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Abstract: Simultaneous satisfaction of both thermal and visual comfort in buildings may be a
challenging task. Therefore, this paper suggests a comprehensive framework for the building energy
optimization process integrating computational fluid dynamics (CFD) daylight simulations. A
building energy simulation tool, IDA Indoor Climate and Energy (IDA-ICE), was coupled with
three open-source tools including GenOpt, OpenFOAM, and Radiance. In the optimization phase,
several design variables i.e., building envelope properties, fenestration parameters, and Heating,
Ventilation and Air-Conditioning (HVAC) system set points, were selected to minimize the total
building energy use and simultaneously improve thermal and visual comfort. Two different scenarios
were investigated for retrofitting of a generic office building located in Oslo, Norway. In the first
scenario a constant air volume (CAV) ventilation system with a local radiator in each zone was
used, while an all-air system equipped with a demand control ventilation (DCV) was applied in
the second scenario. Findings showed that, compared to the reference design, significant reduction
of total building energy use, around 77% and 79% in the first and second scenarios, was achieved
respectively, and thermal and visual comfort conditions were also improved considerably. However,
the overall thermal and visual comfort satisfactions were higher when all-air system was applied.

Keywords: building retrofitting; building performance optimization; CFD; daylight analysis; thermal
and visual comfort

1. Introduction

It is estimated that building stock accounts for approximately 28%, on a global scale [1],
and 40%, in the European Union, of total energy use [2]. Therefore, retrofitting existing
buildings is considered as a crucial step to reach energy goals and to thoroughly decar-
bonize the building stock in Europe by 2050 [3]. A tailored approach in this respect applies
building performance optimization techniques by using optimization algorithms to find
the best set of retrofit measures based on simulation results and proposed objectives [4].
Many researchers, designers, and engineers have used this well-developed technique to
improve building energy efficiency due to its capability in automating design tasks in
various aspects in the last decade. These aspects concern four main elements, namely, ob-
jective functions, design variables, simulation, and optimization tools. Regarding objective
functions, various parameters dealing with energy, visual, and acoustic performance of
buildings are selected. For example, Djuric et al. [5], Rabani et al. [6], Karaguzel et al. [7],
Chantrelle et al. [8] and Ferrara et al. [9] conducted a single objective optimization and
considered the retrofitting costs or the building energy use (the two latter studies) as the ob-
jective. Several studies such as those of Mangnier and Haghighat [10], Harkouss et al. [11],
Asadi et al. [12], Niemelä et al. [13], Wu et al. [14], Hamdy et al. [15], and Palonen et al. [16]
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conducted multi objective optimization to improve building performance. The objectives in
the aforementioned studies dealt with building energy use, CO2 emissions, investment and
operational costs, and thermal comfort indexes such as predicted percentage dissatisfied
(PPD), predicted mean vote (PMV), and discomfort hours. In some studies, such as [17],
the optimization objective was the improvement of renewable technologies such as mini-
mizing the dependency on the nearby energy grid and maximizing the self-consumption
of photo-voltaic (PV) panels. In addition to these objectives, several studies such as those
of Zhang et al. [18], Kirimtat et al. [19], and Fang and Cho [20] focused mainly on day-
light performance. In this regard, Naderi et al. [21] focused on the discomfort glare index
(DGI) as the visual comfort indicator to be minimized. Some studies such as those of
Bassuet et al. [22] and Saksela et al. [23] chose acoustic parameters as the objective function
in the optimization process.

Most of the input design variables corresponded the building envelope and façade and
service systems. For example, Chantrelle et al. [8], Grygierek and Ferdyn-Grygierek [24],
Delgarm et al. [25], Schwartz et al. [26], and Harkouss et al. [11] optimized the window
to wall ratio, façade U-values and thermal properties, roof topology, and glazing types.
Djuric et al. [5], Mangnier and Haghighat [10], Delgarm et al. [27], Arabzadeh et al. [28],
Bamdad et al. [29], and Lu et al. [30] focused on the set points for cooling and heating,
supply air flow rates, solar collector and PV area and tilt angle, storage tank volume, the
supply water temperature and the heat exchange area of the radiators as the input design
variables. Operating strategies for heat storage and energy conversion techniques such
as use of heat pump, solar panel, biomass, and oil boiler were optimized in the study by
Wu et al. [14]. Furthermore, solar shading devices for windows were also optimized in
terms of distance from glazing, movement point and rotation angle of panel, and the angle
of louver blades [19,31,32]. Some research studies such as [33,34] introduced a holistic
platform so that the energy conservation measures (ECMs) and input design variables
were not constrained to those to be applied at building level, but also considered district
level measures. These sets of measures included: (1) passive ECMs relying on the increase
of envelope thermal resistance or the current windows replacement, and upgrades of
the façade, floor, roof, and openings; (2) renewable retrofitting strategies based on the
installation of sustainable energy sources such as: wind, sun, water, and geothermal;
(3) active ECMs including the replacement of existing energy supply systems by new
ones such as biomass boilers, natural gas Combined Heat Power (CHP) units, and heat
pumps; and (4) control ECMs which are related practically to the selected active ECMs
such as system scheduling, optimal start-up and shut-down, weather compensation, load
following, and sequencing control.

Until now, various tools and software packages have been developed for the opti-
mization of building performance. With respect to building energy simulation (BES),
EnergyPlus [7,25–27], TRNSYS [8,11,12,30], and IDA-ICE [13,15,28,35] were widely ap-
plied. Moreover, Radiance software was employed for daylight simulations in several
studies [18–20]. Regarding optimization tools, several algorithms, software systems,
and platforms have been commonly integrated with building performance tools. For
example, GenOpt [5–7,29], MOO [31,36], GAMS [37], jEPlus [25–27], Rhinoceros [38],
MATLAB [15,39,40], non-dominated sorting genetic algorithm II (NSGA II) [13,28,35],
and CPLEX algorithm [14,41] are among the widespread optimization tools and plat-
forms. A recent study has shown that the integration of artificial neural networks such
as Multilayer Feedforward Neural Networks (MFNN) with metaheuristic algorithms
such as NSGA II and Multi-Objective Particle Swarm Optimization (MOPSO) can
minimize the computation time [42].

Nevertheless, optimizing building energy performance using the aforementioned
BES software still cannot ensure desirable indoor air conditions. The reason is that these
software systems adopt a multi-zone approach to model the indoor airflow behavior in
order to facilitate the implementation of simulation models and reduce the computational
time [43]. In other words, each building zone in this approach is considered as a node with
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uniform distribution of temperature, humidity, concentration, etc. [44,45]. As the air is
assumed to be well mixed in the zone, this method may not be effective and can fail to
accurately predict the air flow behavior when a ventilation strategy functioning with a
high vertical gradient (stratified) of air flow distribution is applied. This is important when
controlling Heating, Ventilation, and Air-Conditioning (HVAC) systems for simulating
thermal comfort distribution in the occupancy area [46].

Unlike the multi-zone modelling approach, the computational fluid dynamics (CFD)
method has shown great potential in predicting indoor air flow behavior [47]. In this
method, the building zone is divided into a large number of control volumes and Navier-
Stokes equations are solved in these control volumes to precisely predict the air flow
characteristics in the space [48]. Therefore, coupling BES software with the CFD method
can improve the quality of results and provide detailed information about the thermal load,
building energy use, spatial air temperature and thermal comfort distributions. There are
two methods of coupling BES and CFD, namely one-step and two-step coupling; the first
method only provides CFD with the boundary conditions obtained by BES, while the latter
also returns the simulated boundary conditions from CFD to BES. In this regard, several
researchers have investigated the coupling of BES and CFD.

Novoselac [49] developed a new tool for accurate analysis of building energy use
and thermal comfort. Different coupling methods for exchanging data between BES
and CFD were evaluated through a two-step method. It was found that delivering heat
flux to CFD as boundary conditions and giving surface temperature back to BES can
provide more accurate calculation of surface heat flux than log-law wall functions in
CFD. Tian et al. [50] made a comprehensive review of the methods and applications of
integrating CFD with BES. They compared different one-step and two-step methods in
terms of limitations, accuracy, stability, convergence, and speed for the co-simulation.
Rodríguez-Vázquez et al. [51] reviewed the research studies in which BES–CFD coupling
was used to investigate building systems, building components, and urban configurations
of buildings. Their findings show that the integration of the BES and CFD methods
provides an improvement that ranges between 10% and 50% for predicting building
energy requirements. Furthermore, the analysis showed that the computation time for
implementing the CFD method could be reduced by importing the information from
the BES. Shan et al. [52] coupled EnergyPlus for BES with FLUENT software for CFD
simulation of air temperature and PMV field. Furthermore, the air flow rates across the
virtual partition walls between two adjacent subzones obtained from CFD were given to
EnergyPlus for use as inter-zone air flow. The aim was to find the optimal temperature
set points for the subzones in order to achieve a uniform occupant thermal comfort and
avoid overcooling in a large open office. Pandey et al. [53] also coupled the EnergyPlus
and Ansys Fluent tools for BES-CFD simulations of phase change material (PCM) in the
built environment and compared the results with those obtained from EnergyPlus. Their
findings highlighted that the coupled simulation has better prediction accuracy than the
BES tool for active and passive use of PCM under forced convection. However, the BES
tool is recommended for modeling the passive use of PCM during natural convection.
Yamamoto et al. [54] developed a coupling two-step method combining BES and CFD.
The aim was to assess the accuracy of coupling by analyzing the obtained temperature
distribution in an environment where natural convection by floor heating is dominant.
Colombo et al. [55] considered the application of coupling the thermal network, using
IDA-ICE software, with an external CFD tool, using Star-CCM+ tool, for a double-skin
glazed façade over a warm day cycle. In their iterative process, the surface temperatures
obtained from the BES tool were used as boundary conditions for the CFD simulation
and the heat fluxes to and from the façade components computed by CFD were used to
improve the BES tool estimation. Zhang and Mirzaei [56] proposed a new framework
to substantially reduce the computation cost of the dynamic coupling procedure of CFD
and BES. In their approach, a high-resolution CFD model (CFDf) provides the boundary
conditions, including the flow patterns, to a low-resolution CFD model (CFDc) at the
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openings in the form of the mass flow information to BES, in order to start the iterative
process. Afterwards, the CFDc and BES domains implement a fully dynamic external
coupling to deliver an accurate energy simulation.

The optimization of building energy performance, by integrating different optimiza-
tion and BES tools, to achieve a nearly zero energy building (nZEB) level has been exten-
sively investigated in the literature, but only a few studies have considered the coupling
of optimization, BES tool, and CFD software. In this paper, an inclusive methodology is
introduced to couple the BES software, IDA-ICE [57], to the optimization tool, GenOpt,
and the CFD software, OpenFOAM [58] (integrated in IDA-ICE), in order to reach a nZEB
level with satisfactory thermal and visual comfort conditions. In the optimization process,
both energy and daylight simulations were implemented simultaneously. Furthermore, a
detailed post-analysis of thermal and visual comfort was performed through detailed CFD
and dynamic daylight simulations.

2. Methodology

Figure 1 shows the coupling of optimization and CFD simulation framework.
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In the first step, the reference building model was generated in IDA-ICE and the
optimization input parameters for daylight and energy simulations were described in the
building energy simulation-optimization process (BES-OPT). The obtained results from
both simulation types were evaluated in terms of average daylight factor (DFavg), dis-
comfort hours (DH26), and average predicted percentage of dissatisfied (PPDavg) through
Graphical Script (GS) interface in IDA-ICE. Afterwards, the simulation results were trans-
ferred to the optimization tool to iteratively assess the objective function until an optimal
solution was reached. Finally, a post-processing step analyzed the optimal solutions
in detail in terms of thermal comfort and daylight quality using the CFD and detailed
daylight simulations.

2.1. BES-OPT Process

In this stage, the reference building energy model was first generated using IDA-ICE
software (solid orange objects in Figure 1). This was a typical office building located in
Norway. The total heated floor area of the building was selected at around 3000 m2 as the
majority of office buildings were constructed in the 1980s with a total heated floor area
of between 2500 to 10,000 m2 [59]. The building envelope properties, technical system
specifications and set points were chosen for a general office building constructed in 1987
meeting the Norwegian building code TEK87 [60], as explained in our previous work [61].

The optimization process was implemented by coupling IDA-ICE software with a GS
interface and GenOpt tool. GS interface is an available option in IDA-ICE (dotted orange
objects in Figure 1) considered as an intermediate step to manipulate the outputs from
IDA-ICE regarding the thermal and visual comfort constraints. Details of GS interface
functions can be found in the work done by Rabani et al. [6].

Regarding optimization scenarios, two different cases were considered. In the first
case, it was assumed that the space heating and ventilation systems remained as the same
type as the reference building and in the second scenario, an all-air system was used
instead. An all-air system means that the ventilation, space heating and cooling in different
zones were performed using a demand control ventilation (DCV) system without applying
any means of local heating or cooling units, e.g., a radiator, in the zones. Therefore, two
different set of parameters were considered as the optimization input variables. However,
the input parameters corresponding to glazing and building envelope, shading device and
window opening control methods, and shading materials and lighting rates were common
input variables for both scenarios. The common parameters were as follows:

• Window-to-floor ratio (%): the ratio of window-to-floor varied in the range of 10–24%
with a 2.8% interval. To alter the size of all the windows with a correct coordinate
at the same time as the ratio was changed, a coordinate calculator was developed
through GS in IDA-ICE.

• Window U-values W/(m2·K): the values were changed from 0.6 (based on Norwegian
building code TEK87) to 2.4 (based on Norwegian passive standard for non-residential
buildings NS 3701) with an interval of 0.2 [62]. It should be noted that better window
U-values are also associated with shifting from single glazed to triple glazed windows,
which results in higher investment cost.

• Roof U-values W/(m2·K): the values were improved from U-value 0.2 to U-value
0.06 by adding an EPS S80 insulation layer increasing from a thickness of 180 mm to
620 mm, respectively.

• External wall U-values W/(m2·K): the values were improved by adding Mineral Wool
insulation layer, from a thickness of 30 mm, corresponding to U-value 0.3, to 280 mm,
corresponding to U-value 0.1.

• Window opening control method: three opening control methods included closed
windows, seasonal opening with temperature and CO2 control, and opening with
temperature, wind velocity, and solar radiation control. Details of window opening
control methods are elaborated in our previous work [61].



Energies 2021, 14, 2180 6 of 23

• Shading device control method: seven control methods were considered. The main
parameters in these control methods were solar radiation, daylight level, and indoor
operative temperature. The performance of these control methods was elaborated
in our previous work. Details of shading control methods are also explained in our
previous work [61].

• Heat exchanger efficiency in (air handling unit) AHU: three values 0.55, 0.75, and 0.85
were considered.

• Shading materials: Generic outside, Marine, Celery, Pewter, Mocha, Bisque, and White
venetian blind slats as well as Opaque white colored and light-dark colored slats were
selected for the slats of the integrated window shading [61].

• Lighting rate (W/m2): three lighting rates 7, 11, and 30 W/m2 were selected.
• Supply air temperature profile in the AHU: the profile was considered as a function of

outdoor temperature and was described at four points, shown in Table 1.

Table 1. Supply air temperature profile in the air handling unit (AHU) in both scenarios.

Point Number in the Profile Range-Interval (◦C) Corresponding Outdoor
Temperature (◦C)

1st point (16–30)-1.6 −20
2nd point (16–30)-1.6 −15
3rd point (13–22)-1.6 10
4th point (13–22)-1.6 35

The parameters used only in the first optimization scenario (CAV) were the followings:

• Supply hot water temperature profile for radiators used for space heating: the profile
was described in the same manner as the supply air temperature in AHU, shown in
Table 2.

Table 2. Supply hot water temperature profile for space heating from central heating system in the
first scenario.

Point Number in the Profile Range-Interval (◦C) Corresponding Outdoor
Temperature (◦C)

1st point (45–90)-1.6 −31
2nd point (45–90)-1.6 −26
3rd point (25–60)-1.6 20
4th point (14–40)-1.6 25

• Supply/return water temperature to/from radiators: 16 combinations of four supply
temperature set points 45, 55, 65, 70 (◦C) and return temperature set points 25, 30, 35,
40 (◦C).

• Upper/lower limit of ventilation supply airflow rate during heating and cooling sea-
sons. Five profiles for heating season and eight profiles for cooling season, illustrated
in Figure 2.
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The parameters used only in the second optimization scenario (all-air system) were as
follows:

• Type of DCV system: four types of airflow control listed in Table 3.

Table 3. Various types of control method for DCV system in the second scenario.

System Type Control Method

Variable air volume with humidity control

Maximum relative humidity set point: 60% for cooling season and 40%
for heating season 1

Minimum relative humidity set point: 20% for both cooling and
heating seasons 1

Variable air volume with CO2 control Maximum CO2 set point: 1100 ppm
Minimum CO2 set point: 700 ppm

Variable air volume with temperature control Maximum temperature set point: 26 ◦C
Minimum temperature set point: 19 ◦C

Variable air volume with temperature and CO2 control Combination set points for CO2 and temperature
1 There is no specific limit value for humidity of indoor air in Norway, only recommendations to prevent dampness and mold growth [63,64].

Maximum air flow rate set point: the air flow rate varied between 2 to 6 L/(s.m2) with
interval 0.27 L/(s.m2).

The objective of the optimization process was to minimize the total delivered energy
to the building (Etot) meaning that the problem was a single objective optimization. The
constraint parameters were visual comfort index, assessed using average daylight factor
(DFavg), and thermal comfort indexes, evaluated using weighted average PPD (W_PPDavg)
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and weighted discomfort hours over 26 ◦C (W_DH26) [61]. According to the current require-
ments for Norwegian building code TEK17 [65], the DFavg was set greater than or equal
to 2%. Regarding the thermal comfort, building comfort category II [66] was considered
stating that W_PPDavg and W_DH26 should be less than 10% and 50 h, respectively.

In the present study, the optimization Particle Swarm Optimization (PSO) algorithm
was selected in GenOpt to deal with both continuous and discrete input parameters and
benefit from the global features of the PSO algorithm [61,67]. Furthermore, both energy
and daylight simulations were simultaneously carried out in IDA-ICE on 32 GB RAM of
a Windows-based workstation (2.20 GHz) with Intel (R) Xeon (R) Gold 5120 CPU with
14 parallel cores, and lasted for around 40 days to finish each optimization case. Combina-
tions of the input parameters were in total 1.07 × 1018 cases. By using the optimization,
a large number of simulation cases were reduced to only 1900 cases, using IDA-ICE soft-
ware. Nevertheless, since both energy and daylight simulations were run for each case
with complicated window opening and shading control methods, the computational time
increased considerably.

2.2. Boundary Conditions and CFD Process

After finding the optimal solution, as the first step detailed CFD and daylight simula-
tions were performed for optimal solutions to investigate thermal and visual comfort in
further detail. The CFD simulations were done in IDA-ICE by interfacing with the Open-
FOAM CFD engine, and the daylight simulations were performed through the Radiance
program [68]. However, calculation setup and execution were performed in IDA-ICE for
both CFD and daylight simulations.

Regarding the CFD process, the one-way approach was considered. Firstly, coupling
of BES and CFD was validated by the available experimental data and our previous
numerical study for a single office building [69,70], in which we used Star-CCM+ software
for performing CFD simulations [69]. Afterwards, the coupling method was applied to the
optimal solutions, as illustrated in Figure 1 (blue and green objects). In the coupling process,
the required boundary conditions for CFD simulations including surface temperature,
surface convective heat flux, and ventilation air flows were exported from the IDA-ICE
to the OpenFOAM CFD engine. These boundary conditions were then used by the CFD
program to solve the continuity, momentum, and energy equations. Moreover, for the CFD
simulations, the steady state solver with the RNG k-ε turbulence model were selected, as
this model has been used extensively in the simulation of indoor air flow problems [71].
In accordance with the modelled geometry, a hexahedral mesh model was generated
and executed in the CFD interface in IDA-ICE. Furthermore, a mesh refinement was
applied to the boundary layers near the surfaces. The obtained indoor air velocity and
air temperature results from the CFD simulations were then exported to the MATLAB
program for PPD calculation.

Figure 3 shows a real office cubicle fitted with measuring devices and its corresponding
3DModel modelled in IDA-ICE, used for the validation study. The office was equipped
with an active supply diffuser located on the ceiling for both space heating and ventilation
purposes. The details of experimental conditions including room dimensions, location of
supply and exhaust terminals on the ceiling, and supply air temperature and flow rate
were reported in [69,70].
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2.3. Daylight Analysis

To obtain an overview of visual comfort throughout the year, three dynamic daylight
indexes including Useful Daylight Illuminance (UDI), continuous Daylight Autonomy
(cDA), and spatial Daylight Autonomy (sDA) were calculated (see Appendix A for details)
and visualized for two optimization scenarios and the reference case. UDI describes how
many hours or the percentage of the occupancy hours in which daylight levels are within
the desired interval [72]. In this study, 100 lux and 2000 lux were selected as the minimum
and maximum limits, respectively. cDA represents the percentage of the workhours when
the illuminance is over or under a predefined threshold. In the present study, the percentage
of daytime hours over 300 lux with partial credit was considered [73]. Furthermore, sDA
shows the percentage of the occupied hours when the illuminance is equal or greater than
300 lux [74].

The daylight simulations were carried out through the Daylight-tab in IDA-ICE that
uses backward raytracing and Radiance as a simulation engine. In this regard, a climate-
based sky model with high precision was used in the Radiance software and a MATLAB
script was used for visualizing the dynamic daylight indexes.

3. Results and Discussion

In this section, the results obtained from BES-OPT are presented for both scenarios.
Afterwards, a detailed analysis of CFD and daylight simulations for the optimal solutions
are described.

3.1. BES-OPT Analysis

Figure 4 shows the scatter plot of optimized results filtered by both thermal and
visual comfort constraints. The triangles show the simulation cases where the discomfort
hours were larger than 50 and the circles show those cases with discomfort hours
smaller than 50. Furthermore, the dark symbols (both triangles and circles) represent the
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simulation cases with low total delivered energy to the building (Etot) while those with
higher Etot are demonstrated with lighter colors. Comparing the first (Figure 4a) and the
second (Figure 4b) scenarios shows that satisfying thermal comfort requirements was
more difficult in the second scenario than in the first scenario during the optimization
process, which can be observed by the larger number of triangles and larger range of
W_PPDavg in the second scenario. The reason could be the more complicated control
method of space heating and the ventilation system in the second scenario as they
both functioned with a supply air terminal in an all-air system. Therefore, it was more
challenging to find a combination of set points for the ventilation system to minimize
building energy use and achieve thermal comfort concurrently in the second scenario.
On the contrary, the daylight factor requirement was satisfied for more cases in the
second than in the first scenario which could be due to the shading control method and
higher window-to-floor ratio in the second scenario.
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The optimized input parameters for both scenarios are shown in Table 4. Different
window-to-floor ratio, U-value of building envelope, and shading control methods were
required to satisfy both thermal and visual comfort in both scenarios. As was also observed
in Figure 4, satisfying thermal comfort, especially DH26, was more difficult in the second
scenario than in the first. Thus, the best quality of window and external wall could not
be selected in the second scenario as a tighter building envelope would result in larger
DH26 and consequently reduce thermal comfort. The best performance and efficiency of
the lighting system and heat exchanger were selected for both scenarios, as enhancing their
efficiency could decrease the building’s energy use with trivial impact on the visual and
thermal comfort conditions.

The percentile distribution of delivered energy use to the building, filtered by either
and then both thermal and visual comfort conditions, is shown in Figure 5 for all solutions.
Adopting an all-air system in the second scenario could result in overall less energy use
compared to the CAV system. In this regard, around 75% of the simulated cases had less
energy use in the second scenario than the 50% in the first scenario. However, in both
scenarios, the cases filtered only by thermal comfort could arrive at less energy use with
less distribution than by visual comfort, implying that achieving low-level building energy
use with thermal comfort is easier than with visual comfort. The reason is that the number
of input parameters influencing visual comfort were fewer than for thermal comfort.

Table 4. Optimized input parameters for both scenarios.

Parameters First Scenario Second Scenario

Common parameters

Window-to-floor ratio 14.96 17.72
Window (U-value) 0.6 0.8

Roof (U-value) 0.08 0.06
External wall (U-value) 0.1 0.12

Heat exchanger efficiency in air handling unit
(AHU) 0.85 0.85

Window opening control method By indoor temperature, solar radiation, and wind velocity
Shading device control method By solar radiation By daylight and indoor temperature

Lighting rate (W/m2) 7 7
Shading material type Bisque venetian Blind slat Celery venetian blind slat

Supply air temperature profile in the AHU
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Table 4. Cont.

Parameters First Scenario Second Scenario

Only in the first scenario

Upper/lower limit of ventilation supply airflow
rate during heating and cooling seasons

(l/(s.m2))
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Figure 6 shows the amount of delivered energy to the building for the reference case
and two optimization scenarios. Optimizing the building performance could reduce build-
ing energy use by up to approximately 77% and 79% in the first and second scenarios,
respectively, while satisfying both thermal and visual comfort. The reasons were better
building envelope quality, appropriate window-to-floor ratio, and proper control methods
for shading device and window opening that were selected through the optimization
process in both scenarios. Less energy use in the second scenario than in the first could
mainly be due to the type of ventilation in the all-air system, for which the DCV method
could adjust the air flow rate according to the considered control parameters for indoor
conditions (see Table 3). However, the CAV ventilation method in the first scenario main-
tained a constant air flow rate during working hours, disregarding indoor conditions. This
proves that an all-air system can be considered as a potential HVAC system in cold climate
countries as it can reduce the investment and maintenance costs associated with local space
heating and cooling systems.
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3.2. CFD and Daylight Assessment

Figure 7 shows the variation of indoor air temperature and air velocity along the
measurement line in the vertical plane defined in the experimental work [70]. As can be
seen, both temperature and velocity variations obtained in the present study were in good
agreement with our previous numerical study and were also within the uncertainty range
of the experimental data. The RNG k-ε turbulence model, used in this study, and the
Standard K-ε model, used in our previous numerical study [69], indicated almost the same
trend and followed the experimental data with good agreement, except in the proximity of
the ceiling (Figure 7a). However, the RNG k-ε turbulence model could predict air velocity
better than the Standard K-ε model near the floor, and followed the experimental data less
well than Standard K-ε at the middle height of the room (Figure 7b).

Figures 8 and 9 show, respectively, the annual variation of average PPD and spatial
distribution of PPD for the worst zone, in terms of difficulty in meeting comfort conditions,
for the reference case and two optimization scenarios. More precisely, the worst zone
in this study was defined as the zone in the building experiencing the highest operative
temperature in summer and largest temperature fluctuations throughout the year. The
coldest day was 2nd January (Toutdoor = −19 ◦C), and the warmest day was 1st August
(Toutdoor = 31 ◦C), selected based on climate data for outdoor air temperature. Looking at
the annual average variation of PPD, it is found that both optimized scenarios could satisfy
the thermal comfort requirements, based on the comfort category II, for a longer period of
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the year compared to the reference case. The second optimized scenario showed the best
performance in this respect. However, the all-air system (second optimized scenario) could
not provide comfortable conditions, according to any of the thermal comfort categories, in
January and December. This can also be observed in the spatial distribution of PPD on the
coldest day, when a rather high degree of discomfort was experienced in the occupancy
area (the black rectangle) in the second scenario (Figure 9c). On the warmest day, both
optimized scenarios showed an acceptable performance in the occupancy area in spite
of window opening. Although two optimized scenarios could not provide as acceptable
thermal comfort conditions as the reference case on the coldest and warmest days, the
annual thermal comfort was, in general, improved for both optimized scenarios. It should
be pointed out that the improvement of thermal comfort was achieved along with the
reduction of delivered energy to the building by more than 77%.

To examine the uniformity of air temperature distribution and the possibility of
temperature stratification, the distribution of vertical air temperature difference for CFD
cells between the ankle level (0.1 m above the floor) and the head level (1.1 m for a seated
person), in the occupancy area, is shown in Figure 10. The occupancy area was defined as
the area 0.6 m from the side walls and from 0.1 m to 1.8 m above the floor. On the coldest
day of the year (Figure 10), the majority of points met the requirements for vertical air
temperature difference, which is less than 3 K according to the second thermal comfort
category for office buildings [75]; however, a slight temperature stratification was observed
covering around 50% of the occupancy area at the second scenario on the morning of the
coldest day of the year. This could be due to considering yearly average PPD as the thermal
comfort constraint during optimization. In addition, with respect to Figures 8c, 9c and 10,
it can be implied that a different control method for the DCV system should be adopted in
the coldest periods of the year. Nevertheless, the window opening was functional for both
optimized scenarios during summertime and no significant temperature stratification was
observed, despite using a rather low air flow rate compared to the reference case.
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To analyze the visual comfort in detail for the two optimization scenarios and the
reference case, the spatial distribution of three different common dynamic indexes includ-
ing UDI, cDA, and sDA are shown in Figure 11. Both optimization scenarios showed
superior performance compared to the reference case in terms of visual comfort conditions.
Concerning the UDI index, more than half of the occupancy area could reach almost 50%
UDI, which is recommended for office buildings [76], after optimization in both scenarios.
Nevertheless, the second scenario provided more uniform distribution of relatively high
UDI in the entire area during the occupancy hours. This was even more discernible in terms
of cDA and sDA indexes (Figure 11b, two bottom rows) so that only a small area near the
window could achieve around 35% sDA during occupancy hours in the first optimization
scenario while a larger range of sDA, 30%–48%, covered more than 50% of the whole
area. This implies that the combination of shading control method, which adopted indoor
temperature and daylight parameters, and window-to-floor ratio could provide better
visual comfort quality in the second scenario for the entire year. It is worth mentioning that
although a static parameter was considered as the visual comfort constraint (DFavg > 2%),
due to the necessity of Norwegian national requirements, the optimized design variables
provided a great improvement in terms of dynamic daylight indexes compared to the
reference case.
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4. Conclusions

In this study, a framework to take advantage of coupling the building energy simulation-
optimization process with CFD and daylight simulations was presented. The aim of the pro-
posed framework was to refine the efficiency of feasible studies concerning the retrofitting
of building performance.

The objectives were to reduce the building energy use and improve thermal and visual
comfort, to be achieved together with the best possible configuration of building envelope,
fenestration, shading device and window opening control methods and parameters, and
HVAC system set points and control methods. Two different optimization scenarios were
considered; (i) a CAV ventilation system with hydronic heating system with radiators and
(ii) an all-air system equipped with a DCV system for space heating, space cooling, and
ventilation of different zones. The optimization process was carried out using the dynamic
building energy simulation software IDA-ICE coupled with GenOpt as the optimization
engine. Furthermore, a detailed thermal and visual comfort analysis of all scenarios
was conducted through coupling of IDA-ICE with OpenFOAM, which is open source
CFD software, and Radiance, which is an open-source daylight simulation engine. This
could provide better insights regarding the improvement of thermal and visual comfort
throughout the year.

The first part of the results regarding the building energy simulation-optimization
(BES-OPT) process revealed that:

• Satisfying thermal comfort requirements was more difficult in an all-air system than
in a CAV system during the optimization process. However, as visual comfort was
only controlled by window-to-floor ratio and shading device control methods and
materials, it was generally more challenging to reach low-level building energy use
satisfying visual comfort requirements than thermal comfort conditions.

• The building energy use reduced up to by around 77% and 79% in the first and second
scenarios respectively while satisfying both thermal and visual comfort.

The second part of the results regarding the detailed thermal comfort and visual
comfort analysis are as follows:

• Both optimized scenarios could satisfy thermal comfort requirements, based on com-
fort category II, for longer periods of the year compared to the reference case, and the
second optimized scenario showed the best performance in this respect. However,
the DCV system adopted in this scenario could not provide comfortable conditions,
according to any of three comfort categories, in extreme cold.

• Concerning the vertical temperature stratifications, most points in the occupancy area
met the thermal comfort requirements on the coldest day of the year, which is less than
3K according to the second thermal comfort category for office buildings. However, a
slight temperature stratification was observed covering around 50% of the occupancy
area at the second scenario in the morning of the coldest day of the year.

• The window opening was functional for both optimized scenarios during summertime
and no significant temperature stratification was observed, in spite of using a rather
low air flow rate compared to the reference case.

• Regarding the daylight indexes, more than half of the occupancy area could arrive
at almost 50% UDI after optimization in both scenarios. Nevertheless, the second
scenario provided more uniform distribution of relatively high UDI in the entire area
during the occupancy hours. This was even more discernible in terms of cDA and
sDA indexes.

Overall assessment of both BES-OPT process and detailed CFD and daylight analysis
proved that the DCV system (all-air system in the second scenario) can be considered as
a potential HVAC system in cold climate countries as it can reduce the investment and
maintenance costs associated with local space heating and cooling systems. Moreover,
the current framework could suggest a paved method for better evaluation of building
retrofitting measures through detailed and plausible studies.



Energies 2021, 14, 2180 20 of 23

Future developments can also focus on the evaluation of the application of such a
method by expanding the possible design variables and objective functions by including
the life cycle cost and CO2 footprint of retrofitting measures in the optimization process.
In this regard, it is also important to consider the impact of HVAC plant refurbishment
in the optimization process as this would have a substantial effect on the total building
energy reduction and its corresponding cost and CO2 emissions. Furthermore, the effect
of other phenomena such as urban heat island and climate change could be considered in
the optimization process as it could have significant impacts on building energy use by
increasing space cooling demand and decreasing space heating demand.
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Appendix A

The dynamic daylight indexes including UDI, cDA, and sDA were calculated as
follows, respectively:

UDI(Pti) =
1
n

n

∑
j=1

H(L(Pti, j))× 100, H(x) =

{
1 Min ≤ x ≤ Max
0 out of range

}
(A1)

cDA(Pti) =
1
m

m

∑
j=1

H(L(Pti, j))× 100, H(x) =

{
1 x ≥ LLimit
x

LLimit
x < LLimit

}
(A2)

sDA(Pti) =
1
n

n

∑
j=1

H(L(Pti, j))× 100, H(x) =

{
1 x ≥ LLimit
0 x < LLimit

}
(A3)

where n and m referred to total occupancy and daytime hours, respectively. Furthermore,
L(Pti,j) represented the daylight simulation results at point i (Pti) and time step j, and H(x)
was a function representing the illuminance value.
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