
Received: 30 March 2018 Revised: 15 August 2019 Accepted: 12 December 2019

DOI: 10.1002/cpe.5662

S P E C I A L I S S U E P A P E R

On automated cloud bursting and hybrid cloud setups using
Apache Mesos

Hårek Haugerud Noha Xue Anis Yazidi

Department of Computer Science, Oslo

Metropolitan University, Oslo, Norway

Correspondence

Anis Yazidi, Oslo Metropolitan University, PO

Box 4, St Olavs plass, N-0130 Oslo, Norway.

Email: anis.yazidi@oslomet.no

Summary

Hybrid cloud technology is becoming increasingly popular as it merges private and public clouds

to bring the best of two worlds together. However, due to the heterogeneous cloud installation,

facilitating a hybrid cloud setup is not simple. Despite some commercial solutions being available

to build a hybrid cloud, an open-source implementation is still unavailable. In this paper, we

try to bridge the gap by providing an open-source implementation using the power of Apache

Mesos. We build a hybrid cloud on top of multiple cloud platforms, private and public. Through

comprehensive experimental results, we show that our solution is able to ensure resource

bursting by leveraging the power of the public cloud.

KEYWORDS

Apache Mesos, cloud bursting, data segmentation, fault tolerance, open-source hybrid cloud

1 INTRODUCTION

The use of cloud computing is becoming more common, bringing with it the advantages of flexibility and abundance of available resources, but

also a greater degree of complexity as well as privacy and security concerns.

Nevertheless, cloud technologies are progressing and maturing each year, providing functionality for individual's personal use, as well as

for enterprises with stringent requirements on performance, availability, and price. A possible solution is to utilize multiple cloud providers to

minimize the risks of service disruption and degradation. In addition, a platform utilizing multiple clouds will enable organizations to pick one or

several cloud providers based on various factors such as price, location, availability, and performance among many others. Another viable option

would be to use private data centers in addition to external cloud providers in a hybrid setup. This type of setup, which is often referred to as

hybrid cloud, is becoming increasingly popular as more companies are starting to invest in and offer these solutions. According to Google Trend

Search, there has been increasing interest in the term, hybrid cloud, since the beginning of 2009.1 However, most solutions in the market are

either proprietary or not open-sourced, which is not ideal if the purpose of using multiple cloud providers is to avoid vendor lock-in.

Even with the possibility of using multiple cloud providers and private data centers, there is still the issue of static partitioning and isolation of

resources due to the design of virtualization. Static partitioning of systems makes it difficult to fully utilize the resources due to fluctuations in

system use, which may be affected by factors such as business hours, holidays, and batch processing, to name just a few.

This paper will explore and document the attempts to design and prototype a possible open-source solution for constructing a computer

cluster built on top of private servers and external cloud providers. Moreover, investigations will be carried out on utilizing spot instances for

cloud bursting purposes and for segmenting applications based on certain parameters, as well as high availability solutions, leveraging multiple

clouds as one possible way of further minimizing downtime.

In this paper, we propose an open-source solution to building a computer cluster on top of private computer resources in addition to public

cloud providers. By utilizing both private hardware and public cloud providers, improved levels of availability through different failure scenarios

are achieved. We demonstrate how it is possible to segment data and process it to specified locations or groups. Segmentation denotes the

possibility of dividing the cluster into logical segments based on certain variables such as location, performance, and any other desired factor.

The segments should be isolated from each other. Furthermore, it also refers to the ability of the solution to restrict tasks to be run on those

divided segments. Some preliminary results regarding those aspects have appeared in a previous study.2 In this paper, we provide more details

about the design of our solution. Most importantly, we focus on the bursting aspect and demonstrate that our solution is able to leverage spot

price instances to accommodate cloud bursting.

Concurrency Computat Pract Exper. 2020;32:e5662. wileyonlinelibrary.com/journal/cpe © 2020 John Wiley & Sons, Ltd. 1 of 26

https://doi.org/10.1002/cpe.5662

https://doi.org/10.1002/cpe.5662
https://orcid.org/0000-0001-7591-1659
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpe.5662&domain=pdf&date_stamp=2020-02-05


2 of 26 HAUGERUD ET AL.

The remainder of this paper is organized as follows. In Section 1, we introduce and motivate the problem. Section 2 presents a comprehensive

survey of the state-of-the-art work on hybrid clouds together with a brief introduction to the basic concepts of Apache Mesos. Section 3 provides

insights into the design of our solution, while Section 4 gives details of the implementation of our solution for building a hybrid cloud based on

Apache Mesos. Furthermore, we provide some experimental results that demonstrate the three aforementioned properties that characterize our

solution, that is, resource bursting, data segmentation, and fault tolerance. Finally, we discuss the results in Section 5 and draw conclusions in

Section 6.

2 BACKGROUND AND RELATED WORK

Computer clustering can loosely be defined as a group of hardware connected together to provide a single virtual and powerful hardware

platform. With the added layer of abstraction clustering gives, it is possible to partition the hardware dynamically using software. Services running

on top of a cluster can therefore dynamically scale and move within the cluster without being limited by the underlying hardware partitioning.

Large companies use this type of flexible partitioning for their services, for example Google with its self-developed platform Omega3,4 and Twitter

with Apache Mesos.5

2.1 Apache Mesos

Apache Mesos is a distributed system kernel that abstracts hardware resources like CPU, memory, and storage to construct a dynamically

partitioned computer cluster. Due to similarities in how an operating system abstracts hardware, Apache Mesos has been referred to as a

‘‘datacenter OS.’’6-8 Twitter has been one of the main driving forces behind the development of Apache Mesos,9,10 and it uses it for various core

services in production.

Apache Mesos provides a uniform computer environment by adding an abstraction layer between the hardware and software frameworks and

handling resource allocation between those parts as shown in Figure 1.

Various parts of Apache Mesos work to provide a functioning and robust master-slave setup, as well as scheduling and executing tasks

given by a framework in the distributed environment. Apache ZooKeeper is the subsystem responsible for coordinating the election of master

nodes and managing fail-over should a master node fail to respond. Apache Mesos operates with a layered resource negotiation handled by an

allocation module located at the master node. A framework-specific scheduler will receive and process resource offerings, while a framework

specific executor running at the slaves will allocate resources and launch the tasks given. The general setup is shown in Figure 2.

Apache Mesos provides isolation for the running tasks using Linux containerization with cgroups. It is the Mesos frameworks that provides

utility to the cluster, also referred to as Mesos applications. Through the schedulers, the frameworks receive resource offers and submit tasks

FIGURE 1 Abstraction model of Apache
Mesos and some related frameworks

FIGURE 2 A simplified model of how tasks are scheduled and executed



HAUGERUD ET AL. 3 of 26

to be launched. Marathon on top of Apache Mesos provides a robust platform for running long-term services, making it easier to achieve

high service-level agreement (SLA) and to scale services. While Apache Mesos manages hardware redundancy, Marathon does the same for

applications. The Marathon framework will ensure that the specified applications are running as long as Marathon is running, while Apache Mesos

ensures that Marathon is running as long as there is a bare minimum of nodes running and idle resources are available. The Hadoop framework can

be run on top of Apache Mesos. Compared to a standalone Hadoop cluster, Apache Mesos provides an easier and more flexible way of managing

the cluster itself. The Chronos framework was created as a distributed version of Cron, and it schedules and runs jobs at specified intervals.

Yet Another Resource Negotiator (YARN),11 was developed as a resource manager and scheduler for the next generation of Hadoop. YARN

can be looked upon as a competitor of Apache Mesos, as both technologies attempt to solve the same problem, albeit with different strategies.

Apache Mesos utilizes a two-level resource scheduling strategy and was developed as a general type of scheduler, while YARN opts for a

monolithic approach mainly focusing on Hadoop. However, despite the technologies being similar and arguably competing, an Apache Mesos

framework that utilizes YARN has been developed called Apache Myriad.12

2.2 Cloud bursting

A specific workload deployment model called cloud bursting utilizes a hybrid cloud solution to load balance a workload between private computer

resources and public clouds.13,14 In this model, workloads are mainly processed in-house using private resources, with the possibility to ‘‘burst’’

out into public cloud providers should the workload be too much for the in-house resources to handle. As shown in Figure 3, this allows an

organization to dimension their data center for average workloads and deal with the spikes using the public cloud and only pay for the extra

computer resources when used.

2.3 Related work on hybrid clouds

The concepts of multicloud and hybrid cloud are not new and several companies explore and capitalize on these concepts. Most of the available

solutions are commercial. Different vendors including Dell, IBM, and HP provide hybrid cloud solutions.15,16

The MODAClouds project17 utilizes several tools to provide an environment for utilizing multiple cloud providers. Several large companies

offer hybrid cloud solutions, often in conjunction with their existing product portfolio. VMWare offers a hybrid cloud solution called vRealize

suite, which provides one interface to manage the entire hybrid cloud platform.18,19 Other companies such as Cisco,20 IBM,21 and RackSpace22

also offer hybrid cloud solutions. An IBM hybrid cloud solution is an example of another commercial solution that addresses the challenges of

managing heterogeneous virtual environments to create a hybrid cloud platform.16 PaaSage is an interesting initiative to build a hybrid cloud

solution using a defined deployment model, Cloud Application Modeling and Execution Language (CAMEL).23PaaSage applications specify tasks

according to the CAMEL model, which will then be processed and deployed on multiple clouds according to the specified requirements. However,

the dependency of PaaSage on the CAMEL language presents a usability barrier that might limit its popularity as system administrators need

to learn yet another language. Multicloud Deployment of Computing Clusters for Loosely Coupled MTC Applications24 explores the concept of

deploying a computer cluster on top of a multicloud environment. However, there are some aspects of the paper that do not fully translate to the

practical issues a system administrator might encounter. For instance, the clustering technology used in this study was Sun Grid Engine (SGE),

which is a long time veteran of approximately 15 years. Incidentally, Apache Mesos was designed to address some of the design weaknesses of

SGE,25 in particular the use of static partitioning for the jobs run in the cluster, which prevents fully efficient utilization of the resources.25

FIGURE 3 Illustration of how cloud bursting
works when the capacity limit of the private
data center is exceeded



4 of 26 HAUGERUD ET AL.

However, there has been no practical demonstration of open-source and freely available clustering technology being used to attempt to

address the multitude of challenges involved in creating a hybrid cloud platform that is available and supports data segmentation. This paper

outlines an attempt to prototype such a solution in addition to facilitating cloud bursting using spot price instances.

Bittencourt et al26 treated an underinvestigated aspect of scheduling workflows in hybrid cloud: the communication link between the public

and private cloud that could become a bottleneck in cases of communication-intensive workflows. Therefore, the authors propose different

communication-aware scheduling algorithms that take into account the fluctuations of the link load between the bridged clouds.

Borja et al introduced OpenNebula,27 which is one of the most popular open-source virtual infrastructure managers. OpenNebula permits the

abstraction of resources from an existing local grid and a cloud infrastructure. However, installation and management of OpenNebula is fairly

complex as it consists of many parts to facilitate the rich feature set of a virtual machine (VM) manager. With virtualization of infrastructure,

resources, network, and storage comes many vectors for failure, and SLA rates may also be affected. Additionally, with clustering technologies

like Apache Mesos, VMs may not be necessary and may even degrade performance due to virtualization overhead.

At the heart of OpenNebula, we find Haizea,28 which is a VM-based lease manager that enhances the resource scheduling manager by including

advanced reservation of resources and queuing of best effort requests. Guo et al29 extended OpenNebula to support cloud bursting across

public and private clouds29 by implementing a cloud management layer exposed through an XML Remote Procedure Call API. The API exposes

the needed functionalities for cloud bursting including mainly: resource monitoring, VM managing, VM migration, and VM precopying. However,

the bursting in the latter solution is achieved through either migrating VMs across public and private clouds, or using the so-called Precopier.

The Precopier replicates selected VMs at the filesystem level using rsync. In contrast to our solution, the bursting mechanism does not require

VM migration or precopying. In fact, the bursting takes place at the task level and is handled in a transparent manner by Mesos. Furthermore,

OpenNebula suffers from the single point of failure problem.30 In this paper, we present a lightweight solution, which is failure resilient. Similarly,

it is also possible to create hybrid cloud using AWS and Eucalyptus.

While the above approaches focus on abstracting resources of heterogeneous cloud infrastructures as well as grid infrastructures, another

body of approaches focuses on VM migration between heterogeneous clouds with different virtualization technologies. It is known that different

infrastructures and hypervisors are an impediment to free migration of VMs between different clouds.

Kangaroo31 was designed for migrating VMs between geographically distributed OpenStack clouds. The main idea behind the approach is to

create a virtual networking switch for communication between nested VMs over different infrastructure clouds.

Xen-Blanket32 bridges different clouds and allows migration between KVM and Xen. Xen-Blanket builds a second layer on top of Xen to

homogenize various cloud platforms.

Bicer et al33 proposed middleware for facilitating cloud bursting for a type of MapReduce processing in a geographically distributed data set.

However, the latter work focuses mainly on deploying MapReduce over the cloud where the data could be split between a local cluster and a

cloud resource. The study also opens for the possibility of work stealing, which means that data at one end is processed using resources from the

other end. The middleware is able to limit remote data retrieval overheads. In another research paper34 the authors extended their framework

and achieve a compromise between costs and deadlines. Other studies rather focus on the advantages of building hybrid cloud software using

open-source tools.35

It is worth mentioning that a body of research36-38 focuses on simulating different strategies for leveraging the power of hybrid cloud to

achieve bursting at a lower cost by dividing the load between private and public clouds. In one of these approaches, various algorithms were

used to reduce the execution cost by leveraging price difference between different clouds.37 The authors devised an algorithm that decides bid

prices, when to use local machines, and when to checkpoint and migrate the job between these resources, with the goal of completing the job

on time and at the minimum cost.

In another work,39 six different bursting strategies were investigated to achieve a compromise between cost and performance. However,

the evaluation was done using a discrete-event simulator. In the work reported by Peláez et al,40 different algorithms have been proposed for

scheduling deadline-constrained bag-of-task workloads in a hybrid cloud infrastructure. Those scheduling algorithms use online processing time

estimators and aim to reduce the infrastructure cost while meeting the deadlines. The authors resorted to the Cloudsim toolkit, which is a cloud

simulator to simulate the scheduling in two public clouds, namely Amazon EC2 and Google Compute Engine. Those sophisticated algorithms are

useful in the context of this current study to further optimize the execution cost in the case of bag-of-task workloads. The Reservoir project36

is a multicloud project aimed at federating two or more independent cloud providers. However, standardization is necessary before federation

can be rolled out in realistic-cloud settings that go beyond merely being a testbed. The different spectrum of standards governing different cloud

solutions is a barrier to transparent use of multicloud platforms.

3 DESIGN

This section will describe the proposed solutions, discovered limitations, and additional considerations regarding the setup of an Apache Mesos

cluster in a hybrid cloud setup. In addition, a solution for automating cloud bursting will be proposed that leverage spot price instances to

maximize the cost effectiveness of the proposed solution.



HAUGERUD ET AL. 5 of 26

Altocloud AWS EC2

m1.medium m3.medium

vCPUs: 2 1

RAM: 4096 MB 3.75 GiB

TABLE 1 The specifications for the instance types chosen for running Mesos master nodes

The proposed designs and solutions in this section will be tailored to the testbed environment. Further details, adjustments, and specifications

regarding the testbed will described in this section.

3.1 Environment

As alluded to, the choice of instance type for the Mesos master node has to be given extra consideration, as it is the only part of the cluster that

results in almost fully idle resources. In one approach,8 a series of performance benchmarks was conducted to gauge the capacity of certain parts

of the Apache Mesos cluster. Using an 8 vCPU and 6 GB RAM instance at Amazon Web Services EC2 as the Mesos master node, the scheduling

of tasks and internal processing required for the cluster adds an overhead of less than one second, with 50 000 Mesos slave nodes in the cluster.

The paper was published in 2011, and it is assumed that further performance optimizations have been done since then, reducing the overhead

even further.

For this work, a medium instance type will be used for the Mesos master nodes. For Altocloud this would be m1.medium, while at EC2 it would

be m3.medium. While a small instance type might have worked out, a medium instance type was chosen. This was done as a safety measure, as too

low performance might result in unexpected glitches, especially regarding network performance. To be sure that this would not be an issue, the

instance type was over-dimensioned by a considerable margin. The focus on evaluating and designing the cluster for high availability, segmentation

of the data in particular, and cloud bursting scenarios. Performance as a factor is less of a priority. The specifications are for the medium instance

types have been relisted for convenience in Table 1. It should be noted that it is common to run Mesos frameworks on the same machines as the

Mesos master nodes, and the machines should be dimensioned for this extra load, unless the frameworks are running on separate machines.

Since it was determined that Amazon Web Services would be the public cloud provider for the hybrid cloud setup, the availability region has

to be determined. When deciding the availability region to be used, it is important to consider price, latency, and regulations, among other things.

Due to the timeframe for the project, the overall price difference will be small. The latency of the availability region was therefore given priority.

As a result, the availability regions EU Central (Frankfurt) was picked as the primary choice, with EU West (Ireland) as the secondary choice.

3.2 Architecture

This section will contain the proposed solutions in three main parts on availability, segmentation of data, and automated cloud bursting.

3.2.1 Availability

Depending on the required level of availability needed, it is necessary to consider fault tolerance at multiple levels, from the fundamental level

of hardware resources up to the individual applications. A key technique for improving availability is to duplicate and keep a redundant copy

or backup of the entity one wishes to improve. This could mean physical machines, network links, power circuits, or multiple instances of an

application. In most cases, it is also possible to use the redundancy to load balance, which lowers the overhead of keeping a duplicate.

However, it is imperative that the redundant entities are as independent of each other as possible in order minimize the risk of failure. Consider

the following scenario: A service is running on two servers located at a single data center and load balancing distributes the load between them.

While the servers are separate, they both depend on the data center being functional, although it can experience full blackout due a disaster of

some sort. To improve availability, the servers should ideally be placed in two separate data centers.

To achieve higher levels of availability, Apache Mesos can be deployed on multiple cloud platforms and data centers, forming a hybrid cloud.

Several things have to be considered before setting up an Apache Mesos cluster. In an Apache Mesos cluster, the Mesos master node is responsible

for managing the cluster and is therefore vital to the cluster. The number of master nodes in a cluster must be an odd number. This is in order to

prevent a split brain problem, which occurs when the cluster splits into two or more smaller clusters, each with its own Master node managing

the cluster. This is a problem as it results in inconsistent states for the cluster as a whole and must be prevented. With an odd number of Mesos

master nodes correctly configured, more than half of the Mesos master nodes need to be able to communicate to change the state of the cluster.

Prototype 1: Maximizing availability

Figure 4 illustrates a solution using three separate cloud platforms as components of the hybrid cloud. The Mesos master nodes are distributed

between the availability zones, with a few Mesos slave nodes arbitrarily present in each of the zones. The failure rate of each of these zones is

assumed to be highly independent of the others, which will lower the risk of failure of the underlying resources used by the Apache Mesos cluster.

For this prototype, the officially recommended number of three Mesos master nodes has been chosen. This will suffice for a proof of concept.

Should the underlying resources the Mesos master nodes utilize have a high failure rate, a higher number of Mesos master nodes should be

considered. This setup will maximize availability, which is ideal for public facing services that do not have any particular requirement other than



6 of 26 HAUGERUD ET AL.

FIGURE 4 A hybrid cloud setup, distributing the Mesos master nodes
to independent availability zones

to maximize availability. Public services such as a website, back-end infrastructure for advertising services, or a smartphone application are

examples of this type of services.

Due to the architecture of Apache Mesos, any slave node can become unavailable without affecting the overall service availability. As long

as the framework deploying the services is fault-tolerant and there are enough slave nodes to be able to accommodate the bare minimum of

processing needed to keep the services running, a large amount of slaves can fail simultaneously. Moreover, this setup allows for downtime in an

entire availability zone, and the hybrid cloud platform will still be functional in such a scenario.

This setup requires each and every node of the network to have a public IP-address that is routable on the Internet. This is a huge limitation,

as the number of IPv4 addresses is limited. Alternatively, the number of Mesos slave nodes deployed on Altocloud can be reduced or removed

altogether, relying on the public routable IP-addresses Amazon Web Services EC2 assigns to each node by default. Another solution is to set up

VPN tunnels between the availability zones and to route using private addresses.

Prototype 2: Prioritize local availability

This prototype is illustrated in Figure 5. In this suggested setup, local availability is given priority, with the majority of the Mesos master nodes

present in the local cloud. This particular setup uses five master nodes, but it can easily be extended to include a higher number as long as the

majority of the Mesos master nodes are located in the local cloud.

Even if the access to the Internet is lost, local access can be obtained from the same network as the local cloud, and the services running on

the cloud will continue to be responsive for internal use. This makes this type of setup ideal for local services like Enterprise Resource Planning

(ERP) applications, local batch jobs, and analysis frameworks like Hadoop running, which is not normally publicly accessible. The proposed setup

FIGURE 5 A five Mesos master node cluster with the majority of
them located at Altocloud



HAUGERUD ET AL. 7 of 26

will function well where the private cloud or data center is used as the preferred baseline location, with public cloud resources added to increase

processing power and/or availability.

Fallback solution: VPN tunneling

A fallback solution has been prepared in order to take account of the possibility that Apache Mesos does not work as intended for the proposed

prototypes or any other networking issue that may cause a problem. In such cases, an instance dedicated to function as a VPN gateway will be

set up at each site, which will establish VPN tunnels between them. This can be done due to the amount of control Amazon Web Services give

over the network through their VPC service. Likewise, Altocloud, being an OpenStack installation, also permits a higher level of manipulation of

the network. IPSECv2 tunnels will be set up at VPN gateways and installed and configured through Openswan, an IPSEC implementation that

supports an array of features, with network address translation (NAT) traversal being particularly interesting. As mentioned previously, Apache

Mesos is currently developed and maintained to work in private network configurations and, given the way public IPs are handled by the cloud

platforms, NAT traversal may end up being the main issue. Correctly set up, a VPN environment will function just like any other private network

for the machines present in the network.

3.2.2 Segmentation of data

The segmentation of the hybrid cloud can be facilitated using existing functionality in Apache Mesos and the Marathon framework. Every node

in an Apache Mesos cluster can be tagged with an arbitrary number of attributes, which will be sent together with the resource offers from a

Mesos slave node. By reading the attributes in combination with the offered resources, the frameworks can make a decision on whether or not

to accept the offered resources. In addition to Marathon, there are other Mesos frameworks that manage long-running services such as Aurora

and Singularity. However, Marathon was picked because of its simple graphical interface, well-documented REST API, and a clear-cut way of

enforcing constraints, which is vital for segmenting the hybrid cloud.

Marathon supports a number of operators setting constraints on how applications are run, with CLUSTER being the operator of interest. This

operator will require the tasks to run in a cluster constrained by the defined attribute. To constrain an application to only run on nodes where

the attribute color is set to blue then a constraint will look like this: color:CLUSTER:blue.

To segment the data, an attribute will be set on every slave node in the Mesos cluster. The attribute will be named cloud_type and will contain

either public or private. Attributes can be set when starting the Mesos services or preconfigured in files. Another way to segment the cluster is to

create an attribute named clearance_level and have values that mimic the clearance levels of public, confidential, secret, and top secret.

In Section 4.3, a practical example of how this security precaution can be applied is demonstrated. The tasks run are tagged with an attribute

named cloud_type, which is set to private. This ensures that the task may only run on the local private cloud and will never be migrated to

any of the public clouds.

In terms of use cases where privacy is the priority, Apache Mesos can be deployed only at compliant sites. Compliant sites means in this

case both private locations and certified cloud providers. For instance, Amazon cloud provider has an availability region named GovCloud, which

satisfies several US requirements related to privacy.

3.3 Automated cloud bursting

A cloud bursting solution with a hybrid cloud setup utilizing Apache Mesos to provide an abstraction layer on top of physical or virtual resources

makes cloud bursting as simple as adding a Mesos slave node located in the cloud. To bootstrap the slave nodes, a simple bash script is supplied

as user data at instance launch. The script will install and configure the necessary services to make it register itself to the cluster. This adds an

approximate of three to four minutes of overhead when deploying a Mesos slave node. This overhead would most likely not be improved with

the use of any configuration management tool, on the contrary, it would most likely add additional overhead. To shorten this time, an image can

be prepared beforehand with the necessary services configured.

The challenge is therefore to automate it and to utilize the spot price instances, while considering the billing-cycle interval of one hour and

price fluctuations. A prototype will be written in Python that will run on top of Marathon in a fault-tolerant manner.

The script will consist of three main parts:

• Data collection

• Price and scaling decision logic

• Management of the spot requests and instances

Data collection is the first part of the script. It encompasses the collection of metrics from Apache Mesos and through the Amazon Web

Services API that will help in the decision-making process. Interesting metrics include total resources available, resources in use, spot requests

pending, number of spot instances, and metadata connected to each of the spot instances. Using the collected information, a decision is made on

whether to scale the cloud bursting capacity up or down. Depending on how many factors and considerations one wishes to take into account,

this step is potentially highly complex.



8 of 26 HAUGERUD ET AL.

A related work41 describes five bidding strategies that can be used. The bidding strategies are listed up in Table 2, where G = 0.001, which is

the lowest granularity value permitted to be used at Amazon Web Services when bidding for spot instances.

As there are several aspects of the proposed algorithms in the mentioned paper that do not apply directly to the hybrid cloud scenario, a

simpler decision algorithm has been devised. In Figure 6, the projected activity flow is illustrated.

On the launch of the script, the values of available resources at the private location will be provided through a configuration file. Based on the

total available baseline resources and the resources currently in use, a percentage is calculated. This percentage will be the sole variable that will

determine whether or not to utilize public cloud resources. In a live production, a more complex decision algorithm should be considered, since

the one proposed for this prototype does not take account of any edge cases.

The script will operate with a burst point threshold, which represents the usage-percentage of the available resources at which the cloud should

scale up. For instance, if the burst point threshold is set to 0.70, the script will request spot instances at when resource usage reaches 70%.

Additionally, a specific maximum limit will be artificially set in order to prevent the prototype from scaling up too much and incurring huge costs.

The decision to scale down will be based on actual usage of the resources and the lifetime of a spot instance. Lifetime has to be considered, due

to the hourly billing cycle that applies when the termination of an instance is initiated by the user. To avoid wasting already charged resources, a

spot instance will only be terminated if the lifetime of the instance is nearing the next hourly billing cycle. For example, a spot instance may only

be needed for 20 minutes, but will not be user-terminated for at least 30-35 more minutes to capitalize on the already charged hour.

TABLE 2 List of five possible bidding strategies for the spot price
instances at Amazon Web Services EC241

Bidding strategy Bid value definition

Minimum The minimum value observed in the price history + G

Mean The mean of all values in the price history

On-demand The listed on demand price

High A value much greater than any price observed

Current The current spot price + G

FIGURE 6 Projected activity
flow for the script illustrated in
an activity diagram



HAUGERUD ET AL. 9 of 26

The chosen bidding strategy is the current price + x, where x is a predefined variable that is supplied with the script at launch time. x serves as

price padding to avoid bidding at the exact market price, since bids at that level will be highly contested. By setting x to a high value, it is possible

to increase the likelihood of the instance lasting longer before being terminated. On the other hand, by setting a low value, the instances could

potentially be terminated due to increased prices, which would result in the charge for the last partial hour being waived. In the end, the script

will bid the lowest price possible plus a padding value, which can be arbitrarily set to tweak the bidding strategy.

4 IMPLEMENTATION

This section describes the actual implementations of the proposed prototypes and solutions. Our implementation is open source and available to

the general public.42

4.1 Setting up the testbed and Apache Mesos

The testbed uses Altocloud and Amazon Web Services VPC to emulate a private site and public cloud platforms, with Apache Mesos as the

chosen clustering technology.

There are several ways of installing and managing Apache Mesos. Configuration management tools can be used to bootstrap and manage the

Apache Mesos binaries in addition to other miscellaneous configuration. However, to have full control of the installation process, Apache Mesos

was installed manually. We opted for manual installation because the deployment prototypes are nontraditional and of an experimental nature.

In contrast to modifying and tweaking existing configuration management templates, manual installation gives more control of the installation

process, easing the debugging process. When designing a solution for a production environment, clearly, it is desired to use a deployment tool

like Ansible to easily reproduce the experimental settings.

Several issues were encountered during the installation of Apache Mesos master nodes. One of the issues caused the Mesos master nodes to

not reach full equilibrium, resulting in a new leader being elected every minute, flip-flopping between the master nodes present. This was found

to be a DNS-related issue. It was mitigated through an entry in the /etc/hosts file, which effectively functions as a manually maintained and

makeshift DNS entry. In addition, due to a bug in ZooKeeper, an Apache Mesos process will crash if proper DNS handling is not in place.43,44

An Apache Mesos cluster that included both master nodes and slave nodes was successfully installed and configured in Altocloud, with slave

nodes correctly registering themselves to the cluster through the leading master node. However, when attempting to register a slave node

running at Amazon Web Services EC2, some peculiar activity was observed. The slave node located at EC2 managed to successfully send a

registration request to the leading master node, passing through multiple layers of network abstraction, including two layers of NAT. Although

the master node receives the registration requests, no registration acknowledgement is ever sent back.

Eventually, the cause was discovered to be a combination of the use of NAT and the way Mesos nodes communicate with each other. When

a slave node sends a registration request, it includes information about the resources available and an IP address. The IP address is the one

that is defined on the network interface bound by the Apache Mesos process. Furthermore, in a cloud environment like Altocloud and Amazon

Web Services EC2, the public IP addresses are loosely coupled with the VM and function in a similar way to NAT. Consequently, the Mesos

master attempts to send the acknowledgement and other internal traffic meant for that slave node to the nonroutable private IP address. The

communication flow is illustrated in Figure 7.

As previously indicated in Section 3, NAT traversal appears to be an issue for Apache Mesos. To mitigate this limitation, a VPN solution has

been deployed as outlined in the previous section. As the setup of a VPN solution is outside the scope of this paper, it will not be explained in

detail. The subnets of the VPN network were divided into three main parts for the sake of simplicity, using all three private address spaces as

defined by RFC1918. The resulting network is listed in Table 3.

A good chunk of the 172.16.0.0/12-subnet has been left unallocated in case a need arises for additional private addresses.

4.2 Availability

4.2.1 Prototype 1: Maximizing availability

Using VPN tunneling, there is no need to allocate public IP addresses to each node for the purpose of maintaining the cluster, since the private IP

addresses are routable within the hybrid cloud platform. With the exception of the extra infrastructure needed to maintain a VPN, the prototype

is identical to the proposed design. Figure 8 illustrates the final implementation of the prototype, showing how the Mesos master nodes are

distributed between the different availability regions.

Table 4 shows the subset of available slaves that is listed up in the graphical user interface (GUI) of Apache Mesos. Note the subnet differences

of the slaves, which indicates where the slaves are located.

As for the Mesos master nodes, they were installed manually on top of instances booted up in their respective availability zones. The

specifications for the Mesos master nodes are listed in Table 5.



10 of 26 HAUGERUD ET AL.

FIGURE 7 Communication flow between an Apache Mesos slave node and master node with the registration attempt failing due to how public
IP addresses are handled in cloud platforms

TABLE 3 The network partitioning of the RFC1918 private addresses divided into separate
subnets

Availability region/Site Subnet

Altocloud (Oslo) 10.0.19.0/24

AWS (Ireland) 172.16.0.0/16

AWS (Frankfurt) 192.168.0.0/16

FIGURE 8 Prototype 1: Maximizing availability. Distributing the
master nodes and thereby the risks



HAUGERUD ET AL. 11 of 26

Slave ID Host CPUs Mem Disk

5050-5669-S0 192.168.187.205 1 496 MB 3.9 GB

5050-5669-S2 192.168.178.239 1 2.7 GB 3.9 GB

5050-5669-S1 172.16.231.155 1 496 MB 3.9 GB

5050-900-S71 10.0.19.9 4 6.8 GB 73.7 GB

5050-900-S69 10.0.19.8 4 6.8 GB 73.7 GB

TABLE 4 A subset of available slave nodes in this scenario. The
information is taken from the Apache Mesos GUI and represents a
truncated view of the available slaves

Master ID IP-address Location Instance type

1 10.0.19.5 Altocloud (Oslo) m1.medium

2 192.168.0.5 AWS (Frankfurt) m3.medium

3 172.16.0.5 AWS (Ireland) m3.medium

TABLE 5 A list of specifications for the Mesos Master nodes

FIGURE 9 A screenshot of the Marathon GUI with some created
tasks available to scale up or down

The Mesos slave nodes are set up using a bash script that is supplied as user-data at instance start-up. The meta framework Marathon has

been installed to create tasks for testing availability. Marathon exposes a small subset of the functionality of the Marathon REST API, through a

very simple GUI. Although simple, it is sufficient for creating, destroying and scaling tasks. A screenshot of the GUI is shown in Figure 9.

A Mesos slave process becomes unavailable

In the event that a Mesos slave node becomes unavailable for some reason, the Mesos master node allows a default timeout period of 75

seconds to pass before procedures for deactivating the slave node are begun. Should the slave node start responding within this timeout period,

nothing will happen and both the Mesos master node and the slave node will simply ignore the temporary unavailability. However, if the timeout

period is exceeded and the slave nodes are still unavailable, the Mesos master node will attempt to deactivate the Mesos slave process on the

slave node preceding it on the list of available slave nodes. Tasks that were lost will be rescheduled to other slave nodes with available capacity.

In Listing 1, an excerpt of the Mesos master log is included. The events logged are the result of a simple reboot of the instance for this particular

Mesos slave node.

Should a slave node be temporarily disconnected from the master node, but exceed the timeout period, the Mesos master will forcibly shut

down the Mesos slave node. To account for such scenarios, the official Apache Mesos documentation recommends monitoring the Mesos slave

process and restarting it if it is terminated for any reason. In this case, this is achieved with a simple check using Monit.

In Listing 2, log events of such a case are listed.

The working Mesos master instance ceases to function

ZooKeeper maintains an active connection to the participants in the quorum, and after a very short timeout lasting less than 10 seconds, it will

try to elect a new leading Mesos master node. As long as the number of functional Mesos master nodes is equal to or higher than the quorum

size, a new leader will be elected and will replace the unresponsive Mesos master node.

This scenario was tested through a simple reboot of the instance where the leading Mesos master was running. The backup Mesos masters

quickly discover the loss of connection to the leading Mesos master and promptly, using ZooKeeper, elect a new leading Mesos master node. The

rebooted Mesos master node later joins the cluster as a backup node after coming back online. Quorum size usually corresponds to the smallest

number of master nodes that can communicate in order to elect a new leader. To avoid split-brain cluster partitioning, clusters should always

have an odd number of master nodes. For example, having three master nodes allows one to be down; having five master nodes allows two to

be down, allowing for failure during a rolling update. Additional master nodes can be added for additional risk tolerance. As the size of a cluster

grows, it may be desired to increase the quorum size for additional fault tolerance.



12 of 26 HAUGERUD ET AL.

Listing 1 Excerpt from /var/log/mesos/mesos-master.INFO showing the deactivation and the new registration of the rebooted slave.
Truncated for better readability

Listing 2 Excerpt from /var/log/mesos/mesos-master.INFO showing the forced shut down of the Mesos slave process at
192.168.187.205 and the registration as new slave at end. Truncated for increased readability

The setup proposed in this prototype has three Mesos master nodes, with the quorum size set to two. This means that one of the Mesos master

nodes can fail without crippling the cluster, as the quorum size dictates the number of election participants that have to be able to communicate

to be able to elect a new leader.

An entire region within the hybrid cloud becomes unavailable

If an entire region becomes unavailable, the Mesos nodes located within those regions will, by extension, also become unavailable. In this

particular case, the loss of one single site equals the loss of one Mesos master node and four slave nodes. Depending on the type, each node is

handled as specified in the test scenarios mentioned above. This was tested by taking down the VPN tunnels at the VPN gateway of the region

concerned. This cuts all communication between the affected region and the other ones which is illustrated in Figure 10. The figure illustrates

the case where the entire private data center or the public cloud provider might become unavailable due to networking problems. As expected,

the Mesos master nodes continued without any issues, as the current leader was not the affected one. As for the affected Mesos slave nodes,

after the timeout of 75 seconds, the leading Mesos master node determined that the slave nodes were unresponsive and deactivated them.

The hybrid cloud splits and semi-isolates part of the platform

In the event of a split in the hybrid cloud, resulting in a partly isolated availability region, the quorum mechanics will prevent inconsistencies in

the cluster and avoid issues like the split-brain problem.

FIGURE 10 Region A cannot reach Region B, but Region B can



HAUGERUD ET AL. 13 of 26

FIGURE 11 An illustration showing what the semi-isolated test
scenario looks like

To test this scenario, two simple iptables DROP rules were added on the Mesos master node located in Frankfurt with the IP address

192.168.0.5. The following two lines were executed at the instance:

The leading master continued with no issues and two other standby Mesos masters correctly redirected to the leading master node. However,

after rebooting the ZooKeeper process and Mesos master process on the master nodes, the cluster is unable to elect a new leader. The cluster

is effectively frozen as depicted in the screenshot shown in Figure 11. Immediately after the iptables DROP rules were removed, a new leading

Mesos master was elected and operations continued as normal.

4.2.2 Prototype 2: Prioritizing local availability

Due to the architecture of Apache Mesos, it is possible to perform rolling updates on the Mesos master nodes. This ensures no downtime since

each Mesos master node is updated separately and then restarted. The setup of this prototype was done by adding two more Mesos master

nodes at Altocloud resulting in the final configuration of a five master nodes cluster. Afterwards, the configuration of each of the existing three

master nodes was updated and restarted. The cluster was fully operational during this process. As some of the test scenarios do not introduce

anything new and behave in the same way as in the previous prototype, a few of those test scenarios have been omitted for this prototype.

An entire region within the hybrid cloud becomes unavailable

The effect on the cluster largely depends on which availability region that becomes unavailable. For any other region than the private site,

Altocloud, the effect on the cluster as a whole is limited. For the prototype illustrated in Figure 12, that would mean the loss of a single Mesos

FIGURE 12 Prototype 2: Prioritizing local availability. Focusing on the
availability at the local site



14 of 26 HAUGERUD ET AL.

master and two slave nodes. With four Mesos master nodes left, and with the majority of the slaves located in Altocloud, the cluster is fully

functional with slightly less processing capability. To verify this, the VPN gateway was deactivated at Altocloud, thus simulating both the failure

of the private site from the perspective of the Mesos nodes located in the public cloud and the failure of the public cloud Mesos nodes or ISP

connection problems from the perspective of the private location.

The Mesos master nodes located in Frankfurt and Ireland entered a leaderless state, waiting for a leader to be elected. Since the Mesos master

nodes located at the public cloud locations cannot form a majority, thus satisfying the quorum size requirement, they are in practice frozen while

awaiting the connection of one additional Mesos Master node in order to elect a new leader.

While in the private location, Altocloud, the cluster reelects a new leader, as the previous leader was located in Frankfurt and continues to

delegate tasks and to restore those that were lost during the disconnection.

The hybrid cloud splits and semi-isolates part of the platform

In contrast to the previous prototype, a semi-split between the regions will not cause the cluster to freeze. This is because the majority of the

Mesos master nodes are present at a single location. Ultimately, the Mesos master nodes present at Altocloud will sustain the cluster. However,

also for this prototype, should the internal network of Altocloud be split, with semi-isolated Mesos master nodes in combination with a network

split between the different regions, it is possible that the cluster will experience the same problem as Prototype 1, with the Mesos master nodes

being unable to elect a new leader. It is not immune to the problem although the cluster will still run in the event of a network split occurring

between the availability regions.

4.3 Segmentation of data

Verification of segmentation of tasks and data will be done by confirming that segmented tasks are segmented as specified. For the aspect of

privacy, it is difficult to really be sure that traffic is truly private and does not at any time leak out. To verify that no data regarding the tasks are

leaked to undesired locations, the source codes of ZooKeeper, Apache Mesos and the used frameworks have to be inspected. To narrow down

the scope of this study, a major assumption has been made for the sake of analyzing the aspect of privacy and segmentation.

We shall discuss briefly the flow of the internal traffic of Apache Mesos. Initially, only traffic regarding resource availability at the Mesos slave

node is sent to the master in addition to traffic related to the cluster itself and keep-alive pings is assumed to be sent at a regular interval. It

is therefore assumed, based on the official documentation of the internal traffic that no information about the available tasks are sent to the

Mesos slave nodes before the tasks are being granted.8 This means that only when tasks are being handed out after checking any constraints

will there be any other traffic than the traffic necessary for the cluster to function. Consequently, information about the tasks are sent out on a

need-to-know basis. A UML sequence diagram is shown in Figure 13 and describes a possible interaction between the different Apache Mesos

components, assuming MasterY is the working Mesos master node.

Note that the sequence diagram is simplified and not meant to be fully accurate. It is included to illustrate a possible interaction between the

components.

To allow for segmentation of specific data, Mesos slave nodes were tagged with a few attributes after installation. This was done by adding a

configuration file in /etc/mesos-slave/attributes with the following contents:

The contents of this file tag the slaves with attributes marking them with unique properties that can later be used for constraints.

To verify that the segmentation takes place within the hybrid cloud platform, cloud_type:CLUSTER:private was added as a con-

straint for the Marathon application executed. In addition, due to the large amount of resources available, a second constraint was added,

hostname:UNIQUE, thus requiring a unique hostname for each instance of the task deployed. In short, only one instance of a task can be run

on a single slave node, and the slave node has to be tagged with an attribute named cloud_type, which is set to private.

As there are ten slave nodes located at Altocloud with the attributes set, a maximum of ten task instances can be run at all times, unless

additional Mesos slave nodes are added that fulfill the constraints. Figure 14 lists the ten Mesos slave nodes running the constrained Marathon

application. Note the subnet of the IP addresses listed, as they are part of the 10.0.19.0/24-subnet that was allocated to Altocloud.

When attempting to scale further than the ten slave nodes available, the Marathon application is unable to execute additional tasks instances,

as there are no available resources that fulfill the constraint requirements. As shown in Figure 15, the Marathon application is unable to scale

beyond ten task instances in this particular setup.

4.4 Automated cloud bursting

The automated cloud bursting solution uses a Python script that was developed as outlined in Section 3. It depends on two configuration YAML

files and an additional small script for importing some basic functions.

The first configuration file is the main configuration file. It contains the main preferences used by the script. Amazon Web Services API

credentials, execution interval, and maximum limits are just a few of those settings. The second configuration file is the launch configuration file,

which contains the properties that are used when launching a spot instance.



HAUGERUD ET AL. 15 of 26

FIGURE 13 A UML sequence diagram describing a possible interaction sequence assuming MasterY is the working Mesos master node

FIGURE 14 A screenshot of the Marathon
GUI listing the running tasks at the Mesos
slave nodes

The particular setup of the hybrid cloud platform followed Prototype 2, as outlined in Figure 12, with the exception of the Mesos slave nodes

located at the public cloud providers. The Mesos slave nodes located in Ireland and Frankfurt were deactivated prior to the experiments. The

setup utilizes ten Mesos slave nodes as the baseline resources located in the private location, Altocloud. Each of the ten slave nodes was running

on a m1.large instance type, resulting in 40 CPUs, 80 GB of memory, and 800 GB of storage in total.



16 of 26 HAUGERUD ET AL.

FIGURE 15 A screenshot of the Marathon GUI showing the Marathon application, with the constraint attempting to scale beyond the available
resources that fulfill the constraint requirements

The script is designed to be executed as a Marathon application and depends on being present in the cluster, since it attempts to discover the

leading Mesos master node dynamically in each iteration. Except for this, the script can be executed like any other Python script from the bash

prompt, and it accepts the following arguments:

The automated cloud bursting solution consists of three main parts: data collection, price, and scaling decision logic, and management of the

spot requests and spot instances.

Before any data are collected, the script loads the configuration file into the script and uses the preferences retrieved to resolve a ZooKeeper

URL to find the current leading Mesos master. The script then proceeds to collect resources metrics from the leading Mesos master before

moving on to collect information about any active spot requests and instances from Amazon Web Services EC2.

If the verbose flag was set when executing the script, the following information about resource usage is displayed in the terminal:

As previously stated, the bidding strategy chosen was the current price + x. It was implemented by polling the price in each iteration through the

EC2 API. In addition, a maximum bid limit, specified in the configuration file, is checked before returning a bid value. Since the prices fluctuate,

so does the bid in the script up to the maximum limit.

The decision on whether to scale or not is determined based on the current resources usage percentage compared to the burst point threshold.

The script ensures that the number of spot instances that serves as a Mesos slave node corresponds to the number required to keep the usage

percentage just below the burst point threshold. As with the maximum bid limit, there is also a maximum spot slave limit that limits the number of

spot slaves the script is allowed to scale up to. With the value set to 0.75, the script will automatically burst into the cloud and start requesting

spot instances if the limit of 75% of any single resource is exceeded. The script will evaluate the usage percentage with the current active Mesos

slave nodes in addition to the pending resources in order to calculate the percentage. To scale down, the script will calculate the usage percentage

of the cluster after removing x amount of slaves in order to find the optimal number of spot instances for Mesos slaves with respect to the burst

point threshold.

The script will also cancel older spot instance requests that exceed a certain time limit, which is set in the configuration. This is done to take

account of spot instance requests that for some reason are stuck and will not result in any spot instances any time soon. This could be due to an

error or because the price bid is too low. In the use cases of a cloud bursting solution, the requested resources should appear within a reasonable

amount of time. Otherwise, it would not serve its purpose as a cloud bursting solution.

The activity diagram shown in Figure 16 describes the logic that determines the scaling action.

4.5 Scaling in action

Two experiments have been conducted to showcase the functionality of the cloud bursting solution. Each experiment covered a unique use case

that is interesting in a cloud bursting scenario.

To simulate workloads, several Marathon applications were created for the sole purpose of simulating a process hogging available resources.

Below is an example of the commands used for resource-hogging tasks.

while true; do echo hello world; sleep 60; done

As is evident from looking at the command, it does not by itself require a lot of resources to run. The focus of this paper is not on server

performance, if this was the case, such a workload could have been simulated using a command like stress. However, each task is allocated a certain



HAUGERUD ET AL. 17 of 26

FIGURE 16 An activity diagram showing the
decision logic for determining whether or
not to scale

amount of resources by the Marathon framework and can within those allocated resources use as little or as much as needed. For the simulations,

each of these small while-loop tasks is given excessive amounts of resources to quickly hog up large quantities of resources for the simulation.

There are three possible resources variables to simulate:

• CPUs

• Memory

• Disk

CPUs as a resource are normally denoted by integer numbers and they were therefore picked as the resource to exhaust in order to test the

cloud bursting solution. To do so, a Marathon application named hog-cpu-1 was created and scaled up to 100 tasks, effectively hogging 100

CPUs. The baseline resources consist of 40 CPUs and any additional resource required will therefore depend on the resources available through

the cloud bursting solution. With the maximum amount of spot slaves set to 10, the cluster cannot accommodate 100 CPUs while scaling up on

the lower tier instance types, resulting in a constant need for resources.

4.5.1 Experiment 1 - Scaling up

Table 6 contains the parameters that were used when conducting Experiment 1. The goal of this experiment is to showcase the cloud bursting

functionality, more specifically the scale-up part of the script. At the beginning of the experiment, hog-cpu-1 will be scaled up to 100 tasks in

an attempt to have the script scale up to 10 spot instances to serve as Mesos slave nodes.

As shown in Figure 17, the cloud bursting script scales up the desired number of slave nodes to 10, alternating between 10 and 9. During

runtime, the script calculates a bidding price for each iteration, which is the current market price plus a padding of 0.001. However, the number

Variable Value

Execution interval 60 seconds

Instance type m3.medium

Maximum spot slaves 10

Maximum bid limit 0.500

Burst point percentage 85%

Spot request timeout 10 minutes

Price padding 0.001

TABLE 6 The parameters for the cloud bursting experiment 1



18 of 26 HAUGERUD ET AL.

FIGURE 17 Experiment 1: The market price
rises at the same interval as the cloud
bursting script does and drops as soon as the
script stops bidding

TABLE 7 The parameters for the revised cloud bursting Experiment 1 and Experiment 2 Variable Value

Execution interval 60 seconds

Instance type c4.large

Maximum spot slaves 10

Maximum bid limit 0.500

Burst point percentage 75%

Spot request timeout 10 minutes

Price padding 0.100

of instances registered to Apache Mesos alternates between one and zero. This is due to the increasing market price, which invalidates the

previous spot instance requests, as the bidding price for those instances was lower than the current market price. As a result, the instances are

terminated shortly after they are booted up.

After 30 minutes, the CPU-hogging tasks were halted, thus resulting in almost no resource requirements for the cluster. As a result, the number

of desired slave nodes, as well as the bidding price, is 0, as no slave nodes are needed. A few minutes later the current market price falls to the

original price before the scaling experiment took place.

Experiment 1 revised: Scaling up

As the original Experiment 1 did not showcase the scripts ability to scale up the instances, a number of tweaks were made to the configuration

for a revised experiment. As the price changes prevented the script from properly bursting into the cloud within 30 minutes, a revised experiment

was deemed necessary. Table 7 lists up the tweaked parameters for the revised experiment*.

Due to the very volatile market price for the m3.medium instances type in Frankfurt, the c4.large instance type was chosen instead.

Compared to m3.medium, the market price for c4.large instances was far more stable. Additionally, as the goal is to verify the scaling

functionality of the script, the price padding was set to 0.100 as an aggressive measure to deal with any spikes in the market price.

As shown in Figure 18, the script managed to successfully request spot instances, with the Mesos slave nodes registering rapidly. After

approximately 15 minutes, all the requested slave nodes were online and processing for the cluster. The price remained the same for the entire

duration.

4.5.2 Experiment 2: Scaling down

The goal of this experiment is to showcase the script in a scale-down scenario. The configuration used for Experiment 2 was the same as for

the revised Experiment 1, listed in Table 7. This was to ensure that the cloud bursting script would successfully scale down without any major

disruptions. Table 8 also contains specific parameters relevant to Experiment 2.

In this experiment, the spot instances that were active in the revised Experiment 1 were used to scale down.

Figure 19 shows the cloud bursting script downscaling the number of spot instances from 10 to 0. The number of hog-cpu-1 tasks was

scaled down from 59 tasks to 24 in intervals of 5, with 24 CPUs being just below the limit when the script will burst into the cloud. As seen in

the graph, although the desired number of spot instances is zero, the script keeps them alive for a longer period before scaling down. This is due

to the imposed requirement that requires each instance to be alive for at least x number of minutes in an hour cycle, where x is the partial hour

limit set in the configuration. For this experiment, the limit was set to 20 minutes to shorten the waiting period for this experiment.

* Please remember that the instances number is integers, although by abuse of representation we do not use bar lines.



HAUGERUD ET AL. 19 of 26

FIGURE 18 Experiment 1 revised: A
successful scale-up experiment with the
market price being stable for the entire
duration of the experiment

Variable Value

Partial hour threshold 20 minutes

TABLE 8 Additional parameters in the configurations set for Experiment 2

FIGURE 19 Experiment 2: A successful
scale-down experiment with the script
waiting until the specified minimum time
spent in an hour cycle before terminating
the instances

Listing 3 is an example of a single iteration of the script. In this case, there are five active spot instances serving the cluster as slave nodes.

However, none of them are needed as the current resource usage is below one percent for all three categories of resources. In this case, even the

baseline resources available at the private location are mostly idle. The script attempts to terminate the excessive slave nodes. However, since

the number of minutes since the last integer hour has not passed the specified limit, the script postpones the termination of the instances. The

limit for the fewest number of minutes that is required to pass before terminating an instance is set in the configuration file.

5 DISCUSSION

This section contains a discussion of the results, the process of the project, additional considerations, and the impact of the findings. The main

goal of the paper was primarily to design and implement a hybrid cloud solution. Below the proposed solutions are discussed, each attempting to

address the challenges of availability, segmentation, and cloud bursting for a hybrid cloud environment. By abstracting the resources located in

heterogeneous cloud environments, practical solutions have been prototyped using Apache Mesos.

5.1 Hybrid cloud

In this paper, Apache Mesos was used as an abstraction layer between the resources and the higher layers where the applications reside in order

to tie together heterogeneous cloud locations. Since Apache Mesos does not support NAT network configurations, VPN was installed. With VPN

abstracting the network layer for Apache Mesos, a computer cluster was successfully deployed in a hybrid cloud configuration using private

computer resources and public cloud resources.

As mentioned in Section 3, without VPN, the proposed prototypes for setting up the hybrid cloud rely on a vast number of internet routable

IP-addresses. When the IPv4 address space is full, it is difficult to acquire the large amount of IPv4 IP addresses that would be required for a larger

hybrid cloud platform. These problems can be solved in the future as a result of IPv6 support in OpenStack, Amazon Web Services, and Apache



20 of 26 HAUGERUD ET AL.

Listing 3 The verbose output of one iteration in the cloud bursting script. Five instances are excessive and attempted terminated, but this is
ultimately postponed due to the lifetime of the instance

Mesos. With IPv6 IP addresses, every node in the cluster can have its own unique Internet routable IP address. IPSEC or another encryption

method can be used to secure the communication between the nodes. TLS support for Apache Mesos is upcoming and may be adequate to

secure the traffic.

However, depending on the use case, VPN may still be the preferred option, as it isolates and simplifies the network. It may affect the

performance; however, it should be investigated whether this is of great importance.

5.2 High availability

This paper outlines some possible ways of setting up a hybrid cloud using Apache Mesos to achieve higher availability than on a single cloud

provider or data center location. By deploying a hybrid cloud in multiple and independent locations, the risks of the entire cluster failing are

distributed and reduced as a result of the characteristics of independent probabilities. However, by relying on distributed locations, network

becomes a factor in the equation.

This is the reason why two prototypes were designed and evaluated: one prototype that maximizes availability in general, with no concern for

where the data is accessed, and another prototype that prioritizes local access.

With Prototype 1, Mesos master nodes are distributed between independent sites, specifically to reduce the failure rates of the Mesos master

nodes. By slightly modifying this prototype by adding additional independent sites and additional Mesos master nodes, the failure rates in theory

decrease for each node added. However, for each independent site, another dependency is added in the form of dependency on network

connectivity, although the failure rates for the network connectivity through the Internet would mainly be regarded as an independent probability

separate from the failure rates of the Mesos nodes. This could therefore reduce the probability of failure of the hybrid cloud platform as a whole

if the number of sites is sufficient.

Prototype 2 on the other hand prioritizes local availability. Here, the focus is on local access that is independent of external influence. Should

Internet access be lost, this setup will allow the cluster to be run and accessed from the network of the private location. This setup considers the



HAUGERUD ET AL. 21 of 26

external cloud providers as an additional, and not as a critical part of the cluster. This type of setup works well with cloud bursting use cases, as

the private data center functions as a preferred baseline, with the option of utilizing public cloud resources for additional processing power.

Moreover, for the issues discovered regarding semi-isolated networks for Prototype 1 in particular, the availability improvements may not

be as great as initially expected. Due to the issue of semi-isolated networks, a three master node cluster may not be sufficient, and additional

master nodes may be required in order to partly mitigate this issue. While semi-isolated connectivity problems are not common on the network in

general, the use of VPN tunnels makes them a more likely event, since separate VPN tunnels between the sites could in theory fail independently

of each other. Consequently, any final setup should allow for a semi-isolated network and the issues that arise. Thus, a three Mesos master node

setup may not be good enough for hybrid cloud usage. Five or seven Mesos master nodes should be considered when a semi-isolated network is

prone to arise.

5.3 Data segmentation

Apache Mesos allows for data to be segmented into parts of the hybrid cloud platform using attributes for tagging the Mesos slave nodes and

the constraints feature of the Marathon framework. This has also been verified, as no tasks were delegated to any Mesos slave nodes that did

not satisfy the constraint requirements. While the solution does segment the tasks as defined, it may not be sufficient for use cases where strict

compliance and regulation are the motivation for segmenting data.

However, data segmentation may be interesting when considering task locality, as it may be desirable to place certain services in a particular

data center for reasons other than privacy reasons. For example, it may be desirable to group a number of tasks together for performance

reasons. Segmenting for this purpose is possible and should be adequate using the Mesos framework Marathon constraints feature.

However, this may not be good enough for every use case that requires segmentation of data, as there may be strict regulations and compliance

requirements to satisfy. It could be a requirement that the data do not cross the border, in order to guarantee that the data are not exported

outside a nation. In order to properly guarantee data segmentation, source code analysis is required, coupled with auditing tools to verify and

attest that the data segmentation is functioning as intended. A self-developed framework that works by using the primitives provided by Apache

Mesos is an alternative. This is possible due to the fact that it is built as a two-level scheduler, allowing the individual frameworks to implement

the algorithm for deciding whether or not to accept or reject offered resources based on the attributes and resources offered. A framework can

therefore be designed to focus on data segmentation with the required functionality and auditing tools to guarantee and attest compliance.

In the end, if security is of the highest order, then the hybrid cloud introduces additional vectors of attack, which is something that needs to be

considered. Attack vectors increase with the use of publicly accessible services. VPN does isolate the traffic in transit, although the public cloud

providers have direct access to the virtual resources and, by extension, the data contained within them. The terms of service for each provider

may contain clauses that give them ownership of the data stored or the right to disclose the information to third parties. These are aspects of

public cloud providers that need to be considered before using them with sensitive types of data.

5.4 Cloud bursting and spot price instances

The cloud bursting solution outlined in this paper automatically deploys additional resources in the public cloud when the resource usage exceeds

a prespecified threshold. Additionally, the solution utilizes spot price instances and calculates a bidding price that is based on the current market

price and a preset padding to ensure a winning bid.

The solution is scaled to a prespecified burst point threshold that is set in the configuration file. This solution is therefore quite rudimentary

and does not account for edge cases, since it will only read the usage percentage and scale on this basis. The reason why such a basic scaling

decision algorithm was picked was the lack of appropriate information on which to scale the solution. The Marathon framework for Mesos does

provide information about the tasks that are queued and awaiting deployment, although the API does not provide the reason why tasks are

queued. This means that the API does not distinguish between tasks that are queued because of resource depletion and tasks that cannot be

performed due to constraint requirements.

Moreover, in a multiframework environment, where Hadoop, Chronos, Marathon, or other frameworks are running simultaneously, the script

would have to account for the resource usage between all the participating frameworks. This complicates the scaling decision algorithm. This is

the reason why the solution scales up in steps and not in one big burst: there is no information that can be used to accurately gauge the required

resources, and therefore the required number of spot instance slave nodes. A possible solution to this is to create an algorithm that evaluates

the state of the Mesos cluster in combination with the information given by the frameworks as a composition and make a decision. This requires

rather complex logic to achieve with the information given by the APIs.

The pricing algorithm implemented is also quite simple and will bid the current price + x, where x is a prespecified padding set in the configuration.

There are several other bidding strategies for building a pricing algorithm, as mentioned in Section 3. For the price bidding strategy to be viable,

it has to win a bid within a reasonable amount of time, as the resources are needed when the bids are made. In addition, for the bid to be cost

efficient, the proposed algorithm also has to consider on-demand prices.

While the solution does not account for every possible use case, it proves the viability of a cloud bursting solution using spot instances on a

hybrid cloud platform using Apache Mesos.



22 of 26 HAUGERUD ET AL.

5.5 Other limitations and considerations

5.5.1 Performance and abstraction

In this paper, performance has not been evaluated for the hybrid cloud platform. Except from the feasibility of the hybrid cloud setup, performance

is perhaps the most important factor to consider when attempting to create such a platform. Due to the way the hybrid cloud platforms may be

set up, increased latencies are incurred. The effect of the increased latencies for Apache Mesos is unknown. Apache Mesos benefits from fast

networking, and latencies observed on the Internet could possibly have an adverse effect on the performance of the cluster.

The prototypes implemented in this paper use multiple levels of abstraction that each incurs some overhead. Hardware resources were

abstracted through the use of virtualization since Altocloud and Amazon Web Services EC2 provide VMs only. If performance is important, one

should consider installing Apache Mesos on bare-metal hardware. The network was abstracted and secured with VPN, which also entails some

overhead. However, it could argued that the overhead is required, as VPN also secures the traffic. Finally, there is the abstraction done by Apache

Mesos. Apache Mesos abstracts the machines, virtual or not, and presents them to applications and frameworks as a pool of available resources.

In addition, the locations of the cloud sites are also important to consider when the performance is vital. Depending on the target audience

and the performance requirements, the location of the cloud sites could severely affect the performance of not only the cluster itself but also the

perceived quality of service from the perspective of the users of the hybrid cloud.

Before any performance and latency sensitive workloads are considered for such a setup, performance and overheads should be evaluated.

5.5.2 Depth of testing and experiments

One limitation of this paper is the lack of long-term experiments conducted on availability. Solutions were designed, evaluated, implemented,

and analyzed during work on the paper, but no verification beyond theory was carried out. It was assessed that, to get a real indication of actual

availability rates for the platform, uptime would have to be monitored over a period of at least a year or more to be close to accurate. This is

due to the nature of the metric tied to availability, as it is denoted by a percentage representing availability as a function of time. For instance,

at the time of writing, the downtime for Amazon Web Services EC2 for the availability region eu-central-1 (Frankfurt) and eu-west-1 (Ireland)

was 73 seconds in total during the last year.45 Due to the high rates of availability, it is difficult to gauge it over a short period of time. For

an experiment lasting a few months, it is possible that the availability rate found will be 100%. The opposite is also true. If a cloud provider is

unlucky and experiences downtime during an experiment, the resulting availability rate may be terrible for the duration of the experiment but

could be impeccable for the rest of the year, resulting in a high availability rate. To properly gauge availability, a long-term experiment has to be

conducted, preferably of one to two years duration at least.

Regarding the cloud bursting solution, a few experiments were conducted to verify the main functionality of the script. The main purpose

of the experiments was to showcase two use cases that the script is intended to be used for, namely scaling up and down Mesos slave nodes

depending on the need for resources. While the experiments were sufficient to verify the feasibility of the proposed solution, the data were only

collected for the few experiments outlined in Section 4, and they lack the quantitative foundation required if they are to be used as something

more than an indication of the expected behavior of the script. It is not given that the script will handle every use case as outlined in the results,

and further experiments must be conducted to verify that the behavior is stable for other use cases.

5.5.3 DNS management

As no proper configuration and infrastructure was set up for resolving hostnames, the testbed has several limitations. For public facing

applications, a proper DNS environment has to be in place for Apache Mesos and Marathon to utilize service discovery for publicly accessible

services. With the Mesos-DNS project, public services can be made available on the Internet46 by dynamically binding hostnames to the tasks.

However, this requires that the Mesos slave nodes that host those tasks have Internet-routable IP addresses. Otherwise, a load balancer like

HAProxy or Nginx has to be set up.

5.5.4 Spot price instances

There are currently no other providers of the spot price model for instances. The solution developed for automated cloud bursting may not work

for other spot price model providers should they emerge, as the principles and mechanisms used may differ considerably. The cloud bursting

script is therefore tailored to Amazon Web Services due to a lack of alternative spot price markets. An interesting observation during the cloud

bursting experiments was the volatility of the prices for certain instance types. With fewer than ten spot requests, the script was able to push

the price upwards from 0.124 at an interval of 0.010 until the experiment was terminated, with the price hitting 0.214 before dropping to 0.124

just a few minutes later. Due to such volatility, alternative instance types, availability regions, instance billing types, or an another cloud provider

should be considered if instance stability is important.

5.5.5 OpenNebula, virtualization and docker

While OpenNebula may has been an adequate solution, it is overly complex for workloads where a simple but powerful data center is desired,

because OpenNebula is first and foremost a cloud manager. This entails higher complexity of the code, with multiple services and abstraction

being required to facilitate a cloud environment. The rich feature set increases the probability of experiencing issues that affect availability,



HAUGERUD ET AL. 23 of 26

as there are many parts that interoperate. By comparison, Apache Mesos is easier to install and manage, and incurs less overhead, since

resource isolation with cgroups or Docker replaces virtualization. OpenNebula revolves around VMs, providing flexibility and features with this

prioritization. On the other hand, Apache Mesos puts applications, tasks, and services at the center and provides flexibility at application level.

For a larger-scale data center, this is arguably more important, as it is ultimately the applications and services that provide utility. Moreover,

with virtualization, there are arguably two main advantages among many that provide the motivation for using VMs in a data center scenario:

isolation, commonly referred to as sandboxing, for increased security and to enable multi-tenancy use cases, and, secondly, resource flexibility and

utilization for increasing resource utilization per VM, as they can be migrated for optimal resource usage on the physical hardware. In addition,

resource partitioning offers flexibility, which enables system administrators to shrink, expand, and relocate VMs depending on the requirements.

Docker, an emerging and increasingly popular containerization technology, can be a better alternative for certain workloads than full-fledged

VM sandboxing as it has a lighter memory footprint and saves CPU usage. Combined with Apache Mesos, which facilitates application level

flexible resource partitioning, the need for virtualization technology decreases for data center scenarios.

5.5.6 Apache Mesos

Apache Mesos is a relatively new piece of technology with the current version being 0.22.1. Although Apache Mesos is used in production

environments in large companies like Twitter and Airbnb, there is a possibility of significant changes to the API and how Apache Mesos functions.

Apache Mesos currently only supports Linux environments. For applications requiring other operating systems, Apache Mesos is not an option

at present. If there is large enough demand for it, support may arguably be implemented in a future version.

5.5.7 Suitability

It is important to consider the requirements of the use case for a setup of this size. For hosting a small personal website, installing and managing

Apache Mesos may be overkill and might therefore result in far more unjustified complexity. However, there are situations where it may be

appropriate to use Apache Mesos, even for low requirement use cases. This could be for educational purposes or to dimension for future

scalability, as Apache Mesos is easily scalable after setup. For existing data centers, it may be difficult to migrate to an Apache Mesos cluster due

to legacy software with old dependencies or non-Linux applications. It is important to consider the cost of migration in both time and resources

compared to the potential benefits. Migrating existing solutions may be a large undertaking depending on their size and complexity.

5.6 Future work and improvement suggestions

This section contains suggestions for improvements and further work that will be interesting to investigate.

Evaluating the performance and long-time availability of a hybrid cloud setup

In this paper, a hybrid cloud solution with automated cloud bursting has been designed and implemented. With a working setup, what remains

to be done is to gauge the long-time availability and performance of the proposed prototypes. The results of such investigations in combination

with this paper would make it possible to determine the level of utility the proposed solutions has. Another aspect that would be interesting to

investigate is quality of service. This has to be gauged by monitoring the services running on the hybrid cloud platform and comparing them to

the expected quality of service, for instance the expected response time, latency, performance, or any other metric that affects the quality of the

service.

Evaluate and prototype additional public cloud providers for a hybrid cloud platform

While the different availability zones for Amazon Web Services functioned as different cloud locations in the paper, additional public cloud

providers other than Amazon Web Services were not considered. Other cloud providers may use different architectures, locations, hypervisors,

and hardware that in theory should increase the availability if used in the hybrid cloud platform, as the degree of independence increases.

However, for the proposed solution, this would require the other public cloud providers to facilitate the setup of a site-to-site VPN solution.

The possibilities of using additional public cloud providers to build a hybrid cloud platform would be interesting to investigate and evaluate

further.

Improve the cloud bursting solution

There are many interesting improvements that could be made to the automated cloud bursting script. As regards the price bidding algorithm for

spot instances, a new algorithm should be developed that is far more resistant to price spikes and that also considers on-demand prices. For

instance, when the spot prices exceeds the on-demand prices, the script could choose to boot up an on-demand instance instead of a spot price

instance.

Another improvement to the script is to develop a new or expand the existing scale decision logic to rely on more tangible data when a scaling

decision is made. By finding more suitable data to aid the decision to scale, the script could more intelligently request the required number of

nodes directly, instead of scaling one node per script iteration.



24 of 26 HAUGERUD ET AL.

Sometimes, a lower tier instance type is more expensive than a higher tier instance type solely because of demand. This was observed during

work on this paper. An algorithm could therefore be developed that picks the most price efficient instance type based on the spot market prices

for each instance type normalized with respect to the amount of resources on the VM. With such an algorithm, the most price efficient instance

type for the required amount of resources can be requested without being limited to one instance type. Another approach47 focuses on such a

concept and uses a theater analogy to evaluate and pick a suitable VM given certain performance and pricing requirements.

Although there are no spot price market competitors among the other public cloud providers other than Amazon Web Services, the pricing

for the on-demand instances differs. While these prices are fairly static, the cloud bursting solution could evaluate the pricing for other cloud

providers as well, and pick the most suitable option depending on current availability and resource needs. Furthermore, as a future work, we aim

to test containers. In fact, it is advantageous to use containers for a cloud bursting solution as they have a faster boot-up time than normal VMs

which take few minutes typically to be provisioned. Therefore containers can provide faster resource adaptiveness to variations in the traffic.

Moreover containers enjoy smaller memory footprint and CPU usage compared to VMs.

Using ratio price over performance to optimize cost

Most cloud bursting solutions only consider instance prices when performing the scaling. However, the ratio price over performance is a more

appropriate concept as more expensive instances do not necessarily provide higher performance. Since VMs come with different flavors in

a public cloud, a sophisticated decision making mechanism for performing the scaling need to be developed so that to provision the right

number and combination of instances that meet the SLA requirements. For private clouds, it is possible to rather consider the ratio energy over

performance as in contrast to public clouds, the price is not an observable cost in private cloud.†

6 CONCLUSION

This paper presents multiple prototypes for setting up a hybrid cloud platform using Apache Mesos to weave together heterogeneous cloud types

and geographical locations into a unified platform. Each of the proposed prototypes focuses on a specific perspective, maximizing availability and

local access prioritization.

Data segmentation has also been demonstrated in this paper, with the hybrid cloud platform using Apache Mesos and the framework Marathon

to set constraints to segment the data flow. However, for strict compliance requirements or a high level of confidentiality requirements, the

outlined solution may not be adequate. Alternative solutions have been proposed.

An automated cloud bursting solution has also been prototyped and implemented on the hybrid cloud platform. It automatically requests spot

instances in Amazon Web Services EC2 depending on resource usage on the hybrid cloud platform. The solution calculates a bidding price derived

from the current market price and that adapts to price fluctuations. When resource usage decreases, the solution considers billing mechanics to

ensure that resources that have been paid for are fully utilized for maximum economic efficiency before terminating excessive resources.

While the paper presents functional and viable solutions with respect to availability, segmentation, and automated cloud bursting for a hybrid

cloud platform, further work remains to be done to improve and confirm the proposed solution, in particular a performance analysis of the

proposed solutions.

ORCID

Anis Yazidi https://orcid.org/0000-0001-7591-1659

REFERENCES

1. Google Inc. Google Trends - web search interest: multi cloud, hybrid cloud, inter cloud - worldwide. 2019. https://trends.google.com

2. Xue N, Haugerud H, Yazidi A. Towards a hybrid cloud platform using Apache Mesos. In: Security of Networks and Services in an All-Connected World:

11th IFIP WG 6.6 International Conference on Autonomous Infrastructure, Management, and Security, AIMS 2017, Zurich, Switzerland, July 10-13, 2017,

Proceedings. Cham, Switzerland: Springer; 2017:143-148.

3. Verma A, Pedrosa L, Korupolu M, Oppenheimer D, Tune E, Wilkes J. Large-scale cluster management at Google with Borg. In: Proceedings of the

10th European Conference on Computer Systems; 2015; Bordeaux, France.

4. Schwarzkopf M, Konwinski A, Abd-El-Malek M, Wilkes J. Omega: flexible, scalable schedulers for large compute clusters. In: Proceedings of the

SIGOPS European Conference on Computer Systems (EuroSys); 2013; Prague, Czech Republic.

5. The Apache Software Foundation. Apache Mesos. 2019. Accessed August 15, 2019. http://mesos.apache.org

6. Leopold G. Apache Mesos emerges as datacenter OS. 2019. Accessed August 15, 2019. http://www.enterprisetech.com/2015/02/23/apache-

mesos-emerges-as-datacenter-os

7. Zaharia M, Hindman B, Konwinski A, et al. The datacenter needs an operating system. In: Proceedings of the 3rd USENIX Workshop on Hot Topics in

Cloud Computing; 2011; Portland, OR.

† We are grateful for an anonymous reviewer who suggested considering the ratio price over performance as a future research direction.

https://orcid.org/0000-0001-7591-1659
https://orcid.org/0000-0001-7591-1659
https://trends.google.com
http://mesos.apache.org
http://www.enterprisetech.com/2015/02/23/apache-mesos-emerges-as-datacenter-os
http://www.enterprisetech.com/2015/02/23/apache-mesos-emerges-as-datacenter-os


HAUGERUD ET AL. 25 of 26

8. Hindman B, Konwinski A, Zaharia M, et al. Mesos: a platform for fine-grained resource sharing in the data center. In: Proceedings of the USENIX

Symposium on Networked Systems Design and Implementation; 2011; Boston, MA.

9. The Apache Software Foundation. 2019. Accessed August 15, 2019. http://mesos.apache.org/documentation/latest/powered-by-mesos/. Powered

By Mesos

10. Twitter, Inc. Mesos graduates from Apache incubation. 2013. Accessed August 15, 2019. https://blog.twitter.com/2013/mesos-graduates-from-

apache-incubation

11. Vavilapalli VK, Murthy AC, Douglas C, et al. Apache hadoop YARN: yet another resource negotiator. In: Proceedings of the 4th ACM Annual

Symposium on Cloud Computing (SoCC '13); 2013; San Jose, CA. http://doi.acm.org/10.1145/2523616.2523633

12. The Apache Software Foundation. Apache myriad. Accessed August 15, 2019. http://myriad.incubator.apache.org

13. Liu F, Tong J, Mao J, et al. NIST cloud computing reference architecture. NIST Spec Publ. 2011;500(2011):1-28.

14. Nair SK, Porwal S, Dimitrakos T, et al. Towards secure cloud bursting, brokerage and aggregation. In: Proceedings of the 2010 8th IEEE European

Conference on Web Services (ECOWS); 2010; Ayia Napa, Cyprus.

15. Connor TR, Southgate J. Automated cloud brokerage based upon continuous real-time benchmarking. In: Proceedings of the 8th International

Conference on Utility and Cloud Computing; 2015; Limassol, Cyprus.

16. Breiter G, Naik VK. A framework for controlling and managing hybrid cloud service integration. In: Proceedings of the 2013 IEEE International

Conference on Cloud Engineering (IC2E); 2013; Redwood City, CA.

17. Ardagna D, Di Nitto E, Casale G, et al. Modaclouds: a model-driven approach for the design and execution of applications on multiple clouds.

In: Proceedings of the 4th International Workshop on Modeling in Software Engineering; 2012; Zurich, Switzerland.

18. Rahabok I. VMware vRealize Operations Performance and Capacity Management. Birmingham, UK: Packt Publishing; 2014.

19. VMWare, Inc. Cloud computing. 2019. Accessed August 15, 2019. http://www.vmware.com/cloud-computing/hybrid-cloud.html

20. Butler B. Re-examining cisco intercloud strategy. Network World. 2019. Accessed August 15, 2019. http://www.networkworld.com/article/2864857/

cloud-computing/re-examining-cisco-s-intercloud-strategy.html

21. Coyne L, Dain J, Forestier E, et al. IBM Private, Public, and Hybrid Cloud Storage Solutions. IBM Redbooks. 2018.

22. Rackspace, Inc. Hybrid cloud computing, hybrid hosting by rackspace. 2019. Accessed August 15, 2019. http://www.rackspace.com/cloud/hybrid

23. Bubak M, Baliś B, Kitowski J, et al. Paasage: model-based cloud platform upperware. 2019. Accessed August 15, 2019. http://www.paasage.eu

24. Moreno-Vozmediano R, Montero RS, Llorente IM. Multicloud deployment of computing clusters for loosely coupled MTC applications. IEEE Trans

Parallel Distrib Syst. 2011;22(6):924-930.

25. Ghodsi A, Hindman B, Konwinski A, Zaharia M. Mesosproposal. 2010. Accessed August 15, 2019. http://wiki.apache.org/incubator/MesosProposal

26. Bittencourt LF, Madeira ERM, Da Fonseca NLS. Scheduling in hybrid clouds. IEEE Commun Mag. 2012;50(9).

27. Borja S, Ruben MS, Ignacio MT, Ian F. An open source solution for virtual infrastructure management in private and hybrid clouds. IEEE Internet

Comput. 2009;1:14-22.

28. Kovács Á, Lencse G. Modelling of virtualized servers. In: Proceedings of the 2015 38th International Conference on Telecommunications and Signal

Processing (TSP); 2015; Prague, Czech Republic.

29. Guo T, Sharma U, Shenoy P, Wood T, Sahu S. Cost-aware cloud bursting for enterprise applications. ACM Trans Internet Technol. 2014;13(3). Article

No. 10.

30. Feller E, Rilling L, Morin C. Snooze: a scalable and autonomic virtual machine management framework for private clouds. In: Proceedings of the 2012

12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2012); 2012; Ottawa, Canada.

31. Razavi K, Ion A, Tato G, et al. Kangaroo: a tenant-centric software-defined cloud infrastructure. In: Proceedings of the 2015 IEEE International

Conference on Cloud Engineering; 2015; Tempe, AZ.

32. Williams D, Jamjoom H, Weatherspoon H. The Xen-Blanket: virtualize once, run everywhere. In: Proceedings of the 7th ACM european conference

on Computer Systems; 2012; Bern, Switzerland.

33. Bicer T, Chiu D, Agrawal G. A framework for data-intensive computing with cloud bursting. In: Proceedings of the 2011 IEEE International Conference

on Cluster Computing; 2011; Austin, TX.

34. Bicer T, Chiu D, Agrawal G. Time and cost sensitive data-intensive computing on hybrid clouds. In: Proceedings of the 2012 12th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2012); 2012; Ottawa, Canada.

35. Aktas MS. Hybrid cloud computing monitoring software architecture. Concurrency Computat Pract Exper. 2018;30(21);e4694.

36. Huedo E, Moreno-Vozmediano R, Montero RS, Llorente IM. Architectures for enhancing grid infrastructures with cloud computing. In: Grids, Clouds

and Virtualization. London, UK: Springer; 2011:55-69.

37. Chu H-Y, Simmhan Y. Cost-efficient and resilient job life-cycle management on hybrid clouds. In: Proceedings of the 2014 IEEE 28th International

Parallel and Distributed Processing Symposium; 2014; Phoenix, AZ.

38. Fadel AS, Fayoumi AG. Cloud resource provisioning and bursting approaches. In: Proceedings of the 2013 14th ACIS International Conference on

Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing; 2013; Honolulu, HI.

39. De Assunção MD, Di Costanzo A, Buyya R. Evaluating the cost-benefit of using cloud computing to extend the capacity of clusters. In: Proceedings

of the 18th ACM International Symposium on High Performance Distributed Computing; 2009; Garching, Germany.

40. Peláez V, Campos A, García DF, Entrialgo J. Online scheduling of deadline-constrained bag-of-task workloads on hybrid clouds. Concurrency Computat

Pract Exper. 2018;30(19):e4639.

41. Voorsluys W, Buyya R. Reliable provisioning of spot instances for compute-intensive applications. In: Proceedings of the 2012 IEEE 26th International

Conference on Advanced Information Networking and Applications (AINA); 2012; Fukuoka, Japan.

42. Xue N, Haugerud H, Yazidi A. Automated cloud bursting. Accessed August 15, 2019. https://github.com/haugerud/cloud-burst

43. Apache Software Foundation. Mesos crashes if any configured zookeeper does not resolve. Accessed August 15, 2019. https://issues.apache.org/

jira/browse/MESOS-2186

44. Apache Software Foundation. C client bug in zookeeper_init (if bad hostname is given). Accessed August 15, 2019. https://issues.apache.org/jira/

browse/ZOOKEEPER-1029

http://mesos.apache.org/documentation/latest/powered-by-mesos/
https://blog.twitter.com/2013/mesos-graduates-from-apache-incubation
https://blog.twitter.com/2013/mesos-graduates-from-apache-incubation
http://doi.acm.org/10.1145/2523616.2523633
http://myriad.incubator.apache.org
http://www.vmware.com/cloud-computing/hybrid-cloud.html
http://www.networkworld.com/article/2864857/cloud-computing/re-examining-cisco-s-intercloud-strategy.html
http://www.networkworld.com/article/2864857/cloud-computing/re-examining-cisco-s-intercloud-strategy.html
http://www.rackspace.com/cloud/hybrid
http://www.paasage.eu
http://wiki.apache.org/incubator/MesosProposal
https://github.com/haugerud/cloud-burst
https://issues.apache.org/jira/browse/MESOS-2186
https://issues.apache.org/jira/browse/MESOS-2186
https://issues.apache.org/jira/browse/ZOOKEEPER-1029
https://issues.apache.org/jira/browse/ZOOKEEPER-1029


26 of 26 HAUGERUD ET AL.

45. CloudHarmony. CloudSquare service status. Accessed August 15, 2019. https://cloudharmony.com/status-1year-of-compute-group-provider

46. Kakadia D. Apache Mesos Essentials. Birmingham, UK: Packt Publishing; 2015.

47. Borgenholt G. Audition: A DevOps-Oriented Quality Control and Testing Framework for Cloud Environments [master's thesis]. Oslo, Norway: Univeristy

of Oslo; 2013.

How to cite this article: Haugerud H, Xue N, Yazidi A. On automated cloud bursting and hybrid cloud setups using Apache Mesos.

Concurrency Computat Pract Exper. 2020;32:e5662. https://doi.org/10.1002/cpe.5662

https://cloudharmony.com/status-1year-of-compute-group-provider
https://doi.org/10.1002/cpe.5662

	On automated cloud bursting and hybrid cloud setups using Apache Mesos
	Abstract
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Apache Mesos
	Cloud bursting
	Related work onxmltex	?> hybrid clouds

	DESIGN
	Environment
	Architecture
	Availability
	Prototype 1: Maximizing availability
	Prototype 2: Prioritize local availability
	Fallback solution: VPN tunneling

	Segmentation ofxmltex	?> data

	Automated cloud bursting

	IMPLEMENTATION
	Setting up thexmltex	?> testbed andxmltex	?> Apache Mesos
	Availability
	Prototype 1: Maximizing availability
	A Mesos slave process becomes unavailable
	The working Mesos master instance ceases toxmltex	?> function
	An entire region within thexmltex	?> hybrid cloud becomes unavailable
	The hybrid cloud splits andxmltex	?> semi-isolates part ofxmltex	?> the platform

	Prototype 2: Prioritizing local availability
	An entire region within thexmltex	?> hybrid cloud becomes unavailable
	The hybrid cloud splits andxmltex	?> semi-isolates part ofxmltex	?> the platform


	Segmentation ofxmltex	?> data
	Automated cloud bursting
	Scaling inxmltex	?> action
	Experiment 1 - Scaling up
	Experiment 1 revised: Scaling up

	Experiment 2: Scaling down


	DISCUSSION
	Hybrid cloud
	High availability
	Data segmentation
	Cloud bursting andxmltex	?> spot price instances
	Other limitations andxmltex	?> considerations
	Performance andxmltex	?> abstraction
	Depth ofxmltex	?> testing andxmltex	?> experiments
	DNS management
	Spot price instances
	OpenNebula, virtualization andxmltex	?> docker
	Apache Mesos
	Suitability

	Future work andxmltex	?> improvement suggestions

	CONCLUSION
	REFERENCES


