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Abstract: Using electroencephalogram (EEG) signals for emotion detection has aroused widespread research concern. However, 

across subjects emotional recognition has become an insurmountable gap which researchers cannot step across for a long time 

due to the poor generalizability of features across subjects. In response to this difficulty, in this study, the moving average(MA) 

technology is introduced to smooth out short-term fluctuations and highlight longer-term trends or cycles. Based on the MA 

technology, an effective method for cross-subject emotion recognition was then developed, which designed a method of salient 

region extraction based on attention mechanism, with the purpose of enhancing the capability of representations generated by a 

network by modelling the interdependencies between the channels of its informative features. The effectiveness of our method 

was validated on a dataset for emotion analysis using physiological signals (DEAP) and the MAHNOB-HCI multimodal tagging 

database. Compared with recent similar works, the method developed in this study for emotion recognition across all subjects 

was found to be effective, and its accuracy was 66.23% for valence and 68.50% for arousal (DEAP) and 70.25% for valence and 

73.27% for arousal (MAHNOB) on the Gamma frequency band. And benefiting from the strong representational learning 

capacity in the two-dimensional space, our method is efficient in emotion recognition especially on Beta and Gamma waves. 
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1 Introduction 

Affective Computing plays a significant role in various 

areas of daily life, emotion recognition has been an active 

theme of study for the last twenty years. The purpose of 

emotion classification is the retrieval of the affective status of 

human beings in a particular point in time given a relevant 

data recording. In our works we will concentrate on the 

physiological modalities of brain waves, i.e. 

electroencephalography (EEG), previous cognitive 

psychology researches have demonstrated the inner 

association between affective information of the human 

emotional state and the electrical activity of the cerebral 

cortex, and reported on EEG is direct reactions caused by 

emotions [1]. Yet, drawback of EEG signals are noisy 

recordings because of artifacts affected by eye movement. 

respiration or measurement equipment. Due to the relatively 

complexity of the EEG signals, EEG signals are intrinsic 

difficulty comprehended in regard to emotions. Therefore, 

EEG-based affect detection is a field of vigorous research for 

which a lot of comparisons of potential algorithms are still to 

be done. 

Previous researches in the area of cognitive psychology 

indicate that there are statistical significance in the way 

individuals sense and expressing feelings [2]. People may 

express distinct feelings and exist distinct physiological 

responses modes when exposed to an identical affective 

stimulus, ‘individual differences’ was first put forward by 

Picard et al. and have been raised as a matter of considerable 

attention [3]. Nevertheless, the classifier could not make 
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right judgement in respect of the context of various 

participants when physiological responses modes from 

distinct participants express obvious differences upon an 

identical emotion [4]. Accordingly, many studies tend to 

focus on individual subjects. Nevertheless, 

subject-dependent (intra-subject) classification model meet 

with two serious disadvantages. On the one hand, they need 

the gathering of a large deal of experiment samples to 

sufficiently model the relevance between the affective states 

and the EEG signals for each participant. On the other hand, 

they cannot be utilized for unseen subjects since they just 

utilize EEG signals relevant to the specific one person alone. 

These two severe flaws cause the technique impractical in a 

number of instances. Subject-dependent techniques 

invariably have been questioned as they fail in regard to 

general applicability. Accordingly, studies into affective 

classification have always focused on subject independent 

pattern (which signifies a categorization model set up by 

physiological signals mixed cross-subject). Plenty of 

representative patterns utilize a collection of training data to 

set up an ordinary, subject-independent (inter-subject) 

model, which is shared by every subject (e.g., [5-7]). Under 

the circumstances, a single classification model is set up by 

thinking about all samples as though it were originating from 

the same participant, have no taking the subject’s 

distinctiveness into consideration. It has been exhibit that the 

cross-subject approach always performance poorly as 

contrasted to the subject-dependent approach. In spite of, 

sometimes the well prediction accuracy acquired in certain 

cases, these can be considerably increased by utilizing 

individual classification models adapted to each subject 

[8-9]. 
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In a word, researchers in the field have utilized two 

principal techniques to identify accurately the emotion. The 

features engineering-based techniques are included [10] and 

the second one Deep Learning(DL) is involved [11]. DL, i.e. 

convolutional neural networks(CNN), can automatically 

end-to-end learn the abstract features from deep scale 

original data, replacing feature engineering for affect 

recognition intentions. Therefore, in this work, the CNN is 

applied as one of the art classification algorithms which are 

trained using features based on automatically extraction. In 

our work, at first, we explore the applicability of 

subject-independent and cross-subject modeling methods in 

an EEG-based emotion classification case, by studying the 

available data in DEAP [12] and MAHNOB-HCI [13] public 

dataset for affective classification utilizing physiological 

signals. The DEAP and MAHNOB-HCI dataset include 32 

and 24 participant’s EEG signals and emotion tags, 

respectively. We extracted the Differential Entropy(DE) 

feature and then transform the DE feature vector to 2D-like 

frame, following made emotion classification on 2D-like 

frame using the CNN in the way like that in the field of 

computer vision. The content of the paper was organized as 

follows, In Sect. 2, we introduce and preprocess the DEAP 

and the MAHNOB-HCI datasets which are extensively 

utilized in EEG-based emotion classification domain. A 

particularly introduce of proposed method is presented in 

Sect. 3. The analysis of the results and the completion 

section of the study are given in Sect. 4 and Sect. 5, 

respectively. 

2 Dataset and Preprocessing 

2.1 Datasets Description and Data Acquisition 

The DEAP dataset is a large open source dataset 

developed by a team of researchers at Queen Mary 

University of London, which is detecting and recording the 

multiple physiological signals with emotional evaluations 

generated by 32 volunteers under the selected video clips 

[12]. Specifically, it includes 32-channel EEG signals and 

some peripheral physiological signals. Each participant 

needs to watch 40 trials of music videos with different 

emotional stimuli for about one-minute for each video. The 

EEG signals and peripheral physiological signals of 

volunteers are recorded simultaneously during viewing. 

Then the subjects rated the videos on a scale of 1-9 in terms 

of Arousal, Valence, Liking, Dominance and Familiarity. In 

this article, we only focus on two-dimensional emotional 

model which the two dimensions are arousal (ranging from 

weak to strong) and valence (ranging from negative to 

positive). In this paper, we only applied the 32-channel EEG 

data in DEAP dataset which had been pre-processed by 

down sampling to 128 Hz, the data in the 4–45 Hz frequency 

bandwidth is preserved by band-pass filtering, and common 

average referencing and ocular artifacts removing by blind 

source separation algorithms.  

The MAHNOB-HCI dataset is another recent database 

contained EEG, video, audio, gaze, and peripheral 

physiological recordings of 30 participants [13]. In this 

dataset, each participant watched 20 clips extracted from 

Hollywood movies and video websites, such as youtube.com 

and blip.tv. The stimulus videos ranged in duration from 35 

to 117 s. After watching each stimulus, the participants used 

self-assessment manikins (SAMs) to rate their perceived 

arousal and valence on a discrete scale of 1 to 9. We then 

divided these selections into a high class (ratings 6–9) and a 

low class (ratings 1–5). Here, only the 24 participants for 

whom all 20 trials are available were used. Same as DEAP 

dataset, The MAHNOB-HCI dataset had been pre-processed 

by down sampling to 128 Hz. In the process of collecting 

EEG signals, the signals that the scalp electrodes can 

measure are actually potential differences. The potential 

difference here is the difference between the active electrode 

and the reference electrode. In order to obtain accurate 

values of these parameters, we need to use the least active 

electrode point as a reference in order to obtain the most 

ideal raw data. So it is unavoidable to set the reference 

electrode in the scalp recording measurement. We often 

place the reference electrode at the top of the head, between 

the electrodes CPz and Pz, which causes a large area of 

important brain signals to be affected by noise. To solve this 

problem, we introduced a common average reference 

processing technique. This technology actually uses the 

average potential of all potentials as a reference value, and 

the difference between the potential of each electrode and 

this reference value is used as the voltage value of the 

electrode. An important step in the pre-processing of EEG 

signals is to reduce noise and remove artifacts. For this 

purpose, we use high-pass filters to perform artifact 

processing. Finally, we selected the first 65 seconds of data 

and removed the first 5 seconds of data. TABLE I shows a 

summary of the DEAP and MAHNOB-HCI dataset. 

2.2 Feature Extracting 

Recently, a great quantity of different entropy estimators 

have been applied to measure the complexity of continuous 

EEG signals. Shi et al. proposed Differential entropy (DE) 

for EEG-based vigilance estimation and used it to measure 

the complexity of EEG signals [14]. In this study, differential 

entropy(DE) is presented to characterize the level of 

vigilance, as a complexity quantify for EEG signals, which 

has been proven to be appropriate for emotion analyzing in 

previous studies. Its calculation formula can be defined as,   

            ( ) ( ) log( ( ))
S

h X f x f x dx= −∫                           (1) 

where S is the support set of the random variable. X is a 

continuous random variable. f(x) is the probability density 

function of X. For the series 
2 22 /2( ) (1/ 2 ) xX x e σφ πσ −= ×∼ . 

Then calculating the differential entropy expressed as: 

TABLE I 

DATASET DESCRIPTION 

Feature DEAP/MAHNOB description 

Number of participants 32 /24 

Number of videos 40 /20 

Number of EEG channels 32 /32 

Rating scales 
Valence and Arousal / 

Valence and Arousal 

Rating values 1~9 /1~9 

Sampling rate 128 Hz /28 Hz  

Duration of experimental signals 60-s /60-s 

Duration of pre-trial baseline 

signals 
3-s / 
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According to the summary made by Zhang et al. [15], five 

frequency bands rhythm of EEG signals, such as 

Delta(0.5Hz∼3Hz), Theta (4Hz∼7Hz), Alpha (8Hz∼13Hz), 

Beta (14Hz∼30Hz) and Gamma (above 31Hz∼45Hz) were 

closely associated with emotional and other psychological 

activities. To confirm our point of view and study the 

influence of distinct frequency patterns on mood, we utilized 

a Butterworth filter to decompose the raw data into 4 

frequency bands 
( )θ α β γ， ， ，

. 

2.3 Data Preprocessing 

According to the summary made by Yang et al. [42], the 

DE features of baseline EEG signals can help to improve 

emotion recognition accuracy significantly. Thence. we use 

baseline signals to measure the differences between signals 

which are recorded while subjects are under stimulation and 

baseline signals. For each subject, each channel of all 32 

channels is first filtered in ( )θ α β γ， ， ，

frequency bands 

from 4 Hz to 45 Hz by Butterworth filter, and a 128-point 

segment window with nonoverlap is used to divide each 

frequency band signal to pre-trial baseline data of 3-s length. 

Apply the feature extraction method defined earlier ,the DE 

feature is calculated over each window 128-point data for all 

of 3 window data and transform each of them into 4 DE 

feature vector 
( ) 32base

DEX R
θ α β γ ∈， ， ，

. The next step is 

concatenating all of these 4 DE feature 

vector
( ) 32base

DEX R
θ α β γ ∈， ， ，

according to the order of 

( )θ α β γ， ， ，

 frequency bands into a big DE feature 

vector
128base

DEX R∈ .Finally, the mean DE feature value of these 

three window data are computed to represent the DE feature 

of pre-trial baseline signals. This process can be showed as: 
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base

DEX i
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 represents the DE feature are calculated 

over each window 128-point data for all of 3 window data, 

respectively.
base

DEX
denotes the mean DE feature value of these 

three window data. 

With regard to the 60-s EEG experimental signals 

whilesubjects are under stimulation. Wang et al. [16] 

reported that time window with size 1 s is suitable for 

emotion recognition and then the 7680-point data of each 

channel is divided 60 epochs, which each epoch the length of 

data is 128-point. The whole number of EEG epochs from 40 

trials of each participant was 40∗60 = 2400, and the 

dimension of this EEG experimental signals after segmented 

was 128(time points) ∗32(channels)∗4(bands)∗2400 

(epochs). Then the DE feature is calculated, we can get 4 DE 

feature vector 
( )exp 32

DE

er
X R

θ α β γ ∈， ， ，

of each epoch. At the 

same , the last step is concatenating all of these 4 DE feature 

vector 
( )exp 32

DE

er
X R

θ α β γ ∈， ， ，

 according to the order 

of
( )θ α β γ， ， ，

frequency bands into a big DE feature 

vector
exp 128er

DEX R∈
. 

EEG signals are non-stationary random time series 

signals. As same, in order to maintain time information 

hidden in the 2-D maps at a time interval of 1-s, we 

introduced the moving average(MA) technology to 

smooth out short-term fluctuations and highlight 

longer-term trends or cycles. Processing time series data 

after extracting differential entropy features according to 

the basic idea of the MA, we consider that the information 

at the current moment is related to the information at all 

previous moments for each second of data per video. This 

process can be showed as: 

    

( ) ( ) ( )exp exp exp
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Where,
exp ( )er

DEX i
 denotes the DE feature value at time i  of 

each video. The value of t is an integer value ranges from 1 to 

60. Finally, the DE deviation between experimental EEG and 

pre-trial baseline EEG is calculated to stand for the 

emotional state feature of this epoch. This process can be 

showed as:   

                           exp seer ba

DE DE DEX X X← −                                  (5) 

Where exp er

DEX  denotes the DE feature are calculated over 

each window 128-point data for all of 60 window data, DEX  

represents the DE deviation between experimental EEG and 

pre-trial baseline EEG. Based on the emotional rating grade 

of each stimulus video in the range of 1-9 in valence and 

arousal domain, the median 5 was simply adopted as the 

threshold to divide the rating grade into two classes: less than 

or equal to 5 labeled with 0 meaning low valence/arousal, 

more than 5 labeled with 1 meaning high valence/arousal. 

In order to keep the spatial structure information among 

multiple adjacent channels, We transform 1D DE feature 

vector 
exper

DEX
 to 2D plane

( )h l×
. Where h and l is the no 

more than the number of the vertical and horizontal used 

electrodes. For our DEAP dataset, h=l=9. Hence, the 

corresponding 2D plane of feature vector 
exper

DEX
of frequency 

bands i 
( )( )i θ α β γ∈ ， ， ，

 is denoted as  FM i h lR ×∈ . 

Zeroes are used to fill the DEs from channels that are unused 

in DEAP dataset. As yet, we have acquired four 2D planes 

for each EEG epoch. This process is depicted in Figs. 1. 

3 Classification Using a Convolution Neural 

Network 

Deep learning can automatically end-to-end learn the 

abstract features from deep scale original data, replacing 

feature engineering for affect recognition intentions. The 

CNN is one of the most typical and extensively employed 

classifier for deep learning. Our CNN classifiers are based 

on the LeNet-5 framework, a well-known CNN classifier 



  

first presented by LeCun et al. in [17] is the essential model 

for all kinds of CNN applications such as image 

classification. The LeNet-5 basic architecture is as shown in 

the Fig. 1.  

Dataset for our experiment, we use the swish activation 

(Ramachandran et al., 2017) [18] function instead of the 

ReLU activation function. Swish is a smooth, 

non-monotonic function defined as
( ) 1 / (1 )xf x e−= +

. 

The classification performance is closely related to the 

electrodes at different spatial positions. Therefore, we 

introduce the Squeeze-excitation (SE) block (Hu et al., 2018) 

[19], with the purpose of enhancing the capability of 

representations generated by a network by modelling the 

interdependencies between the channels of its informative 

features. The structure of the SE building block is depicted in 

Fig. 2.  

At any given transformation 
' ' '

: , ,W H C W H C

tr
F X U X U× × × ×→ ∈ ∈ℝ ℝ

,e.g. a convolution, we 

would be able to produce a relevant SE block to fulfil feature 

recalibration. Firstly, the features U are performed a squeeze 

action, which generates a channel descriptor by fusing 

feature maps span their space dimensions 
( )H W×

. The 

intention of this descriptor is to generate an embedding of the 

global spatial information of channel-wise feature responses, 

so that the information from the global receptive field of the 

network can be used by its lower layer. The information 

aggregated in the squeeze operation is followed by an 

excitation action. The excitation operation is in the form of a 

simple self-gating mechanism, which embeds as input and 

generates a set of modulation weights for each channel. 

Applying these weights to the feature map U to produce the 

output of the SE block, which can be fed immediately to the 

network subsequent layers. 

For our model, name it SE_CNN. The first convolutional 

layer filters the 9×9×1 input 2D array corresponding to each 

frequency band of 
( )θ α β γ， ， ，

with 100 kernels of 3 rows 

and 3 columns. The next layer is a MaxPooling layer with 

pooling size 2×2 with a stride of 2 pixels. Then goes on a 

layer is another convolutional layer which again with 100 

filters and 3*3 size kernel takes as input the output of the 

MaxPooling layer. Followed by is a MaxPooling layer with 

pooling size 2×2 with a stride of 2 pixels. The first fully 

connected layer has 120 neurons. And the second fully 

connected layer has 120 neurons. Finally, our final fully 

connected dense neural layer has 2 neurons.  

Due to the limited number of samples, we consider that 

even simple convolutional networks can be overfitting. 

Therefore, we introduce some main techniques into the 

SE_CNN networks in which we reduce overfitting. We 

introduce L2 regularization technique into every convolution 

layer and the dropout technology is introduced into the full 

connection layer. To improve network performance, we use 

the batch normalization (BN) technology and the SE block 

between the convolutional layer and the MaxPooling layer.  

4 Experiments and Results 

4.1 Experiments Setup 

After the data processing of the DEAP and the 

MAHNOB-HCI datasets, the complex and low 

signal-to-noise raw signals was simplified, and the following 

was obtained: 

   

1

2

76800( ) 9( ) 9( ) 1( )

28800( ) 9( ) 9( ) 1( )

M trials rows cols channels

M trials rows cols channels

= × × ×

= × × ×
   (6) 

Then, M1 and M2 were inputted into the SE_CNN 

network. Each dataset was normalized previous to the utilize 

of SE_CNN modeling for emotion recognition, which 

contributed to ameliorate the convergence performance and 

classification accuracy of the model. In the SE_CNN 

program, we have applied a leave-one-response-out 

cross-validation technique, in which a single participant 

obtained from the entire readings is used as the test 

participant while the remaining readings is used in the 

training process. 

We implemented the SE_CNN with Keras framework 

libraries in Python and trained it on a Tesla T4 GPU based on 

Google cloud platform. The truncated normal distribution 

function was used to initialize the weight of kernels and the 

Adam optimizer was adopted to minimize the crossentropy 

loss function, the initial learning rate was 1.0e-05 for the 

SE_CNN. The keep probability of dropout operation was 0.6. 

L2 regularization was added to avoid overfitting and 

improve generalization capability, the penalty strength of L2 

was 0.6 for the SE_CNN. For our experiments we use 100 

epochs and train our model using batches of 32 experiments 

each. Finally, we fine-tuned the network to get the final 

classification result. 

4.2 Effectiveness of different frequency band for 

emotion recognition 

For the sake of evaluate the validity of different frequency 

band for emotion recognition, in our research, we train a 

SE_CNN model for each 2D plane produced by frequency 

band of 
( )θ α β γ， ， ，

. We first employ only one single 

frequency band for classification each time. Table 4 present 

a comparison of performance between the valence and the 

arousal classification recognition accuracies of the SE_CNN 

and those of CNN model with various cases (e.g. different 

activation functions, whether the CNN architecture 

 

Fig. 1.  The basic architecture of the LeNet-5 network  

 

 

Fig. 2.  The structure of the SE building block  

 



  

introduce SE block) using the DEAP and the MAHNOB for 

each single frequency band. With MA means the data has 

been processed by MA process and other operations are 

similar. For the conformity of the analysis of the two datasets, 

only cross-subject affective classification was carried out for 

the valence and arousal classification. 

Fig. 3. show the classification accuracy of SE_CNN on 

four frequency bands on the DEAP and the MAHNOB 

database, respectively. On Gamma, its accuracy was 66.23% 

for valence and 68.50% for arousal (DEAP) and 70.25% for 

valence and 73.27% for arousal (MAHNOB). On Beta, its 

accuracy was 63.50% for valence and 65.16% for arousal 

(DEAP) and 69.13% for valence and 70.18% for arousal 

(MAHNOB). Regardless of the kind of classifier used, Beta 

frequency wave and Gamma frequency wave are superior to 

the others for classification. Therefore, it shows that the 

replacement of the RELU activation function with the switch 

activation function in the CNN-based the MA processing 

technology architecture and the introduction of SE-block can 

help classify emotion. 

4.3 Results comparison with other classification 

methods 

We also compare our model with other different 

approaches on DEAP dataset. Li et al. adopted the SVM 

approach and the “leave-one-subject-out” verification 

strategy to evaluate recognition performance. Using 

automatic feature selection methods, the highest mean 

recognition accuracy of 59.06% on the DEAP dataset 

[20]. Pandey et al. proposed a subject independent 

emotion recognition technique from EEG signals using 

Variational Mode Decomposition (VMD) as a feature 

extraction technique and Deep Neural Network as the 

classifier, the highest mean recognition accuracy of 

61.25% for valence and 62.50% for arousal [21]. Pandey et 

al. proposed a subject independent emotion recognition 

technique from EEG signals using Empirical Mode 

Decomposition (EMD) as a feature extraction technique 

and the SVM as the classifier, the highest mean 

recognition accuracy of 59.22% for valence and 55.70% 

for arousal [21]. Rayatdoost et al. adopted a subject 

independent emotion recognition technique from EEG 

signals using automatic feature selection methods and the 

RF as the classifier, the highest mean recognition 

accuracy of 58.4% for valence and 57.6% for arousal [22]. 

In [23], two deep learning models based on the deep and 

convolutional neural networks method wasused for 

classifying low/high valence and arousal based on the 

feature extraction from EEG raw data from the DEAP 

dataset, with State of the Art classification accuracies of 

81.40% and 73.36%. But we think there are problems 

with the experiments done in this document, they 

extracted experiment and participant number features for 

classification. The use of experiment number features as 

classification features is meaningless because the trained 

model has no generalization ability.  

The contrastive results on the DEAP dataset are shown 

in Fig. 4. The comparison shows the effectiveness of our 

model. The proposed model outperforms the EEG-based 

only approaches significantly, which is about 7% points 

higher than Li [2018] for valence, 5% points higher for 

valence and 6% points higher for arousal than Pandey 

[2019] ， 7% points higher for valence and 13% points 

higher for valence than Pandey [2019] and 8% points higher 

（a） （b）

 
Fig. 3.  Subgraphs (a) and (b) represent the emotions classification accuracy applied in the different research frequency band of EEG-based deep learning 

for binary classification into low/high valence and arousal for cross subject emotion recognition on the DEAP and the MAHNOB databases, respectively.

 

 

Fig. 4.  Performance comparison between relevant approaches.   

 



  

for valence and 11% points higher for valence than 

Rayatdoost  [2018] . While compared to the Tripathi  [2017] 

approaches, the recognition accuracy of their method is 

much higher than our method. But, we think there are 

problems with the experiments done in this document, they 

extracted experiment and participant number features for 

classification. The use of experiment number features as 

classification features is meaningless because the trained 

model has no generalization ability. 

5 Conclusions 

In our work, we employ various models to recognize 

two-category emotional states. In comparison to recent 

similar classification methods, the method proposed in this 

research is valid for cross-subject sentiment classification. 

Benefitting from the strong abstract representational 

capabilities, deep models are superior to the shallow models. 

We identified the high-frequency brain waves, i.e., Beta and 

Gamma waves, are more geared to sentiment classification. 

And the SE-block can enhance the capability of 

representations generated by a network by modelling the 

interdependencies between the channels of its informative 

features. 
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