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Abstract
Objective
To establish cytometry profiles associated with disease stages and immunotherapy in MS.

Methods
Demographic/clinical data and peripheral blood samples were collected from 227 patients with
MS and 82 sex- and age-matched healthy controls (HCs) enrolled in a cross-sectional study at 4
European MS centers (Spain, Italy, Germany, and Norway). Flow cytometry of isolated pe-
ripheral blood mononuclear cells was performed in each center using specifically prepared
antibody-cocktail Lyotubes; data analysis was centralized at the Genoa center. Differences in
immune cell subsets were assessed between groups of untreated patients with relapsing-
remitting or progressive MS (RRMS or PMS) and HCs and between groups of patients with
RRMS taking 6 commonly used disease-modifying drugs.

Results
In untreated patients with MS, significantly higher frequencies of Th17 cells in the RRMS
population compared withHC and lower frequencies of B-memory/B-regulatory cells as well as
higher percentages of B-mature cells in patients with PMS compared with HCs emerged.
Overall, the greatest deviation in immunophenotype in MS was observed by treatment rather
than disease course, with the strongest impact found in fingolimod-treated patients. Fingolimod
induced a decrease in total CD4+ T cells and in B-mature and B-memory cells and increases in
CD4+ and CD8+ T-regulatory and B-regulatory cells.

Conclusions
Our highly standardized, multisite cytomics data provide further understanding of treatment
impact on MS immunophenotype and could pave the way toward monitoring immune cells to
help clinical management of MS individuals.
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Individual interactions between inflammatory, demyelinating,
and degenerative processes underlying MS determine a large
heterogeneity in clinical course and treatment response1,2,e2

(links.lww.com/NXI/A199). In addition to clinical and im-
aging data, characterization of immune cell alterations oc-
curring during the disease and in response to treatment
provides help in better understanding MS pathogenesis and
the mechanism of action of drugs.3–6

Changes in immune cell subsets in peripheral blood mono-
nuclear cells (PBMCs) have been proposed as surrogate bio-
markers of activity to monitor treatment response in MS and
help in treatment decision.7–9 Immunophenotyping studies of
patients with MS have focused on alterations in composition
and function of T- or B-cell subsets,10–12 but comprehensive
studies are lacking and present discrepancies.13 Although a few
studies comparing the effect of different disease-modifying
treatments (DMTs) on immune cells are available, re-
producibility of reliable findings is lacking, possibly due to
technical issues including the use of different flow cytometry
parameters and monoclonal antibodies defining cell sub-
populations.13 Other limitations are represented by immune
system variations including time-dependent changes, in-
terindividual modifications, and heritable and nonheritable
influences such as microbial and environmental factors14 and
by small groups of patients with different disease characteristics.

To overcome technical difficulties, large multisite studies are
preferable, but concerns have been raised about the accuracy
and consistency of sample processing. A strict standardization
of assays is indeed essential to obtain accurate measurement of
variations in the immunologic profile. Although several in-
ternational consortia have been created to standardize immu-
nophenotyping by flow cytometry,15,16 multicentric studies are
still lacking.

Here, we present cytomics data obtained through a cross-
sectional study within the European Sys4MS project, which
uses a systemsmedicine approach combining integrative omics,
imaging, and clinical data to develop algorithms that can be
used in clinical practice toward prognosis and treatment
management. We have set up a reliable methodology for highly
standardized multisite PBMC processing and flow cytometry
acquisition and analysis and applied such methodology to es-
tablish cytometry profiles possibly associated with disease
course and/or response to treatment in a relatively large cohort
of patients. We observed differences in both T- and B-cell

subsets related to disease phase in untreated patients; moni-
toring of the effect on immune cells induced by DMTs pointed
to fingolimod (FINGO) as the drug with the greatest impact on
relevant subpopulations, in particular effector and regulatory T
and B cells.

Methods
Study population
A total of 227 patients with MS (180 relapsing-remitting MS
[RRMS] and 47 progressive MS [PMS], including 25 sec-
ondary and 22 primary PMS) and 82 sex- and age-matched
healthy controls (HCs) were prospectively enrolled between
October 2016 and August 2017 at 4 European MS centers
(44 patients and 12 HCs from Hospital Clinic of Barcelona,
Spain; 51 patients and 25 HCs from Oslo University Hospital,
Norway; 41 patients and 22 HCs from Charité-Uni-
versitaetsmedizin Berlin, Germany; 91 patients and 23 HCs
from Ospedale Policlinico San Martino, Genoa, Italy). All
patients underwent collection of demographic data, clinical
history, peripheral blood samples, and assessment of the Ex-
panded Disability Status Scale (EDSS) score. Demographic/
clinical data regarding the global population are reported in
table 1. See supplemental material (links.lww.com/NXI/A199)
for inclusion criteria.

Standard protocol approvals, registrations,
and patient consents
The Sys4MS project was approved by the institutional review
board of University of Genoa, University of Oslo, Charité-
Universitaetsmedizin, and Hospital Clinic of Barcelona.
Patients provided signed informed consent before their en-
rollment on the study according to the Declaration of Helsinki.

Standardization of blood processing and flow
cytometry acquisition and analysis
The multicentric study was set up to ensure the highest stan-
dardization at all levels and consequently reduce possible bias:
standard operating procedures were followed by all 4 centers
for PBMC isolation and flow cytometry acquisition of data; use
of Lyotubes (BD Biosciences, Milan, Italy, Cat. No. 625148)
from a single batch by all centers; use of identical type of flow
cytometer equipment and software in all centers; and central-
ized analysis of the data from all centers. See supplemental
material (links.lww.com/NXI/A199) and figure e-1 (links.lww.
com/NXI/A200) for details of the antibody panels of the
Lyotubes and relevant flow cytometry procedures and analysis.

Glossary
ALEM = alemtuzumab;ANCOVA = analysis of covariance; ANOVA = analysis of variance;DMF = dimethyl fumarate;DMT =
disease-modifying treatment; EDSS = Expanded Disability Status Scale; FINGO = fingolimod; GA = glatiramer acetate;HC =
healthy control; IFN = interferon-β; NTZ = natalizumab; PBMC = peripheral blood mononuclear cell; PC = principal
component; PMS = progressive MS; RRMS = relapsing-remitting MS; RTX/OCRE = rituximab/ocrelizumab; TERI =
teriflunomide; t-SNE = t-distributed Stochastic Neighbor Embedding.
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Statistics
Analyses were performed using SPSS 22.0, GraphPad Prism 8.0,
and R 3.5.0. Differences in CD3/CD4 subpopulations in T-reg
vs T-eff tubes and between centers were assessed by the t test
and analysis of variance (ANOVA), respectively. For all sub-
group analyses, demographic differences between groups were
analyzed using the χ2 test, Mann-Whitney/Kruskal-Wallis test,
independent samples t test, and ANOVA where appropriate.
Comparisons of cell frequencies between untreated patients
with RRMS, untreated patients with PMS, and HCs, as well as
across groups of patients with RRMS treated with different
drugs, untreated patients with RRMS, and HCs, were assessed
by analysis of covariance (ANCOVA), adjusting for age and sex.
When comparing untreated patients with RRMS vs untreated
patients with PMS, disease duration and EDSS score were
added to the covariates listed above. A p value ≤0.05 was con-
sidered significant. In addition, significance levels after Bonfer-
roni correction (to adjust for multiple testing) are provided.
Principal component (PC) analysis was used to show the dis-
tribution of the populations and reduce the dimensionality,

considering all the variables together. Data were visualized using
t-distributed Stochastic Neighbor Embedding (t-SNE),17

a nonlinear data reduction algorithm that enables the visuali-
zation of high-dimensional data represented as 2-dimensional
maps, which preserve the original spacing of the data sets.

Data availability
Codified data are available through the MultipleMS EU pro-
ject and database (multiplems.eu) on registration.

Results
Strict standardization permitted reliable
results from a multicentric cohort
To verify that there was no significant drift with time in the
behavior of the flow cytometry equipment, or in the batch of
Lyotubes used in each center, we performed a linear regression
analysis. As shown in figure e-2 (links.lww.com/NXI/A201),
the coefficients of determination r2 indicated a very poor cor-
relation between time (x-axis) and tube content (y-axis), with
the regression line slopes being close to 0. These data confirm
that there was very little variation in the behavior of the
equipment and Lyotubes in the different centers with time.

Because the same CD3+CD4+ broad cell population could
be identified in both T-reg and T-eff tubes, we assessed the
data obtained for this population in both tubes to monitor
reproducibility between tubes in each center and across the 4
centers (figure e-3, links.lww.com/NXI/A202). There were
no differences in CD3+CD4+ T-cell frequencies in HCs or
patients with MS between the T-reg and T-eff tubes when
the data from each center were assessed separately (figure
e-3A), nor when T-reg and T-eff tubes were compared across
centers (figure e-3B). Altogether, these data point to the
high reliability of the data resulting from strict standardiza-
tion of the multicentric study.

Untreated patients with MS show differences
in T and B cells according to disease course
As a prerequisite to exploring differences in terms of immune
cells across the whole population, we applied a PC analysis
including all the lymphocyte subpopulations studied (figure 1).
By plotting the first and second PCs, we obtained a meaningful
representation of the data variance, whereby the first and sec-
ond PCs explained the 34.4% and 13.8% of the variance, re-
spectively. As we observed a stronger deviation in the
immunologic profile of patients with MS in relation to treat-
ment than to disease phenotype (figure 1A), our initial analysis
focused on untreated patients and HCs to determine possible
differences in patients with RRMS or PMS without the in-
fluence of therapy. Data are reported in table 2. As previously
reported,4,12 significantly higher frequencies of Th17 cells in
the untreated RRMS population compared with HC (p = 0.01)
emerged; Th17 cells did not significantly differ in the PMS
group compared with HCs or with patients with RRMS. Fre-
quencies of Th1 classic cells were higher in patients with PMS
compared with patients with RRMS (p = 0.01), but not

Table 1 Demographic and clinical characteristics of
global MS population and controls

HC
(n = 82)

RRMS
(n = 180)

PMS (n = 47)

SPMS n = 25,
PPMS n = 22

Female; n (%) 60 (73) 127 (71) 37 (57)

Age; mean
(range), y

37 (22–71) 40 (19–60) 54 (32–68)

Disease duration;
mean (SD), y

— 9.1 (6.3) 18.8 (11.7)

EDSS score;
median (range)

— 2 (0–6.5) 5 (2–8)

Treatment; n
[mean treatment
duration, y]

GA — 28 [3.8 y] 2 [0.8 y]

INF — 30 [6.0 y] 2 [6.7 y]

DMF — 29 [1.7 y] 1 [2.2 y]

TERI — 15 [1.4 y] —

FINGO — 28 [2.6 y] 2 [5 y]

NTZ — 22 [3.6 y] 1 [9.3 y]

ALEM — 6 [1.5 y] 1 [1.6 y]

DAC — 2 [> 0.5 y] —

RTX/OCRE — — 7 [> 0.5 y]

Untreated 82 20 31

Abbreviations: ALEM = alemtuzumab; DAC = daclizumab; DMF = dimethyl
fumarate; EDSS = Expanded Disability Status Scale; FINGO = fingolimod; GA
= glatiramer acetate; HC = healthy control; IFN = interferon-β; NTZ = nata-
lizumab; PMS = progressive MS; PPMS = primary progressive MS; RRMS =
relapsing-remitting MS; RTX/OCRE = rituximab/ocrelizumab; SPMS = sec-
ondary progressive MS; TERI = teriflunomide.
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Figure 1 Principal component analysis showing population distribution according to phenotype and treatment

Representation of the data variance (PC1 explaining the 34.4% and PC2 13.8% of the variance, respectively). The weights of PC1 and PC2 are reported in the
supplemental material file (links.lww.com/NXI/A199). This figure represents the same scattered plot, where (A) shows population distribution according to
treatment (left panel) and to disease phenotype (right panel), and (B) shows the 95% confidence ellipses for different drugs, and in particular, immuno-
modulatory/first-line-treated (GA, IFN, DMF, and TERI) patients and FINGO-treated patients (upper left panel), antimigratory-treated (NTZ) patients and
FINGO-treated patients (upper right panel), anti–CD20-treated (RTX/OCRE) patients and FINGO-treated patients (lower left panel), and anti–CD52-treated
(ALEM) patients and FINGO-treated patients (lower right panel). ALEM = alemtuzumab; DAC = daclizumab; DMF = dimethyl fumarate; FINGO = fingolimod; GA
= glatiramer acetate; HC = healthy control; IFN = interferon-β; NTZ = natalizumab;OCRE = ocrelizumab; PMS =progressiveMS; RRMS = relapsing-remittingMS;
RTX = rituximab; TERI = teriflunomide; UNT = untreated patients.

4 Neurology: Neuroimmunology & Neuroinflammation | Volume 7, Number 3 | May 2020 Neurology.org/NN

http://links.lww.com/NXI/A199
http://neurology.org/nn


compared with HCs. No difference in the Th1/Th17 cells
emerged between groups. Among the CD4+ cells, we also
observed increased frequencies in CD4+CD25+CD127−

(CD4+ T-reg) in patients with PMS compared with patients
with RRMS (p = 0.004) or HCs (p = 0.006). Frequency of
CD4+ T-reg cells was similar between RRMS andHC. None of
the CD8+ T-cell populations differed with disease phenotype.

Analysis of total CD19+ cells showed an increased frequency in
patients with RRMS compared with patients with PMS
(p = 0.038). However, further investigation showed robust
immunologic changes in B-cell subpopulations in patients with
PMS. In particular, lower frequencies in CD19+CD24high

cells, both CD38low (B-memory) or CD38high (B-reg), and
higher values of CD19+CD24lowCD38low (B-mature) were
evident in patients with PMS compared with HCs (p = 0.004,
p = 0.009, and p = 0.01, respectively); no significant differences
in these subpopulations were observed between untreated
patients with PMS and untreated patients with RRMS. None of
the differences described above survived multiple testing
comparison (none of the p values reached Bonferroni corrected
for 16 variables across 3 groups: p < 0.001).

Impactof treatmenton immunecell frequencies
After assessing the immunologic differences related to disease
course, we investigated the effect of treatment. Overall, the

Table 2 Differences in terms of cell subpopulations in untreated patients with MS and HCs

Population characteristics
HC
(n = 82)

U-RRMS
(n = 20)

U-PMS
(n = 31) p Valuesa p Valuesb p Valuesc

Female; n (%) 60 (73) 16 (80) 18 (58) 0.3 0.1 0.1

Mean age; y 37 42 56 0.06 <0.0001 <0.0001

Mean disease duration; y (SD) — 10.5 (6.4) 20.3 (11.7) — — 0.001

EDSS score; median — 2 5 — — <0.0001

Cell subpopulation
Cell frequencies,
% (SD) p Valuesa p Valuesb p Valuesc

Total CD3+ 70.1 (11.4) 71.2 (14.2) 67.2 (2.3) 0.7 0.5 0.4

CD3+CD4+ 43.5 (9.4) 43.4 (11.7) 42.8 (2.1) 0.3 0.6 0.2

CD3+CD8+ 21.1 (7.0) 21.8 (10.6) 19.9 (1.6) 0.6 0.8 0.9

CD4+CD25+CD1272 (CD4+T-reg) 4.8 (1.2) 4.7 (2.1) 6.4 (0.4) 0.9 0.006 0.004

CD3+CD8+CD282CD1272 (CD8+T-reg) 22.9 (16.7) 25.9 (3.6) 26.7 (3.6) 0.4 0.6 0.4

CD3+CD4+CCR62CD1612CXCR3+ (Th1) 9.0 (5.7) 7.1 (5.6) 12.1 (1.2) 0.1 0.08 0.01

CD3+CD4+CCR6+CD161+CXCR32

CCR4+ (Th17)
0.6 (0.5) 1.1 (0.6) 0.8 (0.1) 0.01 0.7 0.4

CD3+CD4+CCR6+CD161+CxCR3high
CCR4low (Th1/Th17)

2.0 (1.8) 2.2 (0.4) 2.1 (1.1) 0.3 0.6 0.3

Total CD19+ 6.1 (0.3) 8.1 (6.1) 6.8 (0.6) 0.054 0.3 0.038

CD19+CD24highCD38low (B-memory) 19.8 (9.1) 20.5 (9.8) 12.3 (1.8) 0.4 0.004 0.2

CD19+CD24lowCD38low (B-mature) 44.2 (13.8) 43.0 (14.3) 55.6 (3.2) 0.5 0.01 0.2

CD19+CD24highCD38high (B-reg) 6.2 (4.7) 6.1 (4.5) 3.5 (0.9) 0.5 0.009 0.3

CD19+CD242CD38high (B-plasma) 3.3 (3.1) 3.2 (2.3) 2.9 (0.5) 0.5 0.8 0.8

CD19+CD24highCD382

(B-memory-atypical)
19.5 (8.9) 20.5 (8.9) 10.9 (10.2) 0.6 0.1 0.6

CD16+CD56 low (CD56 dim) 71.7 (7.4) 62.6 (12.7) 68.8 (8.0) 0.7 0.9 0.8

CD16+CD56 high (CD 56 bright) 2.9 (2.1) 3.2 (2.8) 2.6 (0.2) 0.2 0.4 0.8

Abbreviations: EDSS = Expanded Disability Status Scale; HC = healthy control; U-PMS = untreated progressive MS; U-RRMS = untreated relapsing-remitting MS.
a p Values for the HC vs U-RRMS comparison, using the independent samples t-test (age), χ2 test (sex), and analysis of covariance, adjusted for sex and age
(cell frequencies).
b p Values for the HC vs U-PMS comparison using the independent samples t-test (age), χ2 test (sex), and analysis of covariance, adjusted for sex and age
(cell frequencies).
c p Values for the U-RRMS vs U-PMS comparison, using the independent samples t-test (age), χ2 test (sex), Mann-Whitney (disease duration and EDSS score),
and analysis of covariance, adjusted for sex, age, disease duration, and EDSS score (cell frequencies).
Significant differences between the groups are reported in bold.
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strongest impact on immune cells seemed attributable to
FINGO (figure 1). Indeed, PC analysis showed a segregation
of FINGO-treated patients compared with all the others, even
when they were grouped according to the drugs’ mechanism
of action (immunomodulatory first-line drugs: glatiramer
acetate (GA)/interferon-β (IFN)/dimethyl fumarate
(DMF)/teriflunomide (TERI); antimigratory drug (other
than FINGO): natalizumab (NTZ); anti-CD20: rituximab/
ocrelizumab (RTX/OCRE); and anti-CD52: alemtuzumab
(ALEM) monoclonal antibodies, figure 1B).

At the level of single immune cell populations, we assessed
differences induced by treatments only in patients with RRMS,
as they represented a more homogeneous population (same
disease course, no differences in terms of the mean disease
duration or EDSS score; table 3). Because only a few patients
with RRMS were taking ALEM (n = 6) or daclizumab (n = 2),
we excluded these patients from this analysis. Thus, we only
considered patients with RRMS who were under treatment
with the 6 DMTs most commonly used in these cohorts (GA,
IFN, DMF, TERI, FINGO, and NTZ), untreated RRMS, and
HC. The frequencies of the different cell subpopulations for
each group and ANCOVA results are reported in table 3. A
post hoc analysis confirmed FINGO being the drug with the
strongest impact on different cell subpopulations, as described
below and shown in figure 2 (depicted by t-SNE algorithm).
Bonferroni correction for multiple comparison was applied for
the 16 variables across the 8 groups (p < 0.0004).

DMTs and T cells: downregulation of CD3+CD4+ cells
and upregulation of CD4+ andCD8+T-reg cells in FINGO-
treated patients
Data are presented in table 3 and Figure 2, A–C. FINGO-
treated patients had lower frequencies in total CD4+ T cells (p
< 0.0001 for FINGO vs each other group); no effect of FINGO
on total CD8+ T cells emerged. CD8+ T-cell frequencies were
slightly reduced in DMF-treated compared with IFN-treated
patients (p = 0.03) and HCs (p = 0.02), but this difference did
not survive the multiple testing comparison. We observed
a clear increase in both CD4+ (CD4+CD25+CD127−) and
CD8+ (CD8+CD28−CD127−) T-reg cell frequencies in
FINGO-treated patients compared with each other group
(p < 0.0001). No effect was observed in the FINGO-treated
population in terms of Th1, Th17, andTh1/17 cells. Th17 cells
were lower in HCs compared with IFN-treated patients
(p = 0.03), whereas Th1/Th17 cells were higher in IFN-treated
vs DMF-treated patients (p = 0.01), but these differences did
not survive multiple comparisons.

DMTs and B cells: upregulation of B-reg and
downregulation of B-memory and B-mature cell
frequencies in FINGO-treated patients
Data are presented in table 3 and figure 2D. Patients treated
with anti-CD20 were excluded from this analysis because they
have almost no B cells. We observed reduced frequencies of
total CD19+ cells in FINGO-treated compared with untreated,
IFN-, NTZ- or TERI-treated patients (p = 0.01, p < 0.0001,

p = 0.0003, and p = 0.003, respectively). Only FINGO vs IFN
and NTZ survived multiple testing comparison. Frequencies of
CD19+CD24highCD38high B-reg cells were higher in
FINGO-treated patients (p < 0.0001 compared with each other
group), in DMF-treated patients compared with HCs
(p = 0.0002), untreated (p = 0.007) or NTZ-treated (p = 0.01)
patients, and in the IFN-treated group compared with HCs
(p < 0.0001), untreated (p = 0.001), or NTZ- and GA-treated
(p = 0.001 and p = 0.002, respectively) patients. Comparison
between DMF- and IFN-treated populations survived multiple
testing comparison only vs HC. Frequencies of CD19+-

CD24highCD38low B-memory cells were lower in the
FINGO-treated patients vs HCs (p < 0.0001) and vs untreated
(p < 0.0001) and NTZ-treated (p = 0.0014) patients, the latter
not surviving multiple testing comparison. Nominal signifi-
cance was also reached in the DMF-treated group, with lower
frequencies of B-memory cells vs untreated patients and HCs
(p = 0.006 and p = 0.001, respectively). A significant increase in
CD19+CD24highCD38− B-memory-atypical cells in NTZ-
treated patients compared with FINGO-, IFN-, TERI-, and
DMF-treated patients (p < 0.0001 for all the comparisons)
emerged; nominal significance was also observed in theNTZ vs
GA comparison (p = 0.002). The FINGO-treated group also
showed reduced frequencies of CD19+CD24lowCD38low
mature B cells compared with DMF- (p = 0.0001) and TERI-
treated (p < 0.0001) patients, reaching nominal significance in
the comparison with HCs (p = 0.004), NTZ- (p = 0.02), GA-
(p = 0.0004), and IFN-treated (p = 0.01) patients. Last,
CD19+CD24−CD38high plasma cells were higher in the
FINGO-treated group compared with DMF- (p = 0.02), IFN-
(p = 0.001), NTZ- (p = 0.0002) treated patients, or HCs
(p = 0.01), with only the comparison with NTZ surviving
multiple testing comparison.

No evident impact of treatment in terms of NK cells, either
CD56dim or CD56bright, was observed (table 3 and figure
2E). Nominal significance was reached in the comparison of
CD56bright NK cells for FINGO-treated (1.6%) vs IFN-
treated (4.9%, p = 0.001) or TERI-treated (4.9%, p = 0.001)
patients, but none of the comparisons survived multiple testing
analysis.

Discussion
Characterization of immunologic changes occurring duringMS
and in response to DMTs could affect the choice of the most
appropriate therapy.7 The impact of MS drugs on the immune
system differs in terms of rapidity, selectivity, magnitude, and
durability, resulting in short- and long-term effects differently
affecting immune cell subsets. The gold standard of therapy for
autoimmune diseases such as MS is the eradication of autor-
eactive cells and restoration of immune tolerance resulting in
the control of effector/pathogenic/autoreactive cells by regu-
latory networks. Characterization of the impact of DMTs on
the immune system not only helps to better understand their
mechanisms of action but has also given insights into the
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Table 3 Cell frequencies in the relapsing-remitting MS population and HCs

Population characteristics HC (n = 82) U-RRMS (n = 20) GA (n = 28) IFN (n = 30) DMF (n = 29) TERI (n = 15) FINGO (n = 28) NTZ (n = 22) p Valuesa

Female; n (%) 60 (73) 16 (80) 18 (64) 19 (63) 20 (69) 10 (66) 21 (75) 18 (81) 0.7

Age; mean, y 37 42 41 42 41 38 39 38 0.2

Disease duration; mean (SD), y — 10.5 (6.4) 8.9 (6.2) 9.7 (5.8) 8.5 (6.7) 7.6 (6.2) 7.8 (4.8) 10.9 (8.1) 0.5

EDSS score; median — 2 1.5 1.5 2 2 2.5 2.5 0.06

Cell subpopulation
Cell frequencies,
% (SD) p Valuesb

Total CD3+ 70.1 (11.4) 71.2 (14.2) 71.7 (10.9) 68.1 (11.6) 62.1 (17.3) 75.2 (5.7) 40.7 (18.6) 63.3 (10.7) <0.0001c

CD3+CD4+ 43.5 (9.4) 43.4 (11.7) 48.4 (11.1) 43.6 (10.6) 45.2 (17.5) 45.9 (11.6) 10.3 (10.3)d 39.6 (8.7) <0.0001c

CD3+CD8+ 21.1 (7.0) 21.8 (10.6) 19.2 (6.1) 21.3 (9.1) 15.1 (6.8) 22.5 (3.5) 18.1 (9.4) 21.3 (7.2) 0.01d

CD4+CD25+CD1272 (CD4+T-reg) 4.8 (1.2) 4.7 (2.1) 5.8 (2.3) 7.06 (2.8) 5.8 (4.1) 5.1 (2.3) 10.6 (5.7) 5.1 (1.5) <0.0001c

CD3+CD8+CD282CD1272

(CD8+T-reg)
22.9 (16.7) 25.9 (3.6) 27.2 (14.8) 22.6 (18.4) 24.9 (19.9) 28.9 (15.1) 54.5 (24.0) 21.8 (13.5) <0.0001c

CD3+CD4+CCR62CD1612

CXCR3+ (Th1)
9.0 (5.7) 7.1 (5.6) 9.2 (6.8) 11.2 (5.4) 7.6 (6.3) 7.4 (5.3) 14.9 (28.5) 14.2 (4.8) 0.05

CD3+CD4+CCR6+CD161+

CXCR32CCR4+ (Th17)
0.6 (0.5) 1.1 (0.6) 0.8 (0.6) 1.2 (0.8) 1.04 (1.1) 0.7 (0.6) 1.1 (0.8) 0.7 (0.6) 0.01e

CD3+CD4+CCR6+CD161+

CxCR3highCCR4low (Th1/Th17)
2.0 (1.8) 2.2 (0.4) 2.3 (2.1) 2.3 (2.1) 1.1 (1.5) 1.4 (1.59) 1.8 (2.5) 2.3 (1.1) 0.04f

Total CD19+ 6.1 (0.3) 8.1 (6.1) 6.1 (2.8) 9.4 (5.2) 7.2 (5.0) 9.1 (4.3) 4.0 (2.7) 9.2 (4.8) <0.0001g

CD19+CD24highCD38low
(B-memory)

19.8 (9.1) 20.5 (9.8) 12.3 (1.8) 15.1 (10.0) 11.4 (8.4) 14.6 (4.7) 9.2 (5.8) 19.4 (7.1) <0.0000h

CD19+CD24lowCD38low
(B-mature)

44.2 (13.8) 43.0 (14.3) 49.8 (17.1) 46.3 (15.5) 50.8 (18.5) 58.03 (8.4) 31.7 (14.03) 36.0 (11.8) <0.0000i

CD19+CD24highCD38high
(B-reg)

6.2 (4.7) 6.1 (4.5) 6.9 (4.3) 15.2 (10.7) 14.2 (7.1) 8.3 (2.5) 26.7 (16.4) 6.2 (3.2) <0.0001c,j

CD19+CD242CD38high
(B-plasma)

3.3 (3.1) 3.2 (2.3) 3.1 (2.7) 1.8 (1.3) 2.7 (3.5) 2.2 (2.6) 7.05 (12.5) 0.8 (0.7) <0.0001k

CD19+CD24highCD382

(B-memory-atypical)
13.2 (6.8) 13.5 (7.3) 10.7 (8.9) 8.1 (7.5) 7.6 (6.1) 6.5 (2.9) 8.4 (7.5) 18.4 (9.4) <0.0001l

CD16+ CD56 low
(CD56 dim)

71.7 (7.4) 62.6 (12.7) 63.8 (15.7) 45.9 (19.9) 58.1 (23.3) 52.2 (13.2) 68.0 (19.3) 57.9 (14.6) 0.3
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immunopathogenesis of MS.3 A clear example comes from the
use of B-cell depleting drugs, which demonstrated, beyond
antibody-dependent functions, unexpected antibody-
independent roles for B cells.18 Accordingly, studies address-
ing comprehensively the impact of DMTs on large cohorts of
patients with MS and taking advantage of robust and re-
producible methodological approaches are of pivotal
importance.

Altered levels and/or functional abnormalities in T or B cells
have already been reported in patients with MS.12,19–21

However, previous studies are generally characterized by
several limitations, including the focus on particular restricted
immune cell subsets, small groups of patients mainly treated
with a single DMT,11,22–31 different disease characteristics,
lack of inclusion of controls, and difficult standardization of
sample processing.5,13,15,16 In this study, we have undertaken
a large multicentric analysis of the immunologic profile of T
and B cells in a cohort of 227 patients with MS at different
disease stages treated with different DMTs and 82 HCs. We
show that our highly standardized approach provided reliable
results, compensating the paucity of reproducible findings in
large and multicentric cohorts.5,16

Using this standardized reliable methodology, we have com-
pared single-cell subpopulations between groups of patients
with untreated RRMS or PMS and HCs (to evaluate immu-
nologic features at different MS phases without the confound
of immunomodulatory therapy exposure) and assessed dif-
ferences induced by 6 commonly used DMTs with different
mechanism of action.

Although the strongest immune deviation in patients with MS
appeared to be induced by treatments rather than by disease
course, we observed some differences in single immune cell
subpopulations also in untreated patients. In particular, un-
treated patients with RRMS showed higher frequencies of
Th17 cells compared with HCs. Although elevated Th17 cells
have been reported across the whole spectrum of MS pheno-
types, being particularly indicative of an active inflammatory
process,12,32 we only observed differences between RRMS and
HC, but not between PMS and HC or RRMS; this discrep-
ancy32 could be related to the smaller number of patients with
PMS included in our study and to the fact that our analyses
were corrected for both age and sex, as well as for disease
duration and EDSS score, when comparing RRMS and PMS.
We also observed increased frequencies of CD4+T-reg cells in
patients with PMS compared with patients with RRMS and
HCs; CD4+CD25+CD127low/–FoxP3 have been reported to
be lowest in RRMS, but to recover in the later secondary PMS
phase.4,33 Although we did not evaluate FoxP3 expression as-
sociated with CD4+ T-reg cells, the monitoring of
CD4+CD25+CD127− T cells is equivalent with the analysis of
CD4+CD25+CD127low/–FoxP3 T cells,4 and our results
suggest that CD4+ T-reg cell frequencies increase in the pro-
gressive phases of the disease, but remain stable in the initial
relapsing phase. In untreated patients with PMS, a deviation inTa

b
le

3
C
el
lf
re
q
u
en

ci
es

in
th
e
re
la
p
si
n
g-
re
m
it
ti
n
g
M
S
p
o
p
u
la
ti
o
n
an

d
H
C
s
(c
on

tin
ue

d)

C
e
ll
su

b
p
o
p
u
la
ti
o
n

C
e
ll
fr
e
q
u
e
n
ci
e
s,

%
(S
D
)

p
V
a
lu
e
sb

C
D
16

+
C
D
56

h
ig
h

(C
D

56
b
ri
gh

t)
2.
9
(2
.1
)

3.
2
(2
.8
)

3.
1
(2
.1
)

4.
9
(3
.9
)

3.
4
(2
.1
)

4.
9
(3
.5
)

1.
6
(1
.4
)

3.
7
(3
.0
)

0.
00

1m

A
b
b
re
vi
at
io
n
s:
D
M
F
=
d
im

et
h
yl

fu
m
ar
at
e;

ED
SS

=
Ex

p
an

d
ed

D
is
ab

ili
ty

St
at
u
s
Sc

al
e;

FI
N
G
O

=
fi
n
go

lim
o
d
;G

A
=
gl
at
ir
am

er
ac

et
at
e;

H
C
=
h
ea

lt
h
y
co

n
tr
o
l;
IF
N

=
in
te
rf
er
o
n
-β
;N

TZ
=
n
at
al
iz
u
m
ab

;T
ER

I=
te
ri
fl
u
n
o
m
id
e;

U
-R
R
M
S
=

u
n
tr
ea

te
d
re
la
p
si
n
g-
re
m
it
ti
n
g
M
S.

a
p
V
al
u
es

fo
r
co

m
p
ar
is
o
n
s
ac

ro
ss

th
e
8
gr
o
u
p
s
fo
r
se

x
(χ

2
)a

n
d
ag

e
(a
n
al
ys
is
o
f
va

ri
an

ce
)o

r
7
gr
o
u
p
s
o
f
p
at
ie
n
ts

(H
C
ex

cl
u
d
ed

)f
o
r
d
is
ea

se
d
u
ra
ti
o
n
an

d
ED

SS
sc
o
re

(K
ru

sk
al
-W

al
lis
).

b
p
V
al
u
es

fo
r
co

m
p
ar
is
o
n
s
ac

ro
ss

th
e
8
gr
o
u
p
s
(a
n
al
ys
is
o
f
co

va
ri
an

ce
,a

d
ju
st
ed

fo
r
ag

e
an

d
se

x)
.S

ig
n
if
ic
an

t
d
if
fe
re
n
ce

s
ar
e
re
p
o
rt
ed

in
b
o
ld
;s

ta
ti
st
ic
al
ly

si
gn

if
ic
an

t
p
o
st

h
o
c
an

al
ys
is
d
et
ai
ls
ar
e
d
es

cr
ib
ed

b
el
o
w
.

c
p
<
0.
00

01
in

th
e
co

m
p
ar
is
o
n
b
et
w
ee

n
FI
N
G
O
-t
re
at
ed

p
at
ie
n
ts

an
d
al
lt
h
e
o
th
er

gr
o
u
p
s
se

p
ar
at
el
y.

d
p
=
0.
02

fo
r
th
e
D
M
F
vs

H
C
co

m
p
ar
is
o
n
;p

=
0.
03

fo
r
th
e
D
M
F
vs

IF
N

co
m
p
ar
is
o
n
.

e
p
=
0.
02

fo
r
th
e
H
C
vs

IF
N

co
m
p
ar
is
o
n
;p

=
0.
04

fo
r
th
e
H
C
vs

p
at
ie
n
ts

w
it
h
U
-R
R
M
S
co

m
p
ar
is
o
n
.

f
p
=
0.
01

fo
r
th
e
IF
N

vs
D
M
F
co

m
p
ar
is
o
n
.

g
p
<
0.
00

01
fo
r
th
e
FI
N
G
O

vs
IF
N
;p

=
0.
00

03
fo
r
th
e
FI
N
G
O

vs
N
TZ

co
m
p
ar
is
o
n
;p

=
0.
00

3
fo
r
th
e
FI
N
G
O

vs
TE

R
Ic

o
m
p
ar
is
o
n
;p

=
0.
01

fo
r
th
e
FI
N
G
O

vs
U
-R
R
M
S
co

m
p
ar
is
o
n
.

h
p
=
0.
00

6
fo
r
th
e
D
M
F
vs

U
-R
R
M
S
co

m
p
ar
is
o
n
;p

=
0.
00

1
fo
r
th
e
D
M
F
vs

H
C
co

m
p
ar
is
o
n
;p

<
0.
00

01
fo
r
th
e
FI
N
G
O

vs
U
-R
R
M
S
an

d
vs

H
C
co

m
p
ar
is
o
n
;p

=
0.
00

14
fo
r
FI
N
G
O

vs
N
TZ

co
m
p
ar
is
o
n
.

i
p
=
0.
00

01
fo
rt
h
e
FI
N
G
O
vs

D
M
F
co

m
p
ar
is
o
n
;p

<
0.
00

01
fo
r
FI
N
G
O
vs

TE
R
Ic
o
m
p
ar
is
o
n
;p

=
0.
00

4
fo
r
th
e
FI
N
G
O
vs

H
C
co

m
p
ar
is
o
n
;p

=
0.
02

fo
r
th
e
FI
N
G
O
vs

N
TZ

co
m
p
ar
is
o
n
;p

=
0.
00

04
fo
rt
h
e
FI
N
G
O
vs

G
A
co

m
p
ar
is
o
n
;p

=
0.
01

fo
r
FI
N
G
O

vs
IF
N

co
m
p
ar
is
o
n
.

j
p
=
0.
00

7
fo
r
th
e
D
M
F
vs

U
-R
R
M
S
co

m
p
ar
is
o
n
;p

=
0.
00

02
fo
r
D
M
F
vs

H
C
co

m
p
ar
is
o
n
;p

=
0.
01

fo
r
th
e
D
M
F
vs

N
TZ

co
m
p
ar
is
o
n
;p

=
0.
02

fo
r
th
e
D
M
F
vs

H
C
co

m
p
ar
is
o
n
;p

=
0.
03

fo
r
th
e
D
M
F
vs

IF
N

co
m
p
ar
is
o
n
.

k
p
=
0.
02

fo
r
th
e
FI
N
G
O

vs
H
C
o
r
vs

D
M
F
co

m
p
ar
is
o
n
;p

=
0.
00

1
fo
r
th
e
FI
N
G
O

vs
IF
N

co
m
p
ar
is
o
n
;p

=
0.
00

02
fo
r
th
e
FI
N
G
O

vs
N
TZ

co
m
p
ar
is
o
n
.

l
p
<
0.
00

01
fo
r
th
e
N
TZ

vs
FI
N
G
O
,I
FN

,T
ER

I,
an

d
D
M
F
co

m
p
ar
is
o
n
;p

=
0.
00

2
fo
r
th
e
N
TZ

vs
G
A
co

m
p
ar
is
o
n
.

m
p
=
0.
00

1
fo
r
th
e
FI
N
G
O

vs
IF
N

an
d
TE

R
Ic

o
m
p
ar
is
o
n
.

8 Neurology: Neuroimmunology & Neuroinflammation | Volume 7, Number 3 | May 2020 Neurology.org/NN

http://neurology.org/nn


Figure 2 T-distributed Stochastic Neighbor Embedding (t-SNE) representation of the immunologic profiles of healthy
controls and patients with relapsing-remitting MS under different disease-modifying treatments

Representations, as depicted by t-SNE algorithm (n = 600,000 cells), of (A) total CD4+ and CD8+ T cells; (B) T-reg cells; (C) T-eff cells; (D) CD19+ B cells; and (E) NK
cells. DMF = dimethyl fumarate; FINGO = fingolimod; GA = glatiramer acetate; HC = healthy control; IFN = interferon-β; NTZ = natalizumab; TERI = teri-
flunomide; UNT = untreated patients.
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the frequencies of B-cell subpopulations was also observed
compared with HCs, with a decrease of B-memory and B-reg
cells and an increase of the B-mature arm. This is particularly
interesting as the first DMT affecting disability progression in
PMS is a B cell–depleting agent (ocrelizumab).34

When we compared the effect of treatments on immune cells
of patients included in this study, the strongest impact was
observed in the FINGO-treated patients. Our results confirm
and strengthen those of a previous study,10 where FINGO
had been shown to induce the greatest changes in the pe-
ripheral immune system compared with other drugs in the
study. In line with previous findings, we observed a decrease in
total CD4+ T cells in patients treated with FINGO; significant
decreases were also observed in these patients for total CD19+

B cells and more particularly mature and memory B cells. We
also observed a clear increase in both CD4+ and CD8+ T-reg
cells as well as in B-reg cells in FINGO-treated patients. These
findings support previous findings suggesting a role for
FINGO in restoring regulatory networks possibly impaired in
MS.27,28,35,36

Contradictory data on the effect of FINGO treatment on
Th17 cells have been reported.9,27,28,36 Thus, opposite results
were obtained in some longitudinal studies, with FINGO
upregulating9 or downregulating27 this T-cell subset. In
a cross-sectional study, a decrease in Th17 cells was ob-
served.28 In contrast, on par with another study,36 we did not
observe any overall difference in Th17 cell frequency in
FINGO-treated patients. This could be due to the use of
different and/or fewer surface markers used to define this
T-cell subset.9,27,28,36

Other DMTs had an impact on immune cell profile. Thus, as
already reported, CD8+ T cells31,37 and B-reg and B-memory
cells11,25 were affected by DMF treatment. The limited use, in
our cohort of patients, of DMTs that more recently entered
the market in Europe did not allow us to obtain enough
information on B cell–depleting agents and on cladribine.

The mode of action of FINGO on immune cells is believed to
be antimigratory, related to their expression of sphingosine-1-
phosphate receptors, whereby FINGO treatment would
prevent their egress from lymphoid tissue and their migration
into the CNS.38 Of interest, NTZ, a recombinant humanized
anti-α4-integrin antibody preventing immune cells to cross
the blood-brain barrier, affected immune cell levels, especially
atypical memory B cells, albeit to a lesser extent than FINGO.
It should be noted that in contrast to most other studies, our
data were obtained through comparison between several
DMTs at a cross-sectional level, rather than through a longi-
tudinal study of the effect of 1 drug. In this context, the mode
of action of FINGO might not be strictly accounted for by its
antimigratory effect. Recent studies suggest other possible,
adjunctive mechanisms, whereby FINGO would suppress
lymphopoiesis,39 and through blocking of the S1P1 receptors
on T cells could also lead to the sequestration of T cells in the

bone marrow,40 thereby reducing circulating deleterious
T cells and consequently neuroinflammation.

Altogether, the results of our highly standardized study, which
compares the immunophenotype changes in patients withMS
undergoing several widely used treatments rather than lon-
gitudinal monitoring of cell subtypes in patients under a single
treatment type, strengthen and add to previous findings. They
also suggest that immunomonitoring by flow cytometry, as an
adjunct to clinical and imaging data, could deepen our
knowledge about the mechanism of action of DMTs. It
appears particularly interesting for FINGO, whose impact on
the immune system suggests that its effects might go beyond
the well-known antimigratory effect. Further highly stan-
dardized studies that include longitudinal data and encompass
larger cohorts of patients treated with each DMT could
provide proof of concept toward the additional use of
immunophenotype monitoring in treatment management.
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