
Flexible device compositions and dynamic resource sharing in PCIe
interconnected clusters using Device Lending

Jonas Markussen1,2 • Lars Bjørlykke Kristiansen1 • Rune Johan Borgli2,3 • Håkon Kvale Stensland2,3 •

Friedrich Seifert1 • Michael Riegler3,4 • Carsten Griwodz2,3 • Pål Halvorsen3,4

Received: 29 March 2019 / Revised: 9 July 2019 / Accepted: 16 September 2019 / Published online: 21 September 2019
� The Author(s) 2019

Abstract
Modern workloads often exceed the processing and I/O capabilities provided by resource virtualization, requiring direct

access to the physical hardware in order to reduce latency and computing overhead. For computers interconnected in a

cluser, access to remote hardware resources often requires facilitation both in hardware and specialized drivers with

virtualization support. This limits the availability of resources to specific devices and drivers that are supported by the

virtualization technology being used, as well as what the interconnection technology supports. For PCI Express (PCIe)

clusters, we have previously proposed Device Lending as a solution for enabling direct low latency access to remote

devices. The method has extremely low computing overhead, and does not require any application- or device-specific

distribution mechanisms. Any PCIe device, such as network cards disks, and GPUs, can easily be shared among the

connected hosts. In this work, we have extended our solution with support for a virtual machine (VM) hypervisor. Physical

remote devices can be ‘‘passed through’’ to VM guests, enabling direct access to physical resources while still retaining the

flexibility of virtualization. Additionally, we have also implemented multi-device support, enabling shortest-path peer-to-

peer transfers between remote devices residing in different hosts.Our experimental results prove that multiple remote

devices can be used, achieving bandwidth and latency close to native PCIe, and without requiring any additional support in

device drivers. I/O intensive workloads run seamlessly using both local and remote resources. With our added VM and

multi-device support, Device Lending offers highly customizable configurations of remote devices that can be dynamically

reassigned and shared to optimize resource utilization, thus enabling a flexible composable I/O infrastructure for VMs as

well as bare-metal machines.

Keywords Resource sharing � KVM � Composable infrastructure � Virtual machines � PCIe � Non-transparent bridging

1 Introduction

The demand for processing power and I/O resources in a

cluster may, to a large degree, vary over time. Workloads

come and go, and even vary themselves with number of

users and amount of data to process. In this respect,

efficient and dynamic resource sharing and configuration is

important as it is desirable to be able to scale up and

allocate more resources on demand, or scale down and

release them when the resources are no longer needed.

Dynamically scaling up or down based on current workload

requirements, and being able to partitioning available

physical resources, leads to more efficient utilization in the

cluster.

VM hypervisors scale resources through device virtu-

alization. Software-emulated devices appear to the VM

guest as an I/O device, but all functionality is handled in

the VM implementation. Paravirtualized devices also offer

device functionality in software, but the software-defined

device is backed by hardware and often resemble the

physical device closely. As both methods of resource

& Jonas Markussen

jonassm@dolphinics.com

1 Dolphin Interconnect Solutions, Oslo, Norway

2 Simula Research Laboratory, Oslo, Norway

3 University of Oslo, Oslo, Norway

4 Simula Metropolitan Center for Digital Engineering, Oslo,

Norway

123

Cluster Computing (2020) 23:1211–1234
https://doi.org/10.1007/s10586-019-02988-0(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-3166-2480
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-019-02988-0&domain=pdf
https://doi.org/10.1007/s10586-019-02988-0

virtualization require facilitation in the hypervisor, the

availability of different types of resources is limited by the

underlying virtualization technology being used. Further-

more, workloads that rely on multi-device interoperability

become a challenge, as setting up necessary memory

mappings for Remote Direct Memory Access (RDMA) and

direct access between devices is generally not possible

without extensive facilitation in both the hypervisor and

interconnection technology. In many cases, RDMA func-

tionality for paravirtualized devices even requires support

in the VM guest drivers themselves.

In this context, a processor’s I/O Memory Management

Unit (IOMMU) enables devices to be passed through to a

VM instance. A hypervisor can facilitate direct access to

hardware without compromising the memory encapsulation

provided by the virtualized environment. While pass-

through allows physical hardware to be used with minimal

software overhead, this technique does not have the flexi-

bility of resource virtualization. Using pass-through, VM

instances become tightly coupled with the physical

resources they use; distributing VMs across hosts in a

cluster in a way that maximizes utilization becomes a

challenge.

For clusters of machines interconnected with PCI

Express (PCIe), we propose a different strategy to efficient

resource sharing called Device Lending [1, 2]. In these

clusters, I/O devices and interconnection technology are

attached to the same PCIe fabric. Device Lending exploits

the memory addressing capabilities inherent in PCIe in

order to decouple devices from the hosts they physically

reside in, without requiring any application- or device-

specific distribution mechanisms. This decoupling allows a

remote resource to be used by any machine in the cluster as

if it is locally installed, without requiring any modifications

to device drivers or application software. However, our

previous implementation lacked support for dynamically

discovering the guest physical memory layout. Because of

this, it was necessary to limit the VM guest’s available

memory in order to force certain addresses used for device

memory.

In this paper, we have extended our Linux Kernel-based

virtual machine (KVM) support from [2] with a mecha-

nism for probing the memory used by the VM guest in

order to dynamically detect the guest physical memory

layout. This makes it possible to map device memory

regions for other pass-through devices, without requiring

any manual configuration of the VM instance. Such devices

can then access each other, using PCIe peer-to-peer

transactions. With this kind of virtualization support, it is

possible to enable custom configurations of multiple

devices that are passed through to VMs and enabling fast

data transfers between them. In addition, we have also

implemented full interrupt support, something that was

missing in our previous implementation.

We present our experimental performance evaluations

of multi-device configurations using GPUs and enabling

peer-to-peer between them, and compare our results to

bare-metal experiments. Our findings depict that we are

able to borrow and use multiple remote devices, achieving

the same bandwidth as native PCIe and without adding any

additional latency beyond that of the interconnect and the

hardware address translation. We also evaluate the per-

formance impact of increasing the distance between devi-

ces and CPUs, particularly focusing on the impact of I/O

address virtualization. Finally, we present the applicability

of using the system for a realistic I/O-intensive workload,

i.e., running medical image classification via deep neural

networks using remote GPUs and a remote NVMe drive.

We can observe that the system makes bare-metal remote

execution as efficient as local execution. Our results

demonstrate that Device Lending offers a highly flexible

I/O infrastructure in a PCIe cluster for both VMs and bare-

metal machines, allowing dynamic compositions of local

and remote I/O devices.

The remainder of this paper is organized as follows: we

present essential capabilities of PCIe in Sect. 2. In Sect. 3,

we discuss related work. In Sect. 4, we provide an outline

of our original Device Lending implementation. We

describe how we have extended Device Lending with vir-

tualization support in Sect. 5. Section 6 describes how we

have added support for borrowing devices from multiple

lenders. We present our performance evaluation in Sect. 7,

followed by a discussion of our findings and potential

improvements in Sect. 8. Finally, we conclude the paper in

Sect. 9.

2 PCIe overview

PCIe is today the most widely adopted industry standard

for connecting hardware peripherals (devices) to a com-

puter system [3]. Device memory, such as register and

onboard memory is mapped into an address space shared

with system memory (Fig. 1). Memory operations, such as

reads and writes, are transparently routed onto the PCIe

fabric, enabling a CPU to access device memory, as well as

allowing devices capable of DMA to directly read and

write to system memory.

PCIe uses point-to-point links, where a link consists of 1

to 16 lanes. Each lane is a full-duplex serial connection,

data is striped across multiple lanes, and broader links yield

higher bandwidth. The current revision, PCIe Gen3 [4], has

a throughput of around 13 GB/s for a x16 link.

1212 Cluster Computing (2020) 23:1211–1234

123

Not unlike other networking technologies, PCIe also

uses a layered protocol. The uppermost layer is called the

transaction layer, and one of its responsibilities is to for-

ward memory reads and writes as transaction layer packets

(TLPs). It is also responsible for packet ordering, ensuring

that memory operations in PCIe are strictly ordered.

Underneath the transaction layer lies the data link layer and

the physical layer, and their responsibilities include flow

control, error correction, and signal encoding.

As shown in Fig. 2, the entire PCIe network is struc-

tured as a tree, where devices form the leaf nodes. In PCIe

terminology, a device is therefore referred to as an ‘‘end-

point’’. Switches can be used to create subtrees in the

network. The ‘‘root ports’’ are at the top of the tree, and act

as the connection between the PCIe network and the CPU

(CPU cores, chipset, and memory controller). The entire

PCIe network comprises the ‘‘fabric’’.

Some PCIe devices may support multiple functions,

which appear to the system as a group of distinct devices,

each which a separate set of resources. The term ‘‘device’’

actually refers to an individual function. An example of a

multi-function device is a multi-port Ethernet adapter,

where individual ports can be implemented as a separate

functions.

2.1 Memory addressing and forwarding

The defining feature of PCIe is that device memory and

registers are mapped into the same address space as system

memory (Fig. 1). Because this mapping exists, a CPU is

able to read from and write to device memory regions, the

same way it would read from system memory. No spe-

cialized port I/O is required. Likewise, if a device is cap-

able of DMA, it can read from and write to system

memory, as well as other devices on the fabric.

In order to map device memory regions to address

ranges, the system scans the PCIe tree and accesses the

configuration space of each device attached to the fabric.

The configuration space describes the capabilities of the

device, such as describing the device’s memory regions.

Switches in the topology are assigned the combined

address range of their downstream devices. This allows

forwarding of memory operations based on address ranges

to occur in a strictly hierarchical fashion in the tree, and

TLPs are forwarded either upstream or downstream. An

important property of this hierarchical routing is that

packets do not need to pass through the root, but can be

routed using the shortest path if the chipset allows it. In

Fig. 2, the internal switch in the expansion chassis is

connected to the root through an external transparent link

(which differs from non-transparent links). The internal

switch will have the combined downstream address range

of both GPUs and the FPGA, allowing TLPs to be routed

directly between them without passing through the root.

This is referred to as peer-to-peer in PCIe terminology.

Another significant feature of PCIe, is the use of mes-

sage-signaled interrupts (MSI) instead of physical interrupt

lines. MSI-capable devices post a memory write TLP to the

root using a pre-determined address. The write TLP is then

interpreted by the CPU, which uses the payload to raise an

interrupt specified by the device. MSI-X is an extension to

MSI with support for more than one address, allowing up to

2048 different, targeting specific CPUs and mandatory

64-bit addressing support.

2.2 Virtualization support and pass-through

Modern processor architectures implement IOMMUs, such

as Intel VT-d [5]. The IOMMU provides a hardware vir-

tualization layer between I/O devices and the rest of the

system, including main memory. The defining feature of

the IOMMU is the ability to remap addresses of DMA

Fig. 1 Device memory is mapped into the same address space as the

CPUs, allowing devices to access both system memory and other

devices

Fig. 2 Example of a PCIe topology using an external transparent link.

The devices in an expansion chassis are attached to the same PCIe

root as the internal devices, and are mapped into the same address

space by the system

Cluster Computing (2020) 23:1211–1234 1213

123

operations issued by any I/O device [6]. In other words, it

translates virtual I/O addresses to physical addresses.

Similarly to pages mapped by an MMU for individual

userspace processes, an IOMMU can group PCIe devices

into IOMMU domains. As each domain has its own indi-

vidual mappings, members of an IOMMU domain conse-

quently have their own private virtual address space. Such

a domain can be part of the virtualized address space of a

VM, while other PCIe devices and the rest of memory

remain isolated. This allows the VM to interact directly

with the device using native device drivers from within the

guest, while the host retains the memory isolation provided

by the virtualization. This is often referred to as ‘‘pass-

through’’.

As most device drivers make the assumption that they

have exclusive control over a device, sharing a device

between several VM instances requires either paravirtual-

ization, such as Nvidia vGPUs [7], or SR-IOV [8]. SR-

IOV-capable devices allow a single physical device to act

as multiple virtual devices, allowing a hypervisor to map

the same device to several VMs.1

2.3 Non-transparent bridging

Because of its high bandwidth and low latency, it is

desirable to extend the PCIe fabric out of a single computer

and use it for high-speed interconnection networks [9].

This can be accomplished using an NTB implementa-

tion [10]. Although not standardized, NTBs are a widely

adopted solution for interconnecting independent PCIe

network roots, and all NTB implementations have similar

capabilities. Some processor architectures, such as recent

Intel Xeon and AMD Zen, have a built-in NTB

implementation [11].

Despite the name, an NTB actually appears as a PCIe

endpoint. This is illustrated in Fig. 3, where the connected

systems have their own NTB adapter card. Just like regular

endpoints, they appear to have one or more memory

regions that can be read from or written to by CPUs or

other devices. Memory operations on these regions are

forwarded from one PCIe network to the other. As the

interconnected networks use separate address spaces, the

NTB performs a hardware address translation on the TLPs

during the forwarding. Consequently, NTBs create a shared

memory architecture between separate systems with very

low additional overhead in terms of latency.

As the address ranges associated with the NTB may be

too small to cover the entire address space of the different

systems, some NTBs support dividing their range into

segments. A segment can be mapped anywhere into the

remote system’s address space. Due to the complexity of

translating addresses in hardware, the number of possible

mappings to remote systems is limited.

3 Related work

The idea of a unified network for the inner components of a

computer with those of another is not new. It was already

imagined for both ATM [12] and SCI [13]. However, these

ideas never got implemented, because none of these tech-

nologies were picked up for internal I/O interconnection

networks.

PCIe is the dominant standard for internal I/O bus, and

is also proving to be a relevant contender for external

interconnection networks. PCIe, however, was designed to

be used within a single computer system only. In this

section, we will discuss some solutions for sharing I/O

devices between multiple hosts.

3.1 Distributed I/O using RDMA

There are several technologies which are more widely

adopted for creating high-speed interconnection networks

than PCIe. These include InfiniBand, as well as 10Gb and

40Gb Ethernet [14, 15]. To make use of their high

throughput, they rely on RDMA [16]. Variants are sum-

marized by Huang et al. [17] and include native RDMA

over InfiniBand, Converged Enhanced Ethernet (RoCE),

and Internet Wide Area RDMA Protocol (iWARP). To

alleviate the complexity of programming for RDMA,

middleware extensions like RDMA for MPI-2 [18] and

rCUDA [19] have been developed. Those middleware

extensions have also been extended with device-specific

protocols like GPUDirect for RDMA [20, 21] or NVMe

over Fabrics.

Fig. 3 Two independent networks are connected together using an

NTB. The NTB Translates I/O addresses between the two different

address spaces, creating a shared address space between the networks

1 Note that Device Lending does not make any distinction between

physical devices and SR-IOV virtual devices.

1214 Cluster Computing (2020) 23:1211–1234

123

While RDMA extensions may achieve very high

throughput on the interconnection links, they are not as

closely integrated with the I/O bus fabric as PCIe, and

require translation between protocol stacks. Another

drawback is that it is currently only possible for such

protocols to work with devices and device drivers that

explicitly supports them. This is in contrast to Device

Lending, which works for all PCIe devices and does not

require any changes to drivers.

A proposed approach for overcoming the protocol

translation overhead would be to integrate network inter-

face functionality directly into SoCs [22], but the

improvement only takes effect when the SoCs are in

communication with each other. This idea is followed in

the rack-scale architecture [23], which generalizes a trend

returning from switched cluster architectures to hypercube

architectures [24, 25]. These approaches all focus on effi-

cient data exchange for parallel processing, rather than on

resource sharing between logically separate compute units.

3.2 Virtualization approaches

Multi-Root I/O Virtualization (MR-IOV) [26] specifies

how several hosts can be connected to the same PCIe

fabric. The fabric is logically partitioned into separate

virtual PCIe network trees, where each host sees its own

hierarchy without knowing about MR-IOV. MR-IOV

requires multi-root aware PCIe switches, and, in the same

way as SR-IOV requires SR-IOV-aware devices to be able

to provide virtual devices to several VMs, devices must be

multi-root aware to provide virtual devices to several PCIe

roots (and thus hosts) at the same time. Devices that are not

multi-root aware can only be part of one PCIe root at the

time. Despite being standardized in 2008 [26], we are not

aware of any MR-IOV-capable devices. Instead, there are

attempts to achieve MR-IOV-like functionality through a

combination of SR-IOV with NTB-like hardware [27].

However, this approach only works for SR-IOV devices,

while Device Lending makes no distinction between SR-

IOV virtual devices and physical devices.

An additional virtualization approach is the Ladon sys-

tem [28]. Ladon uses all PCIe and virtualization features as

proposed in this paper, and is also implemented using

NTBs. However, it achieves less freedom than our Device

Lending, as devices are installed in a dedicated manage-

ment host that manages the devices and distributes them to

different remote guest VMs. In addition, devices can only

be shared between different remote guest VMs, while

Device Lending supports both VMs and bare-metal

machines using the devices. In order to avoid management

hosts becoming single points of failure, Ladon has been

extended with fail-over mechanisms between management

hosts in a master-slave configuration [29]. Device Lending

is fully decentralized and thus avoids this all together.

Microsemi PAX [30] uses specialized PCIe switches

that allow virtualization. The downstream switch ports

reserve a large address range, called ‘‘synthetic endpoints’’,

which is similar to memory reserved by an NTB. Devices

can then be hot-added through the virtual switch ports by

remapping the synthetic endpoints to an actual device.

3.3 Partitioning the fabric

Rack-scale computers are so-called converged infrastruc-

ture systems, where both I/O devices and interconnects are

attached to a shared PCIe fabric. Rack-scale relies on

dynamically partitioning the shared fabric into different

subfabrics (using fabric IDs), in order to assign individual

devices to different CPUs. Unlike MR-IOV, rack-scale

does not require support in devices, but it does require

dedicated hardware switches which support the fabric ID

header extension in order to configure routes between

devices and CPUs. Additionally, these systems are only

modular to the extent of typical blade server configurations,

and scaling beyond a single system requires facilitation

using traditional distributed methods. Adding new I/O

devices requires additional modules, often only available

from the same vendor.

Last but not least it should be mentioned that there have

been some efforts in achieving live-partitioning using PLX

PCIe switches [31], but a performance evaluation of this

appears to be lacking.

4 Device lending

As illustrated in Fig. 4, it is possible to map the memory

regions of remote PCIe devices using an NTB. A local

CPU can perform memory operations on a remote device,

such as reading from or writing to registers. Conversely, it

is also possible to map local resources for the remote

device, allowing it to write MSI interrupts and access the

local system’s memory across the NTB.

In order to make such mappings transparent to both

devices and their drivers, we have previously implemented

Device Lending [1] for an unmodified Linux kernel using

Dolphin’s NTB hardware and driver. Our implementation

is composed of two parts, namely a ‘‘lender’’, allowing a

remote unit to use its device, and the ‘‘borrower’’ using the

device. By emulating a hot-plug event [9] while the system

is running, we insert a virtual device into the borrower’s

local device tree, making it appear to the system and device

driver as if a device was hot-added in the system. The

device’s memory regions are mapped through the NTB,

allowing the local driver to read and write to device

Cluster Computing (2020) 23:1211–1234 1215

123

registers without being aware that the device is actually

remote.

The lender is responsible for setting up reverse map-

pings for DMA and MSI.2 As mentioned in Sect. 2.3, the

address range of the NTB is not necessarily large enough to

cover the entire address space of the borrowing system.

Since it is generally not possible to know in advance which

memory addresses a device driver might use for DMA

transfers, we use an IOMMU on the borrower to set up

dynamic mappings to arbitrary addresses, allowing the

lender to set up a single DMA window. When the device

driver calls the Linux DMA API in order to create DMA

buffers, the borrower intercepts these calls. The borrower

injects the I/O address of the DMA window prepared by

the lender and sets up a local IOMMU mapping to the

DMA buffer. The driver then passes the injected address to

the device, completely unaware that the address is actually

a far-side address. This allows the device to reach across

the NTB, transparent to both driver and device. All address

translations between the different address domains are

done in hardware (NTB and IOMMU), meaning that we

achieve native PCIe performance in the data path.

By allowing remote devices to appear to a system as if

they are locally installed, Device Lending is a method for

decoupling devices from the systems they physically reside

in, allowing devices to be temporarily assigned and reas-

signed to different systems. As hosts can act as both lender

and borrower, we have created a highly flexible method of

sharing devices (Fig. 5). This has advantages over dis-

tributed I/O using traditional approaches; network inter-

faces can be assigned to a computer while it needs high

throughput, and released when it is no longer needed;

access latency in NVMe over Fabrics using RDMA can be

eliminated by borrowing the NVMe disk instead and

accessing it directly, as shown in Fig. 6; large-scale CUDA

programming tasks can make use of multiple GPUs that

appear to be local instead of relying on middleware such as

rCUDA [19]. In contrast to RDMA solutions, Device

Lending works for all standard PCIe devices, and does not

require any additional support in drivers.

Our original implementation, as described in [1], did not

account for peer-to-peer access when borrowing multiple

devices from different lenders. As the borrowing system is

not aware that the devices reside in different systems, we

need a mechanism to resolve I/O addresses to other bor-

rowed devices, in order to fully achieve device-to-device

data transfers. In addition, our original implementation

lacked support for borrowers that are VM guests. Adding

virtualization support greatly increases the usability of

Device Lending, as we introduce the flexibility of decou-

pled remote devices and be able to dynamically assign

devices using pass-through.

5 Supporting virtual machine borrowers

Many modern architectures now implement IOMMUs,

allowing DMA and interrupts to be remapped. This makes

it possible for a hypervisor to grant access a driver running

in a VM access to a physical device directly, without

breaking out of the memory isolation, by using I/O virtual

addresses. In Linux, such pass-through of devices is sup-

ported in the KVM hypervisor using the Virtual Function

I/O API (VFIO) [32]. This API provides a set of functions

for mapping memory for the device and control function-

ality, such as resetting the device, that the hypervisor can

call in order to set up necessary mappings for a VM

instance.

A hypothetical solution for passing through remote

devices, would be for the physical host to borrow the

remote device, injecting the device into its local device

tree, and then implement these functions. However, this

Fig. 4 Using an NTB, it is possible to map the memory regions of a

remote device so local CPUs are able to read and write to device

registers. The remote system can in turn reverse-map the local

system’s memory and CPUs for the device, making DMA and MSI

possible. Device Lending injects a hot-added device into the Linux

kernel device tree using these mappings

2 Legacy interrupts are not supported in the current Device Lending

implementation, as they cannot be remapped over the NTB.

1216 Cluster Computing (2020) 23:1211–1234

123

approach would not be feasible due to the following

reasons:

– The device would be borrowed by the physical host for

as long as it runs, regardless of whether any VM

instances would currently be using it or not. This leads

to poor utilization of device resources.

– All devices borrowed by the same physical host would

be placed in to the same IOMMU domain by Device

Lending. VFIO requires that pass-through devices must

be be placed in a per-guest IOMMU domain managed

by VFIO. This is required in order to prevent memory

accesses that could potentially break out of the memory

isolation provided by virtualization.

– VFIO requires the entire address space of the VM to be

mapped for the device. As there is no method of

knowing which physical memory pages will be allo-

cated for the VM instance before it is running,

establishing this mapping in advance would require

mapping all physical memory. We instead need a

mechanism for only pinning and mapping the memory

pages used by the VM instance in order to create

necessary DMA windows.

In the 4.10 version of the Linux kernel, an extension to

VFIO called mediated devices [33] was included. This

extension makes it possible to use VFIO for paravirtual-

ized devices. It introduces the concept of a physical parent

device having virtual child devices. When a VM guest

accesses the virtual device, certain operations, such as

accesses to the device’s configuration space or setting up

interrupts, are intercepted by the mediated device parent

driver. The idea is that a single physical device can be used

to emulate multiple virtual devices, while still allowing

some direct access to hardware. In our case, using the

mediated devices extension provides us with finer grained

control over what the hypervisor and guest OS is

attempting to do with the device than with ‘‘plain’’ VFIO.

Our implementation registers an mediated device parent

device for devices used by Device Lending without bor-

rowing them first. This allows KVM to pass through the

device to a VM guest without it being borrowed (and

locally injected) first. Only when the guest OS boots up and

resets the device, do we actually borrow the device and

take exclusive control. When the guest OS releases the

device, either by shutting down or because the device is

hot-removed, we return the device. Not only does this limit

the lifetime of a borrowed device to only when the VM is

running and using the device, but it also makes it possible

to hot-add a device to a live VM instance if the VM

emulator supports it.

As we now have control over when a device is being

used and which VM instance is using it, we can set up the

appropriate isolated IOMMU groups on the lender. As

shown in Fig. 7, this allows a device to be mapped in to the

same virtual address space (guest-physical) as the VM as

well as providing the necessary isolation to protect against

rogue memory accesses. We also set up IOMMU mappings

on the local system, in order to map continuous memory

ranges to physically scattered memory on the host over the

NTB.

While other implementations using mediated devices

implement virtual child devices, each with their own set of

emulated resources, we are passing through the physical

device itself. This difference becomes apparent when the

guest driver initiates DMA transfers; virtual device

implementations emulate device registers, and are there-

fore able to notify KVM to pin the appropriate memory

pages just before initiating the physical DMA engine. In

our case, the VM instance maps the physical device reg-

isters and accesses the device directly, which means that

without making assumptions about the type of device being

used and implementing virtual registers for it, we are not

able to replicate this specific behavior. We are also not able

Fig. 5 Device Lending decouples I/O resources from physical hosts

by allowing devices to be reassigned to hosts that currently need

them. We imagine this as hosts in the cluster contributing to a shared

pool of I/O resources that can be cooperatively time-shared among

them

Fig. 6 Illustration of native NVMe using Device Lending compared

to NVMe over Fabrics using RDMA. Device Lending makes remote

devices appear as if they are locally installed and there is no need for

specialized support in devices or drivers

Cluster Computing (2020) 23:1211–1234 1217

123

to know in advance what memory pages will be used until

the VM instance is actually loaded and the guest OS boots

up, because only then will the memory used by the VM

actually be allocated. In addition, the mediated device API

does not provide any information about the guest-physical

memory layout, which we need to know which address

ranges to map for the device.

However, in order for a device to do DMA, a dedicated

register in the device’s configuration space must be set.

This register is common for all PCIe devices. Relying on

the assumption that this register is disabled until the guest

OS is booting up (and memory for the instance has been

allocated), our solution intercepts when a configuration

cycle enables this register, and only then notifies KVM to

pin the necessary memory pages. With the pages now

locked in memory, we are able to properly set up DMA

windows to memory used by the VM instance. The x86

architecture uses well-defined addresses for low and high

memory. We are able to discover how much memory the

VM has allocated by attempting to pin memory starting at

these addresses. In this way, we are able to dynamically

detect the guest-physical memory layout.

Finally, VFIO and mediated devices use the eventfd API

to trigger interrupts in the VM instance. Our current

implementation intercepts calls to the configuration space

that enables interrupts and sets up an interrupt handler on

the lender-side. Whenever the device triggers an interrupt,

the lender-side request handler is invoked. This handler

must then notify the borrower, which in turn notifies the

hypervisor using eventfd. This method is not ideal, as the

latency of triggering an interrupt is increased. A benefit of

our solution is that it allows us to enable legacy interrupts

for devices borrowed by a VM, which is currently not

supported when the borrower is a physical machine. We

have also improved Device Lending in general with sup-

port for 64-bit MSI/MSI-X.

6 Supporting multiple devices and peer-to-
peer

Some processing workloads may require the use of

multiple I/O devices and/or compute accelerators, in

addition to moving data between them in an efficient

manner. This often involves the use device-to-device

DMA, as described in Sect. 2.1, where a device is able to

read from or write to the memory regions of other devices.

However, as IOMMUs introduce a virtual address space for

devices, TLPs must be routed through the root of the PCIe

tree in order for the IOMMU to resolve virtual addresses.

This means that shortest-route peer-to-peer transactions

directly between devices in the fabric is not possible when

using an IOMMU, and TLPs must traverse the root

(Fig. 8). PCI-SIG has developed an extension to the

transaction layer protocol that allows devices that have an

understanding of I/O virtual addresses to cache resolved

addresses [34], but this is not widely available as it requires

hardware support in devices.

Because of this, the general perception among device

vendors and driver developers has become that in order to

make peer-to-peer transactions work efficiently, the

Fig. 7 By using IOMMUs on both sides of the NTB, it is possible to

map a physically remote device into a local VM guest’s address

space. The borrower-side IOMMU provides continuous memory

ranges that can be mapped over the NTB, while the lender-side

IOMMU allows the device to be mapped into an address space using

the same guest-physical addresses used by the VM

Fig. 8 IOMMUs introduce a

virtual I/O address space for

devices. Peer-to-peer transac-

tions between devices is routed

through the root in order for the

IOMMU to resolve virtual

addresses to physical addresses

1218 Cluster Computing (2020) 23:1211–1234

123

IOMMU must be disabled. This has led to a situation where

device drivers would indiscriminately use physical

addresses when setting up peer-to-peer access between

devices. For our original Device Lending implementation,

this posed a challenge, as we rely on intercepting calls

made by the device driver to inject our own mappings in

order to make DMA across the NTB transparent. However,

this changed with the 4.9 version of the Linux kernel, when

the DMA API was extended with a unified method for

setting up mappings between devices. This extension

makes it possible for Device Lending to intercept when a

device is mapping another device’s memory regions.

However, as devices installed in different hosts reside in

different address space domains, the local I/O address used

by one host to reach a remote device is not the same

address a different host would use to reach the same

device. In order for a borrowed device, source, to reach

another borrowed device, target, the borrower needs a

mechanism to resolve virtual I/O addresses it uses to

addresses that source’s lender would use to reach target.

As such, our solution is as follows:

– If target is local to the borrower, setting up a mapping

is trivial. The lender simply sets up DMA windows to

the individual memory regions of target, similar to how

it already has set up a DMA window to the borrower’s

RAM. The lender returns the local I/O addresses it

would use to reach over the NTB to the memory regions

of target. Note that this would work for any device in

the borrower, not only those that are controlled by

Device Lending.

– If target is locally installed in the same host as source

(same lender), the lender simply sets up a local

IOMMU mapping and returns the local I/O addresses

to the memory regions of target. If IOMMU is disabled,

then it is simply a matter of returning the local I/O

addresses of memory regions of target.

– If target is a remote device (different lenders), the

source’s lender creates DMA windows through the

appropriate NTB to target’s lender. Note that this NTB

may be different to the one used in order to reach the

borrower. It then returns the memory addresses it would

use to reach over the NTB to the memory regions of

target.

The borrower, after receiving these lender-local I/O

addresses, stores them along with its own virtual addresses

to the memory regions of target. When the device driver

using source calls the new DMA API functions to map the

memory regions of target for source, we are able to look up

the corresponding lender-local addresses and inject these.

The driver can in turn initiate DMA, completely unaware

of the location of both source and target, and the transfer

will reach target through the correct NTB.

An additional consideration is required if the borrowing

machine is a VM. In this case, target is already mapped

into the guest-physical address space of the VM guest. The

memory regions of target must be mapped for source using

these exact addresses. Since the VM case already uses the

lender-side IOMMU, as explained in Sect. 5, we can sim-

ply use the IOMMU of source’s lender and specify the

addresses that correspond to the VM guest’s view of the

address space.

7 Performance evaluation

In order to evaluate our improved Device Lending imple-

mentation, we have done extensive evaluations of the

bandwidth and latency of peer-to-peer DMA transfers. As

VM pass-through require the use of an IOMMU on the

lending system, we particularly focus on the impact I/O

address virtualization has on performance with regards to

longer data paths. For all our comparisons, we present the

topology and machine configurations and compare perfor-

mance for native bare-metal borrowers and VM borrowers.

Our baseline comparison for all evaluations are running

locally, on a bare-metal machine.

In Sect. 7.5, we prove the capability of running

unmodified software and device drivers by presenting the

performance of an unmodified convolutional neural net-

work-based application, using the Keras framework with

Tensorflow. We argue that running unmodified code using

a complex machine learning framework on commodity

hardware demonstrates the strength and flexibility of our

Device Lending approach.

7.1 IOMMU performance penalty

Since IOMMUs create a virtual address space, TLPs need

to be routed through the root of the PCIe tree in order to

resolve virtual I/O addresses (Fig. 8). Processor designs are

complex and often not well-documented, making it difficult

to determine what exactly happens with the memory

operations in progress once they leave the PCIe fabric and

enter the CPUs. Memory operations may be buffered,

awaiting IOMMU translations, or the IOMMU may need to

perform a multi-level table look up for resolving addresses.

TLPs are either posted or non-posted operations,

meaning that some transactions, such as memory reads,

require a completion. Read requests are affected by the

number of hops in the path between requester and com-

pleter; the longer the path, the higher the request-comple-

tion latency becomes. As the number of read requests in

flight is limited by how many uncompleted transactions a

requester is able to keep open, a longer path can potentially

reduce performance. In addition, PCIe allows a completer

Cluster Computing (2020) 23:1211–1234 1219

123

to respond with less data at the time than is actually

requested. For example, a read TLP requesting 256 bytes

may terminate with 4 completions containing 64 bytes

each, rather than a single completion with 256 bytes.

In order to isolate the consequence of TLPs being routed

through the root, we have used the setup shown in Fig. 9.

Two Intel Xeon machines are connected together with

Dolphin’s PXH830 NTB host adapters [35] and an external

x8 PCIe cable. The lender has a PCIe switch on the

motherboard, with both the NTB adapter and an Nvidia

Quadro K420 GPU sitting below it. Note that since the

K420 is Gen2 x16, we only need a Gen3 x8 link between

the NTB adapters, as they provide approximately the same

bandwidth.

For this evaluation, we have chosen to create a high-

bandwidth workload using the bandwidthTest [36] pro-

gram. This utility program is from the CUDA Toolkit

samples. Choosing this program serves an additional pur-

pose, demonstrating that Device Lending truly works with

remote devices, without requiring changes to application or

driver software. The bandwidth is measured running on the

borrower, using the remote K420’s onboard DMA engine

to copy data between GPU memory and borrower’s RAM.

For each transfer size, bandwidthTest initiates 10 transfers

and then report the mean bandwidth. We have repeated this

10 times.

Figure 10 shows the reported mean bandwidth for both

DMA writes and DMA reads, comparing the performance

of shortest path (Rem-SW) with TLPs being routed through

the root (Rem-IOMMU). We observe that the reported

bandwidth is reduced when the IOMMU is enabled, espe-

cially for the read performance. As mentioned, a PCIe

completer is allowed to reply with multiple completions to

a single request. In our case, using a PCIe tracer similar in

concept to that of network packet tracers, we observe that

the read TLPs are actually modified by the lender-side

CPUs (and not the completer). The maximum TLP payload

size in our configuration is 256 bytes, meaning that devices

can write or read up to 256 bytes per request. We observe,

however, that every 256 byte request routed through the

root is emitted out again as 4� 64 byte read requests on

the other side of the root. As read performance is already

limited by the number of requests they are able to keep

open, requesting less data at a time leads to very poor

utilization of the link. Although not as bad as reads, write

performance is also affected when the lender-side IOMMU

is enabled.

Note that we also compared our results to running

locally on the lender without using Device Lending (Loc).

The achieved bandwidth of the local run is slightly better

than our peer-to-peer performance for smaller transfer

sizes; this is most likely due to the fact that the GPU is

further away from the CPU running the driver, and there-

fore slightly increasing the time it takes to initiate a DMA

transfer as well as other synchronization with the devices.

We observe that for sizes of 1 megabyte and more, the

Fig. 9 Configuration used in our IOMMU evaluation. The borrower is

using the remote GPU. When the lender-side IOMMU is enabled,

TLPs are routed through the lender’s root before going over the NTB

(Rem-IOMMU). We have also compared to a baseline comparison,

running locally on the lender machine itself (Loc)

Fig. 10 Reported bandwidth for different transfer sizes using an

unmodified version of the bandwidthTest CUDA samples program

1220 Cluster Computing (2020) 23:1211–1234

123

significance of this additional latency decreases and the

reported bandwidths starts to converge.

7.2 Native peer-to-peer evaluation

In order to evaluate our multi-device support, we have

measured the performance of peer-to-peer DMA transfers

between two Nvidia Quadro K420 GPUs. The machines

are connected together using the PXH830 NTB adapters in

a three-way configuration, providing a separate Gen3 x8

link between all three machines. The K420 GPUs are Gen2

x16, which provides roughly the same bandwidth as Gen3

x8.

Figure 11 shows the three different hardware configu-

rations used in this evaluation:

– A local machine using two GPUs installed in the same

local host, illustrated in Fig. 11a. This is our baseline

for comparing the performance of using remote devices

vs. local devices. Since it is not possible to enable peer-

to-peer transfers on a local machine using the IOMMU,

we instead force transfers to be routed through the root

by placing the GPUs behind different PCIe switches.

– A local machine (borrower) using two remote GPUs,

installed in a single remote host (one lender). This is

illustrated in Fig. 11b.

– A local machine (borrower) using two remote GPUs,

installed in different remote hosts (two lenders). This is

illustrated in Fig. 11c.

A complete list of the scenarios are given in Table 1. Note

that in Fig. 11, we have only highlighted the data path for

peer-to-peer DMA writes with the IOMMU enabled and

disabled. We compare the performance benefit of direct

device-to-device DMA writes, using peer-to-peer transac-

tions, to transfers via RAM, where one GPU first writes to

RAM and the other reads from it using DMA. In order to

do this, we have developed two CUDA [36] applications

for measuring transfers from one GPU to another. Note that

we do not use any special semantics or other userspace

software to make this CUDA program work for borrowed

remote GPUs, using Device Lending they simply appear to

the CUDA programs as if they are locally installed.

7.2.1 Bare-metal bandwidth evaluation

The first of the two CUDA programs measures the

bandwidth of DMA transfers from one GPU to another

using two different transfer ‘‘modes’’. The first mode is

enabling peer-to-peer transactions, allowing one GPU to

write directly into another GPUs memory. The second

mode is hosting an intermediate buffer in system memory

(RAM), where one GPU first writes to that buffer, followed

by the other GPU reading from it afterwards. We record a

CUDA event before and after each scheduled transfer, and

we also schedule a dummy CUDA kernel launch in order to

prevent our bandwidth measurements being affected by the

CUDA driver’s ability to pipeline transfers.3

Figure 12 shows the bandwidth for all three configura-

tions (depicted in Fig. 11). We have recorded the com-

pletion time for 1000 individual DMA transfers of a given

size, for each transfer size shown along the X-axis, and plot

the mean bandwidth. We also show the 95% confidence

interval as a filled-out area around the respective lines. The

top row shows our peer-to-peer transfers, while the bottom

row shows transfers via system memory. We also show the

difference in performance when the IOMMU is enabled

and disabled on the lender(s), where the GPUs reside. Note

that in our local comparison, we place the GPU behind a

different PCIe switch in order to force TLPs to traverse the

root, since it is not possible to enable the IOMMU in this

scenario.

Using peer-to-peer DMA writes (top row), we see that

the achieved bandwidth is almost the same as our local

comparison in the same lender scenario: 1L-P2P-SW is

almost identical to Loc-P2P-SW, and 1L-P2P-IOMMU is

almost identical to Loc-P2P-Root. Even though the GPUs

are remote, the data path between the GPUs are similar. For

smaller transfer sizes, the local transfers achieve slightly

higher bandwidth. However, when the transfer size

increases, the lines converge, and for transfers of

4 megabyte and above, the difference becomes negligible.

We suspect that the protocol used by the driver in order to

synchronize the GPU and schedule DMA transfers may

involve some reading and writing over the NTB. For small-

sized transfers, this additional latency relative to the

transfer size has an effect.

When the GPUs reside in different lenders, the data path

is increased, which has an expected impact on perfor-

mance. As shown in the 2L-P2P plot (top row, to the right)

in Fig. 12, particularly when the IOMMU is enabled, the

increased number of hops impacts the performance.

The second mode of our program was used to evaluate

‘‘bouncing’’ via system memory. By hosting a memory

buffer in RAM, one GPU has to first write to this buffer

before the other GPU in turn can read from it. Borrowing

remote GPUs using Device Lending, the distance between

system memory and GPU is now increased, and the impact

of this is visible, as illustrated in Fig. 12 (bottom row). We

see that transfers that do not cross the root (2L-RAM-SW)

3 The CUDA samples bandwidthTest program, used in Sect. 7.1,

schedules 10 rapid copy operations at the time and reports the average

of these ten, allowing the CUDA driver to pipeline transfers and

optimize small transfers.

Cluster Computing (2020) 23:1211–1234 1221

123

are very similar to our baseline local comparison (Loc-

RAM-Root). However, similarly to what we observed in

Sect. 7.1, DMA reads are significantly affected by TLPs

traversing the root, as this drastically reduces the link uti-

lization. This is seen in 1L-RAM-IOMMU and 2L-RAM-

IOMMU, where the reported bandwidth drops drastically.

(a)

(b)

(c)

Fig. 11 The three-node cluster

configurations used in our bare-

metal multi-device evaluation,

showing the the data paths for

direct peer-to-peer write

transactions

1222 Cluster Computing (2020) 23:1211–1234

123

It is interesting to note that 1L-RAM-IOMMU and 1L-

RAM-SW both traverse the root, but the IOMMU is

respectively on and off. This strengthens our suspicion that

the issue is TLPs being routed through the root, and not

necessarily some effect of using the IOMMU alone.

A simplified illustration of the data path for the full list

of scenarios is shown in Fig. 13. Note that each additional

‘‘hop’’ in the path adds additional latency to the TLP

completion time, something that particularly affects reads.

Our peer-to-peer bandwidth evaluation indicates that it is

possible to achieve close to local performance. For DMA

write operations, the performance of a local program using

borrowed remote devices is comparable to using local

devices. Note that while DMA reads are affected by the

increased distance between the device and the memory it

reads from, it is expected for longer data paths and not an

effect of our Device Lending mechanism.

Table 1 The different scenarios used in our bare-metal peer-to-peer evaluation. Note the number of hops and CPU roots transfers have to traverse

Name Scenario Transfer Roots Hops

Loc-P2P-SW Two local GPUs installed in same machine as driver. Peer-to-peer 0 1

Loc-P2P-Root Two local GPUs installed in same machine as driver. Peer-to-peer 1 3

Loc-RAM-Root Two local GPUs installed in same machine as driver. Via local RAM 1 3

1L-P2P-SW Two remote GPUs borrowed from the same lender. Peer-to-peer 0 1

1L-P2P-IOMMU Two remote GPUs borrowed from the same lender. Peer-to-peer 1 3

2L-P2P-SW Two remote GPUs borrowed from different lenders. Peer-to-peer 0 4

2L-P2P-IOMMU Two remote GPUs borrowed from different lenders. Peer-to-peer 2 8

1L-RAM-SW Two remote GPUs borrowed from the same lender. Via borrower’s RAM 3 11

1L-RAM-IOMMU Two remote GPUs borrowed from the same lender. Via borrower’s RAM 3 11

2L-RAM-SW Two remote GPUs borrowed from different lenders. Via borrower’s RAM 1 8

2L-RAM-IOMMU Two remote GPUs borrowed from different lenders. Via borrower’s RAM 3 11

Fig. 12 Mean DMA bandwidth for different transfer sizes. The filled-

out area represents the 95% confidence interval. The top row shows

writes using peer-to-peer, while the bottom row shows ‘‘bouncing’’

via RAM. For the peer-to-peer, we achieve almost the same

bandwidth as our local comparison. For transfers via RAM, the

bandwidth is reduced by read TLPs traversing through CPU roots

Cluster Computing (2020) 23:1211–1234 1223

123

7.2.2 Bare-metal latency evaluation

Using CUDA, there are two ways of initiating DMA

transfers; either the CPU can initiate DMA transfers, or the

device can do it itself. The first approach is similar to the

CUDA samples program bandwidthTest. The second

approach is possible using CUDA’s unified memory model,

where a CUDA kernel can access system RAM directly

through a memory pointer. This eliminates the need for an

explicit copy to GPU memory operation. With unified

memory, it is also possible for one GPU to directly access

memory of another GPU, using peer-to-peer DMA.

As shown in Sect. 7.1, we suspect that the increased

distance between CPU and device affects the time it takes

for the driver to synchronize with the device and initiate a

transfer. We also observed a similar effect for smaller-sized

transfers in Fig. 12. Therefore, we developed a second

CUDA program in order to measure peer-to-peer latency

more accurately. Using CUDA kernels and allowing the

GPUs themselves to initiate transfers, we eliminate any

synchronization overhead caused by the driver (running on

the local CPU). One GPU is tasked with increasing a

counter, writing it to the other GPU’s memory pointer and

waiting for an acknowledgement before continuing (ping).

The other GPU waits for the counter to increase by one,

and acknowledges by writing back to the first GPU’s

memory pointer (pong). The whole roundtrip is measured

by recording the current GPU clock cycle count and divide

it by the clock frequency, giving us the full ping–pong

latency.

The memory used for our counter can either be hosted in

GPU memory or in RAM. The difference is that in the

peer-to-peer scenarios we eliminate any DMA read oper-

ations and the GPUs are able to write directly to GPU

memory. When memory is hosted in RAM, one GPU has to

first write (over the NTB) to the borrower’s RAM, and then

the other GPU must read from the borrower’s RAM (also

over the NTB). The different data paths are illustrated in

Fig. 13. Note that each additional ‘‘hop’’ in the total path

adds additional latency to the overall completion time.

Figure 14 shows the mean ping-pong latency for all

scenarios. We measured the latency for 100,000 ping-

pongs, and the error bar depicts the 99% confidence

interval. For comparison, the one-way RAM-to-RAM

memory latency between the borrower and Lender B was

measured to around 700 nanoseconds, where the NTB

itself adds 350-365 nanoseconds. When GPUs reside

behind the same switch (1L-P2P-SW), we achieve the same

latency as our local comparison (Loc-P2P-SW). We also

see the same when the IOMMU is enabled (1L-P2P-

IOMMU) and the local comparison (Loc-P2P-Root).

Again, this demonstrate that our Device Lending mecha-

nism does not add any overhead.

We also observe that the latency increases according to

the increased data paths (illustrated in Fig. 13), as expec-

ted. The latency for 2L-P2P-SW increase with a little more

than 700 nanoseconds, compared to 1L-P2P-SW (and Loc-

P2P-SW), which corresponds with the 350 nanoseconds

added by the NTB (in one direction). In the scenarios

where the counter memory is hosted in the borrower’s

RAM, the latency increases significantly because both

GPUs now have to read in addition to writing. Our latency

evaluation show that the latency of reading and writing is

only affected by the path, and achieving the same latency

as our local comparison when the path is similar.

7.3 VM peer-to-peer evaluation

We have also evaluated peer-to-peer performance for

devices passed-through to a VM. We installed Ubuntu

16.04 with CUDA 9.0 on an Intel P4800X NVMe drive. As

our VM emulator, we used QEMU 2.10.1. Two Nvidia

Fig. 13 Data paths for the different bare-metal scenarios. Each hop slightly increases the completion latency

1224 Cluster Computing (2020) 23:1211–1234

123

Tesla K40c GPUs along with the boot disk was passed

through to a local VM using standard VFIO pass-

through [32] with KVM, and to a remote VM using our

Device Lending implementation. We used the same two

CUDA programs from Sect. 7.2 for measuring bandwidth

and latency respectively.

Figure 15 depicts the topologies used for these tests. The

GPUs, the disk and the NTB adapter are located in an

expansion chassis connected with a transparent link to the

lender. TLPs must be routed through the lender’s root

before they can be transmitted over the NTB (which also

resides in the expansion chassis), making this this config-

uration suboptimal for running a remote VM. As such, it

serves as a worst-case scenario for running a VM, espe-

cially for the scenario where transfers are bounced via

RAM. Figure 17 shows the data path for all scenarios. We

have also included a native remote comparison using

Device Lending where the IOMMU is enabled to illustrate

any virtualization overhead. Note that the data path is

similar for both local and remote scenarios when the

devices use peer-to-peer DMA. The evaluated scenarios are

listed in Table 2.

7.3.1 VM bandwidth evaluation

Figure 16 depicts the measured bandwidth for all config-

urations, using the same CUDA program as in Sect. 7.2.

For each transfer size, we plot the mean reported band-

width of 1000 transfers. We also show the 95% confidence

interval as a filled-out area surrounding the plotted lines.

The upper-most plot depicts direct peer-to-peer transfers

between the GPUs. We compare our Device Lending mdev

implementation, with two borrowed remote GPUs passed

to a local VM (VMRem-P2P), to a local comparison, or

baseline, where two local GPUs are passed to a local VM

(VMLoc-P2P). As with our previous bandwidth evalua-

tions, we see a similar pattern as before: timing and syn-

chronization between driver and GPUs appear to affect

smaller-sized transfer, but becomes less relevant when the

(a)

(b)

Fig. 15 Topologies used in our VM peer-to-peer evaluation. We have

compared a local VM using VFIO pass-through to a remote VM using

our extended Device Lending. Note that the devices are located in an

expansion chassis, which increases the number of hops to the lender

Fig. 14 Mean round-trip latency for 100,000 ping-pongs. The error

bar represents the 99% confidence interval. For the peer-to-peer

scenarios, we achieve the expected latency corresponding to the data

path. When bouncing through RAM, the latency increases drastically

due to the second GPU having to read from RAM

Cluster Computing (2020) 23:1211–1234 1225

123

transfer sizes increases. At around 4 megabytes this over-

head is insignificant.

We have also included an additional comparison,

namely a remote bare-metal machine borrowing the two

remote GPUs and using them natively (NatRem-P2P-

IOMMU). In order to force TLPs to traverse the same route

as our KVM implementation (where lender-side IOMMU

is required), the IOMMU is also enabled on the lender for

the native comparison. It is interesting to note that it

appears to achieve slightly lower bandwidth than when

running in a VM, despite the data path being the same. We

do not completely understand why this is the case.

The lower plot in Fig. 16 depicts transfers that are

‘‘bounced’’ via RAM. The memory buffer is allocated in

system memory, and one GPU has to first write to it, before

the other GPU can read from it. Since the lender’s root is

now even further away from the devices, read requests are

significantly affected by the increased path. Combined with

the reduced link utilization, as we observed in Sect. 7.1, the

result is a drastic decrease in achieved bandwidth, for both

our native Device Lending scenario (NatRem-RAM-

IOMMU) and our KVM implementation (VMRem-RAM).

A simplified view of the data paths of all scenarios is

illustrated in Fig. 17. We see that the path for NatRem-

RAM-IOMMU and VMRem-RAM consists of 21 hops,

traversing tree CPU roots, the NTB twice and the external

transparent link four times. Note, however, that the per-

formance for our VM implementation is similar to the

native bare-metal performance, indicating that the Device

Lending mechanism itself does not add any additional

overhead. For the direct peer-to-peer DMA writes, the

performance is comparable to the local comparison, which

serves as our baseline.

7.3.2 VM latency evaluation

Using the second CUDA program, we also measured the

ping-pong latency for the same scenarios. This is shown in

Fig. 18, each bar is the mean reported latency for 100,000

ping-pongs (the error bar represents the 99% confidence

interval). It is interesting to note that the latency for the

remote scenarios using Device Lending (NatRem-P2P-

IOMMU and VMRem-P2P) is actually slightly better than

our local comparison, even though the data path is the same

(Fig. 17). We assume this may be related to how VFIO

exposes the GPU registers to the driver in the local case. In

our KVM implementation, we expose the device memory

regions directly, allowing the driver running in the VM

guest to access GPU registers directly.

Fig. 16 Mean bandwidth for 1000 transfers per transfer size. 95%

confidence interval. For peer-to-peer transactions we achieve the

same bandwidth as running locally

Table 2 The different scenarios used in our VM peer-to-peer evaluation. Since the GPUs and the NTBs are now attached in an expansion chassis,

the number of hops is very high when the IOMMU is enabled

Name Scenario Transfer Roots Hops

VMLoc-P2P Two GPUs installed in same, local expansion chassis. Peer-to-peer 1 7

VMRem-P2P Two GPUs installed in same, remote expansion chassis. Peer-to-peer 1 7

NatRem-P2P-IOMMU Two GPUs installed in same, remote expansion chassis. Peer-to-peer 1 7

VMLoc-RAM Two GPUs installed in same, local expansion chassis. Via local VM’s RAM 1 7

VMRem-RAM Two GPUs installed in same, remote expansion chassis. Via borrowing VM’s RAM 3 21

NatRem-RAM-IOMMU Two GPUs installed in same, remote expansion chassis. Via borrower’s RAM 3 21

1226 Cluster Computing (2020) 23:1211–1234

123

The increased latency of reading from remote RAM

corresponds with the increased number of hops. The data

path of running the VM locally (VMLoc-RAM) has only 7

hops, while the data paths of our remote native comparison

(NatRem-RAM-IOMMU) and the remote VM (VMRem-

RAM) both have 21 hops.

Our VM peer-to-peer evaluation indicate that we are

able to achieve the same performance as a local VM when

the data path is the same, and that we achieve the same

performance as running natively (with lender-side

IOMMU) even in the worst-case scenario.

7.4 Pass-through NVMe experiments

We have also performed experiments with our VM

implementation using an Intel Optane 900P NVMe disk.

We have compared the performance of the disk on a local

machine without using Device Lending, a physical bor-

rower (NatRem), and from a VM guest (VMRem). The

machines are connected back-to-back using PXH830 NTB

adapters [35]. The one-way RAM-to-RAM latency was

measured to 550–580 nanoseconds, where the NTB adds

around 350–370 nanoseconds. We have used QEMU

2.10.1 as our VM emulator, and running Ubuntu 16.04 as

the guest OS. Note that while any guest OS would be

possible, including Microsoft Windows, we have chosen

Linux in order to run the same benchmarking code on a

physical borrower, as well as locally on the lender. Device

Lending requires Linux on the host.

Figure 19 shows the bandwidth for reading 1024

sequential blocks repeated 1000 times. One block is

512 bytes. There is very little difference in the achieved

bandwidth, except for a few additional outliers for our VM

borrower (VMRem). Interestingly, we observe that the

physical borrower (NatRem) achieves slightly higher

median bandwidth than compared to the local baseline.

Latency was measured by reading 8 blocks repeated

10,000 times, each time at a random offset. Here, we

observe that the difference between running locally and on

the physical borrower is an increase of a little less than

1 microsecond. As the device now sits remotely, it has to

first reach over the NTB once in order to retrieve the I/O

commands, and then reach over the NTB again in order to

post the I/O completion. This adds 700-730 nanoseconds to

the latency, and is therefore an expected increase. We

observe that passing the disk to a VM running on the

borrower (VMRem), only increases the latency slightly

compared to the physical borrower (NatRem). Our evalu-

ation show that it is possible to borrow a remote NVMe

Fig. 17 Data paths for the different VM scenarios. Each hop slightly increases the completion latency. Because the NTB adapter is in the

expansion chassis next to the GPUs, the number of hops when the lender-side IOMMU is enabled is very high

Fig. 18 Mean round-trip latency for 100,000 ping-pongs. 99%

confidence interval. For peer-to-peer transactions, we achieve the

same latency as running locally

Fig. 19 Bandwidth and latency when reading from disk (DMA write).

We read 1024 sequential blocks for measuring bandwidth, and 8

blocks with a random offset for latency

Cluster Computing (2020) 23:1211–1234 1227

123

drive without any performance overhead beyond the added

latency of the NTB. Additionally, it shows that our KVM

extension to Device Lending is able to achieve almost the

same bandwidth and latency as a native borrower.

7.5 Image classification workload

In order to demonstrate that Device Lending is applicable

for real-world workloads, we run a GPU-intensive machine

learning task. The program we use for the tests is a typical

implementation of convolutional neural network (CNN)

training in the Python machine learning framework Keras

[37]. Keras is a higher level framework and wraps different

lower level machine learning frameworks. In our case,

Keras uses Tensorflow [38] as its backend. Keras allows

multiple GPUs to work together by replicating the machine

learning model being trained on each of the GPUs, then

splitting the model’s inputs into sub-batches which are

distributed on the GPUs. When the GPUs are done, the sub-

batches are concatenated on the CPU into one batch. This

introduces quasi-linear speedup [39]. However, as our

machine learning program can only run on a single system,

we utilize multi-GPU support in Keras by borrowing

remote GPUs and making them appear locally installed

using Device Lending.

Our real-world workload is produced by a program that

trains available models in Keras on given datasets with

given hyperparameters using transfer learning [40].

Transfer learning is a technique for training datasets, where

we use models with weights that are pre-trained on a

dataset with similar classes to the dataset we want to train

on. In our case, we use a VGG19 [41] model pre-trained on

the ImageNet [42] dataset.

Transfer learning is done in two training steps: first, we

remove the classification block of the pre-trained model,

attach a new block corresponding to the number of classes

in the dataset we want to train on, and train the new

classification block only. In the second step, we train all the

layers. For both steps, we use the stochastic gradient des-

cent optimizer available in Keras. We ran the training on an

8-classes image dataset of the gastrointestinal tract called

Kvasir [43–45].

We measured the runtime of a single epoch of the model

training on two Nvidia K40c GPUs as well as loading

images from storage and writing the results back using an

Intel Optane P4800X. While a single epoch may not give

the statistical significance needed for reliable machine

learning results, we are only interested in the system per-

formance. We used Keras 2.2.4 with a Tensorflow backend

running on an Ubuntu 16.04 installation with CUDA 9.0

cuDNN 7.1. Both GPUs and the disk were used in all

scenarios, and we also booted VMs and physical machines

from the disk. For the native remote tests (NatRem-SW and

NatRem-IOMMU) the disk was instead locally installed, in

order to boot from it. The physical host had 16 GB memory

and 6 CPU cores (Intel Xeon CPU E5-2603 v4). We

reserved 4 cores and 8 GB for the VM, and used all 6 cores

and the remaining 8 GB for the native run.

Figure 20 depicts the topology of our evaluation. When

using the multi-GPU model in Keras, the Tensorflow

backend outputs a GPU peer-to-peer matrix, indicating that

it is capable of direct DMA without bouncing via RAM.4

We have used the same configuration for local and remote

runs. As discussed in Sect. 7.3, this topology is a form of

worst-case scenario for running remote VMs because the

IOMMU address virtualization requires TLPs to be routed

through the lender’s root. At the same time, it is a best-case

scenario for native runs with direct peer-to-peer transfers,

as devices reside behind the same switch.

Figure 21 show the total runtime of the model training

for the different scenarios. For the best-case scenario,

running natively with direct data paths, we see that the

remote run (NatRem-SW) runs as fast as the local native

comparison (NatLoc). Enabling the IOMMU and forcing

traffic through the lender’s root (NatRem-IOMMU)

increases the overall runtime. We have also compared a

local VM using standard VFIO pass-through (VMLoc) to

our KVM implementation (VMRem). It is interesting to

note that the local VM runtime is higher than the remote

native using the IOMMU. This indicates that virtualization

adds some additional overhead compared to running on

bare-metal. The VMs also use less memory and CPU cores

than native. We suspect this is also the case for the remote

Fig. 20 Configuration used for our workload. The we have run a local

native (NatLoc) and local VM (VMLoc) comparison on the lender

and remote runs on the borrower (NatRem and VMRem). Note that

this topology best-case scenario for the remote native peer-to-peer

data path (NatRem-SW), while simultaneously being worst-case for

remote VMs (VMRem)

4 We also confirmed that the GPU driver sets up peer-to-peer

transfers by observing IOMMU mappings ranges.

1228 Cluster Computing (2020) 23:1211–1234

123

VM (VMRem), which means that we get virtualization

overhead in addition to the performance penalty of longer

data paths through the IOMMU.

8 Discussion

Device Lending is a mechanism for decoupling devices

from the hosts they physically reside in. Using hardware

memory mappings, we facilitate the use of remote hard-

ware resources without adding any software over-

head [1, 2, 45]. We have extended our original Device

Lending with KVM support for peer-to-peer transfers

between multiple devices passed through to a VM. In this

section, we discuss some considerations for borrowing

devices from a VM guests.

8.1 I/O address virtualization

In our performance evaluation (Sect. 7), we observed that

the data path in terms of number of hops affects the TLP

completion latency. We also observed that using the

lender-side IOMMU forces TLPs to be routed through the

CPU on the lender. Our findings also seem to match pre-

vious performance evaluations of IOMMUs [46].

When the driver and the device frequently communicate

with each other, as seen as synchronization overhead for

small DMA transfers in our evaluations using Nvidia

GPUs, it may affect performance since TLPs has to go back

and forth over NTB. For larger DMA transfers, we

observed that the significance of this delay decreases. For

peer-to-peer transfers that do not require synchronization

by the CPU, as is the case for our ping-pong evaluations,

the distance between GPU and driver is insignificant. It

should be noted that traversing the NTB adds less than half

of the latency added by InfiniBand FDR adapters [15, 21].

For native peer-to-peer transfers with PCIe switches, where

shortest-path routing is possible, we therefore argue that

Device Lending can be used with extremely low perfor-

mance overhead.

A major performance bottleneck occurs when DMA

read requests are routed through the root, as the Intel Xeon

CPUs used in our evaluations alter the read requests to

request less data at the time (from 256 to 64 bytes). This

leads to decreased utilization of the PCIe links. Since

devices may be limited by the number of read requests they

are able to keep open, the combination of poor link uti-

lization and longer data paths can drastically affect the

DMA bandwidth for some scenarios. However, we also

observed a similar effect when read requests were routed

through the CPU without the IOMMU being enabled. This

strongly indicates that routing peer-to-peer through the

CPU is a problem in general. Since the I/O address virtu-

alization is required for both local and remote pass-

through, it is worth investigating further by evaluating

other CPU architectures that implement an IOMMU, such

as AMD EPYC/Zen and IBM Power.

Our recommendation is to try to minimize the number of

hops after the CPU in order to reduce the performance

penalty of routing through the root, and to use shortest-path

peer-to-peer transfers where possible. For bare-metal bor-

rowers, this can be accomplished by disabling the IOMMU

on the lender all together. For VMs, it may be possible to

create a PCIe backplane that uses an NTB per device,

allowing the NTBs to map the guest-physical address space

for the devices rather than using an IOMMU for this.

Another possibility for avoiding IOMMU performance

penalty, is using PCIe switches and devices that support

caching of resolved virtual addresses using the standard for

this specified by PCI-SIG [34]. Note that while it is also

possible to disable the IOMMU on the borrower as well,

this requires mapping the entire address space of borrower

through the lender-side NTB and is therefore not practical

with multiple borrowers. It also has little impact on peer-

Fig. 21 Total runtime of Keras workload in different scenarios. There

is a significant performance decrease when running in a VM and

when the GPUs are remote. Note that the local VM (VMLoc)

performs worse than the native remote, indicating that there is

additional performance overhead caused by virtualization

Cluster Computing (2020) 23:1211–1234 1229

123

to-peer performance, unless one of the peering devices are

local.

8.2 VM migration

Since Device Lending decouples devices from their phys-

ical location, our KVM implementation makes it possible

to shutdown, migrate and restart a VM on a different host

in the cluster (cold migration). The guest will retain access

to the same physical devices. We demonstrated this in VM

evaluation (Sect. 7.3) and in our image classification

workload (Sect. 7.5), where the OS image with all the

installed software and device drivers resides on the same

boot disk that is being used by the remote and local VM

guests, the native remote host, and the native local host

comparison.

With proper emulator support, it would also be possible

to hot-add and hot-remove devices to a running VM

instance. Using such hot-swap functionality, migrating a

VM while it is running could be achieved by first removing

all devices before migrating and then re-attaching them

afterwards. However, this would temporarily disrupt their

use and force guest drivers to reset all devices.

A strong candidate for future improvements is looking

into real hot-migration techniques, remapping devices

while they are in use and without (or with minimal) dis-

ruption. However, such a solution would be non-trivial.

Not only would it require keeping memory consistent

during the migration warm-up, but DMA TLPs could

potentially be in-flight during the migration. A mechanism

for rerouting TLPs without violating the strict ordering

required by PCIe must be implemented, which most likely

will require hardware-level support.

8.3 Security considerations

A VM may allocate several GB of memory, which may be

scattered in physical memory. In order to conserve map-

ping resources, we use the IOMMU on the local system in

order to provide linear continuous memory ranges that are

trivially mapped over the NTB. However, pass-through

uses the IOMMU in order to match I/O addresses with the

guest physical memory layout. Furthermore, VFIO requires

that passed-through devices are placed in an IOMMU

domain per VM, in order to provide isolation. In our case,

this is not possible since we already use the IOMMU, and

the virtual device is in another domain.

However, we use the IOMMU on the lender instead to

map I/O virtual addresses to guest physical memory layout

and provide the necessary memory isolation. This guar-

antees that the device is only able to access the specific

DMA windows to the VM it is assigned to, and the

IOMMU on the borrower guarantees that the same

windows can only be used to access the VM memory. Our

solution therefore provides the same level of memory

isolation as standard pass-through. It is also not possible for

software running in the VM to access memory outside the

device memory regions of assigned devices.

8.4 Interrupt forwarding

For VMs, we register an interrupt handler on the device-

side lender and forward interrupts to the local borrowing

system, as explained in Sect. 5. A benefit with this

approach is that we are able to support all types of PCIe

interrupts, legacy, MSI and MSI-X, while native Device

Lending only supports MSI and MSI-X. However, this

introduces additional latency and involves software han-

dling on the lender.

An evaluation is needed to determine what impact

increased latency for interrupts may have on the perfor-

mance of device drivers. As this impact most likely is not

negligible, a candidate for improvement is therefore to use

the same approach as bare-metal Device Lending for MSI

and MSI-X, and map these types of interrupts over the

NTB. This would remove any special software handling

other than on the borrowing system alone, where we still

need to use the eventfd API in order to notify the VM.

9 Conclusion

In this paper, we presented how we have extended our

Device Lending implementation with support for the KVM

hypervisor, allowing pass-through of physically remote

devices to local VM guests. By dynamically probing the

available memory and fully supporting both MSI and MSI-

X interrupts, we have greatly improved the usability of our

previous Device Lending implementation [2]. With

dynamic memory layout detection, it is possible to com-

pose custom configurations of distributed I/O resources in a

PCIe cluster, for both native and virtual machines. Our

experimental evaluations prove that we are able to com-

pose flexible configurations of remote devices and enable

dynamic time-sharing of resources using Device Lending.

Being able to scale by dynamically reassigning devices to

machines that currently need them, makes it possible to

support a flexible I/O infrastructure that meet processing

requirements and at the same time makes it possible to

optimize resource utilization.

We have also implemented support for borrowing mul-

tiple devices from different lenders and enabled peer-to-

peer access between them, allowing remote I/O resources

to be used as if they were attached to the same local fabric.

This allows physically remote devices to be used by the

local system, without requiring any modifications to either

1230 Cluster Computing (2020) 23:1211–1234

123

device drivers or applications and without adding any

software overhead in the data path. As part of this evalu-

ation, we have investigated the impact of I/O address vir-

tualization on performance. Specifically, we have

performed bandwidth and latency measurements for dif-

ferent data paths. By enabling peer-to-peer transfers and

routing shortest path between devices, we demonstrate that

native Device Lending does not add a performance over-

head in the data path beyond what is expected for longer

paths. However, our results indicate that a major perfor-

mance bottleneck occurs when DMA read requests traverse

the CPU root, as is the case when the IOMMU on the

lender is enabled. The Intel Xeon CPUs used in our eval-

uation alters the requests in a way that leads to poor link

utilization. This impacts our VM implementation, as it

requires the use of device-side IOMMU in order to map the

device to guest-physical address space. This warrants fur-

ther evaluations of other CPU architectures.

We have also run a real-world medical imaging classi-

fication application with borrowed remote hardware

resources. We compare a best-case bare-metal topology for

local and remote devices, and show that we achieve close

to local performance using Device Lending. We have also

compared our newly implemented VM support to a local

VM, and show that it is possible to run such a workload in

a VM using remote physical devices. We argue that being

able to run the exact same code using remote GPUs and

hard disks as if they were locally installed, thus making use

of a complex machine learning framework with one of the

most complex GPU implementations on the market,

demonstrate the strength of Device Lending.

Acknowledgements This work has been performed mainly in the

context of the BIA project PCIe (#235530) funded by the Research

Council of Norway, with contributions from the LADIO project (EU

Horizon 2020 #731970). The authors would like to thank Stig Magnus

Baugstø, Halvor Kielland-Gyrud, Roy Nordstrøm and Hugo Koh-

mann at Dolphin Interconnect Solutions. We also thank Kristoffer

Robin Stokke for feedback on the manuscript.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Kristiansen, L.B., Markussen, J., Stensland, H.K., Riegler, M.,

Kohmann, H., Seifert, F., Nordstrøm, R., Griwodz, C., Halvorsen,

P.: Device Lending in PCI Express Networks. In: Proceedings of

International Workshop on Network and Operating Systems

Support for Digital Audio and Video, NOSSDAV, pp. 10:1–10:6

(2016). https://doi.org/10.1145/2910642.2910650

2. Markussen, J., Kristiansen, L.B., Stensland, H.K., Seifert, F.,

Griwodz, C., Halvorsen, P.: Flexible device sharing in pcie

clusters using device lending. In: Proceedings of the International

Conference on Parallel Processing Companion, ICPP Companion,

pp. 48:1–48:10 (2018). https://doi.org/10.1145/3229710.3229759

3. Fountain, T., McCarthy, A., Peng, F.: PCI express: an overview

of PCI express, cabled PCI express and PXI express. In: Pro-

ceedings of International Conference on Accelerator & Large

Experimental Physics Control Systems, ICALEPCS (2005)

4. Peripheral Component Interconnect Special Interest Group (PCI-

SIG): PCI Express 3.1 Base Specification (2010). https://pcisig.

com/specifications

5. Abramson, D., Jackson, J., Muthrasanallur, S., Neiger, G., Reg-

nier, G., Sankaran, R., Schoinas, I., Uhlig, R., Vembu, B., Wei-

gert, J.: Intel virtualization technology for directed I/O. Intel

Technol. J. 10(03) (2006) https://doi.org/10.1535/itj.1003.02
6. Linux IOMMU Support. https://www.kernel.org/doc/Documenta

tion/Intel-IOMMU.txt

7. Nvidia Virtual GPU Technology (vGPU). http://www.nvidia.

com/object/virtual-gpus.html

8. Peripheral Component Interconnect Special Interest Group (PCI-

SIG): Single-root I/O Virtualization and Sharing Specification

(2010). https://www.pcisig.com/specifications/iov/single-root/

9. Ravindran, M.: Extending Cabled PCI Express to Connect

Devices with Independent PCI Domains. In: Proceedings of the

IEEE Systems Conference, SysCon, pp. 1–7 (2008). https://doi.

org/10.1109/SYSTEMS.2008.4519048

10. Regula, J.: Using Non-transparent Bridging in PCI Express

Systems. PLX Technology Inc, Sunnyvale (2004)

11. Sullivan, M.J.: Intel Xeon Processor C5500/C3500 Series Non-

Transparent Bridge. Specification, Intel Corporation (2010)

12. Saito, K., Anai, K., Igarashi, K., Nishikawa, T., Himeno, R.,

Yoguchi, K.: ATM bus system (1998)

13. Alnæs, K., Kristiansen, E.H., Gustavson, D.B., James, D.V.:

Scalable coherent interface. In: Proceedings of International

Conference on Computer Systems and Software Engineering,

CompEuro, pp. 446–453 (1990). https://doi.org/10.1109/

CMPEUR.1990.113656

14. The Case Against iWARP (2015). https://www.chelsio.com/wp-

content/uploads/resources/iWARP-Myths.pdf

15. RoCE vs. iWARP Competitive Analysis (2017). http://www.mella

nox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf

16. Trivedi, A., Metzler, B., Stuedi, P.: A case for RDMA in clouds.

In: Proceedings of the Second Asia-Pacific Workshop on Sys-

tems, APSys, pp. 17:1–17:5 (2011). https://doi.org/10.1145/

2103799.2103820

17. Huang, J., Ouyang, X., Jose, J., Wasi-Ur-Rahman, M., Wang, H.,

Luo, M., Subramoni, H., Murthy, C., Panda, D.K.: High-perfor-

mance design of hbase with RDMA over InfiniBand. In: Pro-

ceedings of International Parallel and Distributed Processing

Symposium, IPDPS, pp. 774–785 (2012). https://doi.org/10.1109/

IPDPS.2012.74

18. Jiang, W., Liu, J., Jin, H.W., Panda, D.K., Gropp, W., Thakur, R.:

High performance MPI-2 one-sided communication over Infini-

Band. In: Proceedings of International Symposium on Cluster

Computing and the Grid, CCGrid, pp. 531–538 (2004). https://

doi.org/10.1109/CCGrid.2004.1336648

19. Duato, J., Pena, A., Silla, F., Mayo, R., Quintana-Ortı́, E.:

rCUDA: reducing the number of GPU-based accelerators in high

performance clusters. In: Proceedings of International Conference

on High Performance Computing and Simulation, HPCS

pp. 224–231 (2010). https://doi.org/10.1109/HPCS.2010.5547126

20. Venkatesh, A., Subramoni, H., Hamidouche, K., Panda, D.K.: A

high performance broadcast design with hardware multicast and

GPUDirect RDMA for streaming applications on Infiniband

clusters. In: Proceedings of International Conference on High

Cluster Computing (2020) 23:1211–1234 1231

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2910642.2910650
https://doi.org/10.1145/3229710.3229759
https://pcisig.com/specifications
https://pcisig.com/specifications
https://doi.org/10.1535/itj.1003.02
https://www.kernel.org/doc/Documentation/Intel-IOMMU.txt
https://www.kernel.org/doc/Documentation/Intel-IOMMU.txt
http://www.nvidia.com/object/virtual-gpus.html
http://www.nvidia.com/object/virtual-gpus.html
https://www.pcisig.com/specifications/iov/single-root/
https://doi.org/10.1109/SYSTEMS.2008.4519048
https://doi.org/10.1109/SYSTEMS.2008.4519048
https://doi.org/10.1109/CMPEUR.1990.113656
https://doi.org/10.1109/CMPEUR.1990.113656
https://www.chelsio.com/wp-content/uploads/resources/iWARP-Myths.pdf
https://www.chelsio.com/wp-content/uploads/resources/iWARP-Myths.pdf
http://www.mellanox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf
http://www.mellanox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf
https://doi.org/10.1145/2103799.2103820
https://doi.org/10.1145/2103799.2103820
https://doi.org/10.1109/IPDPS.2012.74
https://doi.org/10.1109/IPDPS.2012.74
https://doi.org/10.1109/CCGrid.2004.1336648
https://doi.org/10.1109/CCGrid.2004.1336648
https://doi.org/10.1109/HPCS.2010.5547126

Performance Computing, HiPC (2014). https://doi.org/10.1109/

HiPC.2014.7116875

21. Rosetti, D.: Benchmarking GPUDirect RDMA on Modern Server

Platforms (2014). http://devblogs.nvidia.com/parallelforall/

benchmarking-gpudirect-rdma-on-modern-server-platforms/

22. Daglis, A., Novaković, S., Bugnion, E., Falsafi, B., Grot, B.:

Manycore network interfaces for in-memory rack-scale comput-

ing. ACM SIGARCH Comput. Archit. News 43(3), 567–579

(2015). https://doi.org/10.1145/2872887.2750415

23. Costa, P., Ballani, H., Razavi, K., Kash, I.: R2c2: a network stack

for rack-scale computers. ACM SIGCOMM Comput. Commun.

Rev. 45(4), 551–564 (2015). https://doi.org/10.1145/2829988.

2787492

24. Whitby-Strevens, C.: The transputer. ACM SIGARCH Comput.

Archit. News 13(3), 292–300 (1985). https://doi.org/10.1145/

327070.327269

25. Hayes, J.P., Mudge, T., Stout, Q.F., Colley, S., Palmer, J.: A

microprocessor-based hypercube supercomputer. IEEE Micro

6(5), 6–17 (1986). https://doi.org/10.1109/MM.1986.304707

26. Peripheral Component Interconnect Special Interest Group (PCI-

SIG): Multi-root I/O Virtualization and Sharing Specification

(2008). https://www.pcisig.com/specifications/iov/multi-root/

27. Suzuki, J., Hidaka, Y., Higuchi, J., Baba, T., Kami, N., Yoshi-

kawa, T.: Multi-root Share of Single-Root I/O Virtualization (SR-

IOV) Compliant PCI Express Device. In: Proceedings of Sym-

posium on High Performance Interconnects, HOTI, pp. 25–31

(2010). https://doi.org/10.1109/HOTI.2010.21

28. Tu, C.C., Lee, Ct, Chiueh, Tc: Secure I/O device sharing among

virtual machines on multiple hosts. ACM SIGARCH Comput.

Archit. News 41(3), 108–119 (2013). https://doi.org/10.1145/

2508148.2485932

29. Tu, C.C., Chiueh, T.c.: Seamless fail-over for PCIe switched

networks. In: Proceedings of the International Systems and

Storage Conference, SYSTOR, pp. 101–111 (2018). https://doi.

org/10.1145/3211890.3211895

30. Dilk, P.: Microsemi Switchtec PAX: Advanced fabric gen3 pcie

switch (2017). https://www.youtube.com/watch?v=OB7OuektR0E

31. Wong, H.: PCI express multi-root switch reconfiguration during

system operation (2011)

32. VFIO—‘‘Virtual Function I/O’’. https://www.kernel.org/doc/Doc

umentation/vfio.txt

33. Jia, N., Wankhede, K.: VFIO Mediated Devices. https://www.

kernel.org/doc/Documentation/vfio-mediated-device.txt

34. Peripheral Component Interconnect Special Interest Group (PCI-

SIG): Address Translation Services Revision 1.1 (2009). https://

www.pcisig.com/specifications/iov/ats/

35. PXH830 Gen3 PCI Express NTB Host Adapter. http://www.dol

phinics.no/products/PXH830.html

36. CUDA Toolkit Documentation v10.1.105 (2019). http://docs.nvi

dia.com/cuda/

37. Keras (2015). https://keras.io

38. TensorFlow: Large-scale machine learning on heterogeneous

systems (2015). https://www.tensorflow.org/

39. Keras documentation: multi_gpu_model (2015). https://keras.io/

utils/#multi_gpu_model

40. Borgli, R., Halvorsen, P., Riegler, M., Stensland, H.K.: Auto-

matic hyperparameter optimization in keras for the mediaeval

2018 medico multimedia task. In: Working Notes Proceedings of

the MediaEval 2018 Workshop (2018)

41. Simonyan, K., Zisserman, A.: Very deep convolutional networks

for large-scale image recognition. CoRR arXiv (2014). arXiv:abs/

1409.1556

42. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.:

ImageNet: A Large-Scale Hierarchical Image Database. In: Pro-

ceedings of the Conference on Computer Vision and Pattern

Recognition, CVPR (2009). https://doi.org/10.1109/CVPR.2009.

5206848

43. Pogorelov, K., Randel, K.R., Griwodz, C., Eskeland, S.L.,

de Lange, T., Johansen, D., Spampinato, C., Dang-Nguyen, D.T.,

Lux, M., Schmidt, P.T., Riegler, M., Halvorsen, P.: KVASIR: A

multi-class image dataset for computer aided gastrointestinal

disease detection. In: Proceedings of the ACM Multimedia Sys-

tems Conference, MMSys, pp. 164–169 (2017). https://doi.org/

10.1145/3083187.3083212

44. Hicks, S.A., Riegler, M., Pogorelov, K., Ånonsen, K.V.,

de Lange, T., Johansen, D., Jeppsson, M., Randel, K.R., Eske-
land, S., Halvorsen, P.: Dissecting deep neural networks for better

medical image classification and classification understanding. In:

Proceedings of International Symposium on Computer-Based

Medical Systems, CBMS (2018). https://doi.org/10.1109/CBMS.

2018.00070

45. Pogorelov, K., Ostroukhova, O., Jeppsson, M., Espeland, H.,

Griwodz, C., de Lange, T., Johansen, D., Riegler, M., Halvorsen,

P.: Deep learning and hand-crafted feature based approaches for

polyp detection in medical videos. In: Proceedings of Interna-

tional Symposium on Computer-Based Medical Systems, CBMS,

pp. 381–386 (2018). https://doi.org/10.1109/CBMS.2018.00073

46. Neugebauer, R., Antichi, G., Zazo, J.F., Audzevich, Y., López-

Buedo, S., Moore, A.W.: Understanding PCIe performance for

end host networking. In: Proceedings of the ACM Special Interest

Group on Data Communication, SIGCOMM, pp. 327–341

(2018). https://doi.org/10.1145/3230543.3230560

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Jonas Markussen Jonas Mar-

kussen is a PhD student at

Simula Research Laboratory,

where his research is focused on

new ways to use Non-Trans-

parent Bridges in order to opti-

mize data transfer paths and

memory accessing by using

their unique potential for map-

ping memory. Since 2018, Jonas

has been working as a software

architect for Dolphin Intercon-

nect Solutions, continuing his

work from his PhD. His

research interests are distributed

shared-memory applications, computer networks and cluster

interconnects.

1232 Cluster Computing (2020) 23:1211–1234

123

https://doi.org/10.1109/HiPC.2014.7116875
https://doi.org/10.1109/HiPC.2014.7116875
http://devblogs.nvidia.com/parallelforall/benchmarking-gpudirect-rdma-on-modern-server-platforms/
http://devblogs.nvidia.com/parallelforall/benchmarking-gpudirect-rdma-on-modern-server-platforms/
https://doi.org/10.1145/2872887.2750415
https://doi.org/10.1145/2829988.2787492
https://doi.org/10.1145/2829988.2787492
https://doi.org/10.1145/327070.327269
https://doi.org/10.1145/327070.327269
https://doi.org/10.1109/MM.1986.304707
https://www.pcisig.com/specifications/iov/multi-root/
https://doi.org/10.1109/HOTI.2010.21
https://doi.org/10.1145/2508148.2485932
https://doi.org/10.1145/2508148.2485932
https://doi.org/10.1145/3211890.3211895
https://doi.org/10.1145/3211890.3211895
https://www.youtube.com/watch?v=OB7OuektR0E
https://www.kernel.org/doc/Documentation/vfio.txt
https://www.kernel.org/doc/Documentation/vfio.txt
https://www.kernel.org/doc/Documentation/vfio-mediated-device.txt
https://www.kernel.org/doc/Documentation/vfio-mediated-device.txt
https://www.pcisig.com/specifications/iov/ats/
https://www.pcisig.com/specifications/iov/ats/
http://www.dolphinics.no/products/PXH830.html
http://www.dolphinics.no/products/PXH830.html
http://docs.nvidia.com/cuda/
http://docs.nvidia.com/cuda/
https://keras.io
https://www.tensorflow.org/
https://keras.io/utils/#multi_gpu_model
https://keras.io/utils/#multi_gpu_model
http://arxiv.org/abs/abs/1409.1556
http://arxiv.org/abs/abs/1409.1556
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/3083187.3083212
https://doi.org/10.1145/3083187.3083212
https://doi.org/10.1109/CBMS.2018.00070
https://doi.org/10.1109/CBMS.2018.00070
https://doi.org/10.1109/CBMS.2018.00073
https://doi.org/10.1145/3230543.3230560

Lars Bjørlykke Kristiansen Lars

Bjørlykke Kristiansen is a soft-

ware architect at Dolphin Inter-

connect Solutions. He got his

master’s degree in Informatics

at the University of Oslo, Nor-

way in 2015 where his thesis

laid the foundation for Device

Lending. At Dolphin he contin-

ues his work on Device Lend-

ing, as well as exploring

innovative new ways to exploit

the unique shared memory

capabilites of PCIe clusters and

Non-Transparent Briding.

Rune Johan Borgli Rune Johan

Borgli is a Ph.D. student at

Simula Research Laboratory.

He received his master’s degree

from the University of Oslo in

2018, where his master thesis

topic was on hyperparameter

optimization using Bayesian

optimization on transfer learn-

ing for medical image classifi-

cation. His research interests are

machine learning workflows

and pipelines, image processing,

machine learning infrastructure

optimization, and secure and

privacy-oriented data handling. He is currently working on his Ph.D.

thesis which will explore secure machine learning processing of

privacy-sensitive data.

Håkon Kvale Stensland Håkon

Kvale Stensland is a senior

researcher at Simula Research

Laboratory. He finished his

master degree (MSc) in 2006

and received his doctoral degree

(Ph.D.) in 2015 from the

Department of Informatics,

University of Oslo. At Simula,

he is the deputy head of the

Department of Advanced Com-

puting and System Performance.

From Simula, he is also leading

the collaboration with Dolphin

Interconnect Solutions, where

we research sharing of GPUs and other IO devices between multiple

machines connected in a PCI Express network. Håkon is also an

adjunct associate professor at the University of Oslo, Department of

Informatics, where he is involved in teachings and supervising Ph.D.

and Master students.

Friedrich Seifert Friedrich Sei-

fert obtained his master’s degree

in Computer Science (Dipl.-

Inf.) from Chemnitz University

of Technology, Germany, in

1999. He is working as Senior

System and Software Architect

for Dolphin Interconnect Solu-

tions, where he focuses on

developing innovative concepts

for building compute and I/O

clusters using Non-Transparent

Bridging functionality found in

state-of-the-art PCIe chipsets.

Michael Riegler Michael Riegler

is a senior researcher at Simu-

laMet. He received his master’s

degree from Klagenfurt

University with distinction and

finished his PhD at the Univer-

sity of Oslo in two and a half

years. His research interests are

medical multimedia data analy-

sis and understanding, image

processing, image retrieval,

parallel processing, crowd-

sourcing, social computing and

user intent. He is involved in

several initiatives like the

MediaEval Benchmarking initiative for Multimedia Evaluation,

which runs this year the Medico task (automatic analysis of colono-

scopy videos). Furthermore he is part of an expert group for the

Norwegian Council of Technology on Machine Learning for

Healthcare reporting directly to the Norwegian Government.

Carsten Griwodz Carsten Gri-

wodz is professor at the

University of Oslo, Norway, and

co-founder of ForzaSys AS, a

social media startup for sports.

He received his doctoral degree

from Darmstadt University of

Technology, Germany in 2000.

His research interest is the per-

formance of multimedia sys-

tems and his goal to understand

how users can become suffi-

ciently immersed in an experi-

ence depending on their goals

and context. He explores

research advances in fields ranging from operating system and net-

works to computer vision to understand and reach the point of suf-

ficient immersion.

Cluster Computing (2020) 23:1211–1234 1233

123

Pål Halvorsen Pål Halvorsen is a

chief research scientist at Sim-

ulaMet, a professor at OsloMet

University, a professor II at

University of Oslo, Norway, and

the CEO of ForzaSys AS. He

received his doctoral degree

(Dr.Scient.) in 2001. His

research focuses mainly at dis-

tributed multimedia systems

including operating systems,

processing, storage and retrie-

val, communication and distri-

bution from a performance and

efficiency point of view. He also

is a member of the IEEE and ACM.

1234 Cluster Computing (2020) 23:1211–1234

123

	Flexible device compositions and dynamic resource sharing in PCIe interconnected clusters using Device Lending
	Abstract
	Introduction
	PCIe overview
	Memory addressing and forwarding
	Virtualization support and pass-through
	Non-transparent bridging

	Related work
	Distributed I/O using RDMA
	Virtualization approaches
	Partitioning the fabric

	Device lending
	Supporting virtual machine borrowers
	Supporting multiple devices and peer-to-peer
	Performance evaluation
	IOMMU performance penalty
	Native peer-to-peer evaluation
	Bare-metal bandwidth evaluation
	Bare-metal latency evaluation

	VM peer-to-peer evaluation
	VM bandwidth evaluation
	VM latency evaluation

	Pass-through NVMe experiments
	Image classification workload

	Discussion
	I/O address virtualization
	VM migration
	Security considerations
	Interrupt forwarding

	Conclusion
	Acknowledgements
	References

