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Abstract—With the emergence of Internet of Things (IoT),
securing and managing large, complex enterprise network
infrastructure requires capturing and analyzing network traffic
traces in real-time. An accurate passive Operating System
(OS) fingerprinting plays a critical role in effective network
management and cybersecurity protection. Passive fingerprinting
doesn’t send probes that introduce extra load to the network and
hence it has a clear advantage over active fingerprinting since
it also reduces the risk of triggering false alarms. This paper
proposes and evaluates an advanced classification approach to
passive OS fingerprinting by leveraging state-of-the-art classical
machine learning and deep learning techniques. Our controlled
experiments on benchmark data, emulated and realistic traffic
is performed using two approaches. Through an Oracle-based
machine learning approach, we found that the underlying TCP
variant is an important feature for predicting the remote OS.
Based on this observation, we develop a sophisticated tool for
OS fingerprinting that first predicts the TCP flavor using passive
traffic traces and then uses this prediction as an input feature
for another machine learning algorithm for predicting the remote
OS from passive measurements. This paper takes the passive
fingerprinting problem one step further by introducing the
underlying predicted TCP variant as a distinguishing feature. In
terms of accuracy, we empirically demonstrate that accurately
predicting the TCP variant has the potential to boost the
evaluation performance from 84% to 94% on average across
all our validation scenarios and across different types of traffic
sources. We also demonstrate a practical example of this potential,
by increasing the performance to 91.3% and 95.22% on average
using a tool for loss-based and a combination of loss and
delay-based TCP variant prediction in an emulated setting. To
the best of our knowledge, this is the first study that explores
the potential for using the knowledge of the TCP variant to
significantly boost the accuracy of passive OS fingerprinting.
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I. INTRODUCTION AND MOTIVATION

AS modern network infrastructures grow in size,
collecting detailed relevant knowledge about the dynamic

characteristics and complexity of large heterogeneous networks
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is crucial for many purposes e.g., network vulnerability
assessment and monitoring, spam detection, etc. The
interconnection and heterogeneity of IoT-enabled devices
connected to the Internet also raises potential security issues
and it has gained a lot of research attention from the
industry to academia [3, 24, 44, 53]. Developing advanced
network security and monitoring techniques are important
for both the research and security practitioners. There has
been a significant research work in the context of network
management and cybersecurity on developing network security
tools to fingerprint remote and local Operating Systems
(OSes) [33, 34, 35, 54, 55]. OS fingerprinting is the process
of inferring the underlying OS of a machine operating with
TCP/IP packets by a remote device connected on the Internet
without having physical access to the device [26].

There are many different custom tools for fingerprinting of
the most commonly used OSes based on the characteristics
of its underlying TCP/IP network stack [26] and this, to
a large extent, is due to variability in how the TCP/IP
stack is traditionally implemented across different OSes [32].
One common approach, for example, is by collecting the
TCP/IP stack basic parameters [30], e.g., IP initial Time
To Live (TTL) default values [8], HTTP packets using the
User-agent field [29], Internet Control Message Protocol
(ICMP) requests [38], known open port patterns, TCP window
size [23], TCP Maximum Segment Size (MSS) [40], IP Don’t
Fragment (DF) flag [39], a set of other specific TCP options
to mention a few. However, in our work, we want to take this
one step further by combining these basic features and other
settings with the underlying TCP variant as a feature in our
model due to the fact that different OSes are doing slightly
different implementations of TCP. Some implementations of
common TCP variants quickly overshoot the size of the
Congestion Window (cwnd) because of differences in the
variant implementations. Hence, we believe that knowing the
implementation of the underlying OS may help us understand
better their exact behavior. It can also help us explore how
to classify an OS when different OSes are implementing the
same TCP variant.

Fingerprinting Techniques: We can determine what OS a
remote computer on the Internet is running by either passively
listening to traffic captured from a network or by actively
sending it packets. The most widely used complementary
remote OS fingerprinting proven approaches that employ a
variety of TCP/IP stack scanning are broadly categorized into
classes of active and passive methods.
• Active Fingerprinting: This technique is based on actively
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transmitting one or more specially crafted network
packets with different packet settings or flags to a remote
network device in order to analyze the corresponding
potentially identifying replies [33, 54]. This method
determines knowledge of the underlying OS according
to the received responses from the target device by
examining the network behavior of known TCP/IP
stack [45]. However, since this approach injects additional
traffic to the network by generating active probes, it may
itself trigger alarms and get blocked by firewall rules and
Network address translators (NATs) [13].

• Passive Fingerprinting: This approach, on the other hand,
inspects and analyzes packets traveling between end hosts
without injecting any traffic into the network [34, 35, 55].
This technique with little resource simply analyzes a
pattern of the OS-specific information that has already
been sent in the network traffic and compares for a
match with a predefined database that contains a list of
known signatures of different OSes. Passive fingerprinting
doesn’t send probes and hence it has a clear advantage
over active fingerprinting since it reduces the risk of
triggering alarms [13].

OS fingerprinting can also be performed using classical
techniques known as “banner grabbing”. It is an approach used
to gain detailed information about a remote computer system
on a network and the associated services running on its opened
ports [42]. Using techniques like this, some remote computers
announce their underlying OS freely and running application
services with their versions in use to anyone connecting to
them as part of welcome banners or header information.
Some of the widely used services that serve banner grabbing
are: Telnet, FTP, NetCat, SMTP, etc. However, it is useful
to remember that some of these basic services are effective
against less secure networks.

Potential benefits and applications: Network scanning and
accurate remote OS fingerprinting are the crucial steps for
penetration testing in terms of security and privacy protection.
Note that attackers can also embrace passive fingerprinting
techniques to search for potential victims in a network. For
example, by identifying the OS running on a remote computer
and the list of services it runs, an attacker can target the device
to eavesdrop on the communication between the endpoints
without having physical access to the device. However, we
argue that our work presented here is motivated by a number
of practical applications that can be positively used by network
and system administrators. Passively fingerprinting an OS by
analyzing the packets it generates and transmits over a network
is extremely important in the areas of network management
and computer security for several reasons. For example, it
is useful to explore a network for potential exploitations of
security vulnerabilities which can be exploited by attackers,
auditing, identify critical attacks, reveal new information about
a network user etc. Network administrators can, therefore, use
this OS related information to maintain the security policy and
reliability of their network by configuring a network-based
Intrusion Detection Systems (IDS) [31]. Vulnerabilities and
security threats in a network may result from rogue or

unauthorized devices [49], unsecured internal nodes within
the network, and from external nodes [7]. Hence, passively
fingerprinting an OS has a potential benefit in addressing these
critical problems. This, from an academic point of view, is
interesting and something that needs to be addressed from a
network security research point of view.

Client Oses of sending nodes

Fingerprinter

Receiving nodes 
on the Internet

35.195.9.67

Intermediate node (monitor)

Fig. 1: Network architecture for passive OS fingerprinting by
an intermediate node.

Limitations of previous works: Traditionally, most of
the existing general OS fingerprinting techniques resort to
manually generated signature matching from a database of
heuristics which contains features of widely used OSes. This
means, after comparing the generated signatures, the first set
of responses match with the highest confidence against a
database of fingerprints would be used to select the specific
probable OS. However, manually updating a large number
of signature and managing databases of new OSes adds a
considerable amount of time and hence we may suffer from
the consequences of the lack of recent signature updates of the
known OSes. For example as reported in [29], the last updates
of the fingerprint databases of Ettercap [35] and p0f [55]
date to 2011 and 2014 respectively. Consequently, new OSes
families like Android 4.4 and higher versions of Android,
Windows 10 distributions, etc. will not be recognized by these
tools since they are not included in their fingerprint databases.
Hence, we argue that it is important to consider making use of
a fingerprint database that contains variations of most currently
used OSes and automating these tasks by employing learning
algorithms capable of extracting all possible OS-specific
features for discovering the underlying OSes. To explore this
idea of applying machine learning algorithms, we present
a unified and robust classification approach to an advanced
passive OS fingerprinting that leverages both machine learning
and deep learning methods. Our fingerprinting technique is
completely passive meaning that we only need to be able
to observe network traffic from a target machine at any
observation point on the network without injecting any traffic
into the network. Note that the TCP/IP header fields would
not be impacted by SSL/TLS encryption of the TCP payload.
Hence, since we utilize features that are readable even with
encryption, our approach is independent of whether the flow
is encrypted or not. Figure 1 shows the architecture for
implementing our fingerprinting methodology.

Why use machine learning approaches to perform OS
fingerprinting? There are several limitations imposed by
classical fingerprinting techniques. Passive OS fingerprinting
generally relies on recognizing the default values for various
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TCP/IP stack parameters. If a user changes these parameters,
the task of OS fingerprinting becomes much more challenging.
Most of the existing works on fingerprinting provide little
capability to address this challenge. Motivated by this problem,
we proposed a novel approach by leveraging both machine
learning and deep learning-based techniques that consider the
set of parameters as a whole, rather than individually so that
our model caters for variations in TCP parameters. If a user
changes the initial receive window size, for instance, we may
still be able to recognize the OS from other parameters that
have not been changed (TCP congestion control algorithm,
initial cwnd size, etc.). Note that this depends entirely on
the changes made by the user to the default TCP or OS
stack parameters that are commonly used for signature-based
fingerprinting. The other reason why we create a model by
employing learning techniques is to understand the complex
patterns of the varying values in the TCP header and extract
useful input features. Because machine learning offers new
possibilities as it can extract patterns and general rules for
classification. Machine learning can also be more robust to
small variations in the input parameters. In addition to this,
with the use of learning techniques, we argue that avoiding
using manually updated static signature databases has two
potential benefits. Firstly there is no tedious task of creating
these unique fingerprints, all you need is a set of values or
features. The second benefit comes from a known flaw in
many of the existing fingerprinting tools, where a “first-match”
policy is applied, meaning that if two fingerprints are equal
the tool would always predict the first OS with that exact
fingerprint. However, learning techniques, on the other hand,
make calculated guesses of which of the classes with the same
fingerprint that will be predicted.

Contributions: We summarize our main contributions below.
• We propose and evaluate a robust approach to OS

fingerprinting from passive measurements by leveraging
machine learning and deep learning techniques.

• We investigate the use of TCP congestion control variant
as a distinguishing feature in passive OS fingerprinting.

• We explore variability in implementations of TCP variant
by different OSes and its effect on classifying remote OS.

• We study the applicability of Recurrent Neural Networks
(RNN)-based models for robust and advanced passive OS
fingerprinting by combining the basic TCP/IP features and
the predicted TCP variant as input vectors.

• We show that the TCP flavor has a great potential for
boosting passive OS fingerprinting accuracy.

• We build a universal tool that can be applied to first
estimate the TCP cwnd from passive measurements,
second predict the underlying TCP flavor, and finally uses
the predicted TCP variant as an input feature to fingerprint
the remote computer’s OS.

Roadmap: The rest of the paper is organized as follows.
Section II discusses related work, and Section III presents
the experimental datasets. Section IV presents the machine
learning of the OS fingerprinter. The machine learning of
the TCP variant prediction tool is presented in detail in

Section V. Section VI presents the experimental results without
a known TCP variant which will play the role of baseline. In
order to assess the importance of knowing the TCP variant,
experimental results of all the use cases with an Oracle-given
TCP variant are presented in Section VII. Section IX presents
the experimental results with the loss-based predicted TCP
variant. Results with the delay-based TCP variant prediction
are presented in Section X. Section XI presents the transfer
learning results. Finally, Section XII concludes our paper and
suggests directions for future research work.

II. RELATED WORK

Remote OSes fingerprinting has a long history in the
computer security community [2, 29, 30, 33]. Here, we briefly
summarize the relevant related works as follows.

TCP/IP header fingerprinting and any information related to
application protocols are used to identify the underlying OS
running on a remote host either actively or passively [32]. As
we explained in Section I, there are multiple existing tools
for both the predominant active and passive OS fingerprinting
approaches, where Nmap [33] is one of the most prominent
open-source active fingerprinting tools. The work presented
in [46], SYNSCAN, works in a similar fashion to Nmap,
but it performs the fingerprinting task by actively sending a
small number of crafted network packets to a single TCP
port. Xprobe2 [54] is another popular remote active OS
fingerprinting tool, which relies primarily on different types
of ICMP packets. By actively sending a small number of
User Datagram Protocol (UDP) and ICMP request packets
to the remote target host, Xprobe2 triggers ICMP datagram
responses. Xprobe2 uses a matrix-based fingerprint matching
based on a statistical computation of scores for each analysis
of potential remote OS detection. Since Xprobe2 also utilizes
fuzzy fingerprinting with a signature database matching
algorithm on the results as an alternative to Nmap, it means
that if we make a lot of changes to the default TCP/IP
stack parameters, the underlying OS will not be easily
detected. However, Xprobe2 is more robust to small fingerprint
variations as compared to Nmap. As explained above the other
OS fingerprinting tools, Ettercap [35] and p0f [55], have not
been updated since 2011 and 2014 respectively to include
variations of most widely used modern OSes. For passive OS
fingerprinting to be effective, we believe that the limitations
of these fingerprinting tools need to be addressed. The work
in [30] also demonstrates that the OS fingerprinting accuracy of
the Ettercap and p0f signature databases is low and techniques
to improve performance was proposed. It presents rule-based
machine learning classifiers capable of identifying 75 classes
of OSes from TCP/IP packet headers found in the Ettercap
database. They proposed a classifier technique using k-nearest
neighbors (KNN) that returns an approximate first match for
an OS from a fingerprint database. This counters the problem
of classifying remote and local hosts as unknown if no exact
match is found in the database [30]. However, their evaluation
yielded poor experimental results, rejecting as much as 84%
of the test packets, while 44% of the accepted patterns were
wrongly classified [30]. The problems contributing to poor
OS classification performance was believed to be caused by
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two main issues. The first reason is substitution errors due to
multiple OSes with exactly the same fingerprint feature values.
The second reason for this poor OS classification performance
is the high rejection rate caused by numerous unique feature
values derived from the same OS. This error can only be
reduced by combining the OS classes. After combining all
the OS classes, the error percentage was reduced to 9.8%
with not rejected packages. Beyond remote OS detection
using TCP/IP network stacks, fingerprinting techniques have
also been extended to be applied for remote device level
fingerprinting [11].

A recent study that is most closely related to our work,
and which has also given a comprehensive survey on passive
fingerprinting methods, can be found in [29]. The authors
have employed OS fingerprinting methods in the environment
of wireless networks. Besides using the three basic TCP/IP
stacks (i.e., TTL, window size, and initial SYN packet size),
the authors suggested also using the user-agent information in
HTTP request headers and communication with OS-specific
domains can be usable in large dynamic networks [29]. As
shown in Table II, the average accuracy of OS classification
using the TCP/IP parameters reported in [29] is 80.88%. Zhang
et al.’s paper on OS detection [56] utilizes only one machine
learning technique namely Support Vector Machine (SVM).
However, the testing error rate of identifying some of the OSes
e.g., Mac, Cisco, FreeBSD, and OpenBSD is 25.80%, 24.22%,
17.71%, and 15.85% respectively [56]. Aksoy et al. [2] have
employed genetic algorithms for identifying packet features
suitable for OS classification based on the analysis of the
network TCP/IP packets using machine learning algorithms.
However, most of these previous works use the basic actual
TCP/IP features for evaluating passive OS fingerprinting.
Besides, we believe that these tools have the inability to extract
all possible OS-specific features for passively fingerprinting
the underlying OSes. For example, OS-specific Domain
Name System (DNS) queries [6], inspecting Dynamic Host
Configuration Protocol (DHCP) options [27], etc.

In contrast, what separates our contribution in this paper
from the other previous related works is that our tool
supports a wider range of TCP/IP network stack features.
As shown in Figure 2, the main goal of our work presented
here is to combine these basic TCP/IP features that are
the basis of OS fingerprinting with the underlying TCP
variant by leveraging both machine learning and deep learning
techniques. This contribution remains largely unexplored and
is not used by existing OS fingerprinting techniques. Detecting
the implementation of a TCP variant passively is a challenging
task and this, we believe, is the reason why no previous
works use it to passively fingerprint remote and local OSes.
However, in our case, we already have a general solution for
this difficulty presented in our previous works [17, 18, 19].
The reason why we focus on the implementations of the
underlying TCP variant as a feature in our OS classifier
model is due to the fact that different OSes are doing slightly
different implementations of TCP. Hence, we believe that
passively observing the network-level characteristics found in
TCP packets can give us more information about the remote
computer’s underlying OS. We further believe that this will

also help us to explore in detail the long-term characteristics
of TCP traffic. To the best of our knowledge, this is the first
study that reports the potential of the underlying TCP feature in
boosting significantly the accuracy of passive OS fingerprinting
using machine learning and deep learning techniques.

III. EXPERIMENTAL DATASETS

Our machine learning models for OS classification is
developed and tested on three datasets, presented below.

A. Benchmark Data
First, we utilize a large benchmark dataset that has been

used for OS fingerprinting in a previous related work [29]. This
dataset is closely aligned with our task, and it was collected
from a university wireless network. The benchmark dataset was
used in the previous work for OS fingerprinting based on the
HTTP header, while the ambition of our paper is to do generic
fingerprinting based only on the TCP packet fields. Since we
aim at fingerprinting that is not application-specific, the TCP
information in the dataset is useful for our purpose, while the
HTTP User-agent information in our experiments is used only
to establish ground truth about the OS that was used.

TABLE I: Statistics and distribution of the OSes and their
market shares within the OS-family.

Android Windows Mac OS Linux iOS Unix Other
8.0 10 Mojave Ubuntu 16.04 12.1 Solaris 11.4 Unknown
8.1 7 High Sierra Ubuntu 18.04 11.4 FreeBSD 11.2
6.0 8.1 Sierra Ubuntu 18.10 12.0
7.0 8.0 El Capitan Fedora 29 10.3
7.1 XP Yosemite Debian 9 9.3
5.1 Vista Mavericks CentOS 7.6 11.2

openSUSE 42.3
36.5% 35.99% 6.37% 0.79% 13.99% 1.58% 4.78%

The benchmark dataset contains 79087345 flows, activity
of 21746 unique users, 253374 WiFi sessions, 25642 unique
MAC addresses, and 6104 unique IP addresses, a fingerprint
database of 2078 standard TCP/IP signatures of 51 known
unique OSes with a total of 529 variations when considering
major and minor versions [29]. The dataset consists of three
basic TCP/IP network stack features, i.e., initial SYN packet
size, TTL, and TCP window size [29]. After our first set of
testing, we realized that the data was severely skewed and
that only a few of the classes contained almost all of the
entries, giving us artificially good classification results. We
then removed most of the very seldom occurring classes and
ended up with 33 reduced classes. We also removed all traffic
that did not contain HTTP User-agent information, since we
could not establish ground truth for this traffic. In addition, we
created a new dataset where all the classes were bucketed into
seven groups, consisting of the six most widely used major
OS families: Android, Linux, Mac OS, Unix, Windows, iOS,
and a seventh class called “Other” for OSes not suited for any
of the other groups as shown in Table I. Finally, we ended up
distributing all of the labels equally so that each OS class had
the same number of occurrences. This is not necessarily the
option that gives a model with the best classification accuracy,
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but it creates the most versatile model with balanced training
data. This helps us improve the generalizability of our model
with a unified approach that encompasses all variations of the
most widely used OSes.

TABLE II: The performance of previous work [29]

Method Accuracy Precision Recall F-score
User-agent 0.9189 0.9812 0.6063 0.7495
TCP/IP parameters 0.8088 0.5249 0.4643 0.4927
Specific domains 0.8402 0.6286 0.4907 0.5512
Combination 0.8582 0.6587 0.6041 0.6302

B. Realistic Traffic
While benchmark traffic is useful to link our experiments

to previous related work, we also wanted additional realistic
traffic for which we have more control, and that allows us
to make our own assurances of the quality of the data. Thus,
we passively collected our realistic dataset from TCP traffic
originated from the internal network of the Oslo Metropolitan
University and destined to various hosts on the Internet. First,
we collected data for fixed (non-mobile) desktop computers
(typically using OSes like Windows, Linux, Unix, Mac OSx,
etc.) by using an intermediate node as shown in the network
setup in Figure 1. Then, we passively collected the data that
covered mobile devices, like android and iOS. The latter was
collected from the 5G 4IoT research lab [1, 43] of the Oslo
Metropolitan University.

We spent a significant amount of effort in establishing
ground truth, i.e., determining the actual OS that has been
used for each traffic flow. To establish ground truth in the
realistic dataset, we follow two approaches. The first approach
was only applicable to the non-mobile desktops, while the
second method was used for both mobile and non-mobile
devices. With the first method, we leveraged the DHCP log
messages associated with the non-mobile desktops to derive the
ground truth from the DHCP server of the Oslo Metropolitan
University network that logs the sessions by the MAC address
and name of the device. Since we collect the real data from
the internal network of our university, extracting the DHCP log
messages can give us detailed information about the OSes. We
could, for example, see information about the vendor-specific
prefixes since most of the OS variants are identified based on
their vendors. The list of device vendor prefixes is useful in
revealing the specific implementation of an OS because most
of the modern OSes from the same device vendor usually
share the same OS kernel and similar network behaviors. For
example, we found out that Apple products often share the
same TCP/IP parameters. The second approach we used to
identify the OS is getting the predefined browser strings that
loosely tell the name of the underlying OS assigned by the
vendor from Webserver.

We believe changing the default device names by all users is
not that common and sometimes discouraged by the vendors,
e.g., Google and Apple OSes. However, the device name
of Linux and Windows OSes could be changed easily by
experienced users which would make passively identifying
these devices hard. Since a number of computer vendors offer

devices with a pre-installed OS and default device name and
MAC address, we can use this information to derive the ground
truth for OS fingerprinting. For example, Apple devices use
a default string name of “<user>-iPhone”, “<user>-iPad”,
Microsoft uses “Windows-Phone” for its mobile devices, and
Android uses “android-<android−id>”, etc. Our real traffic
covers the communication to and from our university and
hence all traffic whose source and destination IP addresses are
within the subnets of our internal network. Hence the network
administrator of our university has full control over the internal
machines with real IP addresses that are not going to a NAT
gateway, and therefore it is fairly possible to tell whether it is a
laptop or a desktop PC by looking it up in the internal database
owned by the university. However, since it is a dynamic
network we do not have full control over external machines,
because they can be anything behind an IP address that changes
dynamically. This is because there is an endless number of
machines spoofing scanning the network and they can appear
as Linux-powered OSes but they could be Windows and vice
versa and this happens because the user may have strongly
tuned the TCP stack to look like something else. It is pretty
hard to certainly say anything about the external computers
because the communication can go through a NAT gateway
possessing another OS type. For example, if a user is connected
to a student wireless network, there is a chance that it may go
to a Linux NAT gateway, and hence from outside the user is
seen as Linux NAT which makes it hard to predict whether
the underlying OS is Linux, Mac or Windows. Therefore,
fingerprinting devices behind NAT technology on a distributed
network where a number of devices can hide behind a NAT
is another critical challenge. It is, therefore, worth noting that
establishing ground truth in dynamic networks at a larger scale
remains a challenging problem. Further investigation to explore
these difficulties will be done in our future works. Finally,
due to the privacy protection of possibly sensitive data, the
payload of all the network packets collected was removed
and anonymized with a prefix-preserving algorithm [10, 51].
Furthermore, we were only allowed to collect TCP headers of
the traffic flows, while we could not collect complete traffic
captures, due to privacy protection and legal reasons.
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Fig. 2: The process implemented on the intermediate node for
passive OS fingerprinting.
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Fig. 3: The process implemented on the monitor for prediction
of the TCP variant of the passively intercepted TCP traffic
flow. An LSTM-based machine learning module predicts the
cwnd from the outstanding bytes-in-flight. In the next step, the
cwnd behavior is used to predict the underlying TCP variant
as explained in further detail in our previous works [17, 18,
19]. As we can see in the bottom right part of Figure 2, The
predicted TCP variant is finally used as an input feature to the
OS fingerprinting process.

C. Emulated Traffic
In a real scenario where the OS fingerprinting is going

on continuously in an intermediate node of an enterprise or
production network, the intermediate node will have more
information available than only the TCP header, such as
the traffic profile or the knowledge of congestion or the
outstanding bytes-in-flight of a flow. In our experiments below,
we show how this information can be very useful for OS
fingerprinting. Since we do not have full traffic packet captures
in our benchmark dataset or in our realistic dataset, we needed
an additional dataset that we collected from an emulated
network, where there would be no privacy protection or legal
issues related to our dataset. The architecture of our emulated
network is similar to the network setup shown in Figure 1,
except that all the nodes (the sender, the intermediate node,
and the receiver) are implemented in virtual machines. All
background traffic of the OSes for our emulated scenario is
generated using the iperf [9]. Establishing ground truth is
straightforward, as we have full control of the OSes used
when generating the traffic. In addition to establishing the
ground truth, we also wanted to allow the intermediate node
to establish a prediction of the TCP variant by monitoring the
on-going traffic profile of the TCP flow between the sender and
the receiver. As shown later in the paper, using definitive or
predicted knowledge of the TCP variant as an additional input
feature to the OS fingerprinting, might boost the fingerprinting
accuracy significantly. How the machine learning model for
prediction of the TCP variant in the emulated scenario is
trained and how the TCP variant is subsequently predicted are
presented in the following section.

IV. MACHINE LEARNING OF THE OS FINGERPRINTER

A. Classical Machine Learning Approaches
The OS fingerprinter takes various features as input

parameters, and use machine learning to predict the OS as
shown in Figure 2. Many machine learning techniques could
be used to implement a model for passive OS fingerprinting. In
this paper, we have employed the following most commonly
used classical machine learning methods suitable for our

task. In order to train and test our classification models, we
employed every experiment with a ratio of 60% training,
40% testing split, and 5-fold cross-validation setting on all
variations of the features into one learning model.

SVM: In order to perform an efficient multi-class SVM
classification through cross-validation, we tuned the SVM
hyperparameters using a GridSearchCV that allows specifying
only the ranges of values for optimal parameters by
parallelization construction of the model fitting. Finally, in
our evaluation, we found out that SVM with a Radial Basis
Function (RBF) kernel for classification model yields a
substantially better result.

Random Forest (RF): We tuned the meta-estimator by varying
the number of decision trees between 1 and 1000. We found
out that increasing the number of trees more than 10 doesn’t
give much improvement in the classification accuracy.

KNN: We applied KNN by testing different values of K
ranging from 5 to 100 followed by a weight function for a
total of 20 observations. The observations have been conducted
in two ways. In the first experiment, we set the weight to
uniform. In the second experiment, the points are weighted by
the inverse of their distance, causing closer neighbors to have
greater influence. Finally, we choose the model that has the
highest accuracy for a given unseen instance.

Naive Bayes (NB): Intuitively, advanced machine learning
methods are expected to perform better than older techniques.
Hence, in our experiment, we have employed older
classification machine learning methods like NB model as a
baseline classifier. As it is shown in the experimental results,
given its simplicity and effectiveness, it consistently performs
comparably well as the other classification models with smaller
inaccuracy margin.

B. Deep Learning Approaches
To find the deeper characteristics of TCP variants

implemented by respective OSes and exploit the extra
OS-specific information, we apply the following two neural
network architectures.

Multilayer Perceptron (MLP): In our evaluation, MLP model
with a single-layer feedforward neural network [21, 41] has
been used to classify the different classes of OSes. After
the hyperparameter tuning, we tested our MLP model with
a different number of batch sizes, hidden layers, and nodes
(e.g., 0, 1, 2, 32, 64, 128) in each layer. Combining all of
these, a total of 324 models were trained with and without
the default TCP variant. We found out that the results for
both with and without a known TCP variant were almost the
same with an insignificant drop in the accuracy irrespective of
which hyperparameters performed the best. Finally, 150 nodes
of the network per dataset are trained for 500 epochs with
a batch size of 500 by SGD with momentum of 0.9 and a
constant learning rate of 0.01. However, we learned that SGD
is sensitive in regards to the selection of the learning rate
since it doesn’t automatize the values and we also found that
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it suffers from premature convergence and is outperformed
by Adam-based optimization methods. Hence, both Adam
and Nadam gradient-based optimization algorithms fit for our
purpose and that is because we wanted to use an optimization
algorithm that adapts its learning rate dynamically in a way that
doesn’t affect the objective function and learning process of the
model. Our experimental results show that the hyperparameter
tuning baseline experiments by applying tanh as activation
function and Adam optimization algorithm and training the
model for 500 epochs, provides a substantial improvement in
accuracy as compared to the other parameters.

Long Short-Term Memory (LSTM) models: We have
explored an approach to classify the underlying OS from
passive measurements using LSTM-based RNN architecture by
combining the basic TCP/IP features and the underlying TCP
variant shown in Table 2 as input vectors. For more details
about LSTM applied in the context of computer networks, we
refer the reader to our previous paper [18]. We trained our
LSTM model over 500 epochs of the training samples with
a batch size of 250 as values in time-series. We propagate
the input feature vector (x) to the model through a multilayer
LSTM cell followed by a fully connected dense layer of 150
hidden nodes with Rectified Linear Unit (ReLU) activation
function using the hard sigmoid as recurrent activation for
the different layers that generates an output of a sequence
dimensional vector of predicted OSes (yt). We trained our
LSTM-based learning algorithm without the knowledge of the
input features from the true signatures of the OSes during the
learning phase. We learn the model from the training data and
then finally predict the test labels from the testing instances on
all variations of the OS-specific parameters. In order to train
our prediction model more quickly, and get a more stable and
robust to changes of the passive OS classification model, we
have applied the Adam stochastic optimizer algorithm [25].
It is one of the most effective optimization algorithms in the
deep learning community. In our experiment, the algorithm
is set with an initial learning rate of 0.001 and exponential
decay rates of the first (β1) and second (β2) moments set to
0.9 and 0.999 respectively. We further optimize a wide range
of important hyperparameters related to the neural network
topology to improve the performance of our passive OS
classification model.

C. Comparative Suitability
Here, we discuss the comparative suitability of

implementing each classical machine learning and deep
learning classifiers analyzed in our paper. SVM classifiers use
an important concept for handling the non-linearity of features
through a technique that allows solving highly non-linear
problems called kernelization. In our experiment, we
employed kernel SVM with RBF for classification equipped
with different kernel tricks and regularization parameters. RF
classification models, as compared to SVM classifiers, have
fewer problems handling non-linearity. However, RF models
perform slightly better when it comes to high-dimensional
regression and classification tasks. Moreover, state-of-the-art
KNN models for classification are very effective and also

handle non-linearity reasonably well. Bayesian methods,
on the other hand, are incapable of handling non-linearity
problems. However, the reason why we have employed NB
in our evaluation as a baseline classifier is to compare the
performance of modern and older machine learning methods.
Advanced deep learning models have great potential for
handling non-linear relationships but that complicates training
by introducing a heavy computational burden.

D. Experimental Hardware Setup
All our machine learning experiments are carried out using a

cluster of HPC machines based upon the GNU/Linux operating
system running a modified version of the 4.15.0-39-generic
kernel release. The prediction model is performed on an
NVIDIA Tesla K80 GPU accelerator computing with the
following characteristics: Intel(R) Xeon(R) CPU E5-2670 v3
@2.30GHz, 64 CPU processors, 128 GB RAM, 12 CPU
cores running under Linux 64-bit. All nodes in the cluster
are connected to a low latency 56 Gbit/s Infiniband, gigabit
Ethernet, and have access to 600 TiB of BeeGFS parallel file
system storage.

E. Objectives of Our Experiments
The aim of our experiments is to explore the effect of the

TCP variant as an input feature when passively detecting the
underlying OS. To investigate this, we divide our analysis into
three different experiments. First, in the baseline experiment
presented in Section VI, we carry out the OS fingerprinting
without using a known TCP variant as an input feature. This
corresponds to the simplest state-of-the-art transport layer
method, which is illustrated in the upper part of Figure 2.
Since there is a close connection between existing popular
OSes and the TCP variants they use, our hypothesis was that
the potential for improvement by using the TCP variant as an
input feature would be significant. For example, CUBIC [14]
is the default congestion control algorithm as part of the
Linux kernel distribution configurations from version 2.6.19
onwards. Since Android devices are also Linux-powered,
CUBIC remains to be the default TCP congestion control
algorithm. Many Windows 7 distributions have been shipped
with the default New Reno [20] and whereas Windows 8
families with CTCP [47]. Therefore, in the next Oracle-based
experiment presented in Section VII, we investigate the
potential of knowing the TCP variant, and how much this
knowledge might boost the fingerprinting accuracy. Here we
assume that there is an Oracle that can identify and give the
TCP variant used in the TCP flow that is fingerprinted. This
is illustrated in the bottom left part of Figure 2. However,
in a real scenario, the intermediate node would not have
access to definite knowledge of the TCP variant (e.g., given
by an Oracle). Instead, the intermediate node might at best
try to infer it from the monitored traffic. Thus, in the third
prediction-based experiment presented in Section IX, we
first allow the intermediate node to predict the TCP variant
passively. This is illustrated in the bottom right part of Figure
2. The OS fingerprinter then uses that TCP variant prediction
as an input feature to make the OS prediction illustrated in



8

the upper part of Figure 2. The TCP variant is predicted by
analyzing the famous sawtooth pattern behavior of estimated
cwnd of TCP, which is computed based on the outstanding
bytes-in-flight [18, 19]. This is presented in more detail in the
next section. Since the latter experiment requires TCP traffic
details of outstanding bytes-in-flight, which is not available in
our benchmark and realistic datasets, this experiment is only
possible with our emulated dataset.

V. MACHINE LEARNING OF THE TCP VARIANT
PREDICTION TOOL

The main goal of the experiments in the emulated network is
to use the predicted TCP variant as an additional input feature
to the OS fingerprinting. The TCP variant is predicted by the
process illustrated in Figure 3. As described in sufficient detail
in our previous works [17, 18, 19], we used a database to match
and join the intercepted TCP traffic on both the intermediate
node and the sending node. The outstanding bytes-in-flight
of the traffic (i.e., the number of bytes that have been sent
but not yet acknowledged) is used as input to our machine
learning model to predict the cwnd behaviour of the traffic. We
use LSTM for the machine learning. We trained and verified
the machine learning model by matching the predicted TCP
states with the actual TCP kernel states directly logged from
the Linux kernel. Since we have full control of the sending
nodes, we can track the system-wide TCP state of every
packet that is sent and received from the kernel to verify our
model’s prediction accuracy against the actual TCP variant
by matching with the actual sending TCP states using the
techniques presented in our previous works [17, 18, 19]. After
the verification, we can run our learning model and get the
cwnd predictions of the TCP stack in use.

Once we can estimate the cwnd of the sender, we can also
infer the multiplicative back-off factor to decrease the cwnd
on a loss event (β) which is an important feature for uniquely
identifying the TCP variants. Finally, we combine the predicted
TCP variant as the basis of OS fingerprinting with the basic
TCP/IP features as shown in Figure 2. Here, we consider only
loss-based TCP congestion control algorithms, e.g., BIC [52],
CUBIC [14], CTCP [47], Reno [22], and New Reno [20].
Our approach could also be useful to other TCP variants like
Google’s QUIC [28]. QUIC uses packet loss as an indicator
of congestion and supports a number of different congestion
control algorithms, including CUBIC [14] and BBR [5].

VI. BASELINE EXPERIMENT: RESULTS WITHOUT
KNOWING THE TCP VARIANT

Here we present the results of the machine learning and deep
learning techniques under all the validation scenarios presented
above without a known underlying TCP variant which will play
the role of baseline for the other evaluations.

A. Based on Benchmark Data from Previous Related Work
Looking at Table III, both machine learning and deep

learning classification techniques have consistently achieved
good levels of precision and recall for all general classes of

OSes except iOS. Quantitatively, iOS, and Mac OS devices
were underrepresented in the benchmark data from previous
related work. Besides, as it is shown in Figure 5, there is a
slightly higher misclassification of iOS as unknown and this
is why the precision and recall of iOS are comparably lower
than the rest of OSes. We also believe that the limited TCP/IP
stack basic features could contribute to the indistinguishability
and misclassification of OS classes with the same kernel
implementation. The false positives are easier to notice in the
corresponding confusion matrices.

B. Based on Realistic Traffic

Our performance results of the realistic traffic without a
known TCP variant using the machine learning and deep
classification techniques are presented in Table IV. The
respective normalized confusion matrix for each technique are
presented in Figure 4.

C. Based on Emulated Traffic

Our performance results of the emulated traffic without a
known TCP variant as an input feature using both machine
learning and deep learning techniques are presented in Table V.
As we can see in the corresponding normalized confusion
matrices presented in Figure 6, the precision and recall for
most of the OSes using both machine learning and deep
learning techniques are reasonably good.

D. Comparison of Results Without Known TCP Variant

As shown in Tables III, IV, and V, our experimental results
are pretty consistent. Firstly, we can see that there is not much
difference in performance across different machine learning
and deep learning techniques. But more importantly, there are
not many differences in performance between results from
using different types of experimental data. This is intuitively
correct, since the OS fingerprinting is based on the basic
TCP/IP packet fields, and should not differ much between
various types of data, whether we do evaluation using the
benchmark data, real data or emulated data. Secondly, we
believe accuracy in the range of 82-88% (average value) is
perhaps not sufficient for a product in a real deployment. Our
hypothesis is that this accuracy could be boosted considerably
had we only known the implementation of the underlying TCP
variant. We will explore this hypothesis in the next section.

VII. ORACLE-BASED EXPERIMENT: RESULTS USING
ORACLE-GIVEN TCP VARIANT

Here we assume that we know exactly the underlying TCP
variant, i.e., we assume it is given by an Oracle. We show
that knowledge of the TCP variant has a great potential for
boosting passive fingerprinting of OSes, and in this section,
we will try to quantify this potential. In the next section, we
will show that much of this potential can be harvested by using
a tool that predicts the TCP variant.
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TABLE III: Benchmark data [29] experimental results without a known TCP variant using machine learning and deep learning
OS classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.75 0.89 0.86 0.90 0.86 0.90 0.68 0.85 0.75 0.92 0.77 0.85
Linux 0.84 0.83 0.91 0.91 0.86 0.94 0.83 0.82 0.90 0.82 0.83 0.85

Mac OS 0.64 0.76 0.61 0.82 0.59 0.83 0.64 0.76 0.62 0.81 0.62 0.83
Other 0.91 0.81 0.91 0.81 0.91 0.81 0.88 0.81 1.00 0.74 0.91 0.81
Unix 0.94 0.99 0.94 0.99 0.94 0.99 0.92 0.99 0.94 0.99 0.94 0.99

Windows 0.97 0.89 0.98 0.89 0.98 0.89 0.98 0.79 0.97 0.91 0.97 0.86
iOS 0.71 0.54 0.71 0.54 0.79 0.48 0.69 0.54 0.67 0.57 0.79 0.55

Average 0.82 0.82 0.85 0.84 0.85 0.83 0.80 0.79 0.84 0.82 0.83 0.82
Accuracy 81.96% 84.07% 83.95% 79.80% 82.16% 81.04%

TABLE IV: Realistic traffic experimental results without a known TCP variant using machine learning and deep learning OS
classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.75 0.89 0.86 0.90 0.84 0.93 0.68 0.85 0.81 0.83 0.76 0.86
Linux 0.89 0.82 0.94 0.89 0.93 0.88 0.85 0.82 0.89 0.79 0.90 0.81

Mac OS 0.63 0.81 0.61 0.82 0.61 0.82 0.64 0.76 0.61 0.82 0.82 0.79
Unix 0.94 0.99 0.94 0.99 0.94 0.99 0.92 0.99 0.92 0.99 0.94 0.99

Windows 0.97 0.89 0.98 0.89 0.98 0.89 0.98 0.82 0.98 0.89 0.97 0.89
iOS 0.88 0.72 0.86 0.73 0.88 0.72 0.86 0.72 0.84 0.73 0.70 0.92

Average 0.85 0.83 0.86 0.85 0.87 0.85 0.83 0.81 0.84 0.83 0.83 0.84
Accuracy 83.43% 85% 85.10% 81.25% 83.91% 83.27%

TABLE V: Emulated traffic experimental results without a known TCP variant using machine learning and deep learning OS
classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.74 0.90 0.86 0.90 0.85 0.91 0.74 0.88 0.75 0.88 0.91 0.85
Linux 0.92 0.82 0.94 0.89 0.92 0.90 0.84 0.85 0.93 0.78 0.92 0.74

Mac OS 0.63 0.81 0.61 0.82 0.61 0.82 0.64 0.76 0.62 0.81 0.86 0.88
Unix 0.94 0.99 0.94 0.99 0.94 0.99 0.94 0.99 0.92 0.99 0.94 1.00

Windows 0.97 0.89 0.98 0.89 0.98 0.89 0.97 0.88 0.93 0.91 0.98 0.73
iOS 0.88 0.73 0.86 0.73 0.88 0.73 0.88 0.73 0.88 0.73 0.82 1.00

Average 0.85 0.84 0.86 0.85 0.87 0.85 0.84 0.83 0.85 0.83 0.89 0.88
Accuracy 84.67% 85.73% 85.27% 83.12% 84.05% 88.44%

A. Based on Benchmark Data from Previous Related Work
Table VI shows a significant performance gain across all

classes of OSes when we assume prior knowledge of the
underlying TCP variant, as compared to the results when the
TCP variant is unknown presented in Table III.

B. Based on Realistic Traffic
The performance results of the realistic traffic with the

Oracle-given TCP variant presented in Table VII shows the
potential of knowing TCP variant given by an Oracle for
passive OS fingerprinting in a realistic scenario.

C. Based on Emulated Traffic
Our performance results of the emulated traffic with

the Oracle-given TCP variant using both classical machine
learning and deep learning techniques are presented in
Table VIII. We can see that this shows a significant
improvement in performance over the results without a known

TCP variant presented in Table V. Both machine learning
and deep learning techniques have comparable and consistent
results in terms of accuracy.

D. Comparison of Results With Oracle-given TCP Variant
Our accuracy results presented in Tables III, VII, and VIII,

demonstrate that by knowing the TCP variant we obtain a
considerable performance boost in all our experimental results,
compared to our previous results obtained without knowledge
of the TCP flavor. With an Oracle-given TCP variant, we
obtain a prediction accuracy of 94-96%, with an average value
of 94.1% over all traffic classes and of 95.4% over only
emulated traffic. The accuracy results are pretty consistent
across all scenarios. Comparing these results with our previous
results that do not use the Oracle (84.1% on average for
all traffic types and 85.6% only for emulated traffic), we
observe a solid increase in the OS fingerprinting performance.
This improvement would significantly boost the usefulness of
a product to be implemented in a real enterprise network
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(a) SVM (b) RF (c) KNN

(d) NB (e) MLP (f) LSTM

Fig. 4: Normalized confusion matrix comparison of the machine learning and deep learning OS classification techniques with
Oracle-given TCP variant using a realistic traffic.

TABLE VI: Benchmark data [29] experimental results with Oracle-given TCP variant using machine learning and deep learning
OS classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.96 1.00 0.99 0.98 0.99 0.98 0.93 0.98 0.98 0.96 0.96 0.99
Linux 0.86 0.93 0.92 0.95 0.91 0.95 0.82 0.92 0.87 0.94 0.90 0.93

Mac OS 0.99 0.90 0.96 0.92 0.96 0.92 0.98 0.88 0.96 0.92 0.99 0.90
Other 0.93 0.81 0.93 0.81 0.91 0.83 0.91 0.81 0.93 0.81 1.00 0.74
Unix 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Windows 0.99 0.89 0.97 0.91 0.99 0.89 1.00 0.78 0.97 0.91 0.83 0.92
iOS 0.75 0.88 0.75 0.91 0.75 0.91 0.71 0.89 0.76 0.89 0.72 0.85

Average 0.92 0.92 0.93 0.93 0.93 0.92 0.91 0.89 0.92 0.92 0.91 0.90
Accuracy 91.72% 92.52% 92.29% 89.81% 91.91% 91.10%

infrastructure. As in the previous section, here again, we
observe highly consistent performance results across different
machine learning and deep learning techniques and also
between the use of different types of experimental data. The
latter is useful knowledge for the next section since it means
that performance increases obtained over one traffic type is
shown to be amenable to other traffic types as well. In the
next section, we will have to base our evaluation on emulated
data, since we do not have the TCP traffic patterns of the
realistic data or benchmark data at hand. These traffic patterns
are required to be able to passively infer the TCP variant
in the experiments presented in the next section. In this

section, the idealistic Oracle was used only to demonstrate the
potential of knowing the TCP variant, but this is not a realistic
assumption. Thus, in the next section, we will instead base our
evaluation on a TCP variant that is passively predicted by a
deep learning-based tool that we developed and presented in
our previous work [17, 18, 19]. Using this tool, we explore
how close our performance will get to the ideal solution of
having an Oracle.

VIII. FEATURE COMBINATION

For the traditional machine learning algorithms, we can
employ any feature selection algorithm (e.g., Principal
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(a) SVM (b) RF (c) KNN

(d) NB (e) MLP (f) LSTM

Fig. 5: Normalized confusion matrix comparison of the machine learning and deep learning OS classification techniques with
Oracle-given TCP variant using the benchmark data from previous related work [29].

TABLE VII: Realistic traffic experimental results with Oracle-given TCP variant using machine learning and deep learning OS
classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.95 1.00 0.99 0.98 0.99 0.98 0.93 1.00 0.97 1.00 0.97 0.97
Linux 0.86 0.91 0.94 0.93 0.92 0.94 0.83 0.91 0.91 0.92 0.90 0.93

Mac OS 0.99 0.90 0.96 0.92 0.97 0.92 1.00 0.88 0.99 0.90 0.97 0.90
Unix 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Windows 0.99 0.89 0.99 0.89 0.99 0.89 1.00 0.84 0.99 0.89 0.99 0.89
iOS 0.93 0.96 0.91 0.99 0.92 0.98 0.91 0.96 0.91 0.98 0.92 0.97

Average 0.95 0.95 0.96 0.96 0.96 0.96 0.94 0.94 0.95 0.95 0.96 0.95
Accuracy 94.81% 95.65% 95.69% 93.62% 95.12% 95.14%

Component Analysis (PCA) [48]) that can be used to
experiment with the performance of each input feature.
However, since we have very few input features in our
experiment, we believed that creating a combination of the
features as shown in Tables IX and X could help us
understand the impact of each input feature on the passive
OS classification performance. We could employ this approach
for all the classical machine learning algorithms presented in
our paper. However, to avoid redundancy for the reader, the
feature combinations shown in Tables IX and X are only
for RF. Effective passive OS fingerprinting analysis requires
more variations in network traffic. As it is specified in [40]
and [39], inspecting a combination of the TTL in the IP header

and the size of the TCP receiver window of the first packet
in a TCP session is often enough in order to successfully
fingerprint various OSes of a target remote computers. One
main reason why the values of TTL and TCP receiver window
size varies is that different OSes and different versions of
the same underlying OS set different default values for these
parameters [39, 40]. As it can be seen from Tables IX and X,
a combination of the input features TTL and the TCP window
size gives a better accuracy when we have both two and three
pairs of the input features.
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TABLE VIII: Emulated traffic experimental results with the Oracle-given TCP variant using machine learning and deep learning
OS classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.97 0.98 0.99 0.98 0.99 0.98 0.95 1.00 0.98 0.97 0.96 0.98
Linux 0.90 0.91 0.95 0.93 0.92 0.95 0.88 0.90 0.97 0.89 0.93 0.91

Mac OS 0.99 0.90 0.97 0.92 0.97 0.92 0.99 0.90 0.93 0.94 0.94 0.92
Unix 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Windows 0.99 0.89 0.97 0.91 0.97 0.91 0.99 0.89 0.99 0.89 0.98 0.88
iOS 0.91 0.98 0.92 0.98 0.93 0.97 0.91 0.97 0.91 0.99 0.91 0.97

Average 0.95 0.95 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95
Accuracy 95.10% 96.02% 95.83% 94.60% 95.24% 95.08%

TABLE IX: RF classification results of an emulated traffic using two features combinations of the initial SYN packet size (PS),
TCP receiver window size (WS), TTL, and the Oracle-given TCP variant.

Feature Combinations
PS, WS PS, TTL PS, Oracle-given TCP WS, TTL WS, Oracle-given TCP TTL, Oracle-given TCP

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.72 0.77 0.78 0.59 0.68 0.90 0.72 0.89 0.79 0.88 0.66 0.90
Linux 0.91 0.75 0.80 0.84 0.91 0.74 0.86 0.82 0.90 0.84 0.89 0.75

Mac OS 0.62 0.78 0.60 0.78 0.64 0.76 0.64 0.76 0.61 0.82 0.64 0.76
Unix 0.94 0.99 0.94 0.99 0.94 0.99 0.94 0.99 0.94 0.99 0.94 0.99

Windows 0.94 0.77 0.92 0.80 0.95 0.86 0.95 0.87 0.95 0.88 0.94 0.81
iOS 0.75 0.74 0.75 0.74 0.85 0.73 0.88 0.73 0.88 0.73 0.85 0.73

Average 0.80 0.79 0.79 0.78 0.83 0.81 0.84 0.83 0.85 0.84 0.83 0.81
Accuracy 79.8% 78.2% 81.4% 82.6% 83.7% 81%

TABLE X: RF classification results of an emulated traffic using three and four features combinations of the initial SYN packet
size (PS), TCP receiver window size (WS), TTL, and the Oracle-given TCP variant.

Feature Combinations
PS, WS, TTL PS, TTL, Oracle-given TCP WS, TTL, Oracle-given TCP PS, WS, Oracle-given TCP PS, WS, TTL, Oracle-given TCP

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.86 0.90 0.92 0.91 0.97 0.98 0.92 0.97 0.99 0.98
Linux 0.94 0.89 0.94 0.82 0.89 0.91 0.92 0.87 0.95 0.93

Mac OS 0.61 0.82 0.91 0.88 0.97 0.92 0.97 0.88 0.97 0.92
Unix 0.94 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Windows 0.98 0.89 0.87 0.86 0.94 0.89 0.98 0.83 0.97 0.91
iOS 0.86 0.73 0.88 0.96 0.92 0.96 0.87 0.98 0.92 0.98

Average 0.86 0.85 0.92 0.91 0.95 0.94 0.93 0.93 0.96 0.96
Accuracy 85.73% 91.4% 94.5% 92.9% 96.02%

IX. PREDICTION-BASED EXPERIMENT: RESULTS USING
LOSS-BASED TCP VARIANT PREDICTION

In Section VII, we showed that Oracle-given knowledge
of the TCP variant has a great potential for improving the
passive OS fingerprinting. In reality, however, we don’t have
an Oracle-given TCP variant. Since passively detecting the
TCP variant is a challenging task, this is where our tool from
previous works on predicting the underlying TCP variant from
passive measurements [17, 18, 19] comes into play. In this
Section we use the TCP variant passively predicted by this
tool as an input feature for the passive OS fingerprinting. The
TCP variant is inferred from the famous Additive Increase
and Multiplicative Decrease (AIMD) sawtooth pattern of
TCP’s estimated cwnd computed based on the outstanding
bytes-in-flight. Since we don’t have access to the actual cwnd
of the senders in the benchmark data and realistic traffic, here
we consider only the emulated traffic.

A. Based on Emulated Traffic
In this section, we use a tool to predict the TCP variant

from passive measurements of TCP traffic patterns, and this
prediction is used as input to the passive OS fingerprinting
method presented above. The experimental results of both
techniques are presented in Table XI.

B. Comparison of Results with a Predicted TCP Variant
Results with emulated data and a passive prediction of the

TCP variant as shown in Table XI gives an accuracy of 91.2%
on average, which comes pretty close to the accuracy of 95.3%
obtained on emulated traffic with the TCP-variant given by
the Oracle. Intuitively, when we do learning based on the
TCP variant prediction, the OS classification accuracy must
be lower than the Oracle-given TCP variant. But the question
is how close can we get to the idealistic scenario of having
an Oracle. Our results show that using our tool for TCP
variant prediction from passive measurements gives reasonably
good OS fingerprinting accuracies that come close to the
results obtained by using the Oracle-given TCP variant. Even
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TABLE XI: Emulated traffic experimental results with loss-based predicted TCP variant using using machine learning and deep
learning OS classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.92 0.96 0.92 0.97 1.00 0.97 0.92 0.95 0.95 0.97 0.92 0.96
Linux 0.79 0.85 0.94 0.82 0.92 0.94 0.80 0.89 0.98 0.79 0.86 0.90

Mac OS 0.96 0.88 0.97 0.87 0.85 0.94 0.97 0.88 0.95 0.90 0.95 0.88
Unix 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Windows 0.92 0.78 0.85 0.80 0.88 0.91 0.98 0.65 0.94 0.77 0.97 0.77
iOS 0.85 0.94 0.86 0.96 0.93 0.87 0.84 0.95 0.82 0.99 0.88 0.96

Average 0.90 0.90 0.91 0.91 0.93 0.93 0.91 0.90 0.92 0.91 0.92 0.92
Accuracy 90.01% 91.09% 92.15% 90.40% 91.45% 91.93%

TABLE XII: Emulated traffic experimental results with delay-based predicted TCP variant using machine learning and deep
learning OS classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.95 1.00 0.98 0.98 0.99 0.98 0.95 1.00 0.97 0.97 0.98 0.95
Linux 0.88 0.90 0.91 0.94 0.94 0.93 0.86 0.91 0.96 0.88 0.93 0.91

Mac OS 0.99 0.90 0.98 0.92 0.98 0.92 0.99 0.90 0.93 0.94 0.95 0.92
Unix 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

Windows 0.99 0.89 0.98 0.88 0.99 0.89 0.99 0.89 0.97 0.91 0.98 0.89
iOS 0.91 0.97 0.92 0.98 0.91 0.99 0.93 0.96 0.91 0.97 0.90 0.98

Average 0.95 0.95 0.95 0.95 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95
Accuracy 94.60% 95.86% 95.81% 94.68% 95.61% 95.14%

though the performance results with the TCP variant passively
predicted by our deep learning-based tool are slightly lower as
compared to the TCP variant given by an idealistic Oracle,
our performance results of using our tool are reasonably
competitive.

X. DELAY-BASED EXPERIMENT: RESULTS USING
DELAY-BASED TCP PROTOCOLS

The passive OS fingerprinting method presented above,
where the cwnd is first computed based on the outstanding
bytes-in-flight, then the underlying TCP flavor is predicted
from the estimated cwnd, is particularly efficient for loss-based
TCP variants that consider packet loss as an implicit
indication of congestion. Unlike traditional loss-based TCP
variants, delay-based TCP congestion control algorithms use
the changes in queueing delay measurements as implicit
feedback to congestion in the network. Delay-based congestion
control algorithms attempt to avoid network congestion by
monitoring the trend of network path’s Round-Trip Time
(RTT) information contained in packets [15]. By design,
unlike loss-based TCP algorithms, the multiplicative decrease
parameter (β) of delay-based congestion control algorithms is
not fixed which makes it fundamentally challenging to predict
the TCP variant from passive traffic measurements when there
is variability in delay. For example, TCP Veno [12] sets β
factor to 0.8 when the queueing delay is small. However, when
the queueing delay is high, TCP Veno [12] sets β to 0.5.
The back-off parameter along with other TCP characteristics
can be used to predict the underlying TCP congestion control
algorithms. In our previous work [16], we have developed an
efficient tool for the prediction of the underlying delay-based
TCP flavors from passive measurements by utilizing the β
and queueing delay values. By using different data-driven

classification techniques based on probabilistic models and
Bayesian inference approaches, we addressed how the β varies
as a function of queueing delay changes and investigated
into how the TCP variants of delay-based congestion control
algorithms can be predicted both from passively measured
traffic and real measurements over the Internet [16].

In this section we will extend the passive OS fingerprinting
method presented above by coupling to our previous work [16]
to also cover delay-based TCP variants, e.g., TCP Vegas [4],
TCP Veno [12], BBR [5], etc. The performance results with
emulated data and a passive prediction of the delay-based TCP
flavors as shown in Table XII gives an accuracy of 95.24%
and 95.38% on average using both classical machine learning
and deep learning techniques respectively. The corresponding
confusion matrices of these techniques are presented in
Figure 7. We can see that this shows a significant improvement
in performance over the results without a known TCP variant
presented above in Table VIII. Both machine learning and deep
learning techniques have comparable and consistent results in
terms of accuracy. Our experimental results show that using
our statistical methods for delay-based TCP flavors prediction
gives reasonably good OS fingerprinting accuracies.

However, in a realistic assumption, we don’t know
exactly if the sending node is using either a loss-based
or delay-based TCP flavor. Therefore, we need a generic
OS fingerprinting tool that can take both loss-based and
delay-based TCP variants as input, and make a reasonably
good OS classification. To make our passive OS fingerprinting
tool generic, we run a separate extensive experiment in an
emulated setting with a combination of loss-based (e.g., TCP
Reno [22] and CUBIC [14]) and delay-based (e.g., TCP
Veno [12] and TCP Vegas [4]) TCP variants. As a result,
we obtain an OS fingerprinting performance accuracy of
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(a) SVM (b) RF (c) KNN

(d) NB (e) MLP (f) LSTM

Fig. 6: Normalized confusion matrix comparison of the machine learning and deep learning OS classification techniques with
Oracle-given TCP variant using an emulated traffic.

94.95% and 95.22% on average using machine learning and
deep learning techniques respectively as shown in Table XIII.
This shows that our model can also be applied equally well
to when we use both predicted loss-based and delay-based
TCP variants as input. As in the previous sections, here
again, we observe both our machine learning and deep
learning classification techniques under an emulated setting
have consistently achieved good levels of precision and recall
for all general classes of OSes. By combining different variants
of TCP, we demonstrate that our fingerprinting tool is generic
enough which gives promising and comparable results in terms
of accuracy across different experiment scenarios.

XI. TRANSFER LEARNING RESULTS

One of the primary benefits of employing machine learning
and deep learning techniques as discussed in Section I is
the concept of transfer learning. In the machine learning
community, transfer learning is defined as the ability to take
a model trained in one experiment scenario and apply it for
classification in a different experiment scenario. For example,
in our case, that means we are able to train our model on a
dataset created in an emulated network with an Oracle-given
TCP variant and apply it for classification of our dataset from
the realistic traffic. Results presented in Table XIV shows
that the learning of the OS fingerprinter using loss-based

TCP variants transfers well into other scenarios. Similarly,
as it can be seen from the results shown in Table XV,
the learning of our OSes fingerprinting model using both
loss-based and delay-based predicted TCP variants transfers
well across other scenarios. A transfer learning experiment
combining the loss-based and delay-based predicted TCP
variants for an OS fingerprinting as presented in Table XV
gives an accuracy of 94.83% and 94.88% on average using
both classical machine learning and deep learning techniques
respectively. The corresponding normalized confusion matrix
for both machine learning and deep learning techniques is
shown in Figure 8. Good transfer learning results indicate that
our passive OS fingerprinting model is able to discern the
results of unforeseen scenarios and still perform reasonably
well. In our previous works, we have also demonstrated that
the TCP variant predictor performs well in terms of transfer
learning [17, 18, 19]. In summary, this shows that our
multi-class classification model is general bearing similarity
to the concept of transfer learning in the machine learning
community [36, 37, 50].
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(a) SVM (b) RF (c) KNN

(d) NB (e) MLP (f) LSTM

Fig. 7: Normalized confusion matrix comparison of the classical machine learning and deep learning OS classification techniques
for predicted delay-based TCP variants using an emulated traffic.

TABLE XIII: Emulated traffic experimental results with a combination of loss-based and delay-based predicted TCP variant
using machine learning and deep learning OS classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.97 0.98 0.97 0.98 0.99 0.98 0.94 0.99 0.98 0.98 0.98 0.97
Linux 0.91 0.91 0.91 0.90 0.91 0.95 0.89 0.90 0.93 0.91 0.96 0.87

Mac OS 0.99 0.90 0.98 0.92 0.97 0.92 0.97 0.91 0.94 0.94 0.92 0.94
Unix 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

Windows 0.99 0.89 0.98 0.90 0.99 0.89 0.98 0.88 0.99 0.89 0.95 0.90
iOS 0.91 0.98 0.91 0.97 0.92 0.98 0.90 0.96 0.92 0.98 0.91 0.97

Average 0.95 0.95 0.95 0.95 0.96 0.96 0.94 0.94 0.95 0.95 0.95 0.94
Accuracy 95.04% 95.28% 95.78% 93.70% 95.37% 95.07%

XII. CONCLUSION AND FUTURE WORK

Passively fingerprinting the underlying OS implementation
of a remote host is important for security-conscious network
administrators. It can, for example, be used in identifying the
source of malicious traffic, exploring a network for potential
exploitations of security vulnerabilities, defining OS-based
access control security policies, configuring network-based
IDS to classify and prioritize extraneous security alerts etc. In
this paper, we proposed and evaluated a novel approach that
attempts to passively fingerprint the underlying remote OS by
leveraging state-of-the-art machine learning and deep learning
classification techniques under multiple controlled scenarios.

We show that knowing the Oracle-given TCP variant has a
great potential for boosting the classification performance of
passive OS fingerprinting. In our setting, we demonstrate
that using the idealistic Oracle has the potential to boost
the prediction accuracy from 84.1% to 94.1% on average
across all traffic types tested, and from 85.6% to 95.4% in
an emulated setting. However, in reality, we don’t have the
Oracle-given TCP variant and hence we don’t know exactly
the underlying TCP flavor. To address this, we demonstrated
a method for passive OS fingerprinting where the cwnd is
first computed based on the outstanding bytes-in-flight, then
the underlying TCP flavor is predicted from the estimated
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(a) SVM (b) RF (c) KNN

(d) NB (e) MLP (f) LSTM

Fig. 8: Transfer learning: Normalized confusion matrix comparison of the classical machine learning and deep learning OS
classification techniques for loss-based and delay-based predicted TCP variants.

TABLE XIV: Transfer learning experimental results with loss-based predicted TCP variant using machine learning and deep
learning OS classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.95 1.00 0.98 0.98 0.99 0.98 0.94 0.99 0.97 0.98 0.97 0.96
Linux 0.86 0.91 0.90 0.95 0.92 0.95 0.85 0.93 0.95 0.85 0.91 0.91

Mac OS 0.99 0.90 0.98 0.92 0.97 0.92 0.99 0.90 0.94 0.94 0.96 0.90
Unix 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Windows 0.99 0.89 0.98 0.90 0.97 0.91 0.99 0.84 0.99 0.89 0.98 0.87
iOS 0.93 0.96 0.93 0.97 0.93 0.97 0.90 0.95 0.90 0.98 0.90 0.98

Average 0.95 0.95 0.95 0.95 0.96 0.96 0.94 0.93 0.95 0.95 0.94 0.94
Accuracy 94.79% 95.35% 95.76% 93.54% 94.72% 94.28%

cwnd, and finally, the predicted TCP variant is used as an
input feature to detect the remote computer’s OS. This is an
additional feature that is added to the basic TCP/IP features
that are the basis of OS fingerprinting in previous works.
We demonstrate that our method performs significantly better
than not using the predicted TCP variant as an input feature,
increasing the accuracy in our experiment from 85.6% to
91.3% using loss-based TCP variants. By combining both
loss-based and delay-based predicted TCP flavors, our OS
fingerprinting model achieves an accuracy of 95.22%. The
results of this method come close to the accuracy of 95.4%
obtained by using the idealistic Oracle. To the best of our

knowledge, this is the first study that reports the potential
of the underlying TCP feature in boosting significantly the
accuracy of passive OS fingerprinting. We further validate
and demonstrate the transferability approach of our OSes
classification models by conducting a series of controlled
experiments against other scenarios. Through comparing the
experimental results between the benchmark dataset, realistic,
and emulated traffic in terms of accuracy and confusion matrix,
it is clear that our passive OSes classification models are able
to discern the results to unforeseen scenarios. Therefore, we
are able to show that the learned passive OS fingerprinting
model by leveraging a pre-trained knowledge of classification
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TABLE XV: Transfer learning experimental results with a combination of loss-based and delay-based predicted TCP variant
using machine learning and deep learning OS classification techniques.

Machine Learning Techniques Deep Learning Techniques
SVM RF KNN NB MLP LSTM

OS Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall
Android 0.96 1.00 0.96 1.00 0.99 0.98 0.92 0.97 0.98 0.95 0.98 0.97
Linux 0.88 0.90 0.91 0.91 0.94 0.94 0.89 0.91 0.94 0.88 0.94 0.90

Mac OS 0.99 0.90 0.99 0.90 0.97 0.92 0.97 0.88 0.93 0.94 0.93 0.94
Unix 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00

Windows 0.99 0.99 0.97 0.90 0.99 0.89 0.94 0.89 0.97 0.91 0.99 0.87
iOS 0.91 0.91 0.92 0.97 0.91 0.98 0.92 0.96 0.91 0.97 0.91 0.98

Average 0.95 0.95 0.95 0.95 0.96 0.96 0.94 0.94 0.95 0.95 0.95 0.95
Accuracy 94.83% 94.99% 95.74% 93.78% 94.90% 94.86%

techniques from the emulated network performs reasonably
well as it is shown in the experimental results when it is
applied and transferred to a realistic scenario. Lastly, in all our
experiments, we made sure that both the training and validation
accuracies are closer which gives an idea about the ability
of the OSes classification models to generalize on unforeseen
scenarios.

Note that passively detecting the TCP variant is a
challenging task, which led to a two-step approach, where
the TCP variant prediction of a deep learning-based tool is
used as input to another machine learning method in the
next step. However, by integrating the two machine learning
approaches better, there should be potential for increasing the
performance even further and get even closer to the idealistic
results of using an Oracle. Exploring such optimizations is
also left for future work. It is known that TCP clock drift
improves OS fingerprinting and hence measuring differences
in the timing of how the IP stack works may allow us to
predict the underlying OS with greater assurance in terms of
accuracy. We, therefore, argue for using other TCP options
like timestamps and queueing delay characteristics as an input
feature vector for passive OSes fingerprinting model as another
interesting direction. Finally, in addition to the difficulties of
establishing ground truth (e.g., the TCP variant) at a larger
scale on a dynamic network addressed in Section III, there
is a lot of other work to be done as an extension of our
work presented here. For example, addressing answers to valid
questions like: What happens if an end-user (client) changes
default parameters that are the basis of OS fingerprinting? is
one possibility for our future work. We expect that end-users
don’t change parameters often, while servers may do so if it
helps improve performance. We believe this would make OS
fingerprinting potentially hard.
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