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Abstract  
 
A patterned spread of proteinopathy represents a common characteristic of many 
neurodegenerative diseases. In Parkinson’s disease (PD), misfolded forms of alpha-synuclein 
proteins aggregate and accumulate in hallmark pathological inclusions termed Lewy bodies and 
Lewy neurites, which seems to affect selectively vulnerable neuronal populations and propagate 
within interconnected neuronal networks. Research findings suggest that these proteinopathic 
inclusions are present at very early timepoints in disease development, even before strong 
behavioural symptoms of dysfunction arise, but that these underlying pathologies might be 
masked by homeostatic processes working to maintain the function of the degenerating neural 
circuits. This study investigates whether inducing the PD-related alpha-synuclein pathology in 
engineered human neural networks can be associated with changes in network function, and 
particularly with network criticality states. Self-organised criticality represents the critical point 
between resilience against perturbation and adaptational flexibility, which appears to be a 
functional trait in self-organising neural networks, both in vitro and in vivo. By monitoring the 
developing neural network activity through the use of multielectrode arrays (MEAs) for a 
period of three weeks following proteinopathy induction, we show that although this developing 
pathology is not clearly manifest in standard measurements of network function, it may be 
discerned by differences in network criticality states.    
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Introduction 
 
Neurodegenerative diseases, such as Parkinson’s disease (PD), Alzheimer’s disease (AD) and 
amyotrophic lateral sclerosis (ALS), represent a common cause of morbidity and cognitive 
impairments in older adults. Although characterised through complex pathologies and unknown 
aetiologies, some prominent commonalities, such as the presence of proteinopathy and the 
patterned spread of pathology through selectively vulnerable neuronal populations, cannot be 
ignored (1-9). Focusing on the second most common neurodegenerative disease, PD, the 
implicated proteinopathy mainly consists of misfolded and aggregated forms of alpha-
synuclein. These intracellular alpha-synuclein inclusions are termed Lewy bodies or Lewy 
neurites, and can be found propagating throughout central, peripheral and autonomic parts of 
the nervous system, as well as in multiple organs, as the disease progresses (6, 7, 10-14). 
Furthermore, the neurodegenerative process characteristic of PD particularly affects and 
progressively depletes the dopaminergic neurons in the substantia nigra pars compacta (SNpc), 
a process which is thought to underlie most of the movement-related symptoms (15).  
 
The neurodegenerative process underlying PD inevitably affects both the structural and 
functional connectivity of local and distal circuitry in the brain. As already noted, the 
movement-related impairments in PD are largely ascribed to the characteristic loss of 
dopaminergic neurons in the SNpc, and the degeneration of the nigrostriatal (dorsal striatal) 
pathway. However, the disease is much more systemic, affecting both the mesolimbic 
dopaminergic (ventral striatal) pathway and the mesocortical pathway, as well as several other 
neuronal populations throughout the brain as it progresses (16). As clusters of neurons and their 
interconnections degenerate, homeostatic plasticity mechanisms likely compensate to maintain 
stable function through regulation and rearrangement of synapses and synaptic elements in local 
and distal neural networks (17-27). The network disturbances likely imposed by the 
degeneration of neurons and their interconnections are thus counterbalanced, keeping clear 
symptoms of dysfunction from arising at early stages of disease development and thus patients 
from being diagnosed before advanced neurodegeneration is already present (28-30). 
 
Interestingly, the high interconnectivity of the brain has been shown to inherently shape how it 
responds to perturbation, and the particular sites affected, as well as their level of connectedness 
to other brain regions, to determine how pathology can spread (31-34). This relates directly to 
the hallmark pathology of PD, namely the widespread alpha-synuclein inclusions, which have 
been suggested to propagate between anatomically highly interconnected areas in an “evolving 
topographical progression” (6, 7, 35). Based on this, neuroscientific research has narrowed in 
on two likely pathological mechanisms that could underlie the propagating pattern of 
neurodegeneration seen in PD (as well as in AD and ALS), namely selective neuronal 
vulnerability and pathological proteinopathic seeds (2, 3, 6, 33, 36-38). At this point, research 
efforts have uncovered several mechanisms of neuron-to-neuron transfer of pathological seeds 
of alpha-synuclein pre-formed fibrils (PFFs) (39-43), both in vitro and in vivo (11, 13), 
highlighting its contribution as a source of pathological propagation, however, the functional 
consequences of this interneuronal spread remain to be elucidated.  
 
How can the functional consequences of such pathological mechanisms be studied? As 
mentioned, fundamental homeostatic plasticity mechanisms, which serve to maintain stable 
function in neural circuits in the face of perturbation, likely help mask the ongoing pathological 
processes underlying the progressive neurodegenerative pattern of PD (17, 18). However, 
although early network disturbances caused by the presence of pathological aggregates and the 
degeneration of neurons and their interconnections might be concealed in terms of behavioural 
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symptoms, they may be detectable as fluctuations or deviations in some measures of the 
network function and activity state. As such, the universal attribute of neural network 
development towards the state of self-organized criticality (SoC) seems a logical point of focus 
and of particular interest. SoC represents the critical point between resilience against 
perturbation and adaptational flexibility, which appears without the need for fine-tuning of 
parameters through basic self-organizing processes in neural networks, both in vivo and in vitro 
(44-56). This dynamic state is characterized by cascades of spontaneous activity with power-
law size distributions, activity which is electrophysiologically measurable and termed 
“neuronal avalanches”(45, 46, 49, 55, 56). As damage spreads within a neural network, it is 
highly conceivable that the system approaches a “damage threshold”, where restoring network 
function becomes increasingly difficult, and which represents a deviation from the criticality 
state (26, 27, 53, 57). Since SoC also appears in neural networks in vitro (58), functional 
network alterations resulting from induced pathology such as proteinopathy can be studied 
within this paradigm. 
 
To investigate whether a developing PD-related proteinopathy can be associated with network 
criticality states, we have induced proteinopathy in engineered human neural networks in vitro 
and applied computational analysis to identify criticality in electrophysiological microelectrode 
array (MEA) recordings of the resulting network activity. Specifically, we measured the 
developing network activity prior to and for three weeks following exogenous addition of alpha-
synuclein PFF seeds, and aimed to investigate how this induced PD-related pathology is 
reflected in several measures of network function and in the network criticality states compared 
to control neural networks. Our results suggest that induction of proteinopathy likely affects 
neural network behaviour in relation to SoC. To the best of our knowledge, this is the first study 
to investigate SoC in biological, human induced pluripotent stem cell (iPSC)-derived neural 
networks. 
 
Materials and methods 
 
Reprogramming of human iPSCs to neural progenitor cells 
Human induced pluripotent stem cells (iPSCs) (ChiPSC18, Takara Bioscience) were 
reprogrammed using a protocol for midbrain dopaminergic neurons adapted from Kirkeby et. 
al 2012 (59) and 2016 (60) and Doi et al. 2014 (61) (Fig.1, Supplem.1). Briefly, the human 
iPSC were seeded on human recombinant laminin 111 (LN111, BioLamina) at a density of 
10.000 cells/cm2, where they were exposed to dual-SMAD inhibition (LDN1931892 and 
SB43152), followed by Wnt signalling activation through the GSKβ inhibitor CHIR99021, and 
sonic hedgehog introduction (Shh C25ll) (day 0-9). On day 11 the cells were dissociated using 
accutase and reseeded on LN111 at a density of 50.000cells/cm2. FGF8b was added from day 
9-16, at which point the reprogramming was concluded and the human iPSC-derived neurons 
were left for maturation. Full re 
 

 
Fig.1 Experiment layout. The timeline shows the chemotemporal reprograming protocol for 
the human iPSC-derived neurons, followed by the establishment and maturation of the neural 
networks on multielectrode arrays (MEAs). Following 30 days of maturation, sonicated pre-
formed alpha-synuclein fibrils were added to the engineered neural networks. 
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programming protocol can be found in the supplementary materials. 
Formation of alpha-synuclein pre-formed fibrils (PFFs)  
Alpha-synuclein PFFs were formed following a modification of the procedure described in the 
protocol by Kuan et al. (62). Briefly, 1mg alpha-synuclein monomers (S-1001-1, rPeptide) was 
resuspended in 1mL MilliQ water, giving 1mg/mL in 20mM Tris-HCL, pH7.4, 100mM NaCl. 
The suspension was then centrifuged at 3600xg for 60 minutes in an Amicon Ultra 3K 
membrane device, which was then inverted and spun down in a tube for 1000xg for 2 minutes 
to transfer the concentrated sample. The concentrated solute was then resuspended to a final 
volume of 500ul (5mg/mL) in 10mM Tris-HCL (1.576g/L), pH 7.6, 50mM NaCl (2.922g/L), 
and shaken for 7 days at 1000r.p.m. in a 37°C theromixer. The PFFs were subsequently 
aliquoted into 5ul tubes and stored in -80°C until used for in vitro assays.  
 
UV-visible spectroscopy of alpha-synuclein PFFs 
Absorbance of alpha-synuclein PFFs in phosphate buffered saline (PBS) was measured on a 
NanoDrop One/OneC UV-visible absorbance spectrophotometer in the range 200-300nm. A 
dilution of 0.1µg/µL was prepared from a PFF stock solution of 5µg/µL, and added as a droplet 
(2µL) to the pedestal after different timepoints of ultrasonication (Branson CPXH Series 
Ultrasonic bath, 2.8L) (37, 40, 21˚C). Data was collected with OneViewer Software. 
 
Atomic Force Microscopy (AFM) 
AFM was performed with ScanAsyst Air tapping mode using an AFM Veeco, Multimode V. 
Samples were applied on mica and spread out to dry. Results were analysed with NanoScope 
Analysis 1.5 software.  
 
Microelectrode array (MEA) based electrophysiology 
The spontaneous electrophysiological activity of the neural networks was recorded using an 
MEA2100 in vitro system together with the MEA suite software (Multi Channel System). The 
engineered neural networks were maintained on 60-electrode planar microelectrode arrays 
(MEAs) (60MEA200/30iR-Ti; Multi Channel Systems) with ring covers. Prior to seeding, the 
MEAs were briefly washed with 65% ethanol, incubated in sterile water and UV-treated. 
Subsequently, they were treated with foetal bovine serum for 30-60 minutes to make the surface 
hydrophilic, before being coated with 0.01% poly-L-ornithine (PLO) solution and L15/laminin. 
Each MEA (n=8) was seeded with 100,000 iPSC-derived neurons and kept in a standard 
humidified air incubator (5% CO2, 20%O2, 37°C). 50% of the media was changed every 3-4 
days. Following 34 days of maturation, the PFFs were added to the neural networks. A 5µg/µL 
aliquot was thawed in room temperature and diluted in 245ul sterile PBS (0.1µg/µL). A water 
bath ultrasonicator (Branson CPXH Series Ultrasonic bath, 2.8L) was used to sonicate the PFFs 
for 1 hour (37, 40, 21˚C), before 10uL of the PFF seeds (0.1ug/uL), or equivalent amounts of 
alpha-synuclein monomers or PBS, were added directly to the culture media. The MEA cultures 
were randomly assigned to the different test conditions: PFF group (n=4), PBS (n=2) and alpha-
synuclein monomers (n=2). Network activity was sampled throughout the experimental period 
(7-minute recordings), where 5 baseline recordings, and 13 recordings after intervention was 
performed per MEA. To avoid inadvertent fluctuations in electrophysiological activity directly 
related to media changes, no recordings were performed in the first 48 hours following a media 
change.  
 
MEA data analysis 
All data analysis, including the criticality analysis described in the following section, was 
carried out in MATLAB R2018b (The MathWorks, Inc.). The raw data from the MEA system 
was first bandpass filtered with a second-order Butterworth filter with a passband of 300 Hz to 
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3 kHz, and spike detection was performed on the filtered data using a threshold of 5 standard 
deviations below the median of the signal. After visual inspection of the filtered waveform-
signal from each electrode, clear artefactual signals (outlier electrodes) were identified and 
removed from further analysis. A total of 11 such instances were identified, 9 of which were 
caused by the same electrode across multiple MEAs. 
 
Four basic parameters were evaluated in an attempt to identify different functional behaviours 
in the different types of networks: the mean firing rate (MFR), inter-spike interval (ISI), 
population inter-spike interval (PISI), and cross-correlation (XC). All of the parameters were 
obtained from spike trains generated for each recording channel, where a spike train is given as 
a series of impulses with each impulse occurring at the time at which the peak voltage was 
recorded for each detected spike. The MFR for each recording channel was calculated as the 
total number of spikes detected on that channel divided by the total recording time. The MFR 
for a given network at a given time point was then taken as the average over all recording 
channels. The ISI for each recording channel was calculated as the average time interval 
between consecutive spikes detected on the same channel, and this was then also averaged over 
all channels for a given network at a given time point, excluding any intervals greater than 100 
ms. The PISI was calculated by obtaining a population vector of the unique spike timings on 
all recording channels and averaging the intervals between them, excluding any intervals 
greater than 100 ms. This upper bound was selected based on previous reports of timing 
between successive spikes network-wide to provide an indication of information transmission 
in the network (40). The XC was obtained by computing the maximum autocorrelation-
normalized magnitude of the cross-correlation of pairs of spike histograms for each pair of 
recording channels and averaging over all possible pairs. Spike histograms were obtained by 
temporally binning the spike trains with a bin size of 10 ms. The maximum lag considered in 
the XC calculation was 50 ms. 
 
Computational analysis of criticality  
A flowchart showing the main steps of the criticality analysis can be found in Fig. 2. Preliminary 
analysis using the same method has been previously reported for one of the control networks 
from this dataset (63). Filtering and spike detection were first performed as described in the 
previous section (step 1, Fig. 2).  
 
Avalanche detection was then performed using the following procedure, based on the method 
originally described by Beggs and Plenz (45) (step 2, Fig. 2). The spike data were binned with 
a bin width of 1 ms, and avalanches were detected as any number of consecutive active time 
bins (bins containing one or more spikes) bounded before and after by empty time bins (bins 
containing no spikes). The avalanche size was computed as the number of active recording 
channels in the avalanche. (See the schematic in step 2 of Fig. 2 for an example.) The size 
probability distribution was then obtained by creating a histogram of the number of avalanches 
of each possible size (1 to 60 electrodes) and normalizing it with respect to the total number of 
avalanches. 
 
As described by Beggs and Plenz (35), a hallmark of criticality is the avalanche size distribution 
following a power law. Thus, to determine whether or not the networks were in the critical state 
at a given time point, power law fitting was performed on the avalanche size distributions using 
the method described by (64). The fitted power law takes the form 

𝑃(𝑥) ∝ 𝑥&', 
where x is the avalanche size, P(x) is the probability of an avalanche having size x, and a is the 
exponent of the power law. The fitting was performed for avalanche sizes ranging from 2 to 59 
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electrodes, following previous studies (e.g., (58)). Beggs and Plenz (45) originally reported a 
as taking a value of 1.5 in slice cultures, and this has been supported by other studies on 
dissociated cultures (e.g., (58)). When the fitted power law is plotted in log-log space, it appears 
as a line with a slope of −a. The goodness of fit was determined by generating N = 1,000 
synthetic datasets from the fitted power law and computing the Kolmogorov–Smirnov (KS) 
distances for the empirical distribution and each of the synthetic distributions, where a greater 
KS distance indicates a poorer fit. The fraction p of synthetic distributions that had a KS 
distance greater than that of the empirical distribution (i.e., the fraction of cases where the 
empirical data were better described by the power law fit than were the synthetic data) was then 
calculated, and the fitting was rejected if p < 0.1, as suggested by Clauset et al. (53) as a more 
conservative threshold for the goodness-of-fit test. Thus, in the case where the fitting satisfied 
p ≥ 0.1, the network was presumed to be in a critical state. 
 

 
Fig.2 Step-by-step Criticality assessment 
 
Immunocytochemistry 
The engineered neural networks were fixed at room temperature with either 4% 
paraformaldehyde for 15 minutes, or 4% paraformaldehyde/4% sucrose/1% TritonX-100 
(Sigma-Aldrich), as described in (62, 65) for protein extraction, at ranges between 10-20 
minutes, followed by 3x15min washings with DPBS. TritonX-100 extraction should leave only 
insoluble inclusions, not showing any of the remaining presynaptic alpha-synuclein that has not 
converted to aggregates (15,20). Blocking was performed with a solution of 5% normal goat 
serum and 0.6% TritonX-100 in DPBS for 1 hour on a rotator at room temperature. Primary 
antibodies were subsequently applied overnight at 4°C, on a rotator, in a solution containing 
2.5% normal goat serum and 0.3% TritonX-100. The following primary antibodies were used: 
rabbit polyclonal anti-alpha synuclein antibody 1:200 (ab131508, Abcam), mouse monoclonal 
anti-tyrosine hydroxylase antibody 1:300 (MA1-24654, Invitrogen), rabbit monoclonal anti-
alpha synuclein (phospho S129) antibody 1:750 (ab51253, Abcam), chicken polyclonal anti-
neurofilament heavy polypeptide 1:150 (ab46800, Abcam), and mouse monoclonal anti-beta-3 
tubulin antibody 1:800 (ab119100, Abscam). The samples were then washed 3x15 min in DPBS 
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at room temperature before being incubated in secondary solution containing 2.5% normal goat 
serum, 0.3% TritonX-100 and fluorophore-conjugated secondary antibodies 1:1000 
(AlexaFluor 488, 568, 647, Life Technologies) for 3 hours. During the final 5 minutes of 
incubation, Hoechst was added at a final concentration of 1:10000. The samples were then 
washed 3x15 min in DPBS on a rotator. Some samples were also incubated with Phalloidin-
iFluor 647 reagent – cytopainter 1:100 (ab176759, Abcam) for 20 minutes, before being washed 
3x15min in DPBS again. Subsequently the samples were briefly washed in MilliQ-water, and 
mounted on Menzel glass-slides (Thermo Scientific) using FluorSave reagent (EMD Millipore 
USA).  
 
Transmission Electron Microscopy (TEM) 
The neuronal cultures from two MEAs (one from the PFF group, one from the monomer control 
group) were detached from the surface of the MEAs by light suction using a 1000ul pipette and 
washed in DPBS, and immersed directly in 2.5% glutataldehyde without dissociation. The 
samples were subsequently stored at 4°C until further processing. In preparation for TEM, 
samples were gelatine embedded, dehydrated, infiltrated and blocked. A detailed description of 
the process can be found in the supplementary section. 
Following processing for TEM, the embedded samples were sectioned (Ultramicrotome, Leica 
EM UC7) into 45-55nm thin sections, placed on grids, viewed with a Transmission Electron 
Microscope FEI Tecnai 12, and imaged with a Morada digital camera. Image processing was 
done using iTEM and Fiji.  
  
Results 
 
Formation and characterization of engineered neural networks on MEAs 
After concluding the reprogramming protocol for human iPSC-derived neurons, the cells were 
seeded on MEAs and ibidi chips, where they spontaneously formed interconnections and 
extensive neural networks throughout the maturation period (Fig.3). Immunocytochemistry 
revealed neurons positive for beta-III tubulin, neurofilament heavy, and tyrosine hydroxylase 
in the engineered neural networks after 30 days of maturation. Importantly, the neural networks 
also expressed endogenous alpha-synuclein, which is a prerequisite for the induction of alpha-
synuclein aggregation and pathology (Supplementary Fig.S1) (41).  
 

 
Fig.3 Formation and maturation of human neural networks on MEAs. A) shows a tiled 
microscopy image overviewing the electrode area of a newly seeded MEA (day 2 post seeding). 
B) shows how an extensive interconnected neural network has developed on the MEA surface 
20 days post seeding. C) shows all of the individual spike shape cut-outs in colour (relative 
axis) obtained from each of the electrodes during a single recording session, demonstrating the 
electrophysiological activity obtained from a neural network as shown in B). The stronger black 
line within the spike shape cut-outs indicates the average spike shape for that electrode. 
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Induction of alpha-synuclein pathology in neural networks 
UV-visible absorbance spectra and AFM verified the breaking up of alpha-synuclein PFFs into 
smaller seeds by water bath ultrasonication, as a clear difference in both absorbance and 
structure of the PFFs was visible before and after sonication (Supplementary Fig.S2). Two 
weeks after the addition of sonicated PFF seeds, neural networks on ibidi chips were fixed and 
stained with the antibody for alpha-synuclein phosphorylated at S129 (ab51253) to visualize 
intracellular alpha-synuclein aggregates by immunofluorescence (Supplementary Fig.S3). 
Although consistent positive intracellular labelling by the S129 antibody was observed in the 
PFF treated neural networks, both perinuclearly and at distal neuronal sites, background 
staining and unspecific labelling was also consistently observed in the control conditions, even 
following TritonX-100 protein extraction, rendering the immunocytochemistry inconclusive.  
 
Verification of induced pathology in super resolution  
Ultrastructural analysis of the neural networks collected from the MEAs showed evidence of 
perinuclear fibrillization in the samples from the PFF condition (Fig.4A-D), but not in the 
samples from the monomer control condition (data not shown). Several fibrillous structures 
were also observed in the cytosol and within neurites of samples taken from the PFF condition 
(Fig.4E-H). Furthermore, an abundance of membrane-enveloped “inclusion bodies” in line 
with recent publications (66), were observed in the PFF condition, but not in samples from the 
monomer control condition (Supplementary S4).  
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Fig. 4 Fibrillization in PFF condition samples. A-D) Ultrastructural images showing 
perinuclear fibrillization in neural network samples from the PFF condition. (A, C) overview 
of single cell with intracellular features of interest highlighted in red (2μm scale bar). B, D) 
ultrastructure of perinuclear fibrils highlighted in panels A, C and indicated by black arrows 
(0.5μm scale bar). (E) overview image from the PFF condition showing fibrillization 
(highlighted in red) within a neurite, and G) fibrillization within the cytosol (2μm scale bar). 
F, H) shows the ultrastructure of the fibrils highlighted in panels E, G and indicated by arrows 
(0.5μm scale bar).  
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Furthermore, the ultrastructural analysis revealed a significant difference in observed necrotic 
and apoptotic elements in the extracellular environment surrounding neurons in the samples 
taken from the PFF treated condition and in the samples taken from the monomer control 
condition (t14=2,481, p<.05). In addition, the intracellular environment of single neurons 
revealed prominent autophagosomal and lysosomal vacuolization in samples from both the PFF 
treated condition and from the monomer control condition (with no significant differences 
between the conditions (t15.549=-.111, p>.05). (Supplementary Fig.S5). Representative 
overview images of samples used for ultrastructural analysis of extracellular necrotic/apoptotic 
elements, as well as intracellular autophagosomal and lysosomal vacuolization, can be found 
in the supplementary (Fig.S6,S7). 
 
MEA recordings and analysis 
After 3 weeks of maturation on the MEAs, the baseline activity of the engineered neural 
networks (n=8) was recorded for 5 sessions until the point of PFF/monomer/PBS addition. After 
this point, 13 recordings (spanning across a total of 3 weeks) were made from the neural 
networks on each MEA (Fig.5A). Raster plots showing the spiking activity recorded from each 
individual MEA network during two common time points (recording 4 during the baseline 
period and recording 12 during the post PFF/monomer/PBS period) are displayed in Fig.5BC, 
illustrating both the developing activity patterns as well as the individual variability observed 
across MEAs.   
 

 
Fig.5 Microelectrode arrays (MEA) recording timeline and example raster plots from 
each neural network. A) depicts the MEA recording timeline, with # numbers indicating each 
recording time point and the axis numbers indicating the corresponding culture age (days post 
seeding). The arrow indicates the point of experimental intervention, where either PFFs, 
monomers or PBS were added to the neural networks after the 5th baseline recording. Panels B 
and C show raster plots of the electrophysiological spiking activity obtained from each 
individual MEA neural network, with each blue dot representing a spike recorded at the 
indicated electrode. B) shows the spiking activity recorded from each of the control neural 
networks, two from the PBS condition (uppermost panels) and two from the monomer condition 
(bottommost panels), at a baseline time point (#4) (left), and at a post PBS/monomer time point 
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(#12) (right). C) shows the spiking activity recorded from the experimental condition neural 
networks (n = 4), at the same baseline timepoint (4#) (left), and post PFF addition time point 
(#12) (right), as for the control condition MEAs displayed in panel B.  
 
Four basic parameters were evaluated to observe how the networks matured: the MFR, ISI, 
PISI, and XC. The MFR describes the overall amount of activity in the network, and the ISI 
gives an indication of burstiness or the degree to which spikes from the same neuron occur in 
close temporal proximity. The PISI reflects network-wide spiking intervals and thus is expected 
to give an indication of connectivity or synchrony. Similarly, the XC describes the similarity 
between the spike trains from two recording channels and thus also gives an indication of 
functional connectivity or synchrony within the network. 
 
Fig. 6A shows the mean baseline values of these parameters obtained for each group, and Fig. 
6B-E shows plots of the time evolution of the parameters as percentages of the baseline values. 
The error bars represent the standard deviations among each group. One outlier recording from 
a neural network in the PFF group (MEA 16, time point 15) was eliminated because it had a 
high level of noise and appeared to yield many false positives in the spike detection, producing 
a spurious peak in the MFR and XC values. As shown in the results in Fig. 6, no apparent 
difference was observed among the evolution of these parameters, and thus no strong 
conclusions could be drawn about the difference in behaviour among the three groups.  
 

 
Fig.6 Descriptive electrophysiological values obtained throughout the recording period 
for all neural networks A) table showing the average measures of the mean firing rate (MFR), 
inter-spike interval (ISI), population inter-spike interval (PISI), and cross-correlation (XC) 
measured across the 5 baseline time points for each group (PBS, PFF, and Monomer 
conditions), with standard deviations (std). B-E) shows a graphical representation of the MFR, 
XC, ISI, and PISI development, respectively, of all groups after the baseline period, with error 
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bars representing the standard deviation across the networks in each group. Each value is given 
as a percentage of the baseline measures listed in table A). 
 
Assessment of Criticality  
Criticality assessment of the 8 neural networks (2 monomer controls, 2 PBS controls, 4 PFF 
condition) revealed two clear outliers which were subsequently excluded, both of which were 
from the monomer control condition. One of these networks consistently displayed non-critical 
activity (during all 18 recording time points, both at baseline and following monomer addition), 
while the other network either displayed too few neuronal avalanches for criticality assessment 
or non-critical activity.  
 
Recording time points where more than half of the neural networks did not exhibit enough 
neuronal avalanche activity for computational analysis of criticality have been omitted from the 
graphical representation in Fig.7 (recording numbers 3, 8-11, 16- 18). The criticality assessment 
at 4 baseline time points, as well as 6 time points following PFF addition are presented for 2 
MEAs in the PBS condition (control), and 4 in the PFF condition (Fig.7). Analysis of criticality 
revealed fluctuating neural network states in both the PFF and PBS conditions. As can be seen 
from Fig.7, all neural networks (with the exception of network number 2 and 3 in the PFF 
condition) show probability size distributions of neuronal avalanche activity consistent with 
both critical and non-critical states during baseline measures, that is, before any perturbation. 
Furthermore, although some data points are missing (due to too few avalanches during the 
recording), most measurements during the baseline period are consistent with non-critical states 
(10/17 data points). However, after addition of alpha-synuclein PFF seeds to the neural 
networks in the PFF condition (represented by a black separation line in Fig.7), the majority of 
these perturbed neural networks (with the exception of PFF 4) mainly display critical activity 
states (11/17 data points). Contrary to this, the two neural networks in the PBS condition 
collectively display mostly non-critical activity states during these time points (6/9 data points). 
Together, these results suggest a difference in network criticality state between the groups after 
the point of perturbation, where the neural networks with PFF induced pathology largely 
display activity consistent with critical states, and the non-perturbed networks largely display 
activity consistent with non-critical states. 
 

Fig.7 Criticality analysis. A) Shows the probablility distribution of the avalanche size for the 
10 recording timepoints included (4 baseline, 6 after PBS addition) from the PBS 1 (control) 
neural network, with the power law exponent a values indicated for each time point where the 
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power law fitting results indicated criticality. B) shows the cumulative criticality assessment 
for each of the 6 neural networks (2 from the PBS condition, 4 from the PFF condition) 
during the 10 recording time points included in the assessment. The point of perturbation 
(addition of PFF seeds, or PBS in the control condition) is indicated by the horizontal 
separation line. The green columns indicate neural network activity with avalanche size 
distributions following a power law distribution, consistent with a critical state (p ≥ 0.1), 
while red columns indicate a poor power law fit consistent with non-critical activity (p < 0.1). 
During the baseline time points, all neural networks (with the exception of PFF 2 and 3) 
fluctuated between critical and non-critical activity, with most data points being consistent 
with with non-critical states (10/17 data points). After the point of perturbation, the control 
neural networks (PBS 1 and 2) collectively display mainly non-critical activity states (6/9 data 
points), while the PFF neural networks mainly display critical activity states (with the 
exception of PFF 4) (11/17 data points), suggesting a difference between the groups in 
cirticality follwing pathology induction. 
 
Discussion 
 
Self-organized criticality  
To investigate whether development of PD-related proteinopathy can be associated with 
network states of criticality, we induced alpha-synuclein proteinopathy in engineered human 
neural networks in vitro, and applied computational analysis to identify SoC in 
electrophysiological MEA recordings from the resulting network activity. Overall, our results 
point towards a difference in criticality state between the groups following perturbation, as the 
neural networks in the PFF condition largely ended up within the critical regime (10/17 data 
points), consistent with SoC, while the PBS controls largely ended up within the non-critical 
regime (6/9 data points) (Fig.7). SoC has been proposed as a mechanism that guides the 
spontaneous activity of developing neural networks into transient and homeostatically regulated 
patterns, or “meta-stable dynamics” (67, 68). These meta-stable dynamics are in turn part of 
the regular developmental trajectory of neural networks in vitro, and have been found to occur 
only in neural networks where the activity propagates within the critical mode (68). It is thus 
surprising that the networks with PFF induced pathology displayed neuronal avalanche activity 
largely consistent with SoC, while the control neural networks largely displayed non-critical 
activity. Nevertheless, these results could be indicative of a difference in developmental 
trajectory between the neural networks with PFF-induced pathology and the PBS control neural 
networks, highlight the potential relevance of SoC in unveiling functional alterations resulting 
from such an evolving pathology within the networks. 
 
Evaluation of SoC through neuronal avalanche size distributions has been shown to provide a 
good representation of “damage spread” in perturbation experiments where identical replicas 
of the same system have different conditions and are investigated over time, even if the actual 
underlying dynamics are much more complicated (53). As can be seen from Fig.5 summarizing 
the results of the standard electrophysiological analysis for the neural networks (MFR, XC, ISI 
and PISI) after perturbation, there is no clear trend separating the neural networks in the PFF 
condition from the networks in the control conditions, although the ultrastructural analysis 
revealed clear signs of induced pathology in the former (Fig.4, S4-7). This lack of a pathology 
expression in the functional activity of the perturbed neural networks is well in line with the 
aforementioned compensatory network mechanisms, such as homeostatic plasticity and circuit 
reconfiguration, which will work to maintain the functional capacity and present state of the 
network for as long as possible, effectively masking the developing PD-related pathology. 
However, as already noted, our results indicate a difference in network criticality state between 
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the PFF and control group after perturbation, where the assessment of criticality should reflect 
the actual pathological development, whether it produces a linear, abrupt, or fluctuating change 
in the system dynamics, if enough time points and samples are incorporated (53).  
 
Furthermore, the criticality analysis of neuronal avalanche activity revealed that the neural 
networks fluctuated between critical and non-critical states, both at baseline and after 
perturbation, for networks in both the PFF condition and the PBS control condition. Some other 
reports of in vitro neural network criticality (using dissociated rat cortical neurons) have found 
that most, but not all, of the neural networks investigated tend to stay within the critical regime 
after a certain point in their development (58, 68). The baseline activity of our human iPSC-
derived neural networks mostly display activity consistent with a non-critical regime, 
suggesting a different developmental trajectory from networks derived from rodent primary 
neurons. This is indeed conceivable as the epigenetic and age-related imprint is removed 
through cell reprogramming through the iPSC stage (69, 70), resulting in a population of 
rejuvenated cells, from which our human neural networks were derived. Some studies indicate 
a slower development and maturation of neural networks derived from iPSCs compared to 
primary neurons (71-73), which could point towards a partial explanation of the largely non-
critical activity observed at baseline in our neural networks. On the other hand, the non-
homogenous population of cells represented within the iPSC-derived neural networks produces 
a more complex environment for development than pure neuronal cultures, which likely speeds 
up the developmental trajectory. For instance, the presence of astrocytes facilitates the 
formation and maturation of synaptic connections (74). However, as no other published study 
has investigated criticality in iPSC-derived neural networks, this remains to be elucidated, while 
other currently unknown influencing factors cannot be excluded at this point. 
 
A more theoretical explanation for the large variability/ fluctuation observed in criticality state, 
both within and between the neural networks at baseline, can be found within the concept of 
“dirty criticality”. Dirty criticality, or “self-organized quasi criticality”, describes a mechanism 
which drags the activity back and forth around a stretched region of criticality, rather than being 
defined at a true point of criticality (which is needed to fully comply with standard SoC) (53, 
75-78). This variant might thus contain more plausible models for biological neural networks, 
as neural network activity actually “hovers” around a region of criticality. Here, adaptive 
criticality (aSoC) models explicitly take into consideration the changing topology of the 
biological neural networks through dynamic parameters such as synaptic weight alteration, or 
link deletion and creation, thus encompassing structural network changes and local rewiring 
rules (75, 77-79). aSoC is thus based on a co-adaptive process between network architecture 
and dynamics (56, 80-82), meaning that the observed fluctuations in network criticality state 
during the baseline period could result from structural changes occurring in the networks (and 
vice-versa). Likewise, the fact that the neural networks in the PFF group largely ended up in a 
critical regime after pathology induction could be explained by the topological network changes 
caused by neuronal loss. Assuming that the networks were in a supercritical state prior to 
perturbation, a loss of connections would pull the network state towards criticality (56). Further 
corroborating this notion, a recent study by our group demonstrated that supercritical 
developing neural networks could be brought into a state of criticality through transient 
chemical disruption of the inhibitory-excitatory balance (83). 
 
Induction of pathology by alpha-synuclein PFF seeds 
In a recent publication, Van den Berge et al., (13) showed that alpha-synuclein PFF seeds 
injected into the duodenum wall of a transgenic rat model induce an alpha-synuclein pathology 
which propagates transynaptically and bidirectionally through the parasympathetic and 
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sympathetic nervous system to the brain stem in a pattern which recapitulates Braak’s 
hypothesis (6) of the development of a patterned pathological propagation in PD. This finding, 
together with the seminal demonstration of PFF induced pathology propagating from the 
gastrointestinal tract to the brains in rats (11), strengthens the growing suspicion of idiopathic 
PD originating from a yet unidentified pathogen capable of passing the mucosal barrier (84). 
Thus, our investigation of alpha-synuclein PFF induced pathology in human iPSC-derived 
neural networks is highly relevant and in line with the current direction of PD research.  
 
As has been reported by several other studies investigating alpha-synuclein PFF induced 
pathology (85-90), we experienced issues with unequivocal identification of pathological 
alpha-synuclein aggregates using immunocytochemistry (Fig.S3), even after TritonX-1000 
protein extraction, which should leave only insoluble inclusions (42, 62, 90). Although neural 
networks from the PFF condition consistently displayed positive immunolabeling of alpha-
synuclein phosphorylated at S129, unspecific labelling and background staining were also 
observed in control conditions, rendering the immunoassays inconclusive. We therefore aimed 
to identify alpha-synuclein inclusions based on ultrastructural morphology and localization 
using TEM. In samples from the PFF condition, but not in samples from the monomer control 
condition, we observed several intracellular structures whose shape, size, and localization are 
consistent with alpha-synuclein aggregates found in previous studies (41, 85, 91)(Fig.3, S4). 
Furthermore, our neural network samples were analysed with respect to additional 
structural/morphological characteristics associated with reduced cell health and viability, and 
which are heavily linked to pathological intracellular aggregates (66). These include 
extracellular residual elements of apoptosis, necrosis and necroptosis (Fig. S5, S6), as well as 
intracellular elements of autophagic and lysosomal activation (Fig. S5, S7). The latter is of 
particular interest as they are key regulators of cellular homeostasis, degrading and recycling 
proteins and cell constituents. As neurons are faced with disease related and aggregate-prone 
protein forms such as alpha-synuclein PFFs, this regulatory function becomes even more 
critical, as failure precipitates inclusion formation (92, 93). As pathological protein aggregation 
eventually saturates the autophagic machinery, the resulting imbalance in autophagic flux is 
believed to lead to neurodegeneration and cell death (94). This corresponds well with our 
results, as significantly more apoptotic and necrotic residues were found in the samples from 
PFF condition compared to the monomer control condition (Fig.S5). Furthermore, many of 
these apoptotic and necrotic elements showed signs of pathological fibril condensation (Fig. 
S4). As no significant difference in autophagic and lysosomal activation was found between 
the two conditions, these results suggest that most of the neurons affected by the PFF induced 
pathology had already succumbed to neurodegeneration and cell death at the point of 
ultrastructural analysis (38 days post perturbation).  
 
Conclusion 
Our study shows that developing PD-related proteinopathy can be associated with network 
criticality states. Furthermore, the results suggest that induction of proteinopathy potentially 
changes the developmental trajectory of the neural networks in relation to SoC. Although the 
evolving pathology was not visible through common functional activity measures such as MFR, 
XC, ISI and PISI, a difference in overall criticality state suggests that there is a discernible 
difference between the PFF neural networks and the control neural networks after the point of 
perturbation, where the former largely displayed neuronal avalanche activity consistent with 
criticality, while the latter mainly displayed non-critical activity. To our knowledge, this first 
report associating network criticality state with induced proteinopathy in human iPSC-derived 
neural networks. This approach opens up exciting new avenues for identifying and 
understanding developing pathologies underlying neurodegenerative diseases.  
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PD  - Parkinson’s disease 
AD - Alzheimer’s disease 
ALS - Amyotrophic lateral sclerosis 
SNpc - Substantia Nigra pars compacta 
MEA - multielectrode array 
SoC  - Self-organized criticality 
PFF - alpha-synucelin pre-formed fibrils 
iPSC - induced pluripotent stem cells 
PBS - Phosphate buffered saline 
AFM - Atomic force microscopy 
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PISI - Population inter-spike interval 
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