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Abstract: Using recycled aggregate in concrete is one of the best ways to reduce construction pollu-
tion and prevent the exploitation of natural resources to provide the needed aggregate. However, 
recycled aggregates affect the mechanical properties of concrete, but the existing information on the 
subject is less than what the industry needs. Compressive strength, on the other hand, is the most 
important mechanical property of concrete. Therefore, having predictive models to provide the re-
quired information can be helpful to convince the industry to increase the use of recycled aggregate 
in concrete. In this research, three different optimization algorithms including genetic algorithm 
(GA), salp swarm algorithm (SSA), and grasshopper optimization algorithm (GOA) are employed 
to be hybridized with artificial neural network (ANN) separately to predict the compressive 
strength of concrete containing recycled aggregate, and a M5P tree model is used to test the effi-
ciency of the ANNs. The results of this study show the superior efficiency of the modified ANN 
with SSA when compared to other models. However, the statistical indicators of the hybrid ANNs 
with SSA, GA, and GOA are so close to each other. 

Keywords: concrete; compressive strength; artificial neural network; genetic algorithm; salp swarm 
algorithm; grasshopper optimization algorithm; M5P tree 
 

1. Introduction 
Every year, a massive proportion of construction and demolished waste (C&DW) is 

produced all around the world. For instance, the USA produces around 250 million tons 
[1], China produces almost two billion tons [2], and the European Union is responsible for 
about 900 million tons of C&DW [3]. Using C&DWs as recycled aggregate has two bene-
fits. First, it reduces the amount of C&DW that needs to be disposed. Second, it reduces 
the demand for regular aggregate. 

Recycled aggregate as an environmental alternative in concrete projects is a promis-
ing environmental solution to reduce the carbon footprint of construction projects. 
Sourced from C&DW, it comes with varying properties depending on the type of the 
structure being demolished/built. As in some buildings, the dominant material used 
might be timber, concrete, or steel which ultimately changes the portion of recycled ag-
gregate. The properties of aggregates vary a lot depending on their source and the man-
ufacturing process. The influence of these two factors, i.e., the source and the process, is 
mainly on the porosity, water absorption, and saturated surface dried ratio, all of which 
significantly affect the final performance of concrete, made with these aggregates [3]. In 
most of the cases, a poor mechanical performance results after using recycled aggregate 
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in concrete and that is the major reason behind the lack of tendency from the consumer’s 
perspective in using more of this environmental alternative [4–7].  

As the amount of recycled aggregate that used in concrete increases, the elastic mod-
ulus, compressive strength and density of the concrete decrease [8–11]. However, the use 
of recycled aggregate is allowed in specific amounts in some standards [8]. On the other 
hand, in case of service life and durability, there are some studies that showed these prop-
erties of concrete with recycled aggregate are not as good as those of conventional concrete 
[12,13] while others concluded that concrete with recycled aggregate has better durability 
than conventional concrete [14]. While there is no commercial approach for the use of 
high-quality recycled aggregate, the consumers can still be motivated to use more of re-
cycled aggregate upon the availability of more data.  

Artificial intelligence and data mining techniques have proven to be solutions to pro-
vide the end users with a reliable information in regards to the mechanical properties of 
concrete. Recently, predictive models based on artificial intelligence methods have been 
used to forecast the mechanical properties of concrete and predict the effect of changes in 
its mixture design on its behavior [15–57]. For instance, Behnood and Golafshani [37], has 
used M5P three model to estimate mechanical properties of concrete containing used 
foundry sand. Their results show that the M5P three model has an acceptable performance 
to predict the properties of concrete. Zhang et al. [23] have developed a model by hybrid-
izing beetle antennae search (BAS) and multi-output least square support vector regres-
sion (MOLSSVR) to predict concrete’s compressive strength (CS) and permeability coeffi-
cient of pervious. The outcomes of this research indicated that their proposed model per-
forms better than support vector regression (SVR), MOLSSVR, logistic regression, and 
modified ANN with firefly algorithm. In another research, Ashrafian et al. [54] used chi-
square automatic interaction detection, M5P tree model, M5rule, and random forest to 
forecast mechanical properties of roller-compacted concrete pavement. It was observed 
that the predicted values of random forest had lower errors and higher correlation in com-
parison with other models. Kandiri et al. [40] developed a hybrid ANN with multi-objec-
tive salp swarm algorithm to estimate CS of concrete with ground granulated blast fur-
nace slag. In that research, it was showed that 13 out of 19 ANNs outperformed M5P tree 
model. In another Article, by hybridizing ANFIS and ANN with grey wolf optimizer, Go-
lafshani et al. [49] showed that an ANN-based model was more efficient than a modified 
ANFIS. Recently, probabilistic approaches have been used to obtain the uncertainties that 
influence concrete characteristics [58–61]. For instance, Ramezani et al. [58] used the Kelly-
Tyson theory to propose a probabilistic model for predicting the flexural strength of car-
bon nanotubes–cement nanocomposites. The results showed that the proposed model is 
able to obtain the experimental observation with an acceptable performance.  

However, ANN’s performance is directly affected by its architecture. The number of 
its hidden layers and neurons in them is constant for each ANN. In fact, once the network 
is set, these parameters are unchangeable. Usually, these parameters are obtained by trial-
and-error method, in which a lot of time is spent on reaching the optimum architecture, 
and sometimes obtaining the optimum architecture is impossible. Therefore, an algorithm 
that can optimize an ANN architecture is needed. In this study, ANN’s architecture is 
optimized with three optimization algorithms including grasshopper optimization, salp 
swarm algorithm, and genetic algorithm. Then, the results of these models are compared 
with M5P tree model, which is a classification-based regression model. To develop the 
models, data had been collected from 12 different scientific resources all with mutual mix-
ing and experimental methods to avoid inconsistency of the output analysis [62–71]. The 
next section explains the data gathering procedure followed by a section of describing 
optimization methods, ANN, the modified proposed models, and M5P three model. After 
that, the results are analyzed and compared with each other. 
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2. Data Gathering 
For developing a predictive model, there is a need for a valid dataset. The dataset 

needs to include all the parameters, which are possible to be effective on the outputs as 
inputs, except those that are constant among all records. In the present research, a dataset 
including 234 patterns was collected from literature [62–68,70–75]. In all patterns, the cur-
ing condition were the same, and the used cement was ordinary Portland cement (OPC). 
Moreover, the superplasticizer (SP) in all mixes was Polycarboxylican, and the type of 
specimen in all recorded patterns were cube with the same size (100 mm by 100 mm). The 
inputs of the models in this study are the testing age (TA), the amount of OPC, sand (S), 
coarse aggregate (CA), fine aggregate (FA), the ratio of water to cement (W/C), superplas-
ticizer to cement by percentage (SP/C), the ratio of recycled coarse aggregate to total coarse 
aggregate (CRA), and the ratio of recycled fine aggregate to total fine aggregate (FRA). 
The only output variable of the models is the CS. Figure 1 shows the histogram of the 
inputs and output variables. Furthermore, the anatomical statistics of the gathered dataset 
are represented in Table 1. 

Table 1. Anatomical statistics of the inputs and output. 

Variable Min Max Mean Standard Deviation Skewness Kurtosis 
OPC (kg/m3) 262.00 460.00 386.68 39.35 −0.38 −0.07 

W/C 0.34 0.77 0.55 0.09 −0.27 −0.02 
CA (kg/m3) 520.00 1295.00 877.55 222.53 −0.13 −1.66 
FA (kg/m3) 0.00 364.00 154.98 165.06 0.16 −1.93 

CRA 0.00 1.00 0.47 0.40 0.19 −1.53 
FRA 0.00 1.00 0.21 0.35 1.42 0.45 

Sand (kg/m3) 492.00 1065.00 781.96 144.13 0.24 −1.41 
SP/C (%) 0.00 1.62 0.04 0.26 6.04 34.79 

Age (Days) 3.00 28.00 13.56 10.74 0.57 −1.60 
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Figure 1. Output and input variables’ histogram: (a) ages of samples, (b) the amount of OPC, (c) the amount of sand, (d) 
the amount of coarse aggregate, (e) the amount of fine aggregate, (f) the ratio of water to cement, (g) the ratio of super-
plasticizer to cement by percentage, (h) the ratio of recycled coarse aggregate to total coarse aggregate, (i) the ratio of 
recycled fine aggregate to total fine aggregate, and (j) compressive strength. 



Appl. Sci. 2021, 11, 485 5 of 19 
 

3. Optimization Algorithms 
Big optimization problems with many parameters cannot be solved by accurate 

mathematically methods. Therefore, heuristic and metaheuristic algorithms are served to 
find the best answer possible in a convenient time. Metaheuristic algorithms that are de-
veloped inspired by nature are the most popular ones [30,40]. Most of these algorithms 
include exploration and exploitation. In the exploration phase the possible solutions that 
are far from each other are studied. In the exploitation phase, the possible solutions that 
are close are checked. In fact, exploration phase helps the algorithm to avoid local opti-
mums. 

3.1. Genetic Algorithm (GA) 
The genetic algorithm is a metaheuristic algorithm for solving optimization problems 

which was proposed by John Holland [76]. In this algorithm, data are recorded in chro-
mosomes, and each individual’s chromosomes is allocated to a pattern. Every two indi-
viduals make two offspring by crossover and mutation methods. GA includes mutation 
and crossover that are responsible for exploration and exploitation phases, respectively. 
A number of individuals equal to the number of the initial population are going to survive 
based on their fitness functions. In other words, the fitness value of each individual (par-
ents and offspring) are calculated and those who have better fitness value have better 
chances to live. In this study, the survivors are selected by roulette wheel. In this method, 
the chance of surviving chance is defined as follow: 

𝑋𝑋𝑘𝑘 =
1 − 1

𝐹𝐹𝑘𝑘
𝑛𝑛

 (1) 

where, 𝐹𝐹𝑘𝑘 is the fitness function for the kth individual, 𝑋𝑋𝑘𝑘 is the probability of choosing 
kth individual, n is the population size, and it is obvious that ∑ 𝑋𝑋𝑘𝑘𝑛𝑛

𝑘𝑘=1 = 1. Algorithm 1 
represents different steps of a GA algorithm. This algorithm has been used to train an 
ANN in a number of previous studies [17,32,44,47,57,77]. 

Algorithm 1. Pseudocode of genetic algorithm. 

1: Generate initial population 
2: i = 1 
3: while (i < number of iterations) 
4:   Calculate the fitness function of the each individual 
5:   Select parents 
6:   Recombine pairs of parents 
7:   Create offspring from parents via crossover 
8:   Apply mutation to offspring 
9: end while 
10: Return the individuals that obtain the best fitness 

3.2. Salp Swarm Algorithm (SSA) 
Salps belong to Salpidae group, which are look like jellyfishes, with a body shape like 

transparent barrel [78]. Usually, they tend to create a chain to have fast coordination for 
finding food. SSA is inspired by their swarm intelligence. The salp chain has a leader, 
which is the salp at the front, and followers, which are the rest of the group. The leader is 
responsible for exploration and the followers handle the exploitation phase. Each salp has 
a position, which is defined in a search space with n dimensions, where n is the decision 
variables’ number in the optimization problem. The following equation updates the 
leader position.  
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𝑃𝑃𝑟𝑟1 = �
𝐹𝐹𝑃𝑃𝑗𝑗 + 𝑑𝑑1�(𝑈𝑈𝑈𝑈𝑟𝑟 − 𝐿𝐿𝑈𝑈𝑟𝑟)𝑑𝑑2 + 𝐿𝐿𝑈𝑈𝑟𝑟�     𝑑𝑑3 ≥ 0
𝐹𝐹𝑃𝑃𝑗𝑗 − 𝑑𝑑1�(𝑈𝑈𝑈𝑈𝑟𝑟 − 𝐿𝐿𝑈𝑈𝑟𝑟)𝑑𝑑2 + 𝐿𝐿𝑈𝑈𝑟𝑟�     𝑑𝑑3 < 0

  (2) 

where 𝑃𝑃𝑟𝑟1 is rth dimension of the leader position, 𝐹𝐹𝑃𝑃𝑗𝑗 is the position of the food, 𝑈𝑈𝑈𝑈𝑟𝑟  
and 𝐿𝐿𝑈𝑈𝑟𝑟  are the upper and the lower bounds in the rth dimension, respectively. In addi-
tion, 𝑑𝑑1 balances exploration and exploitation phases; 𝑑𝑑2 and 𝑑𝑑3 are random numbers 
in [0,1]. 𝑑𝑑1 is calculated as follows: 

𝑑𝑑1 = 2𝑒𝑒−(4𝑡𝑡𝑇𝑇 )2 (3) 

where 𝑇𝑇 is the maximum number of iterations and 𝑡𝑡 represents the current iteration. The 
position of the followers are calculated as follows: 

𝑉𝑉𝑟𝑟𝑖𝑖 =
1
2

(𝑉𝑉𝑟𝑟𝑖𝑖 + 𝑉𝑉𝑟𝑟𝑖𝑖−1) (4) 

where 𝑉𝑉𝑟𝑟𝑖𝑖 is position of the ith salp in the rth dimension. Now, it is possible to simulate 
the salp swarm. Algorithm 2 illustrates pseudo cod of SSA. This algorithm has been used 
to train an ANN in a number of previous studies [35,40,43,79]. 

Algorithm 2. Pseudocode of SSA. 

1: Initiate salp population considering the upper and lower bounds 
2: i = 1 
3: while (i ≤ number of iterations) 
4:  Calculate fitness function for each salp 
5:  Choose the best salp as the food source 
6:  Determine the value of d1 using Equation (3) 
7:  for each salp 
8:      if (i = 1) 
9:         Update the position of the leading salp by Equation (2) 
10:     else 
11:        Update the position of the follower salp by Equation (4) 
12:     end 
13:  end 
14:  Correct the positions of the salps considering upper and lower bounds 
15: end 
16: Return the food source 

3.3. Grasshopper Optimization Algorithm (GOA) 
Grasshoppers are kinds of insects that are observed individually in nature. They live 

in a huge swarm in both nymph and adulthood phases [80,81]. In contrast to their nymph 
phase in which their swarm takes move in small steps, in adulthood phase they take long-
range steps. The GOA algorithm is defined based on their behavior where the small steps 
are considered for exploitation phase and big steps are used for exploration phase. Like 
SSA, every grasshopper search agent has a position (𝑋𝑋𝑗𝑗) made of n-dimension, which is 
defined as follows:  

𝑋𝑋𝑗𝑗 = 𝑐𝑐1𝑆𝑆𝑗𝑗 + 𝑐𝑐2𝑍𝑍𝑗𝑗 + 𝑐𝑐3𝑊𝑊𝑗𝑗 (5) 

where 𝑆𝑆𝑗𝑗, 𝑍𝑍𝑗𝑗, and 𝑊𝑊𝑗𝑗 are, respectively, social interaction, gravity force, and wind advec-
tion on the jth search agent, and 𝑐𝑐1, 𝑐𝑐2, and 𝑐𝑐3 are random number between zero and 
one to make random behavior. The following equation discuss the social interaction (𝑆𝑆𝑟𝑟): 
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𝑆𝑆𝑟𝑟 =  �  𝑠𝑠 (𝑑𝑑𝑟𝑟𝑟𝑟) 𝑑𝑑𝑟𝑟𝑟𝑟�
𝑛𝑛

𝑟𝑟=1
𝑟𝑟≠𝑟𝑟

 (6) 

where drm is the distance between the rth and mth grasshopper, computed as 𝑑𝑑𝑟𝑟𝑟𝑟  =
 |𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑟𝑟|,  𝑑𝑑𝑟𝑟𝑟𝑟�  is a unit vector from the rth to mth grasshopper, computed as 𝑑𝑑𝑟𝑟𝑟𝑟� =
 𝑥𝑥𝑚𝑚−𝑥𝑥𝑟𝑟
𝑑𝑑𝑟𝑟𝑚𝑚

, and s is a function to describe the social forces’ strength represented as follows: 

𝑠𝑠(𝑟𝑟) = 𝑖𝑖𝑖𝑖 × 𝑒𝑒
−𝑟𝑟
𝑙𝑙𝑙𝑙 − 𝑒𝑒−𝑟𝑟  (7) 

where  𝑙𝑙𝑐𝑐 and 𝑖𝑖𝑖𝑖 are the intensity of attractive and attraction length scale, respectively. 
Based on the distance between two grasshoppers, they apply force on each other. This 
force could be absorption for far grasshoppers and repulsion for close grasshoppers. How-
ever, there is an exact value of distance, in which grasshoppers apply no force on each 
other, which called comfort zone. Moreover, 𝑍𝑍𝑖𝑖 and 𝑊𝑊𝑖𝑖 are calculated as follows: 

𝑍𝑍𝑖𝑖 = −𝑧𝑧𝑒𝑒𝑧𝑧�  (8) 

𝑊𝑊𝑖𝑖 = 𝑢𝑢𝑒𝑒𝑤𝑤�  (9) 

where 𝑧𝑧 and 𝑒𝑒𝑧𝑧�  are the constant of gravity and a unity vector towards the earth’s center, 
respectively, and 𝑢𝑢 and 𝑒𝑒𝑤𝑤�  are the constant of gravity drift and a unity vector in the 
wind‘s direction, respectively. A modified version of the Equation (5) is represented as 
follows: 

𝑋𝑋𝑖𝑖
𝑞𝑞 = ℎ

⎝

⎜
⎛
�ℎ

𝑢𝑢𝑢𝑢𝑞𝑞 − 𝑙𝑙𝑢𝑢𝑞𝑞
2

𝑁𝑁

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

𝑠𝑠��𝑥𝑥𝑗𝑗
𝑞𝑞 − 𝑥𝑥𝑖𝑖

𝑞𝑞��
𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖
𝑑𝑑𝑖𝑖𝑗𝑗

⎠

⎟
⎞

+ 𝑇𝑇𝑞𝑞�  (10) 

where 𝑢𝑢𝑢𝑢𝑞𝑞 and 𝑙𝑙𝑢𝑢𝑞𝑞  are the upper bound and the lower bound in the qth dimension, re-
spectively, 𝑇𝑇𝑞𝑞�  is the qth dimension of the target position, h is a decreasing coefficient to 
shrink the comfort zone. In the first iteration the rate of exploration is higher than that in 
the final iterations. Therefore, h should decrease as the algorithm get close to its end. The 
h parameter is calculated as follows: 

ℎ = ℎ𝑟𝑟𝑚𝑚𝑥𝑥 − 𝐼𝐼𝑇𝑇
ℎ𝑟𝑟𝑚𝑚𝑥𝑥 − ℎ𝑟𝑟𝑖𝑖𝑛𝑛

𝑅𝑅
 (11) 

where IT is the number of maximum iterations and hmax and hmin are 1 and 0.00001, respec-
tively. Algorithm 3 represents the different steps of the GOA. 

Algorithm 3. Pseudocode of GOA. 

1: Initiate random grasshopper population considering the upper and lower bounds 
2: Calculate the fitness function for each grasshopper 
3: Target = best grasshoppers 
4: B = Maximum number of iterations 
5: b = 1 
6: while (b < B) 
7:  Update h using Equation (11) 
8:  N = the number of grasshoppers 
9:  for each grasshopper 
10:     Normalize the distance between grasshoppers in [1,4] 
11:     Update the position of the current grasshopper using Equation (10) 
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12:     Correct the grasshopper position considering boundaries 
13:  end 
14:  Update Target 
15:  b = b + 1 
16: end 
17: Return Target 

3.4. Artificial Neural Network (ANN) 
ANN is an AI based method that simulates human brain to learn machines. ANN 

can solve new problems using past experiences like human brain. The most popular type 
of ANN is multi-layer perceptron (MLP). An MLP has an input layer (IL), which receives 
inputs from the patterns, a number of hidden layers (HL), which is responsible for pro-
cessing, and an output layer (OL) that returns the output. IL and OL include a number of 
neurons equal to inputs and outputs, respectively. Figure 2 illustrates a schematic MLP. 

 

Figure 2. A schematic MLP. 

Every node is linked to the nodes in the next layer with linking weights. The IL’ nodes 
just receive the inputs and give them to the next layer. HLs’ neurons take the outputs of 
the past layer’s neurons, sum them, and put them in the activation function. The OL’s 
nodes take their inputs from the previous layers’ nodes, sum them, and return the answer 
as the network’s outputs. There are various activation functions for ANNs such as sig-
moid, tangent sigmoid, linear, and hyperbolic tangent sigmoid to name a few. In fact, the 
main problem of an ANN is to obtain the best weights for links where there are a number 
of algorithms for solving this problem. The most used problem-solving algorithm for 
ANNs is feed-forward back-propagation (FFBP) [82,83]. In FFBP algorithm, weights are 
predicted from the IL to OL, but improved from the OL to IL by learning algorithms. 
Among learning algorithms, Levenberg-Marquardt (LM), due to its better speed and per-
formance, is the best one to predict concrete behavior [40,84]. In the LM algorithm, the 
updated weights and bias are calculated as follows: 

wbt+1 = wbt − [JTJ + μ I]−1 JT e (12) 

where wbt+1 and J are the updated weights and biases and the Jacobian matrix that includes 
the first derivatives of the network errors concerning the weights and biases. μ, I, and e 
are a positive real number damping factor, identity matrix, and vector of ANNs error, 
respectively. A schematic neuron is shown is Figure 3. 

b

Input 1

Input 3

Output

Input 
layer

Hidden 
layers

Output 
layer

b b

Input 2
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Figure 3. A schematic neuron. 

The performance of an ANN is affected by its structure, and trial-and-error is the 
most commonly used method for obtaining the best structure. Using this method can cost 
a huge amount of time and energy, although there is a possibility of not gaining the best 
architecture. Hence, having a systematic method to reach the ANN’s best architecture is 
necessary. In the present study, an ANN is modified using GA, SSA, and GOA, separately. 
The gene of an individual and the position of a salp and grasshopper are divided into two 
parts. The first part is allocated to the number of HL. According to the Figure 4, the ith 
value of the first part can be zero or one. If it is zero, the ith HL is deactivated, and it is 
activated if the ith value of the first part is one. The second part, on the other hand, is 
related to the number of neurons in each HL. For instance, if the jth value of the second 
part is 11, it means there is 11 neurons in the jth HL. 

 
Figure 4. Position of a salp and a grasshopper and chromosome of an individual. 

The process of each model is almost the same as its optimization algorithm, except 
that their fitness are calculated by ANN’s error, and ANN uses RMSE to compute the 
error. 

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = �
1
𝑄𝑄
� (𝑅𝑅𝑞𝑞 − 𝑉𝑉𝑞𝑞)2

𝑄𝑄

𝑗𝑗=1
 (13) 

where Q is number of records, 𝑅𝑅𝑞𝑞 is the Measured results and 𝑉𝑉𝑞𝑞  is predicted values 
related to the qth record. 

3.5. M5P Tree 
The M5P tree is the improved version of M5 tree that consist of three phases: dividing 

the input space, building the tree and deriving the knowledge [85]. The M5P tree, on the 
other hand, includes four Phases. The first phase includes building a full tree by splitting 
the data using the selected parameters and a division criterion. By using standard devia-
tion reduction parameter (SDRP), the search space is split. SDRP is represented as follows: 

𝑆𝑆𝑆𝑆𝑅𝑅𝑃𝑃 = 𝑠𝑠𝑑𝑑(𝑆𝑆) −  �
|𝑑𝑑𝑟𝑟|
|𝑆𝑆|

𝑗𝑗

× 𝑠𝑠𝑑𝑑(𝑑𝑑𝑟𝑟) (14) 

where || is the set’s number elements, dr is rth sub-space gained by splitting the node 
according to selected divided parameter, sd is the standard deviation, and D is the dataset 

f(x)

b

x = � ciai + b
n

i=1

 

an 

a1 c1 
cn  

f(x) = Activation function 
c1, …, cn = Links’ weights 
a1, …, an = Neuron’s inputs 
b = Bias 

First part Second part

1 ... n 1 … n
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which reaches the node. This process is applied recursively until the patterns at a node 
either contains only a small number of sets or having negligible variations. The following 
phase includes developing a linear regression at each node. In the next phase, a pruning 
process is executed to catalyze the computing efficiency and avoid over-fitting. In the last 
phase, to deal with the sharp discontinuities that are results of data branching, the smooth-
ing process is executed. The smoothing parameter is represented as follows:  

𝐴𝐴′ =  
𝑟𝑟𝑖𝑖 + 𝑠𝑠𝑢𝑢
𝑟𝑟 + 𝑠𝑠

 (15) 

where 𝐴𝐴′ is the calculated value passed up to the next higher node; a, b, r, and s are, re-
spectively, the calculated target at this node, the model’s estimated output at the current 
node, the cardinal number of training set that reach the node, and a smoothing parameter. 

4. Results 
Before running the models, the data need to be prepared. In the first step, because of 

having different inputs with different scales, the dataset should be normalized in [–1,1] 
using following equation: 

𝑖𝑖𝑛𝑛 =
2(𝑖𝑖 − 𝑖𝑖𝑟𝑟𝑖𝑖𝑛𝑛)

(𝑖𝑖𝑟𝑟𝑚𝑚𝑥𝑥 − 𝑖𝑖𝑟𝑟𝑖𝑖𝑛𝑛)
− 1 (16) 

where 𝑖𝑖 is an input value, 𝑖𝑖𝑛𝑛, 𝑖𝑖𝑟𝑟𝑚𝑚𝑥𝑥, and 𝑖𝑖𝑟𝑟𝑖𝑖𝑛𝑛  are normal, maximum and minimum val-
ues of the i, respectively. Furthermore, every ANN requires a dataset to train the network, 
another data set to validate the training process, and a whole other data set to test the 
network. Usually the datasets are allocated to these phases by randomizing the patterns. 
The drawback of this method is overfitting. As a result, in the present research, k-fold 
cross-validation method is employed in which the data records are randomized and split 
into k fold [26,28,40,82,86–88]. Then, the model is run k times, and it uses a fold in each 
time for validating and testing. For instance, in the ith run, the ith fold is served as valida-
tion and testing dataset, and other folds are served for training. When the runs are fin-
ished, the average error of k times running the network is represented as the error of the 
network. Using this method results in that all records are served as training, validating, 
and testing.  

Every model has its own adjustment parameters that need to be determined. The 
trial-and-error method is the most popular method for this purpose. Therefore, it is em-
ployed in the present research. The adjustment parameters of GA, SSA, and GOA are rep-
resented in Table 2.  

Table 2. Adjustment parameters of modified ANNs. 

Parameters Values 
Number of iterations  100 
Size of populations 30 

Hidden layer’s maximum number of neurons 16 
Maximum number of hidden layers 3 

The number of folds  5 
ANNs training algorithm Levenberg-Marquardt 

Activation function of output layer’s neuron  Linear 
Activation function of hidden layers’ neurons Hyperbolic tangent sigmoid 

After running all models, three ANNs with different architecture, which are opti-
mized by three different algorithms, are made that are illustrated in Figure 5. Moreover, 
M5P tree model is visualized in Figure 6. According to the Figure 5, hybridized ANN with 
GA (ANNGA) has a couple of the HLs and eleven neurons in each of them. Moreover, the 
hybridized ANN with SSA (ANNSSA) contains two HLs with seven neurons in the HL 
number one and nine neurons in the HL number two, and the hybridized ANN with GOA 



Appl. Sci. 2021, 11, 485 11 of 19 
 

(ANNGOA) has six neurons in its only HL. Hence, the ANNGOA has the simplest struc-
ture while the ANNGA has the biggest structure, and the ANNSSA is in between them. 
Biases and weights of the ANNs and the coefficient of the M5P tree is represented in the 
Appendix A. 

 
Figure 5. Architecture of (a) hybridized ANN with GA (ANNGA), (b) hybridized ANN with SSA 
(ANNSSA), and (c) hybridized ANN with GOA (ANNGOA). 

 

Figure 6. M5P tree model. 

In the present study to have a good comparison among the four models, in addition 
to RMSE, Pearson correlation coefficient (R), mean absolute percentage error (MAPE), 
mean absolute error (MAE), mean absolute bias error (MBE), scatter index (SI), and rela-
tive square error (RSE) are employed, which are formulated as follow: 

𝑅𝑅 =
𝑄𝑄∑ 𝑅𝑅𝑞𝑞𝑉𝑉𝑞𝑞

𝑄𝑄
𝑖𝑖=1

(𝑄𝑄∑ 𝑅𝑅𝑞𝑞
2𝑄𝑄

𝑖𝑖=1 − (∑ 𝑅𝑅𝑞𝑞
𝑄𝑄
𝑖𝑖=1 )2)(𝑄𝑄∑ 𝑉𝑉𝑞𝑞2 −

𝑄𝑄
𝑖𝑖=1 (∑ 𝑉𝑉𝑞𝑞

𝑄𝑄
𝑖𝑖=1 )2)

 (17) 

𝑅𝑅𝐴𝐴𝑃𝑃𝑅𝑅 =  
100
𝑄𝑄

 �
𝑉𝑉𝑞𝑞 −𝑅𝑅𝑞𝑞

𝑉𝑉𝑞𝑞

𝑄𝑄

𝑖𝑖=1
 (18) 
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𝑅𝑅𝐴𝐴𝑅𝑅 =
1
𝑄𝑄
� �𝑅𝑅𝑞𝑞 − 𝑉𝑉𝑞𝑞�

𝑄𝑄

𝑖𝑖=1
 (19) 

𝑅𝑅𝑈𝑈𝑅𝑅 =  
1
𝑄𝑄
�(𝑉𝑉𝑞𝑞 − 𝑅𝑅𝑞𝑞)
𝑄𝑄

𝑖𝑖=1

 (20) 

𝑆𝑆𝐼𝐼 = 𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅/𝑅𝑅� (21) 

𝑅𝑅𝑆𝑆𝑅𝑅 =
∑ (Vq − Mq)2Q
i=1

∑ (𝑅𝑅� − Mq)2Q
i=1

 (22) 

where 𝑅𝑅� is mean value of measured results, and other parameters are explained in the 
previous section. MBE indicates that the model overestimates (MBE > 0) or underestimates 
(MBE < 0). SI determines that the performance of the model is “excellent” (0 ≤ SI < 0.1), 
“good” (0.1 ≤ SI < 0.2), “fair” (0.2 ≤ SI < 0.3), or “poor” (0.3 ≤ SI). Table 3 represents these 
indicators. 

Table 3. Statistic indicator of models. 

Models 
 

RMSE 
(MPa) 

MAE 
(MPa) 

RSE 
 

MAPE 
(%) 

MBE 
(MPa) 

SI 
 

R 
 

ANNSSA 2.734 1.890 0.017 6.216 0.156 0.075 0.992 
ANNGA 2.944 2.086 0.019 6.797 −0.227 0.081 0.990 

ANNGOA 3.027 2.227 0.020 7.790 0.037 0.083 0.990 
M5P tree 7.098 5.502 0.149 21.458 0.179 0.196 0.947 

According to Table 3, RMSE of ANNSSA is the lowest with the value of 2.734 MPa, 
while the M5P has the highest RMSE, which is over 2.5 times bigger than that of ANNSSA. 
The AANNGA and ANNGOA have the second and third least RMSE, respectively. In the 
case of MAE, the ANNSSA M5P tree has the highest cost by the value of 5.502 MPa fol-
lowed by the ANNGOA of which MAE is lower than that of the M5P tree by almost 60%, 
the same value of ANNGA and ANNSSA are less than that of the M5P tree by 62% and 
66%, respectively. According to RSE, the ANNSSA is the most accurate model with the 
RSE value of 0.017 while the M5P tree model is the least accurate one with the RSE value 
of 0.149, and ANNGA and ANNGOA are in between. The ANNSSA and ANNGA have 
almost the same MAPE while this value of the ANNGOA and the M5p tree are more than 
that of the ANNSSA by 25% and 245%, respectively. MBE indicates that the ANNSSA, the 
ANNGOA, and the M5P tree overestimate the compressive strength while the ANNGA 
underestimates that. According to SI, the M5P tree performs well, and other models per-
formances are excellent. The R-values of all models are 0.99, which show a great correla-
tion between measured and predicted compressive strength, except the R-value of M5P 
tree, which is 0.94. Figure 7 illustrates the predicted vs measured compressive strength, in 
which it can be seen that the scatter around the base line (linear regression) in ANNSSA 
is more than others. Moreover, Figure 8 compares MAE, RMSE, and MAPE in order to 
sort the models based on their efficiency. According to this figure, the ANNSSA is the 
most efficient model followed closely by the ANNGA and the ANNGOA respectively. 
Furthermore, the M5P tree is the least efficient model and has the highest error values. 
This order is true for MAE, RMSE, and MAPE. 
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Figure 7. Predicted vs measured compressive strength for (a) ANNSSA, (b) ANNGA, (c) ANNGOA, and (d) M5P three. 

 
Figure 8. (a) A bar chart and (b) a radar chart to compare models’ results overlay. 
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5. Conclusions 
A simple ANN saves time and energy, which are spent on obtaining CS of concrete 

containing recycled aggregate. However, the ANN should be accurate as well to be useful. 
Otherwise, it just adds to higher costs. In this study, three different optimization algo-
rithms (GA, SSA, and GOA) are employed to modify ANN for that purpose, and M5P tree 
served as a good comparison model. Results show that all ANNs have better perfor-
mances than the M5P tree model. Moreover, the ANN that is hybridized with SSA has the 
lowest values of error, and the second simplest architecture. ANNGOA, on the other 
hand, has the simplest structure, with the highest values of error, and finally, ANNGA 
despite of its architecture, which is the most complex one, is the second most accurate 
model among the ANNs. Although all the ANNs are so close in both accuracy and com-
plexity, the ANNSSA is recommended if accuracy is needed and the ANNGOA should be 
used if there is a need for simplicity.  

The compressive strength (CS) of concrete containing different amounts of recycled 
aggregate (RA) is shown in Figure 9. According to this figure, increasing the amount of 
RA to 50% causes a decrease in the CS value at all ages. However, the CS value of the 
samples with 100% RA is higher than that of the samples with 50% RA at the age of 7 and 
28 days, while the CS values of these two classes are almost equal at the age of 3 days. 

 
Figure 9. The CS of concrete with different amounts of RA. 
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Appendix A 
Appendix A.1. Biases and Weights of the ANNGOA Model 
Weights of links between input and hidden layer 

=

⎣
⎢
⎢
⎢
⎢
⎡

0.55 1.24 0.55 −2.28 −0.19 0.75 2.44 −0.41 0.72
0.28 1.46 1.31 −0.88 0.02 0.04 −0.38 −0.36 0.27
−1.28 −1.06 −1.56 −0.37 −0.20 0.31 1.11 1.30 0.15
−0.20 −0.69 −1.74 −0.10 −0.18 0.01 −0.01 0.23 0.53
0.36 0.91 1.68 −0.45 0.12 −0.16 −4.12 2.09 −0.13
−0.78 0.08 1.55 1.01 0.03 0.30 3.01 0.30 −0.07⎦

⎥
⎥
⎥
⎥
⎤

 

Biases of the input layer = �[−0.52 −1.32 −0.03 0.26 0.14 0.43]� 
Weights of links between hidden and output layer

= [0.50 −1.13 −2.18 1.08 1.31 1.54] 
Biases of the hidden layer = [−1.30] 

Appendix A.2. Biases and Weights of the ANNSSA Model 
Weights of links between input and the first hidden layer 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡
−0.88 −2.09 0.52 1.13 0.34 0.28 −1.36 −1.13 0.63
−0.29 0.28 2.25 −0.64 2.00 −1.59 0.42 0.03 −0.10
0.14 −0.13 −1.22 −0.21 −0.23 −0.07 −0.27 0.18 0.28
−1.79 −1.60 −1.36 −0.27 −0.11 0.91 −2.98 −1.35 0.27
0.68 0.73 −0.60 2.16 −1.08 1.13 −0.19 0.16 −1.07
1.48 0.68 −1.70 −1.82 −0.22 0.06 −1.12 0.57 0.44
−1.42 0.73 0.78 3.01 1.20 −0.58 −0.61 −0.07 −1.38⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

Biases of the input layer = [0.39 0.10 0.19 0.38 −0.61 −0.16 0.25] 
Weights of links between the first and the last hidden layer 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0.64 0.48 −1.89 0.84 −0.96 −0.21 1.38
−0.80 −1.09 −0.55 0.76 1.39 0.65 1.57
−1.46 −0.29 1.08 −1.76 −1.14 −0.32 0.30
−0.04 0.63 −1.38 −1.24 −0.46 −0.85 −1.15
0.15 −1.68 −1.05 −0.74 0.07 1.20 0.28
2.02 1.06 −0.89 −0.03 −1.30 −0.46 −1.14
0.03 1.49 0.20 0.15 1.31 0.92 −0.53
0.69 −0.24 1.26 −1.73 −0.39 −0.76 0.39
1.45 −0.52 −0.17 −0.10 −1.21 −0.85 1.46 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Biases of the first hidden layer
= [−1.59 0.90 0.96 0.31 −0.19 1.10 0.84 −1.04 −0.08] 

Weights of links between the last hidden and output layer
= [−1.00 0.50 −0.15 0.43 −0.74 0.45 1.31 1.19 0.94] 

Biases of the last hidden layer = [−1.70] 

Appendix A.3. Biases and Weights of the ANNGA Model 
Weights of links between input and the first hidden layer 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−0.67 −1.27 −0.76 0.42 0.12 −0.20 −0.27 −0.29 0.62
1.11 −0.30 −1.36 0.06 −0.21 0.48 0.93 0.40 −0.15
−1.11 0.11 −0.80 0.50 0.82 −0.19 −0.45 −1.36 0.89
−0.71 1.12 1.35 0.18 0.28 −0.44 0.34 0.168 0.45
−1.45 −0.71 −0.95 −0.37 −0.14 −0.45 −0.46 −0.29 −0.45
0.68 −1.47 1.36 −1.05 −0.01 −0.20 0.04 −0.27 0.98
−0.45 −0.71 1.04 0.48 −0.28 0.65 −0.01 0.37 −1.04
1.18 1.40 0.03 −1.73 −0.15 −0.50 −1.52 −0.10 0.31
0.27 1.04 0.42 −0.48 0.42 −1.58 1.07 −0.24 0.21
1.07 0.35 −0.83 −0.50 0.20 0.48 −0.19 0.22 −0.97
0.77 −0.49 −0.61 −0.74 −0.477 0.14 1.23 0.68 −0.39⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Biases of the input layer
= [0.48 −0.92 0.22 0.34 −0.78 0.93 −0.52 −1.03 −0.55 −0.86 0.79] 
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Weights of links between the first and the last hidden layer 

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0.24 0.66 1.06 −0.94 1.44 −1.10 0.71 −0.02 −0.78 −0.83 −0.14
0.96 1.16 −0.54 −0.73 0.81 1.35 −1.14 1.44 −1.24 0.32 −0.66
−0.03 −0.74 −0.58 −0.68 −0.41 −0.24 −0.31 −0.79 −0.71 −0.19 −0.07
−0.13 −0.67 0.22 0.19 0.81 1.02 1.33 −0.36 −1.29 0.34 −1.04
−1.01 0.56 0.79 −0.57 −0.60 −0.50 −0.61 0.62 −0.97 −1.15 −0.98
−0.70 0.52 −0.83 −0.59 −0.46 0.49 −0.25 1.08 −0.82 0.50 −0.82
−0.65 −0.04 0.04 0.74 −0.54 −1.26 −0.11 0.07 0.08 0.70 −1.10
−0.41 −0.46 −0.82 −1.19 −0.26 0.84 0.89 0.25 −0.04 −0.56 0.54
−0.42 1.38 −0.23 0.73 0.26 −0.85 −0.28 0.83 0.50 0.73 −0.96
−0.81 −0.11 −0.02 0.05 0.13 0.25 0.76 0.88 −0.10 −0.33 −0.30
0.50 0.09 0.21 −1.47 −0.51 −0.95 −0.41 −0.76 −0.61 −0.28 −0.48⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Biases of the first hidden layer
= [0.55 0.45 −0.69 −0.34 −0.26 −0.65 0.68 0.81 −0.31 0.94 −0.34] 
Weights of links between the last hidden and output layer
= [−1.39 −0.28 0.88 −0.06 0.06 −0.26 −0.46 −0.41 0.11 −0.85 −0.09] 
Biases of the last hidden layer = [−0.45] 
Appendix A.4. Calculated Coefficient of the MP5 Tree Model 

Table A1. Calculated coefficient for the M5P tree. 

Linear 
Models 

Coefficients 
OPC W/C CA FA CRA FRA Sand SP TA Bias 

CS1 −0.3456 −227.63 0.0548 0.0277 12.8748 1.5747 0.0148 0 0.466 226.3128 
CS2 −0.1483 −130.427 −0.0374 0.0277 −2.681 1.5747 0.0148 0 0.4618 180.8033 
CS3 −0.2059 −130.427 −0.0393 0.0277 −3.4258 1.5747 0.0148 0 0.5897 204.2375 
CS4 −0.2193 −130.427 −0.0489 0.0277 −3.1624 1.5747 0.0148 0 0.5241 220.4764 
CS5 −0.0233 7.2736 0.0539 0.0764 −5.6897 7.9546 0.0363 0 0.659 60.8239 
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