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Abstract—Optimal power allocation problem in wireless net-
works is known to be usually a complex optimization problem. In
this paper, we present a simple and energy-efficient distributed
power control in downlink Non-Orthogonal Multiple Access
(NOMA) using a Reinforcement Learning (RL) based game
theoretical approach. A scenario consisting of multiple Base
Stations (BSs) serving their respective Near User(s) (NU) and Far
User(s) (FU) is considered. The aim of the game is to optimize
the achievable rate fairness of the BSs in a distributed manner
by appropriately choosing the power levels of the BSs using trials
and errors. By resorting to a subtle utility choice based on the
concept of marginal price costing where a BS needs to pay a
virtual tax offsetting the result of the interference its presence
causes for the other BS, we design a potential game that meets
the latter objective. As RL scheme, we adopt Learning Automata
(LA) due to its simplicity and computational efficiency and derive
analytical results showing the optimality and convergence of
the game to a Nash Equilibrium (NE). Numerical results not
only demonstrate the convergence of the proposed algorithm to
a desirable equilibrium maximizing the fairness, but they also
demonstrate the correctness of the proposal followed by thorough
comparison with random and heuristic approaches.

Index Terms—Game Theory, NOMA, IoT, Power Allocation,
Reinforcement Learning, Nash Equilibrium

I. INTRODUCTION

With the exponential growth in the Internet of Things (IoT)
applications, it is estimated that global data traffic will cross
up to 75 trillion gigabytes [1]. Orthogonal Multiple Access
(OMA) is currently used for the underlying wireless network
such as the Fourth Generation (4G) and Long Term Evolution
(LTE) by assigning orthogonal resources to the multiple users
and thereby avoiding inter-cell interference [2]. However, it
has been predicted that more than 125 billion IoT devices
will be connected to the internet by 2030 [3]. Hence, the next
generation of networks is expected to serve the massive con-
nectivity of the IoT devices and maximize resource efficiency.
In this regard, OMA is considered as spectrally inefficient for
the design and optimization of the next-generation wireless
systems [4].

To provide a higher data rate, higher capacity, and massive

connectivity of the IoT devices, Non-Orthogonal Multiple Ac-
cess (NOMA) has been contemplated as one of the key tech-
nologies to support these requirements of the next generation
networks [5], [6]. In NOMA, multiple users can be multiplexed
in the power domain at the same time, frequency, and code
[7]. Specifically, multiple users signal are superimposed in the
power domain at the transmitter side, and the user signals are
separated using the Signal-to-Interference Cancellation (SIC)
technique at the receiver side [8].

Since resources are not used in an orthogonal manner in
NOMA, it is important to efficiently manage interference
among multiple users to maximize the system throughput
or capacity. Moreover, NOMA is based on the principle of
SIC which is known to be very fragile to interference as the
decoding failure propagates in the SIC chain to weaker users
[9]. Therefore, the power must be properly allocated such that
the interfering signals can be correctly decoded and subtracted
from the certain users’ received signal to recover the desired
signal [10]. This is particularly more important in large scale
networks where Base Stations (BSs) might be densely placed
to serve their associated multiple NOMA users [11]. If power
control optimization is not used, the BS serving at a higher
power levels to satisfy the individual achievable data rate of
its associated NOMA users will create interference on the
NOMA users associated with other BSs and thus jeopardize
their achievable data rates.

Most of the power control schemes in the literature are
based on scheduling, optimization techniques, heuristics, sub-
carrier allocation, and power allocation techniques. These tech-
niques may not be globally efficient and thus may result into
sub-optimal solutions. Furthermore, latter techniques are usu-
ally centralized and require large message exchanges between
BSs and users. As BSs aspire to maximize the individual data
rate of its associated NOMA users, they might act selfishly by
raising their power level at the detriment of other users from
other BSs which might get affected by the interference and
thus fail in the SIC phase. There has recently been a growing
interest in examining distributed power control in wireless
networks from a game-theoretical perspective. Game theory
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has its root in economics and strategic decision making and
deals with the analysis of several decision-makers’ competitive
relationships [12], [13]. Game Theory is a powerful modeling
tool in many systems where the outcome of a player does
not only depend on its decision or action, but also on the
decisions taking by other players. Rational users make cal-
culated decisions to maximise their pay-off functions. Game
theory methods are also one of the most viable candidates
for distributed power control and management in downlink
NOMA, whereby BS needs to choose their power levels for
overall better network performance. It is worth mentioning
that game theory has found a plethora of applications within
the field of wireless networks, for a comprehensive survey we
refer the reader to a book by Han et al. [12]. On the other hand,
some Reinforcement Learning (RL) strategies, such as Learn-
ing Automata (LA) [14], would ultimately yield the optimum
strategy as the learning parameter gets sufficiently small [15]–
[17]. LA is one of the simplest and yet efficient RL schemes
that are shown to reach Nash Equilibrium (NE) in a large set of
games [15]. LA has been used extensively in the literature for
different game wireless related problems such as power control
[18] cooperative spectrum sensing [19], opportunistic spectrum
sharing in cognitive networks [20], [21], sensor fusion [22],
anti-jamming in wireless communication [23] to mention few
recent applications. Therefore, in this paper, we propose and
study an LA based game-theoretic approach for distributed
power control in downlink NOMA systems.

In particular, the major contributions of this paper are as
follows:

• We first formulate distributed power control in downlink
NOMA as a strategic game and derive the Nash Equilib-
rium of the game.

• We prove that the distributed power control game we
designed is an exact potential game. We then propose a
LA based game-theoretic approach for distributed power
control that provides a full characterization of the best
achievable performance for the potential function of the
game.

• We show that our proposed distributed power control
algorithm that is designed as a game is guaranteed to
converge to an NE.

• We conduct a thorough theoretical analysis that demon-
strates the convergence of the proposed algorithm that is
maximizing the achievable rate fairness for the respective
NUs and FUs and thus achieving the higher energy
efficiency in downlink NOMA systems.

The rest of the paper is organized as follows. In Section II, we
survey the related works. The system model is presented in
Section III. Our proposed RL based game-theoretic approach
for distributed power control algorithm is explained in Section
IV. Theoretical proofs of the derived game are also provided
in this section. Experimental results and analysis are carried
out in Section V. Conclusions, and future works are drawn in
Section VI.

II. RELATED WORKS

Fu et al. studied distributed downlink power control for the
NOMA system with two interfering cells [24]. The authors
formulated the distributed downlink power control mathemat-
ically as an optimization problem that aimed to minimize
the total transmit power of the two BSs. Similarly, Sung
et al. investigated game theoretic analysis of uplink power
control with two interfering cells for the uplink NOMA sys-
tems [25]. Furthermore, a game-theoretic approach is studied
in [26] where NOMA is applied to ALOHA for deciding
the transmission probability. Based on the Glicksberg game,
Aldebes et al. proposed a power allocation algorithm for
cellular downlink NOMA networks [27]. In particular, for the
power allocation algorithm, the authors proposed a price-based
user’s utility function, which is shown to be restrictive if the
allocated power beyond a threshold value causes a decrease
in the utility value. In [28], a joint utility-based power control
via S-modular theory in multi-service wireless networks is
addressed. A RL-based power control scheme for downlink
NOMA in the presence of smart jamming is studied in [29],
where the authors formulated a Stackelberg equilibrium of
the antijamming NOMA transmission game. A power control
based on evolutionary game theory for uplink NOMA systems
is examined in [30]. A power allocation based on optimization
and deep reinforcement learning approach for cache-aided
NOMA systems is proposed in [31]. Moreover for a hybrid
NOMA systems, a joint channel selection and power control
based on game theory is proposed in [32]. Although a lot of
work for power allocation for NOMA and wireless networks
based on game theory has been carried out in the literature,
some interesting questions still remain to be answered. How
to optimize distributed power control, especially for multicell
NOMA networks where multiple BSs compete with each other
based on the fairness of achievable data rate among its users so
as to achieve overall system fairness for the downlink NOMA
systems. Therefore, in this paper, we propose distributed power
control in a multicell downlink NOMA system based on the
joint application of RL and game theory.

III. SYSTEM MODEL

We consider a downlink NOMA scenario with multiple
base stations (BSs) located geographically in close vicinity
so that they might cause interference on each other, namely
BS1, BS2 · · · BSN where each BS is serving two User
Equipments (UEs) - its Near User (NU) and Far User (FU).
Please note that our work generalises for more than two UEs
in a straightforward manner but for the sake of simplicity we
content ourselves to two UEs per BS1.

Due to data transmission to their respective UEs by their
serving BSs, each of the BSs induces an external interference
factor to the UEs. The nodes are assumed to be operating in

1Two UEs per frequency band has been already adopted as a standard by the
Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) [33]
under the name of Multi-User Superposition Transmission (MUST). Please
note that a BS might have a certain number of frequency bands, and thus,
more pairs of users can be served in different frequency bands.



the half-duplex mode. We have assumed that Channel State
Information (CSI) is perfectly known to the receiver. Each
of the nodes is equipped with a single antenna. The channel
between any two nodes is subjected to the independent
Rayleigh block fading plus additive white Gaussian noise in
which the channel remains constant during the transmission
of a block and varies independently from one block to
another. h(2j−1) ∼ CN(0, λh(2j−1)) is the complex channel
co-efficient between near UEs and BS j with zero mean and
variance λh(2j−1), where j = 1, 2, · · ·N .

Furthermore, h2j ∼ CN(0, λh2j
) is the complex

channel co-efficient between BSj and far UEs node
with zero mean and variance λh2j

, where j = 1, 2, · · ·N .
ĥ(2ĵ−1) ∼ CN(0, λĥ(2ĵ−1)) is the complex channel co-
efficient between BS j and near UEs associated with BSs
other than j BS with zero mean and variance λĥ(2ĵ−1), where
ĵ = 1, 2, · · ·N and ĵ 6= j. Similarly, ĥ(2ĵ) ∼ CN(0, λĥ(2ĵ))
is the complex channel co-efficient between BS j and far
UEs associated with BSs other than j BS with zero mean
and variance λĥ(2ĵ).

A. Signal-to-Interference Noise Ratios (SINR)

Let yj denote the power level of BSj . BSs are using
NOMA to transmit the data to their respective UEs, i.e., NU
and FU. Since, UE2j−1 is a near user and UE2j is a far user
for BSj , BSj allocates α2j−1yj power for transmitting the
information to UE2j−1 and (1−α2j)yj power for transmitting
the information to UE2j .

Following the downlink NOMA protocol, the BSj trans-
mits a superimposed composite signal Zj which consists of
UE2j−1 information x2j−1 and UE2j information x2j . The
superimposed composite signal Zj from the BSj , following
the downlink NOMA protocol can be given as:

Zj =
√
α2j−1yjx2j−1 +

√
(1− α2j)yjx2j (1)

The received SINR at BSj → UE2j−1 link is given by:

γUEj→x2j =
(1− α2j)yj |h2j−1|2(

α2jyj |h2j−1|2 +
∑N
n=1,n6=j(α2n−1yn

|ĥ2n−1|2 + α2nyn|ĥ2n|2) +N0

) (2)

γUEj→x2j−1
=

α2j−1yj |h2j−1|2(∑N
n=1,n6=j(α2n−1yn|ĥ2n−1|2+

α2nyn|ĥ2n|2) +N0

) (3)

where γUEj→x2j
is the SINR required at UEi to decode and

cancel x2j , i.e. to perform SIC at UEi.
The received SINR at BSj → UE2j link is given by:

γUE2j→x2j
=

(1− α2j)yj |h2j |2(
α2j−1yj |h2j |2 +

∑N
n=1,n6=j(α2n−1yn

|ĥ2n−1|2 + α2nyn|ĥ2n|2) +N0

) (4)

B. Achievable Data Rate

According to our system model, the achievable data rate
associated with the far user UE2j−1 is given by:

RUE2j−1
= B log2(1 + γUE2j−1→x2j−1

)

= B log2

(
1 +

α2j−1yj |h2j−1|2(∑N
n=1,n6=j(α2n−1yn|ĥ2n−1|2+

α2nyn|ĥ2n|2) +N0

)) (5)

Simiarly, the achievable data rate associated with the near
user UE2j is given by:

RUE2j = B log2(1 + γUE2j→x2j )

= B log2

(
1 +

(1− α2j)yj |h2j |2(
α2j−1yj |h2j |2 +

∑N
n=1,n6=j(α2n−1yn

|ĥ2n−1|2 + α2nyn|ĥ2n|2) +N0

)) (6)

Let ymax be the maximum transmission power and ymin be
the minimum transmission power for a BS. Since the actual
transmission power may usually only be set to a finite number
of levels, the power is discretized into a finite number of levels,
i.e. between ymin and ymax. Since, yj is the power of BSj ,
we have ymin ≤ yj ≤ ymax.

Our aim is to optimize the fairness of the whole system
[34]. The players here correspond to BSs. Thus, the fairness
criterion for each BS depends on its total achievable data rate
by its users in the presence of interference from other BSs.

Assuming the total transmission power of the BS is limited
to ymax, the maximization problem could be formulated as:

Maximize:

RSum =

N∑
j=1

log2(RUE2j−1 +RUE2j )

Subject to

yj ≤ ymax
∀yj ≥ ymin.

(7)

In the above Equation 7, the log2(RUE2j−1
+RUE2j

) captures
the achievable data rate of NU and FU associated with BS j
according to the criterion of achievable data rate fairness [34].

IV. REINFORCEMENT LEARNING BASED GAME
THEORETIC APPROACH

We now formulate the distributed power control as game G
in which each player (here BS) optimizes its power allocation
so as to maximize its individual fairness. Let N denote the
number of players or base stations in our case. The payoff of
user j obtained from using power level yj is denoted by

uj(yj , y−j) (8)

Note that uj is a function of the strategy chosen by player
j, and of y−j , its opponents’ current strategic profile. Players



will selfishly pick actions that improve their utility functions,
taking into account the other players’ current strategies. The
main problem, therefore, is the choice of uj , so that the
players’ individual actions lead to a theoretically optimal
result.

Furthermore, the players are assumed to be selfish in the
sense that they will try to maximise their own utility. They
will compete to maximize their own utility functions, given
the most recent action of the other players, then the process
will converge to a Nash Equilibrium (NE) regardless of the
order of play. To compensate for the selfishness of players,
the utility function can be defined as:

uj(yj , y−j) = C(yj , y−j)−
N∑

i=1,i6=j

(
C−j(yi)−C(yi, y−i, yj)

)
(9)

The above utility reflects the idea of marginal price costing
where the player should pay a tax offsetting the nuisance his
presence causes for the other players [35].

In the above Equation 9, Cj(yj , y−j) = log2(RUE2j−1 +
RUE2j ) is the fairness of the achievable rate associated with
player j, i.e. sum of the achievable rate fairness of NU and
FU associated with BS j. C−j(yi) denotes the achievable
rate fairness of the opponent player i other than j when it is
not affected by the presence of player j. The second term in
the above expression signifies the increase in the achievable
rate fairness of the neighboring BSs i, i 6= j if BS j was not
present and causing interference. Hence, it is calculated as
the difference between these achievable rate fairnesses of the
different BSs i without and with the presence of BS i.

We now formulate a decentralized stochastic RL algorithm
to evolve to the Nash Equilibrium (NE) of game G. NE
defines the stability of the game that occurs when players
behave according to correspondence from their best response
(BR) in the game [36], [37]. The best response of the player
j can be defined as:

Definition 1: action a∗j ∈ BR(a−j) if:

uj(a
∗
j , a−j) ≥ uj(aj , a−j);∀aj (10)

The informed reader observes that an action for player j
in our power model is rather denoted yj but here for the
sake of presenting a definition, we denoted it by aj since it
is a common nomenclature in game theory when presenting
definitions. When it comes to potential games, it is known
in the literature that if the players adopt sequentially their
BR strategies that a NE will be reached which corresponds
to the maximizer of the potential function [38]. In our game,
the choices of the players are distributed and without central
control, thus, we rather adopt RL as a choice mechanism. The
above definition implies that the players will not change their
actions, which coincides with their BR if no other players in
the game have an incentive to deviate from their action. That
is, the game has reached a stable state, i.e. to the NE.

We now expand the game G to a mixed strategy

for characterizing the learning algorithm. Let Pj(t) =
[pj,1(t), pj,2(t), · · · , pj,k(t)] be the mixed strategy of the
player j, where pj,k denotes the probability with which the
jth player chooses the kth pure strategy at instant t. We
suppose that each BS has K power levels to choose among.
Let L = {l1, l2, · · · , lK} denote those power levels. Therefore
yjL. Each player is represented by an LA, and the actions
of the automaton are the pure strategies of the player. The
normalized payoff of the jth player will be a feedback uj(t)
to the jth automaton based on his action and the action
adopted by the rest of the players. At each iteration, each
player samples individually an action according to its current
action probability vector. Repeatedly the game is played for
learning the NE until convergence of their corresponding
action probability vectors, The LA-based distributed power
control game in downlink NOMA is given in Algorithm 1.

Algorithm 1 LA based Distributed Power Control Game in
Downlink NOMA

1: Start
2: Set the components of initial probability vector for player
j, Pj(0) as pj,k(0) = 1

K , j = 1, 2, · · · , N , and k =
1, 2, · · · ,K.

3: For every time instant t, each of the players chooses j
an action aj(t) according to its action probability vector
Pj(t).

4: The selected player j obtains uj(t) based on the set of
all actions of the players in the game G. Let rj(t) be the
normalized version of uj(t) using Equation 11.

5: Each player j updates it action probability through the
following rule:
pj,k(t+ 1) = pj,k(t) + λrj(t)(1− p,jk(t)), k = aj(t)
pj,k(t+ 1) = pj,k(t)− λrj(t)pj,k(t), k 6= aj(t)
where λ is a learning parameter.

6: If there is a component of Pj(t) that is larger than 0.99,
then set it to one and set the rest of components to zero
and stop. If not, go to Step 3.

7: Stop

Since the utility uj(t) might take values outside the interval
[0, 1], it is common in the field of LA to use a normalized ver-
sion of the feedback according to the following normalization
procedure that is described by [39] and which is given by:

rj =
uj −minj uj

maxj uj −minj uj
(11)

A. Theoretical Results

In game theory, a game is considered to be a potential game
if a single global function called the potential function can be
used to represent the incentives of all players to adjust their
strategy. We will now prove that our proposed game is an
exact potential game.

Theorem 1. The game defined by the utility function given in
Equation 9 is an exact potential game.



Proof:
Let us define the following potential function:
Φ(yj , y−j) =

∑N
i=1 C(yi, y−i, yj)

We suppose that the j player changes its strategy from yj
to ỹj .

uj(yj , y−j) = C(yj , y−j)−
N∑

i=1,i6=j

(
C−j(yi)−C(yi, y−i, yj)

)
(12)

uj(ỹj , y−j) = C(ỹj , y−j)−
N∑

i=1,i6=j

(
C−j(yi)−C(yi, y−i, ỹj)

)
(13)

We will show that:
Φ(yj , y−j)− Φ(ỹj , y−j) = uj(yj , y−j)− uj(ỹj , y−j).

Indeed,

uj(yj , y−j)− uj(ỹj , y−j) :

= C(yj , y−j)−
N∑

i=1,i6=j

(
C−j(yi)− C(yi, y−i, yj)

)
−

C((ỹj , y−j) +
N∑

i=1,i6=j

(
C−j(yi)− C(yi, y−i, ỹj)

)
= C(yj , y−j) +

N∑
i=1,i6=j

C(yi, y−i, yj)

− C(ỹj , y−j)−
N∑

i=1,i6=j

C(yi, y−i, ỹj)

=
N∑
i=1

C(yi, y−i, yj)−
N∑
i=1

C(yi, y−i, ỹj)

= Φ(yj , y−j)− Φ(yj , ỹj)

This completes the proof of Theorem 1.

B. Theoretical Treatment of the LA Scheme

We denote
E[rj |P , yj = lk] (14)

as the expected normalized reward of the base j if it employs
its kth pure strategy while the rest of the base stations employ
the mixed strategy P where P is the selection probability
vector 2.

Theorem 2. For sufficiently small λ, the selection probability
matrix of the different power levels by the different base
stations can be approximately characterized by the following
Ordinary Differential Equation (ODE).

dpj,k
dt

=pj,k

(∑
k′

pj,k′(E[rj |P , yj = lk]− E[rj |P ,

2Please note here we use an abuse of notation as we could have used P−j

to denote the mixed strategy of the rest of base stations except j in the same
line as the nomenclature used for action profile.

yj = lk′ ])

)
(15)

Proof:

dpj,k
dt

=pj,k(1− pj,k)E[rn|P−n, yj = lk] +
∑
k′ 6=k

pj,k′

(−pj,k)E[rj |P , yj = lk′ ]

=pj,k
∑
k′ 6=k

pj,k′E[rj |P , yj = lk]− pj,k∑
k′ 6=k

pj,k′E[rj |P , yj = lk′ ]

=pj,k

∑
k′ 6=k

pj,k′ .(E[rj |P , yj = lk]− E[rj

|P , yj = lk′ ])


=pj,k

(∑
k′

pj,k′(E[rj |P , lk]− E[rj |P ,

yj = lk′ ])

)
∀j, k

This completes the proof of Theorem 2.

Theorem 3. The following statements are true about the Ordi-
nary Differential Equation (ODE) obtained from the learning
algorithm
• All the stable stationary points of the ODE are Nash

equilibria.
• All Nash equilibria are the stationary points of the ODE.

Proof:
The proof of above Theorem 3 can be found in [15]. Hence

the proof is omitted for the sake of brevity.

Theorem 4. With a sufficiently small step-size λ, our adaptive
power algorithm converges to a stable stationary point of the
ODE given in Equation 15.

Proof:
The proof is given in Appendix A.

V. EXPERIMENTAL RESULTS

The simulation parameters are given in Table I. We run
the Monte-Carlo simulation by averaging over 105 random
realizations of Rayleigh block fading channels between BSs
and UEs. For simplicity, we have assumed that there are two
BSs (players) in the system and each of the BS is serving its
associated NUs and FUs as shown in Fig. 1. Also, we have
taken bandwidth B = 1 and N0 = 1 for all our experiments.

Each BS possesses K discrete power level. Let l1 be the
lowest power level called ymin and lK be the highest power
level called ymax. We suppose that the power levels are



Fig. 1. Considered System Model Scenario for Experiments

TABLE I
SIMULATION PARAMETERS

Parameter Symbol Values
Mean of variance between BS1 and UE1 v1 3.0
Mean of variance between BS1 and UE2 v2 2.0
Mean of variance between BS2 and UE3 v3 4.0
Mean of variance between BS2 and UE4 v4 3.0
Mean of variance between BS1 and UE3 v5 0.3
Mean of variance between BS1 and UE4 v6 0.5
Mean of variance between BS2 and UE1 v7 0.6
Mean of variance between BS2 and UE2 v8 0.8
Path Loss Factor v 4
Power of BSs - BS1 and BS2 y 50-500
Power Allocation Factor for NOMA α 0.2

increasing. Let β determine the non-linearity of the discretiza-
tion [40]. The kth discrete power level is given by:

lk = ymin +
kβ

(K − 1)β
(ymax − ymin) (16)

where k = 1, 2, · · ·K. Also, β = 1 for linear discretization and
β > 1 for non-linear discretization. For all our experiments,
we use linear discretization.

In Fig. 2, we plot the fairness of the system where two
players, i.e. P1 and P2, has 25 discrete power levels each.
We observe that for most of the cases, when both P1 and P2
power levels are high, the achievable sum rate fairness of the
system is low. It means that when both BSs use maximum
power for the data transmission for their associated NOMA
UEs, they affect adversely each other achievable rate perfor-
mance, and as a result, the fairness of the system decreases.
Also, one can observe that when one of the BS transmits at
a power level P1 = 312 and the other BS transmits at a low
power level such as P2 = 200, then the fairness achieves the
optimum value of the system. This indicates that both BSs

Fig. 2. Fairness of the System

cannot transmit at higher power levels at the same time as
both of their achievable rate is severely affected by each other
presence.

In Table II, we present our findings for the overall fairness
of the system with different power levels at learning parameter
λ = 0.1. Also, to compensate for the randomness of the
probabilities in our experiments, we run all our experiments
for 100 number of times and report the average performance of
the system together with 95% confidence interval in Table III.
From Table II and Table III, we can observe that, for learning
parameter λ = 0.1, as we increase the power levels from 3
to 9 to 27, the average fairness of the system increases and
the average iteration for convergence also increases. The best



TABLE II
FAIRNESS OF THE SYSTEM WHEN LEARNING PARAMETER λ = 0.1

Power Learning Average Average 95% CI 95% CI
levels Parameter Iteration Fairness Lower Upper
K λ Range Range

3 0.1 244 2.9632 2.9467 2.9798
9 0.1 259 2.9770 2.9647 2.9893
27 0.1 276 2.9846 2.9740 2.9952

TABLE III
ITERATIONS CORRESPONDING TO LEARNING PARAMETER λ = 0.1

Power Learning Average 95% CI 95% CI
levels Parameter Iteration Lower Upper
K λ Range Range

3 0.1 244 216 272
9 0.1 259 234 283
27 0.1 276 252 300

average fairness of the system 2.9846 is achieved when there
are 27 power levels which converges at an average iteration of
276. It should be noted that even with 27 different power levels
for each of the player, the average iteration for convergence is
276, which is significant compared to having just three power
levels where the average iteration is 244.

Similarly, in Table IV, we present our findings for the
overall fairness of the system with different power levels at
learning parameter λ = 0.01. In Table V, we report the average
performance of the system together with 95% confidence
interval at λ = 0.01. From Table IV, we observe that as we
reduce the learning parameter λ from 0.1 to 0.01, the average
number of iterations increases significantly. Although we can
see higher fairness of the system, this comes at the cost of
convergence time, which is a trade-off factor. The best average
fairness 3.0186 is achieved when there are 27 power levels,
which converges at an average iteration of 24634. Unlike Table
II and Table III, one can observe a significantly higher number

TABLE IV
FAIRNESS OF THE SYSTEM WHEN LEARNING PARAMETER λ = 0.01

Power Learning Average Average 95% CI 95% CI
levels Parameter Iteration Fairness Lower Upper
K λ Range Range

3 0.01 10384 3.0152 3.0127 3.0177
9 0.01 19894 3.0185 3.0172 3.0198
27 0.01 24634 3.0186 3.0173 3.0199

TABLE V
ITERATIONS CORRESPONDING TO LEARNING PARAMETER λ = 0.01

Power Learning Average 95% CI 95% CI
levels Parameter Iteration Lower Upper
K λ Range Range

3 0.01 10384 9062 11705
9 0.01 19894 18212 21576
27 0.01 24634 21767 27501

TABLE VI
COMPARISON OF FAIRNESS OF THE SYSTEM

Learning Power Random Exhaustive LA-GT
Parameter λ Levels K Method Method Method

0.1 3 2.5648 3.0195 2.9632
0.1 9 2.7537 3.0248 2.9770
0.1 27 2.8009 3.0249 2.9846

of iterations in Table IV and V for the convergence as we
increase the power levels of both of the players from 3 to
27. This is because the algorithm is learning at a lower rate,
i.e. λ = 0.01. Also, it has to choose from the combination of
power levels which is 27× 27 when both P1 and P2 has 27
power levels each.

In Table VI, we present the comparison of the fairness
of the system through our LA based Game-Theoretic (LA-
GT) approach with the random and exhaustive search method.
Unlike our proposed method, in a random method, the players
choose the actions randomly with equal probability and no
active learning parameters in each iteration. We can see that,
at different power levels, the fairness of the LA-GT approach
is higher compared to the random method. This signifies the
importance of having LA in combination with game theory
to improve the fairness of the system by distributed power
control over a range of players with different power levels in
the system. Also, we can observe that fairness of the LA-
GT approach is quite competitive compared to exhaustive
search method. It should be noted that exhaustive search
method is the heuristics method which finds the best solution
by including all power levels. Although exhaustive method
gives the best fairness of the system, it is not desirable as
it is usually centralized and require large message exchanges
between BSs and users. Hence, energy-efficiency of the system
cannot be achieved through exhaustive search method. Our
LA-GT converges much faster at just an average iteration of
244 to achieve 2.9846 average fairness of the system which is
quite competitive compared to exhaustive search method and
better than random method.

In Fig. 3 and Fig. 4, we plot the evolution of the action
probabilities of player 1 and player 2 with three power levels,
respectively, with learning parameter λ = 0.1. It should be
noted that the power selection probability vector evolves from
( 1
3 ,

1
3 ,

1
3 ) to (0, 0, 1) for player 1 and (0, 1, 0) for player 2. We

observe that for both players, only one action probability of
the power level converges to 1, which corresponds to the NE
of the game G in this case. With the increase in number of
iterations over time, the other two action probabilities for both
player 1 and player 2 reduces to zero. Also, it should be noted
that with less number of power levels, i.e. 3 for both players,
our LA based game-theoretic approach converges much faster
around 250 number of iterations.

Similarly, in Fig. 5 and Fig. 6, we plot the evolution of
the action probabilities of player 1 and player 2, respectively,
with more number of power levels, i.e. 6 with learning
parameter λ = 0.1. It should be noted that the power



Fig. 3. Evolution of Action Probabilities of Player 1 with 3 Power Levels

Fig. 4. Evolution of Action Probabilities of Player 2 with 3 Power Levels

selection probability vector evolves from ( 1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 )

to (0, 1, 0, 0, 0, 0) for player 1 and (0, 0, 0, 0, 1, 0) for player
2 in this case. We observe that as the number of power
levels increases, the convergence time increases for the
action probabilities for both player 1 and player 2, which is
expected as the players have to choose the power level from
the combination of different power levels that will eventually
maximize their utility function. Although having 6 different
power levels, the convergence time of the evolution of one
of the action probabilities for both player 1 and player 2 for
our LA based game-theoretic approach is considerably faster,
which is around 300 iterations.

Fig. 5. Evolution of Action Probabilities of Player 1 with 6 Power Levels

Fig. 6. Evolution of Action Probabilities of Player 2 with 6 Power Levels

VI. CONCLUSION AND FUTURE WORK

In this paper, we formulated a RL-based game theoretic
approach for distributed power control in multicell downlink
NOMA systems. First, we designed the distributed power
control in multicell downlink NOMA systems as a game. Next,
for the considered game scenario, a utility function was also
designed where the players used RL that provided full charac-
terization of the best achievable rate fairness performance of
the system. We showed that our proposed distributed power
control algorithm is guaranteed to converge to an NE. We also
proved that the distributed power control game we designed is
an exact potential game. Numerical results demonstrated that
our proposed RL based game-theoretic approach converges
much faster at an average iteration of few hundreds for the



power levels of the BSs. We also demonstrated the correctness
of the proposal followed by a thorough comparison with
random and heuristic approaches.

In this work, we only considered discrete power level that
used linear discretization for downlink NOMA systems where
the power levels are equi-spaced. Nevertheless, for future
work, we would like to extend our model and study the
scenario with non-linear discretization power levels for uplink
and downlink NOMA systems. Studying and designing a game
for distributed power control in multicell NOMA systems in
the presence of smart jammers and eavesdroppers is also an
interesting research direction for future work.

APPENDIX A
PROOF OF THEOREM 4

Proof. As defined earlier in the paper E[rj |P , yj = lk]
denotes the expected normalized reward of the BS j given
that it employs its kth pure strategy while the rest of the base
stations employ the mixed strategy P .

E[rj |P , yj = lk] =
∑

(y1,··· ,yj−1,yj+1,··· ,yN )

rj(yj = lk,y−j)∏
j′,j′ 6=j

pj′yj′

In addition, we define the probabilistic potential function

F (P) = Φ(P) =
∑
y

Φ (y)
∏
j

pj,yj , (17)

We compute term by term:

dF (P )

dt
=
∑
j,k

∂F (P )

∂pj,k

dpj,k
dt

(18)

Using Equation 17 we obtain:

∂F (P )

∂pj,k
=

∑
y1,··· ,yj−1,yj+1,··· ,yN

Φ(yj = lk,y−j)∏
j′,j′ 6=j

pj′yj′ ∀j,∀k

The above formula can be written as

∂F (P )

∂pj,k
= E[Φ(k,y−j)|P , yj = lk]

Now,

dF (P )

dt
=
∑
j,k

E[Φ(k,y−j)|P , yj = lk]pj,k(∑
k′

pj,k′(E[rj |P , yj = lk]− E[rj |P , yj = lk′ ])

)
Where Φ(k,y−j) denotes Φ(yj = lk,y−j) for the sake of

simplifying the notation.

Here,

dF (P )

dt
=
∑
j,k,k′

E[Φ(k,y−j)|P , yj = lk]pj,kpj,k′

(E[rj |P , yj = lk]− E[rj |P , yj = k′])

However we note that,∑
j,k,k′

E[Φ(m,y−j)|P , yj = lk]pj,kpj,k′(E[rj |P , yj = lk]−

E[rj |P , .yj = lk′ ])

=
∑
j,k,k′

E[Φ(k′,y−j)|P , yj = lk]pj,k′pj,k(E[rj |P , yj = lk′ ]−

E[rj |P , .yj = lk])

Therefore,

dF (P )

dt
=

1

2

∑
j,k,k′

pj,kpj,k′(E[Φ(k,y−j)|P , yj = k]−

E[Φ(k′,y−j)|P , yj = k′])(E[rj |P , yj = k]−
E[rj |P , yj = k′])

By exploiting the fact that the game is an exact potential
game, we can obtain:

E[Φ(k,y−j)|P , yj = k]− E[Φ(k′,y−j)|P , yj = k′]

= E[rj |P , .yj = k′]− E[rj |P , yj = k]

Therefore,

dF (P )

dt
=

1

2

∑
j,k,k′

pj,kpj,k′(E[Φ(k,y−j)|P , yj = k]−

E[Φ(k′,y−j)|P , yj = k′])2

We have dF (P )
dt ≥ 0 which implies that F (P ) is increasing.

Since, according to Equation 17, F (P ) is upper-bounded,
therefore F (P ) will converge to a maximum point charac-
terized by:

dF (P )

dt
= 0

⇒ E[rj |P , yj = k]− E[rj |P , yj = k′] = 0,∀j, k, k′

⇒ dpj,k
dt = 0,∀j, k

⇒ dP
dt = 0

The last equation shows that P eventually converges to the
stationary point of ODE.
This completes the proof of Theorem 4.
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