
Evading a Machine Learning-based Intrusion Detection System
through Adversarial Perturbations

Torgeir Fladby

Oslo Metropolitan University

Oslo, Norway

Hårek Haugerud

Oslo Metropolitan University

Oslo, Norway

Stefano Nichele

Oslo Metropolitan University

Oslo, Norway

Kyrre Begnum

Oslo Metropolitan University

Oslo, Norway

Anis Yazidi

anisy@oslomet.no

Oslo Metropolitan University

Oslo, Norway

ABSTRACT
Machine-learning based Intrusion Detection and Prevention Sys-

tems provide significant value to organizations because they can

efficiently detect previously unseen variations of known threats,

new threats related to known malware or even zero-day malware,

unrelated to any other known threats. However, while such systems

prove invaluable to security personnel, researchers have observed

that data subject to inspection by behavioral analysis can be per-

turbed in order to evade detection .

We investigated the use of adversarial techniques for adapting

the communication patterns between botnet malware and control

unit in order to evaluate the robustness of an existing Network

Behavioral Analysis solution. We implemented a packet parser that

let us extract and edit certain properties of network flows and au-

tomated an approach for conducting a grey-box testing scheme

of Stratosphere Linux IPS. As part of our implementation, we pro-

vided several techniques for providing perturbation to network

flow parameters, including a Simultaneous Perturbation Stochas-
tic Approximation method, which was able to produce sufficiently

perturbed network flow patterns while adhering to an underlying

objective function.

Our results showed that network flow parameters could indeed

be perturbed to ultimately enable evasion of intrusion detection

based on the detection models that were used with the Intrusion

Detection System. Additionally, we demonstrated that it was possi-

ble to combine evading detection with techniques for optimization

problems that aimed to minimize the magnitude of perturbation to

network flows, effectively enabling adaptive network flow behavior.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malware mitigation;

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

RACS ’20, October 13–16, 2020, Gwangju, Republic of Korea
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8025-6/20/10. . . $15.00

https://doi.org/10.1145/3400286.3418252

KEYWORDS
Machine Learning, Intrusion Detection, Adversarial Techniques

ACM Reference Format:
Torgeir Fladby, Hårek Haugerud, Stefano Nichele, Kyrre Begnum, and Anis

Yazidi. 2020. Evading a Machine Learning-based Intrusion Detection System

throughAdversarial Perturbations. In International Conference on Research in
Adaptive and Convergent Systems (RACS ’20), October 13–16, 2020, Gwangju,
Republic of Korea. ACM, New York, NY, USA, 6 pages. https://doi.org/10.

1145/3400286.3418252

1 INTRODUCTION
The immense growth of the Internet has over the past three decades

laid the foundation for massive technological development in al-

most all modern industries. However, as digital solutions open up

for opportunities for citizens and organizations, the increased acces-

sibility of intellectual property introduces an arsenal of new risks.

Advanced persistent threats (APTs) are more frequently targeting

critical infrastructure such as government systems, power grids,

mobile communication systems, critical manufacturing facilities,

water supplies and supply chain systems [10]. As businesses and

organizations migrate services and infrastructure to the cloud, and

morefrequently integrate with third-party solutions, maintaining

a responsible overview over data and communications in internal

networks becomes increasingly difficult [17]. As a result, companies

and nation states are forced to take the risk introduced by increased

attack surface, adaptive adversaries and response-driven cyber se-

curity into consideration when conducting their daily business.

The efficiency of Intrusion Detection Systems (IDSs) rely on sev-

eral parameters, including positioning in the network, configura-

tion of preprocessors, event management and more importantly the

techniques used for detection. A combination of signature detection,

anomaly detection and a variety of Machine Learning(ML)-based

approaches are commonly used in modern Intrusion Detection

and Prevention (IDPS) [1, 2, 9, 12]. An example of a system which

provides ML-based Network Behavioral Analysis (NBA) is Strato-

sphere Linux IPS (Slips), an open source implementation of an NBA

that uses Markov chains to generate models of malicious network

traffic over time. Slips provides IDS functionality by comparing

these models with live network traffic and determines whether the

recorded network flow behavior matches that of a malicious profile.

The paper that this article is based upon aimed to evaluate

Slips’ behavioral analysis capabilities with respect to its robustness

against adaptive network flow behavior, and furthermore observed

© Torgeir Fladby, Hårek Haugerud, Stefano Nichele, Kyrre Begnum, Anis Yazidi | ACM, 2020. This is the author's version of the work. It is posted here for your personal use. Not for redistribution.
The definitive Version of Record was published in RACS '20: International Conference on Research in Adaptive and Convergent Systems, DOI: https://doi.org/10.1145/3400286.3418252.

https://doi.org/10.1145/3400286.3418252
https://doi.org/10.1145/3400286.3418252
https://doi.org/10.1145/3400286.3418252

RACS ’20, October 13–16, 2020, Gwangju, Republic of Korea Fladby, Haugerud, Nichele, Begnum, and Yazidi

the degree of which malicious network traffic had to be altered

to in order to evade detection by Slips. The results of this article

may incentivize further research in creating even more robust NBA

solutions for intrusion detection.

This article will highlight some of the related work which this

work is based upon, including a brief description of Slips, a core

technology used in this research. The approach to the experiments

conducted is then accounted for, alongwith the idea ofmanipulating

network flows - "flow perturbations" - and the mathematical proce-

dures used in this process. Furthermore, the experiments setup is

described before a subset of results and the conclusion is discussed.

2 RELATED WORK
Techniques using machine learning to detect previously unseen

malware have been studied extensively throughout the last century;

however, it is only in recent years that adversarial machine learning

as a tool for evading such systems has gained significant attention.

While many researchers attempt to improve the performance and

accuracy of their classification algorithms [21], evaluation of ma-

chine learning based intrusion detection robustness has been studied
slightly less. Kos et. al proved in [13] that small, but carefully crafted,

perturbations to original input images can mislead a neural net-

work classifier to produce incorrect output. They used adversarial

examples to attack generative models, and were able to mislead

neural networks trained on MNIST [14], SVHN [18] and CelebA

[15] datasets with high confidence by feeding the target models

with adversarial examples. The researchers showed how to break

the integrity of an ML-based image classifier, but more importantly

demonstrated how a generative adversarial model could be used to

attack neural networks trained on a range of different datasets.

The advancement of adversarial techniques that use machine

learning to perturb input features has seen development in a range

of other domains. Rigaki et. al [22] demonstrate the use of such tech-

niques against the IPS domain by showing that it is possible to use

Generative Adversarial Networks (GANs) to mimic network traffic,

adapt malware communication and ultimately avoid detection; in

their case eliminating blockage of C2 network traffic. Papernot et.

al [8] showed in 2016 how adversarial sample attacks against mal-

ware classifiers could be constructed, and furthermore evaluated

how defensive mechanisms could be improved by training malware

classifiers using data gathered from adversarial training. In 2017

Papernot et. al expanded on their research by staging an attack

against a malware classifier that ultimately reached a misclassifica-

tion rate of up to 63%. There has also been research on measures

to make systems robust in order to counter adversarial machine

learning attacks, both against rule-based IDSs [16] [20] and against

deep learning models [8] [19] [25]. In [26], Yuan et. al investigate

and summarize approaches for generating adversarial examples,

applications for adversarial examples and corresponding counter-

measures. These ML-based techniques for adversarial examples,

robustness improvement and adaptive malware provide a basis for

the methods used in this paper.

3 APPROACH
This section provides a high-level overview of the technical imple-

mentations that were used to address the problem. The experiments

Figure 1: A malicious packet capture is fed into a manipula-
tion scheme which uses perturbation algorithms to change
the values of the network flows’ behavioral properties.

Network Flow Size Small Medium Large

Duration Short Medium Long Short Medium Long Short Medium Long

Strong Periodicity a b c d e f g h i

Weak Periodicity A B C D E F G H I

Weak Non-Periodicity r s t u v w x y z

Strong Non-Periodicity R S T U V W X Y Z

No data 1 2 3 4 5 6 7 8 9

Table 1: Character representation of network flow size in
bytes and duration of network flow

conducted can be generally described as a process feeding Slips

with a packet capture which has been manipulated based on a set of

parameters. A high-level description of this approach can be seen

in Figure 1.

3.1 Stratosphere Linux IPS
Stratosphere Linux IPS (Slips) is an open-source network flow analy-

sis tool, developed by researchers from Czech Technical University,

led by Sebastien Garcia et. al [7]. The tool takes as input network

flows from a ra client and feed them to a set of network behav-

ioral models and detection algorithms. More specifically, the Slips

program models network flows as Markov chains by consuming

parameters such as size, duration and periodicity of each flow, as

represented in Figure 2. Based on the chain of states generated,

each flow is assigned a symbol that characterizes the behavior of

the connection in that specific state, chained together into a sin-

gle characterization [11]. Character representations used to create

chains of states can be viewed in Table 1.

Evading a Machine Learning-based Intrusion Detection System RACS ’20, October 13–16, 2020, Gwangju, Republic of Korea

Figure 2: Duration, size and periodicity of network flows are
analyzed by Stratosphere IPS to create characterizations of
network traffic.

3.2 Flow perturbation
In order to test whether perturbation of network flow parameters

could assist in evading behavioral analysis intrusion detection, a

set of initial experiments were conducted on existing malware

capture datasets. It was desirable to see if one could reliably alter

Slips’ representation of network connections’ state by altering the

properties of packet capture files that has already been modeled

and labeled by Slips. Specifically, these experiments aimed to alter

properties that affect periodicity in network flows; duration of

connections, network flows and time between network flows are

parameters that affect this property [6]. The size of network flows

also impact the state of network flows and the probability that

it matches a model labeled as malicious - hence, this parameter

was also included as part of the perturbation scheme. The size

of network flows could be used as a target for a loss function in

an optimization scheme to e.g. minimize the degree of change in

amount of bytes transmitted, as a way of closely mimicking the

malicious network traffic’s actual content. It is worth noting that

the altered network packets should not be subject to data loss,

as that would conceptually strip the malicious capabilities of the

captured network packets. If network traffic which has previously

been observed, labeled and detected by Slips as malicious can be

altered to evade detection, without losing their malicious content,

conducting other experiments that perturb network flow properties

would be justified.

3.3 Procedures for parameter perturbation
After the functionality for perturbing network flow parameters was

implemented, we wanted to evaluate to what extent the manipu-

lation of these parameters affected the detection rate of malware.

Since Slips computes behavioral patterns for network connections

based on network flow size, network flow duration and periodicity
[6], we wanted to cause some manual disturbance of parameters

that affect these properties. If manual perturbations affected Slips’

detection rate on a given malware capture, we wanted to repeat

the experiment using more scientific approaches where the goal

was to minimize the perturbations’ negative impact on network

connection delays. Finally, if we to some extent were able to mini-

mize the impact on connection delays, we wanted to adopt a type of

machine learning algorithm to optimize the parameters used with

the given algorithms.

An important aspect when generating random perturbations,

and in particular for problems that utilize Stochastic Optimization,

is the objective function. Since we mainly focused on perturbing the

periodicity of network flows, and therefore did not perturb the byte-

size of network flows, perturbation to that variable does not really

impact our resulting packet capture in any way. However, we could

still use this variable in our objective function, whether the goal

was to reduce the amount of time used by malicious connections,

or to make it as similar to the original traffic as possible. Moreover,

we could use the information gained by the objective function as

feedback to other optimization problems, for instance as a means

to generate parameters for a perturbation algorithm. To increase

throughput, we could define our objective function as 𝑦,

𝑦𝑖 = argmin

𝐷

𝑓 𝑙𝑜𝑤𝑠𝑖𝑧𝑒
𝑖

𝑓 𝑙𝑜𝑤𝐷
𝑖

, (1)

where D is the product of the duration of the 𝑖𝑡ℎ network flow and

the time until its next network flow.

In scenarios where it is desirable to minimize the difference in

throughput, the objective function may for instance minimize the

euclidean distance between the perturbed sample and the original

input. The objective function𝑦 could then be denoted as the 2-norm

distance between the two samples x and y, where 𝑥 is the observed

data and 𝑦 is its perturbed version:

𝑦 = (
𝑛∑
𝑖=1

∥𝑥𝑖 − 𝑦𝑖 ∥2)1/2 . (2)

Depending on what problem is to be solved, however, it is often

hard to obtain a direct gradient of the objective function, partic-

ularly if one has continuous or generative data. In such cases it

could be a good idea to rely on a technique that does not require

measurements of the direct gradient of the objective function.

Adaptive Step-Size Random Search Algorithm
The ASRS Algorithm [23] was implemented to take as input a set of

boundaries that defined the maximum amount of distance each step

could take. Additional inputs were perturbation factors for each

parameter subject to perturbation, as well as one factor for small

step sizes and one factor for large step sizes. The ASRS algorithm

was implemented to trial a large step size for each iteration and

adopt the larger step size if it yielded a better result. This algorithm

was implemented according to the description in [23] and modified

to include the perturbation of three parameters.

RACS ’20, October 13–16, 2020, Gwangju, Republic of Korea Fladby, Haugerud, Nichele, Begnum, and Yazidi

Simultaneous Perturbation Stochastic
Approximation
Simultaneous Perturbation Stochastic Approximation (SPSA) is an

algorithm used to solve challenging optimization problems where

it is difficult or impossible to obtain a gradient of the objective

function [24]. In our case, it was not possible to know the gradi-

ent of a certain configuration because we did not know whether

the flow would be classified as malicious or not at the time of per-

turbation. SPSA, in contrast to optimization algorithms that work

with discrete noise-free data, relies on two separate measurements

of the objective function to obtain an approximation of the gra-

dient, regardless of the number of parameters being optimized.

This "two-step", simultaneous approach is desirable for solving our

optimization problem because the data we attempt to provide per-

turbations for, while trying to reach a particular objective for each

iteration, is both continuous and noisy. SPSA is applicable to a vari-

ety of problems within engineering and social sciences, but must be

adapted to fit each use case. We chose to implement SPSA because

of its versatility with respect to different optimization problems

and objective functions, such that we may extend functionality at a

later point if desirable.

The goal of SPSA in our case was to minimize the loss function

𝑦 (𝜃), where the loss function is a scalar-valued measurement of

performance, and 𝑡ℎ𝑒𝑡𝑎 is the vector of parameters to be perturbed.

SPSA starts by iterating from an initial guess of 𝑡ℎ𝑒𝑡𝑎, a vector

which in our case is based on measurements of a network flow. We

can then obtain measurements 𝑦 (𝜃) of the loss function 𝑦 (𝜃) by
adding noise to the initial loss function:

𝑦 (𝜃) = 𝑦 (𝜃) + 𝜁 , (3)

where 𝜁 is the added noise. When we have exact measurements,

however, adding noise is not necessarily desirable. We implemented

support for two different objective functions, namely throughput
maximization and Euclidean Distance minimization and slightly

increased the noisiness of the value by adding a random variable

chosen from a gaussian distribution of 0 ± 0.1 to 𝜃 . The SPSA

algorithm was implemented by completing the following steps:

We selected initial values for 𝛼,𝛾, 𝑐, 𝑎, 𝑛 and the vector 𝛽 as 0.602,

0.101, 1, 1, 1000 and [0.1, 0.9], respectively. Then, we defined two

iterators, or gain sequences, as

𝑎𝑖 =
𝑎

(𝛽 [1] × (𝑖 + 1))𝛼 , for 𝑖 ∈ {0, ..., 𝑛} (4)

and

𝑐𝑖 =
𝑐

(𝛽 [0] × (𝑖 + 1) ∗ 0.5)𝛾 , for 𝑖 ∈ {0, ..., 𝑛}. (5)

The gain sequences were created so that they would not produce

values of
ˆ𝜃 with excessively large magnitude of perturbation.

Furthermore, we generated an initial Simultaneous Perturbation
Vector 𝛿0 by selecting one Bernoulli-value for each parameter sub-

ject to perturbation, such that 𝛿0 = [±1,±1,±1]. Bernoulli-values
were selected due to the requirements stated in [24] Section III. A.

We then started iterating over SPSA with 𝑛 iterations. For each

iteration 𝑘 , we computed the following [24]:

• Two objective function evaluations: Two measurements

of the loss function 𝑦 (𝜃) based on the simultaneous pertur-

bation around
ˆ𝜃𝑘 . The two perturbations were calculated as

ˆ𝜃𝑘1
= 𝑦 (ˆ𝜃𝑘 + 𝑐𝑘 × 𝛿𝑘) and ˆ𝜃𝑘2

= 𝑦 (ˆ𝜃𝑘 − 𝑐𝑘 × 𝛿𝑘), where 𝑐𝑘
is the gain sequence as defined in Formula 9.

• Simultaneous Perturbation Gradient Approximation:
An approximation to the unknown gradient 𝑔(ˆ𝜃𝑘) as

𝑔𝑘 (ˆ𝜃𝑘) =
ˆ𝜃𝑘1

− ˆ𝜃𝑘2

2 × 𝑐𝑘
(6)

• Estimate update: The next estimate of
ˆ𝜃 , denoted as

ˆ𝜃𝑘+1

was computed as the difference between
ˆ𝜃𝑘 and 𝑔𝑘 (ˆ𝜃𝑘) ×𝑎𝑘 ,

where 𝑎𝑘 is the 𝑘𝑡ℎ element of our gain sequence 𝑎:

ˆ𝜃𝑘+1
= ˆ𝜃𝑘 − 𝑔𝑘 (ˆ𝜃𝑘) × 𝑎𝑘 (7)

• Termination: SPSA terminates if there is little change over

several successive iterates or the maximum number of itera-

tions has been reached. If these conditions are not met, 𝑘 is

incremented and a new iteration is initiated.

Guidelines for selection of gain sequences in [24] were used in

an attempt to select viable parameters for our implementation of

the SPSA algorithm.

4 EXPERIMENTS SETUP
The experiments described in this section aimed to test the feasibil-

ity of behavioral analysis systems in a semi-realistic environment

that had already been compromised by an attacker. The attack sce-

nario could be described as the Command and Control(C&C) stage

of a red team exercise [3], where it is assumed that a malicious

entity already has compromised at least one host within a victim

network, and that privileges are escalated to the extent that attack-

ers are able to install arbitrary software on the host. During the

C&C stage of a red team exercise, it is detrimental that penetration

testers do not give away that they have compromised infrastructure

on target systems. For that reason, when a communication channel

with the control server is to be established, it is desirable that the

malware’s communication channel remains hidden from any IPS

agents analyzing traffic on internal or external network endpoints.

Technical implementation. To reach the ultimate objective of con-

firming whether perturbation to network flow parameters affected

the probability that a malicious capture packet file was misclassified

as benign, some infrastructure and software had to be implemented:

• (1) A container configuration that installs Stratosphere Linux
IPS, argus and ra alongside all relevant dependencies to en-

able execution of experiments on a platform that is trivial to

deploy on any operating system.

• (2) Software taking as input a packet capture file and a set of

perturbation parameters. All relevant network flows had to

be identified, and properties such as duration, size of network
flow and time between current flow and next flow had to be

computed. When all network flows and other connections

had been identified and grouped, the argument perturbation

parameters should then be applied to the relevant network

flows. The programmust return the same connections, in the

Evading a Machine Learning-based Intrusion Detection System RACS ’20, October 13–16, 2020, Gwangju, Republic of Korea

same order, but with timestamps that are modified according

to the input perturbation parameters.

• (3) A script taking as input the packet capture file generated

in (2) to create a network flow file compatible with analysis

in Slips.

• (4) A module providing perturbation parameters to the pro-

gram that changes network flow properties of the selected

pcap-files. A set of techniques for computing perturbations

were features of this module.

• (5) An implementation of a Learning Automata that enabled

a large set of iterations to be computed over different con-

figuration options of the algorithm in (4). The goal of the

Learning Automata was to find an optimal configuration of

parameters provided to the selected algorithm. The configu-

ration could, for instance, minimize the impact that pertur-

bation has to network flow durations, while ensuring that

the entire network flow remained undetected by Slips. For

each iteration, the probability that the Learning Automata

selected a feasible solution, should be increased.

5 RESULTS
This section provides a short description of the experiments that

were conducted as part of this paper and the results produced by

each experiment. The experiments were designed to provide data

that reflected the performance of Slips, or to serve as building

blocks that justify other experiments conducted in the paper that

this article is based upon. To simulate malicious network flows, the

researchers used publically available datasets from Czech Technical

University (CTU)[4].Whilemultiple datasets were used in the initial

paper, this article presents results from manipulating the properties

of network flows in the dataset CTU-108-1. Recall that the term

magnitude in this context is used to describe the degree of which

a parameter has been perturbed; lower magnitude equals lower

degree of change.

5.1 Adaptive Step-size Random Search
Since ASRS is threshold-based, we wanted to run a larger amount

of iterations using the same set of parameters as in Iteration 2 of

5.2.1 in [5], with the goal of observing whether a slightly more

intelligent way of selecting perturbation parameters could result

in a smaller magnitude of perturbation. Furthermore, we decided

to run the SPSA algorithm with the Cridex dataset, such that we

could look at flows having some varying flow characteristics.

With respect to magnitude per flow, ASRS performed a lot better

than simple random variables. When using the same parameters as

in Iteration 2 of 5.2.1 [5], the average magnitude was 1.96, compared

to the much higher 2.78 using random thresholds.

By observing the magnitudes of perturbation per flow in Figure 3,

we spot one outlier network flow, with roughly 5 times the average

value:

Figure 3: Magnitude of perturbation per flow for CTU108-1
using ASRS

Because ASRS bases perturbation on initial values and thresholds,

the outlier could be due a large observational value.

The mean standard deviation of magnitude for CTU108-1 using

ASRS was measured to 1.60, while the mean variance was measured

to 2.75.
If our goal is to minimize magnitude while remaining undetected,

ASRS provides us with a consistent improvement in performance

because it yields a smaller magnitude of perturbation while remain-

ing undetected in all cases.

Iter Mean Magnitude Detected
0 0 True

1 20.68 False

2 1.96 False

3 0.41 False

Table 2: Magnitudes of perturbations with varying thresh-
olds on CTU108-1 using ASRS.

5.2 Simultaneous Perturbation Stochastic
Approximation

This experiment did not require any bounds or thresholds in order to

run the perturbation algorithm. Using the static default parameters

for the vector 𝛽 as [0.1, 0.9] to generate gain sequences, we ran

a total of 50 iterations. We used the objective function as stated

in Formula 6 for maximizing throughput. All solutions generated

by the SPSA were feasible, i.e. not detected as Slips as malicious.

The mean of the mean magnitudes for all trials was 4.18, indicating
an increase compared to the ASRS algorithm. The reason for this

could be that we used an objective function that aimed to maximize

throughput by minimizing duration of flows and the time between

flows.

RACS ’20, October 13–16, 2020, Gwangju, Republic of Korea Fladby, Haugerud, Nichele, Begnum, and Yazidi

Figure 4: Magnitude of perturbation per flow for 4 iterations
on CTU108-1 using SPSA with static gain sequence parame-
ters.

We can observe from the graph in Figure 4 not only that the

magnitudes are more severe than when using the ASRS algorithm,

but that the variance in magnitude is also significantly increased.

We measured the mean standard deviation and variance for all 50

iterations of this experiment to 4.78 and 2.18, respectively. This
could imply that the algorithm’s gain sequence parameters are not

sufficiently tuned to work with our solution.

6 CONCLUSION
The results of this article may contribute to increasing awareness

around the importance of taking adaptive behavior into consider-

ation when using NBA as a component in IDSs. As threats often

emerge faster than their security measure counterparts, one should

in critical environments assume that malicious actors and their soft-

ware are trivially able to adapt to detection systems. Information

Security specialists must ensure that their security software, and

the models they depend on, are at all times up to date and on-par

with the current highest standard. While NBA can be a positive

supplement to existing IDS solutions, security professionals should

be careful not to blindly trust existing models.

We set out to answer how the behavior of malicious network

traffic could be altered to evade detection by a behavioral analy-

sis tool. While we did not prove that evasion was possible for a

live solution, we did conceptually show that by creating a packet

manipulation scheme supporting perturbations to network flow

parameters, we may perturb network flow patterns to effectively

confuse NBA intrusion detection. Furthermore, we explored and

implemented different search techniques that provided perturbed

versions of an initial set of network flow parameters. Finally, we

demonstrated how a simple reinforcement-based ML method could

be used as a tool to provide optimal parameters for the perturbation

algorithms that were implemented. While the experiments were not

comprehensive enough to provide directly applicable adversarial

techniques, the work incentivizes further research in the areas of

ML-based intrusion detection and evasion.

REFERENCES
[1] Aldweesh, A., Derhab, A., and Emam, A. Z. Deep learning approaches for

anomaly-based intrusion detection systems: A survey, taxonomy, and open issues.

Knowledge-Based Systems 189 (2020), 105124.
[2] Amoli, P. V., Hamalainen, T., David, G., Zolotukhin, M., and Mirzamoham-

mad, M. Unsupervised network intrusion detection systems for zero-day fast-

spreading attacks and botnets. JDCTA (International Journal of Digital Content
Technology and its Applications 10, 2 (2016), 1–13.

[3] Consulting, R. T. S. Red teaming methodology, 2018.

[4] CTU. CTU Public Datasets. https://mcfp.felk.cvut.cz/publicDatasets/, 2020.

[Online; accessed 17-September-2018].

[5] Fladby, T. F. Adaptive network flow parameters for stealthy botnet behavior.

Master’s thesis, 2018.

[6] Garcia, S. Modelling the network behaviour of malware to block malicious

patterns. the stratosphere project: a behavioural ips. Virus Bulletin, number
September (2015), 1–8.

[7] Garcia, S., and Pechoucek, M. Detecting the behavioral relationships of mal-

ware connections. In Proceedings of the 1st International Workshop on AI for
Privacy and Security (2016), ACM, p. 8.

[8] Grosse, K., Papernot, N., Manoharan, P., Backes, M., and McDaniel, P. D. Ad-

versarial perturbations against deep neural networks for malware classification.

CoRR abs/1606.04435 (2016).
[9] Hajiheidari, S., Wakil, K., Badri, M., and Navimipour, N. J. Intrusion detection

systems in the internet of things: A comprehensive investigation. Computer
Networks 160 (2019), 165–191.

[10] Inc., C. S. Cisco 2018 Annual Cyber Security Report. https://www.cisco.com/c/en/

us/products/security/security-reports.html, 2018. [PDF; accessed 17-September-

2018].

[11] IPS, S. Stf. https://www.stratosphereips.org/stratosphere-testing-framework,

2018.

[12] Khraisat, A., Gondal, I., Vamplew, P., and Kamruzzaman, J. Survey of intru-

sion detection systems: techniques, datasets and challenges. Cybersecurity 2, 1
(2019), 20.

[13] Kos, J., Fischer, I., and Song, D. Adversarial examples for generative models.

arXiv preprint arXiv:1702.06832 (2017).
[14] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning

applied to document recognition. Proceedings of the IEEE 86, 11 (1998), 2278–2324.
[15] Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face attributes in the wild.

In Proceedings of the IEEE International Conference on Computer Vision (2015),

pp. 3730–3738.

[16] Lowd, D., and Meek, C. Adversarial learning. In Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discovery in data mining (2005),

ACM, pp. 641–647.

[17] McAfee. Navigating a Cloud Sky. https://www.mcafee.com/enterprise/en-us/

assets/reports/restricted/rp-navigating-cloudy-sky.pdf, 2018. [PDF; accessed

11-October-2018].

[18] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. Reading

digits in natural images with unsupervised feature learning. In NIPS workshop
on deep learning and unsupervised feature learning (2011), vol. 2011, p. 5.

[19] Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., and Swami,

A. The limitations of deep learning in adversarial settings. In Security and Privacy
(EuroS&P), 2016 IEEE European Symposium on (2016), IEEE, pp. 372–387.

[20] Perdisci, R., Gu, G., and Lee,W. Using an ensemble of one-class svm classifiers to

harden payload-based anomaly detection systems. In Data Mining, 2006. ICDM’06.
Sixth International Conference on (2006), IEEE, pp. 488–498.

[21] Rieck, K., Holz, T., Willems, C., Düssel, P., and Laskov, P. Learning and

classification of malware behavior. In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment (2008), Springer, pp. 108–
125.

[22] Rigaki, M., and Garcia, S. Bringing a gan to a knife-fight: Adapting malware

communication to avoid detection. In 2018 IEEE Security and Privacy Workshops
(SPW) (2018), IEEE, pp. 70–75.

[23] Schumer, M., and Steiglitz, K. Adaptive step size random search. IEEE Trans-
actions on Automatic Control 13, 3 (1968), 270–276.

[24] Spall, J. C. Implementation of the simultaneous perturbation algorithm for

stochastic optimization. IEEE Transactions on Aerospace and Electronic Systems
34, 3 (July 1998), 817–823.

[25] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow,

I., and Fergus, R. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199 (2013).

[26] Yuan, X., He, P., Zhu, Q., Bhat, R. R., and Li, X. Adversarial examples: Attacks

and defenses for deep learning. arXiv preprint arXiv:1712.07107 (2017).

https://mcfp.felk.cvut.cz/publicDatasets/
https://www.cisco.com/c/en/us/products/security/security-reports.html
https://www.cisco.com/c/en/us/products/security/security-reports.html
https://www.mcafee.com/enterprise/en-us/assets/reports/restricted/rp-navigating-cloudy-sky.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/restricted/rp-navigating-cloudy-sky.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Stratosphere Linux IPS
	3.2 Flow perturbation
	3.3 Procedures for parameter perturbation

	4 Experiments setup
	5 Results
	5.1 Adaptive Step-size Random Search
	5.2 Simultaneous Perturbation Stochastic Approximation

	6 Conclusion
	References

