce the impact of EDoS. Victim migration and resource management
are other techniques. Few studies have been conducted that focus on DDoS
mitigation in container-based cloud environments, they have only found
one related in Ye et al.

low-Rate DDoS Mitigation in Cloud Environment:

low-rate DDoS attacks differ from traditional flood-based attacks and the
detection mechanisms fail so reasearchers have developed other detection
mechanisms. These are divided into two categories, which are based on
network traffic or application vulnerabilities. Techniques in network based:
generalized entropy and information distance, mathematical model based
on behaviors of victim TCPs congestion, and mathematical model com-
bined MF-DFA algorithm with Holder exponent. In application vulnerab-
ility based, the vulnerabilities or logical errors must be detected and fixed
before an attack occur. (I think this is more about testing). Low-rate DDoS
mitigation techniques are still necessary.

Security of Container-Based Cloud Environment:

Today(2019), security issues in containers are focused on the security drift
problem and the isolation problem. Done on security drift: "analyses on the
security issues brought by the high degree of agility, reusability, and port-
ability with container”, and about isolation: "systematically identified the
information leakage problem and investigated potential container-based
power attack threats built upon these leakage channels" and another one
on isolation: "used the SGX to enhance the isolation between containers
and protect containers from outside attacks".

DDoS mitigation mechanism:
A dynamic DDoS mitigation system that maintains microservice availabil-
ity during a low-rate attack and maximizes Quality of Service (QoS) with
limitied resoures. They experiment with an e-commerce website that com-
prise of microservices with containers. Users are able to browse the web-
site’s products without authenticating, and users can also log in. During
a DDoS attack, the mitigation mechanism will use a whitelisting of users,
where the authenticated users’ requests are prioritized over the unknown
request, meaning they will be assured enough resources. The unknown

24

requests will consist of both malicious and benign requests, so there will
be some legitimate users that may not be able to access the website’s con-
tent. The amount of resources/containers needed is calculated in accord-
ance to the number of whitelisted users. By doing this whitelisting, the
microservice is logically divided /isolated. The mitigation mechanism rely
on the same principles of an auto-scaling system, that scales up or down
due to a threshold of resource consumption; in this case at 80

Poission distribution and M/M/c queuing model to calculate service
capacity.

2.7 Towards Yo-Yo attack mitigation in cloud auto-
scaling mechanism

[43] In this article, Xu et al.[43], builds on the research conducted by
Bremler-Barr et al.[9] which is also described in this chapter. This article
aims at creating a detection and mitigation mechanism agains the clever
Yo-Yo attack that Bremler-Barr et al. demonstrated. The attack exploits
auto-scaling mechanisms in cloud environments, which is thought of as a
functionality that is inevitable to counter a DDoS attack in the first place.
The authors create a trust based system to identify benign and malicious
users, as well as manipulating request responses to deceive the attacker.

Intro Cloud has become highly attractive after its arrival and most
cloud providers offers auto-scaling as a service in order to dynamically
scale a customer’s services relative to the load. This is huge benefit to
customers as they wont run out of resources, which might have been an
issue before they converted to the cloud. As bought Bremler-Barr er al. and
Xu et al. concludes is that there haven’t been done much research on the
downsides of such an auto-scaling mechanism.

The Yo-Yo attack is unique in the way that it punish both performance
and the economics of the victim. The reason for this is that the auto-scaling
mechanism, which is there to ensure Quality of Service for the users, is
exploited by sending overload traffic in sequences that triggers both the
scale-up process and scale-down process.

Their approach is TASD (Trust-based Adversarial Scanner Delaying).
This system identifies benign users by adding a trust value to the user.
They also manipulate the response time of requests in order to deceive the
attacker, as the Yo-Yo attack relies on sending probe packets to find out
which scaling phase the victim system is at.

Approach/method The TASD consist of a Detection module and a
Defence module. The detection module keeps a list of users and a
score/trust value related to the user. The trust value is measured by

25

looking at when the user is requesting data, i.e. is the user requesting data
in the scale-up or scale-down phase. The load each user has according to
scaling phase is also evaluated.

Conclusions The TASD system is able to detect many malicious users
by 80%. It also decrease the malicious scale up and down by 41%.

Cons Their detection module wont be able to detect and mitigate a Yo-
Yo attack if the attack is distributed as there can be many unique users/IP-
addresses.

Their research is based on a VM environment which has a higher warm-
up time than containers.

They add a delay to suspicious requests, but if every malicious user is
new to the module, will it detect that?

2.8 Glossary

¢ Amplification attacks: attacks where a method of amplifying a packet
is used by exploiting vulnerabilities. For example, there are certain
vulnerabilities in the DNS protocol that allows attackers to get a much
bigger response in size (50 times) than the original request was.

* Botnet: a group of computer devices that have been infected with
malware and is under control by a malicious actor. The term "botnet"
is a combination of the words "robot" and "network". The botnet is
intended to be used as a tool in cyberattacks, e.g. to produce massive
amounts of network traffic or distribute malware. All devices that are
connected to the internet are possible botnet candidates [34].

¢ Container technology — An alternative virtualization technology to
Virtual Machines. Opposed to VMs, which are running a complete
OS, containers share kernel with the host system and support min-
imum runtime requirements of the application. Containers don’t
use hypervisors. Containers rely on namespaces and CGROUPS to
achieve isolation and resource control. Containers have better re-
source control than with VMs. Containers are much more lightweight
which gives faster startup time, superior I/O performance and lower
latency than VMs. Containers needs fewer system resources to run
which can make single server host more containers than VMs ob-
viously. Containers also provide a portable environment that don’t
rely on the different cloud environments. Hypervisors on the other
hand are more heavyweight, slow boot-time and has a higher run-
time overhead [44].

26

Chapter 3

Approach

For this project I will be using VirtualBox to set up the experimental
environment. This way, there wont be any charges for using cloud service
providers such as Amazon EC2, and I can scale up and down as much as
wanted. Testing is much more convenient in a simulated environment as it
is easy to repeat tests and get the same results.

The aim of the simulation is to set up a container-based environment
that is running a scalable web service, which will be needing a reverse
proxy. There should be an attacker node that can conduct the Yo-Yo attack.
The detection mechanism will be located at the load balancer or behind the
load balancer, but in front of the container service.

3.1 Tools

This section describes the tools used in the project.

¢ VirtualBox 6.1

¢ Ubuntu 16.04 Xenial, x86_64, 4.15.0-45-generic, CPU: Intel Core i7-
6700HQ @ 2.60 MHz, 1 core.

¢ Kali GNU/Linux Rolling, release 2021.1

e Docker 20.10.6, build 370c289

¢ Caddy web server - a lightweight web server with no dependencies.
* HAProxy reverse proxy load balancer

e httperf - a tool for benchmarking and stresstesting a webserver by
sending http requests at a desired rate. With httperf one can specify
the number of connections, requests per seconds and timeouts among

27

other options. This tool will be applicable for both the legitimate
users in order to simulate benign traffic, as well as for the attacker
in order to simulate attack traffic.

* autobench - a perl wrapper to httperf which is suitable for stresstest-
ing as well as conveniently creating data and graphs.

3.2 High Level Design

Figure 3.1 shows the high level design of the simulation environment. It
includes the legitimate users illustrated as "internet", an attacker, a reverse
proxy that can do load balancing, a detection mechanism and the container
service.

3.3 Test environment

The test environment is an experimental environment aimed at simulating
a web service that suffers a Denial of Service attack. The web service runs
on a cluster of Docker containers that runs Caddy. The web server will
reveive traffic from the nodes "client" and "attacker". The client will send
requests at a low rate that does not impact the load on the web server in
such a way that it is causing service downtime, laying the ground for what
we can call "normal traffic". The attacker node runs on Kali Linux and is
specced with tools. It will be attacking wiht a httperf in order to impact the
web server in such a way that it will trigger the auto-scaling mechanism to
trigger up and down, which is called an Yo-Yo attack.

Web-server

The web-server is both running a HAProxy load balancer and the web-
server. Both the proxy and the web-server is running Docker containers.
The web-server consists of several idle containers in order to simulate an
environment that is able to scale according to the incoming load. The
HAProxy is doing the load balancing on the web-servers that are active
and can also deliver a lot of statistics on the incoming traffic. This is also
the entrypoint for incoming traffic which makes it ideal for reading the load
and acting on it. The web-server will likely be the point for the detection
mechanism as well. Running Ubuntu 16.04 Xenial version 4.15.0-45-generic
with a x86_64 architecture and one Intel Core i7-6700HQ @ 2.60 MHz, 1
core.

28

Client

The client runs Ubuntu 16.04 Xenial version 4.15.0-45-generic with a x86_64
architecture and one Intel Core i7-6700HQ @ 2.60 MHz, 1 core. The client
simulates the normal and benign traffic load towards the web-server and
will be requesting data at a rate of 100 requests per second. The data will
be sent with the tool httperf.

Attacker node

The attacker node, named "Elmer Fudd" after the Looney Tunes character,
is working as the attacker node. Just as Elmer shoots bursts with his
shotgun, so does the Yo-Yo attack. The Yo-Yo attack sends bursts of
overload traffic in order to impact the web-service as well as triggering the
auto-scaling function. The attacker node runs Kali Linux which is a Debian
distro. It’s running version 5.10.13-1kalil with a x86_64 architecture and
a Intel Core i7-6700HQ @ 2.60 MHz, 1 core CPU. It will be using httperf
and/or slowhttptest to conduct the attack.

3.4 Data

What data do I want to find? The data that is important to find is
the detection rate; how many percentage of the attacks is the detection
mechanism able to detect?

What needs to be measured in order to detect attacks?

* Load - load is a trigger for the auto-scaling function to scale either
up or down. Load is measured by CPU usage and the auto-scaling
function typically scales up at 80% CPU usage.

* Auto-scaling triggers - whenever the auto-scaler function scales the
system up should be noted by the detection mechanism in order to
throw alerts. For example if there is a scale-up and scale-down within
a short interval it should be noted.

* Normal behaviour - what does the system look like under a non-
attack scenario. This is important in order to detect abnormalities
situations.

29

3.5 Auto-scaling

Auto-scaling script. To simulate an auto-scaling functionality, a custom
script has been created. The script reads statistics from the HAProxy
stats web page to read how many active connections per seconds that are
currently connected to the frontend. The script will start docker containers
accordingly when the number of active connections to the frontend reaches
certain active connections per seconds thresholds. The decisions are simple
if statements.

3.6 How to simulate it in a VirtualBox environment

Since this experiment is built in VirtualBox it means that the hardware
is solely based on one single computer and it gets tricky to overload the
victim server as this may cause performance issues on the host machine
that runs the VMs, as well as it is hard to add extra computing power
because there aren’t any.

3.7 How to detect

In order to detect the attack the detection system will be broken into two.
One component keeps track of the auto-scaling and counts how many times
it has been triggered recently. This scale_counter will trigger on predefined
threshold that will start alerting when the auto-scaler has been triggered
up and down to many times within a certain time period. The second
component keeps track of IP addresses that visits the web server. The
purpose of keeping track of them is to keep an extra eye on addresses that
are sending traffic in the scale-up phase and NOT in the scale-down phase.
The whole purpose of the Yo-Yo attack is to send data in bursts, and if the
attacker is supposed to stop sending traffic in the scale-down phase, then
there should be easy to figure out which address that belong to the attacker.

3.8 Load test

In order to get a feeling of how much load the webserver/HAProxy can
handle it is appropriate with a load test. In this experiment, autobench
is used [5]. The test shows that the web server is being saturated at
approximately 600-700 requests per second. The reason for the increase
in response time as shown in figure 3.2, is most likely due to sufficient
resources on either of the VMs’ capability to deal with the high load due

30

CPU utilization. Both the VMs are running the same hardware so the
bottleneck may be on either one of them.

There might also be an issue with the configuration of either HAProxy
or Caddy web server as other popular web servers such as apache and
nginx have a max connection limit in order to protect the server from
running out of resources. As of the test results it has been configured in the
HAProxy configuration file that it is allowed with up to 10000 concurrent
connections in order to remove this as a possibility to ruin the test data.

3.9 Limitations to this test

Running VMs on a single host means that all VMs run on the same
hardware. THis means that this experiment is limited in that it can’t
provide extra resources to the attacker or the victim, especially extra
resources for the victim in case of an attack. A single host can only have
a limited number of TCP sockets and file descriptors occupied at a time.

The web server in this experiment struggles to cope with requests at a
rate of 600 requests per second (600 r/s) as shown in 3.2.

The diagram is created by the tool autobench which includes a script for
converting csv or tsv files to postscript files which are graphical data that
can be visualized with the gv program in linux or adobe acrobat reader on
other platforms.

3.10 CPU utilization

It’s hard to determine the CPU utilization on this kind of experiment
environment, as all of the hosts eventually are running of the same
hardware, therefore it may be necessary to meassure how much CPU the
HAProxy container on the web server node is utilizing before a scaling
trigger should happen. After stress testing/load testing the web server, it
was found that the CPU utilization of the HAProxy container was at 15-16%
usage when the traffic input was at 600 request/second. At incoming 600
requests/second, the web server VM gets really sluggish and by running
the top command one can see that all the processes approximately make up
to 100% CPU utilization.

As seen in 3.3 the total CPU usage is actually more than 100%. By
summing the CPU utilization of the active processes listed by the top
command, the total CPU usage is 100,9%.

31

N

Attacker

Reverse
Proxy

!

Detection

Container Service

Figure 3.1: High level design of the simulation environment.

32

1ws

1000 T T — T T py T 3
000 |- FeE o “%. : S . _”:..‘..‘ }. : e ; ; -
o — — SN S . . I —]
TOO | “”.m.+_.“m “”.;.._.._ 'i.”' PR S “;_.m “m.“§”__._ “mf.. —— ?m —
600 |- SR .y.—-'”f”f+f"":~.H¢,r~.'“””1 ; : 5 2 -
500 _.m.“”.m.v_.“m.“.“;_ I A e~ m_:_”.m.”..Gm.“.“__.ﬂ.““_._.m_f“” e
400 [o €_ e @. e ..;. o ;_ N
300 | e e ..i. o R ._:_ s i. . it 8 R ?. ™
200 AR R Y e I A SRR

|
100 |- ; ? : ' =
0 & & i e 4 & + +
200 400 600 800 1000 1200 1400 1600 1800 2000
"req_rate_192.168.10.5" + "stddev_rep_rate_192.168.10.5" :
"con_rate_192.168.10.5" . "resp_time_192.168.10.5" .
"min_rep_rate_192.168.10.5" » "net_io_192.168.10.5" —a—
"avg_rep_rate_192.168.10.5" "errors_192.168.10.5" -+
"max_rep rate 192.168.10.5"
Figure 3.2: Load test of the experimental environment.
web-server (Snapshot 4) [Running] - Oracle VM Virtual Box = O X

File Machine View Input Devices Help
osboxes@osboxes: ~ 1 m) o4) 11:37PM
top - 23:37:05 up 13:18, 1 user, load average: 1.41, 0.44, 0.19
sks: 179 total, 3 running, 142 sleeping, 0 stopped, 0 zombie
%Cpu(s): 48.0 us, 32.5 sy, 0.0 ni, 0.0 id, 0.0 wa, ©.0 hi, 19.5 si, 0.0 st
KiB Mem : 1008828 total, 211752 free, 388140 used, 408936 buff/cache
KiB Swap: 8787964 total, 8198652 free, 589312 used. 421948 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %M
15952 root 20 243948 18640 2456 S 30. 1
16051 root 20 119552 25644 10740 27.
12257 root 20 139220 26932 2036 24,
15969 root 20 111712 6228 5608 5

1174 root 20 845628 47192 12600
2512 osboxes 20 1439940 103560 28588
7 root 20 (6] i} (i}
1582 root 20 454940 35584 4168
8 root 20 6] 3]
2017 osboxes 20 180382 ¢}
2879 osboxes 20 665988 15652
19428 root 20 (6] a
19436 osboxes 20 43332 3868

=

TIME+ COMMAND
.08 docker-proxy
.53 caddy
.27 haproxy
.02 containerd-shim
.16 dockerd
.68 compiz
.43 ksoftirqdje
.86 Xorg
4.58 rcu_sched
.80 VBoxClient
.11 gnome-terminal-
.03 kworkerfu2:1
.84 top

[-N-N-N-NoN-N- NN - NN
FHOULHVLAIVLLE N
WWWWWONW~NWN G
QOO WODARADNN
PO OO WG ~NU®

OoOD@ORNWLSL

Figure 3.3: Screen shot when running the top command on the web server
in case of the server being overloaded.

33

34

Chapter 4

Results

4.1 Assumptions

Attacker’s knowledge of threshold

In this experiment it is assumed that the attacker does know the scaling
point of the target web server because he has done his reconnaissance
beforehand. From the attacker’s perspective it would be ideal to then send
requests at a rate of 700-750 req /s because the attacker then know that some
of the requests will time out, thus the web server aren’t able to reply to all
incoming request within a certain time, here the timeout interval is set to 5
seconds. Figure 4.1 shows how the server responds to a Yo-Yo attack with
no scaling.

The CPU utilization of the HAProxy container runs at approximately
80% of total CPU power at the same time as the response time of incoming
requests are going over 100 ms. This is shown in figure4.2. Here, the CPU
usage is measured with the top command at the web server VM which is
serving the HAProxy container. There is some noise in the output here, but
as previously shown in 3.3 the highest CPU usage the HAProxy container
will get is approximately 25%. If we say that 25% is 100% then 20% CPU
usage for the HAProxy is equal to 80%. The web server VM is laggy and
sluggish when we're at this scenario.

Scaling point

The web server is assumed to scale the web service if a threshold of load
is met. The load threshold has to be met for a certain amount of time in
case of input spikes, meaning that random events like misconfigurations or
user behaviour could cause spikes that exceeds the threshold for a second

35

No autoscaling
800 T 1 T

0 IR N R :
500 f=—"~ f T -
00 | ; | :

] i e SRR

1Q0 [t ‘ , 8

0 i & \ T I
500 550 600 650 700 750 800
"req_rate_192.168.10.5" + "stddev_rep_rate_192.168.10.
"con_rate_192.168.10.5 x "resp_time_192.168.10.
"min_rep_rate_192.168.10.5" X "net_io_192.168.10.

®
A

W
"
"
" 5

g,

"avg_rep_rate_192.168.1 "errors_192.168.1
"max_rep rate 192.168.1

Figure 4.1: Request rate and reply rate under a no scale scenario.

or two, and wont cause enough performance degradation for the need to
scale up the web service as the load will decrease quickly.

By these two assumptions, the attacker has to start an attack and
increase the rate in order to detect when the web server starts to suffer
from the load. The attacker will detect this by response time from the web
server.

4.2 Attack with auto-scaling

Since this project isn’t able to summon more compute resources this is an
assumption of how the Yo-Yo attack would have made an impact on this
setup. Assuming that expanding the web server by one container that
could lift the bandwidth of the web server by the double up to 1400 req/s,
then the graph will look a little more linear. The reply rate will follow
the request rate, and the response time will stay below 100 ms. There will
probably be a minor spike in response time, but the instantiating of one
additional container is done so quickly that the attacker won’t notice it.
This is shown in figure 4.3.

The reason that the assumption is valid is that in the demonstration of
the Yo-Yo attack by Bremler-barr et al. they set the start for the off-attack
phase when the response time of the web site is at 1000 ms. The reason
they get such a high response time may be due to other many factors such

36

osboxes@osboxes: ~ 1 = 4)
top - 04:21:20 up 14:35, 1 user, load average: 1.66, 1.03, 1.89
Tasks: 185 total, 3 running, 147 sleeping, 0 stopped, 0 zombie
%Cpu(s): 50.8 us, 32.4 sy, 0.0 ni, 5.7 id, 0.0 wa, 0.0 hi, 11.0 si, 0.0 st
KiB Mem : 1008828 total, 114188 free, 625636 used, 265004 buff/cache

E KiB Swap: 8787964 total, 8163580 free, 624384 used. 1767088 avail Mem
S KCPU %MEM COMMAND
é

15952 root
16051 root
12257 root
19481 osboxes
2512 osboxes
1174 root
15969 root
19656 osboxes
1582 root
7 root
2017 osboxes
20662 osboxes

252400 15704 1236
119552 15128 4160
139220 19292 1396
3026492 226240 67492
1468052 98776 25652
845628 31680 2280
111712 620 (V]
2628296 76088 51244
461828 41224 9520
]
180392
43432

(5
]
B

docker-proxy
caddy
haproxy
firefox
compiz
dockerd
containerd-shim
Web Content
Xorg
ksoftirgd/e
VBoxClient
top

E N
BN
("1

o
I

[-NN-RolcfolcolcfclNolo)
DLnIBDLLLKNKLKWK

DO MNWWWMN
WWWWweN~NWwwwww
OO0 A~NDWWONEKERR
AoOHFUVKEFEXAEWLO

Figure 4.2: CPU utilization of HAProxy under an attack with no auto-
scaling in use. The top command shows approximately 20% which is
transitioned into 80% usage.

as travel time, but the main factor is that the experimental evironment in
their resarch used VMs which we have learned has a much higher boot time
than containers. Bremler-Barr et al.[9] mentions that the boot time for their
VMs are 1 minute plus 2 minutes for warming up the VM, and there you
have a 3 minute window for the attacker to meassure the response time.

In our case of a container-based web service the containers hardly use
any time at all to instantiate. The boot time can hardly be called a boot
time, because the containers have very few dependencies and do not have
to run their own OS and kernel, thus making the overhead of scaling
containers low, as explained in "An Introduction to Docker and Analysis
of its Performance" by Rad et al.[7].

4.3 Detecting the adversarial requests

The main goal of this article is to detect the malicious user attacking the
web server with a Yo-Yo Denial-of-Service attack. In order to do so it is
convenient to examine the logs that HAProxy produce. Since the HAProxy
is running in a container, the logs have to be accessed by forwarding logs
to Docker with stdout or by sending them to rsyslog. Haproxy.log offer
access log lines of each request which makes it possible to count how many
occurrences of an IP there is. If we compare the number of occurrences of
one IP address related to the scale up and scale down phases, it should be
possible to detect an attack.

For transparency, this is the pseudocode for the detection script shown
in4.4.

37

With autoscaling

900 : ;
800
700
600
500

BOQ b

600

500 550 650 700 750 800
"req_rate_192.168.10.5" —— "stddev_rep_rate_192.168.10.5"
"con_rate_192.168.10.5" —— "resp_time_192.168.10.5"

"min_rep_rate_192.168.10.5" "net_io_192.168.10.5"
"avg_rep_rate_192.168.10.5" "errors_192.168.10.5"
"max_rep_rate_192.168.10.5"

Figure 4.3: The assumed load of web service with auto-scaling. The

response time stay below 100 ms and is hardly noticeable.

38

#!1/binfbash

IP_array_up=()

IP array down=()
logfile=/var/haproxy/haproxy.log
scale up=false

scale down=false

if scale up == true
#HH If the web service scales up, check all IP addresses in the logfile
#HH add them to a list and count them.
for i in logfile
if IP_address ! exists in IP_array up
add IP_address to IP_array up
IP_address count++
elif
IP_address count++
fi
end
R
if scale_down == true
#HHE If the web service scales down, check all IP addresses in the logfile
#HH add them to a list and count them.
for i in logfile
if IP_addr ists in IP_array_down
add IP_add to IP_array_down
IP address count++
elif
IP_add s count++
fi
end
fi
#H#Ht Then, when all unique IP address

ss are counted, they two lists are compared
#H#H in order to observe which addresses that are almost only requesting data

s
#HH# in the scale-up phase but not i the scale down phase.
compare IP array up & IP_array_ down

if in IP_array up && IP_array_down
if req_rate in IP_array up -gt reg_rate in IP_array_down
tag malicious IP_address
else
tag benign IP_addr
fi
elif in IP _array up !in IP_array_down
tag malicious IP_address

fi

Figure 4.4: Pseudoscript for the detection mechanism.

39

40

Chapter 5

Discussion

5.1 Container vs. Virtual Machine

One thing to think about is whether or not containers are a better choice
than Virtual Machines in regard of auto-scaling. In practice, the boot-
time/warm-up time of a container is significantly shorter compared to
virtual machines. Containers can boot in a couple of seconds, whereas
virtual machines could take several minutes to boot. How does this impact
the Yo-Yo attack and is this a benefit or a drawback? Hypothetically, an
Yo-Yo attack against a container-based web-service could cause even a
bigger economic penalty, as the scaling will occur much more frequently.
In regards of the performance penalty, it may not be a problem at all. The
Yo-Yo attack impacts the performance of a VM-based web service because
the it takes time to boot up additional VMs. The performance cost that
is demonstrated in Bremler-Barr et al. [9] shows that the Yo-Yo attack is
highly efficient at detecting warm-up and cool-down phases of the web
service, and the short moment the web service is suffering from a too high
load, the service becomes unavailable or "slugghish" for the users. If the
provider of the web service where to use containers in stead of VMs, it
may not be a performance issue at all since additional containeres would
be started almot instantly [7].

5.2 DoS vs. DDoS

There are some scenarios where the solution that is propesed in this paper
won’t be sufficient to detect an Yo-Yo attack. One such scenario is in
a DDoS attack where the attacker may send bursts from many different
machines. If the detection system is solely based on keeping an extra eye
out for addresses that sends overload traffic in the scale-up phase, that
same address may not appear again in the next scale-up phase.

41

5.3 Other variants of the attack

Randomized attack patterns - e.g. by also sending traffic in the off-phase of
the attack in order to camouflage the IP addresses.

42

Chapter 6

Conclusion

The work done in this article is a simple but novel project as there hasn’t
been conducted a research for a detection mechanism on Yo-Yo attack
on a container-based environment. In fact, there hasn’t been done much
research on the Yo-Yo attack since Bremler-Barr et al.[9] demonstrated the
attack for the first time in 2016. Though, it is highly interesting since this
is an attack that exploits a functionality that first and foremost is a counter
mechanism to high loads and fluctuating loads, which in turn is a nice tool
in order to adjust to Denial-of-Service attacks.

The detection mechanism proposed in this research is simple but
accurate in detecting an Yo-Yo attack in this particular setup. The
experimental setup is somewhat artificial as it all runs on the same
hardware, whereas a cloud environment would have a surplus of hardware
just waiting to be paid for.

The containers seems to be a benefit in countering the Yo-Yo attack as
the attacker not necessarily is able to detect when the scaling happens. This
is because the scaling process happens in a few seconds, so if the attacker
should catch when the switch has been flipped, then he must send probing
packets often, or be able to act upon response time quickly. Acting upon
response times may be hard since response times always are relatively
fluctuating due to the whole network chain.

43

44

Bibliography

[1]

2]

[3]

[4]
[5]
[6]

[7]

[8]

[9]

[10]

[11]

URL: https://trends.google.com /trends /explore ?date=2007-02- 04 %
202021-03-04&q=cloud%20computing. (accessed: 04.03.2021).

URL: https: / / res. cloudinary . com / practicaldev / image / fetch /s --
JmQCnO87-- /c _ limit % 2Cf auto % 2Cfl _ progressive % 2Cq _ auto %
2Cw _ 880 / https : / / dev - to - uploads . s3 . amazonaws . com /i /
ttbb2saulmdcg73qtdiz.png. (accessed: 19.03.2021).

URL: https://imengine.public.prod.agp.infomaker.io /?uuid=460fd77e-
8ded-51cf-a9de- 6b03cfb47226 & function =fit& type=preview & source =
false&q=75&maxsize=1500&scaleup=1. (accessed: 09.04.2021).

URL: https://www.coindesk.com/price/bitcoin. (accessed: 16.04.2021).
URL: https://github.com/menavaur/Autobench. (accessed: 14.04.2021).

Abhishek Agarwal et al. ‘Detection and mitigation of fraudulent re-
source consumption attacks in cloud using deep learning approach’.
In: Journal of Information Security and Applications 56 (2021), p. 102672.
ISSN: 2214-2126. DOT: https://doi.org/10.1016/j.jisa.2020.102672. URL:
https://www.sciencedirect.com/science/article/pii/S2214212620308243.

Babak Bashari Rad, Harrison Bhatti and Mohammad Ahmadi. ‘An
Introduction to Docker and Analysis of its Performance’. In: IJCSNS
International Journal of Computer Science and Network Security 173 (Mar.
2017), p. 8.

BBC. Amazon "thwarts largest ever DDoS cyber-attack’. 2020. URL: https:
//www.bbc.com/news/technology-53093611. (accessed: 25.02.2021).

A. Bremler-Barr, E. Brosh and M. Sides. ‘DDoS attack on cloud auto-
scaling mechanisms’. In: IEEE INFOCOM 2017 - IEEE Conference on
Computer Communications. 2017, pp. 1-9. DOI: 10.1109 /INFOCOM.
2017.8057010.

CERT/CC. [linux-security] CERT Advisory CA-96.21 - TCP SYN
Flooding and IP Spoofing Attacks. 1996. URL: https:/ /listman.redhat.

com/archives/linux-security /1996- December /msg00006.html. (accessed:
22.04.2021).

Catalin Cimpanu. Google says it mitigated a 2.54 Tbps DDoS attack in
2017, largest known to date. 2020. URL: https://www.zdnet.com/article/
google- says- it- mitigated- a- 2- 54 - tbps- ddos- attack-in- 2017 - largest -
known-to-date/. (accessed: 19.04.2021).

45

Cloudflare. Application Layer DDoS Attack. URL: https : / / www .

cloudflare.com/learning/ddos/application-layer-ddos-attack/. (accessed:
23.03.2021).

Cloudflare. Famous DDoS attacks | The largest DDoS attacks of all time.
URL: https://www.cloudflare.com/learning/ddos/famous-ddos-attacks/.
(accessed: 19.04.2021).

Cloudflare. How Do Layer 3 DDoS Attacks Work? | L3 DDoS. URL:
https:/ / www . cloudflare.com / learning / ddos / layer- 3- ddos- attacks/.
(accessed: 19.03.2021).

Cloudflare. HTTP Flood Attack. URL: https:/ /www . cloudflare.com /
learning/ddos/http-flood-ddos-attack/. (accessed: 23.03.2021).

Cloudflare. NTP Amplification DDoS Attack. URL: https: / / www .
cloudflare.com/learning/ddos/ntp-amplification-ddos-attack/. (accessed:
25.03.2021).

Cloudflare. Smurf DDoS Attack. URL: https:/ /www . cloudflare.com /
learning/ddos/smurf-ddos-attack/. (accessed: 19.03.2021).

Cloudflare. SYN Flood Attack. URL: https: / / www . cloudflare . com /
learning/ddos/syn-flood-ddos-attack/. (accessed: 19.03.2021).
Cloudflare. UDP Flood Attack. URL: https:/ / www . cloudflare . com /
learning/ddos/udp-flood-ddos-attack/. (accessed: 23.03.2021).
Cloudflare. What is a Denial-of-Service (DoS) Attack? URL: https://www.
cloudflare.com /learning / ddos / glossary / denial - of - service/. (accessed:
25.02.2021).

Cloudflare. What is a low and slow attack? URL: https://www.cloudflare.
com/learning/ddos/ddos-low-and-slow-attack/. (accessed: 25.03.2021).

Sam Cook. DDoS attack statistics and facts for 2018-2021. 2021. URL:
https : / / www . comparitech . com / blog / information - security / ddos -
statistics-facts/. (accessed: 25.02.2021).

Shane Huntley. How we're tackling evolving online threats. 2020. URL:
https://blog.google/threat-analysis- group /how-were-tackling-evolving-
online-threats. (accessed: 19.04.2021).

Imperva. Smurf DDoS attack. URL: https://www.imperva.com /learn/
ddos/smurf-attack-ddos/. (accessed: 19.03.2021).

Kaspersky. About us. URL: https: / / www . kaspersky . com / about.
(accessed: 15.04.2021).

Kaspersky. DDoS attacks in Q1 2020. 2020. URL: https://securelist.com/
ddos-attacks-in-q1-2020/96837/. (accessed: 15.04.2021).

Kaspersky. DDoS attacks in Q2 2020. 2020. URL: https://securelist.com/
ddos-attacks-in-q2-2020/98077/. (accessed: 15.04.2021).

Kaspersky. DDoS attacks in Q3 2020. 2020. URL: https://securelist.com/
ddos-attacks-in-q3-2020/99171/. (accessed: 19.03.2021).

Kaspersky. DDoS attacks in Q4 2016.2017. URL: https://securelist.com/
ddos-attacks-in-q4-2016/77412/. (accessed: 16.04.2021).

46

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Kaspersky. DDoS attacks in Q4 2017.2018. URL: https://securelist.com/
ddos-attacks-in-q4-2017/83729/. (accessed: 16.04.2021).

Kaspersky. DDoS attacks in Q4 2018.2019. URL: https://securelist.com/
ddos-attacks-in-q4-2018/89565/. (accessed: 15.04.2021).

Kaspersky. DDoS attacks in Q4 2019. 2020. URL: https://securelist.com/
ddos-report-q4-2019/96154/. (accessed: 15.04.2021).

Kaspersky. DDoS attacks in Q4 2020. 2021. URL: https://securelist.com/
ddos-attacks-in-q4-2020/100650/. (accessed: 13.04.2021).

Kaspersky. What is a Botnet? URL: https://usa.kaspersky.com/resource-
center/threats/botnet-attacks. (accessed: 23.03.2021).

Z. Li et al. ‘Exploring New Opportunities to Defeat Low-Rate DDoS
Attack in Container-Based Cloud Environment’. In: IEEE Transactions
on Parallel and Distributed Systems 31.3 (2020), pp. 695-706. DOI: 10.
1109/TPDS.2019.2942591.

M. Mao and M. Humphrey. ‘A Performance Study on the VM Startup
Time in the Cloud’. In: 2012 IEEE Fifth International Conference on
Cloud Computing. 2012, pp. 423-430. DOI: 10.1109/CLOUD.2012.103.

Paul Nicholson. Five Most Famous DDoS Attacks and Then Some. 2020.
URL: https:/ /www.alOnetworks.com / blog /5 - most - famous - ddos -
attacks/. (accessed: 19.04.2021).

Fabian Skalleberg Nilsen. Telenor presset for millionbelop etter dataan-
grep. 2020. URL: https://e24.no/teknologi/i/90vRPd /telenor- presset-
for-millionbeloep-etter-dataangrep. (accessed: 09.04.2021).

Parmy Olson. The Largest Cyber Attack In History Has Been Hitting
Hong Kong Sites. 2014. URL: https:/ /www.forbes.com/sites/parmyolson/
2014/11/20/the-largest-cyber-attack-in-history-has-been-hitting-hong-
kong-sites/?sh=bc9b4ab38f6e. (accessed: 20.04.2021).

Matthew Prince. Deep Inside a DNS Amplification DDoS Attack. 2012.
URL: https://blog.cloudflare.com /deep-inside-a-dns-amplification-ddos-
attack/. (accessed: 25.03.2021).

Iain Thomson. Conversation with Eric Schmidt hosted by Danny Sullivan.
2006. URL: https:/ /www . google.com / press / podium / ses2006 . html.
(accessed: 05.03.2021).

Tain Thomson. World’s biggest DDoS attack record broken after just five
days. 2018. URL: https://www.theregister.com /2018 /03 /05 /worlds
biggest ddos attack record broken after just five days/.
(accessed: 25.02.2021).

Xiaogiong Xu et al. “Towards Yo-Yo attack mitigation in cloud auto-
scaling mechanism’. In: Digital Communications and Networks 6.3
(2020), pp. 369-376. 1SSN: 2352-8648. DOTI: https://doi.org/10.1016/
j.dcan.2019.07.002. URL: https://www.sciencedirect.com /science /
article/pii/5$2352864819301440.

47

[44] Kejiang Ye et al. ‘Fault Injection and Detection for Artificial Intelli-
gence Applications in Container-Based Clouds’. In: Cloud Computing
—CLOUD 2018. Ed. by Min Luo and Liang-Jie Zhang. Cham: Springer
International Publishing, 2018, pp. 112-127. I1SBN: 978-3-319-94295-7.

48

