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a b s t r a c t 

Time series are a common data type in biomedical applications. Examples include heart rate, power output, and 

ECG. One of the typical analysis methods is to determine longest period a subject spent over a given heart rate 

threshold. While it might seem simple to find and measure such periods, biomedical data are often subject to 

significant noise and physiological artifacts. As a result, simple threshold calculations might not provide correct 

or expected results. A common way to improve such calculations is to use moving average filter. Length of the 

window is often determined using sum of absolute differences for various windows sizes. However, for real life 

biomedical data such approach might lead to extremely long windows that undesirably remove physiological 

information from the data. In this paper, we: 

• propose a new approach to finding windows length using zero-points of third gradient (jerk) of Sum of 

Absolute Differences method; 
• demonstrate how these points can be used to determine periods and area over a given threshold with and 

without uncertainty. 

We demonstrate validity of this approach on the PAMAP2 Physical Activity Monitoring Data Set, an open dataset 

from the UCI Machine Learning Repository, as well as on the PhysioNet Simultaneous Physiological Measurements 

dataset. It shows that first zero-point usually falls at around 8 and 5 second window length respectively, while 

second zero-point usually falls between 16 and 24 and 8–16 s respectively. The value for the first zero-point can 

remove simple measurement errors when data are recorded once every few seconds. The value for the second 

zero-point corresponds well with what is known about physiological response of heart to changing load. 
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Specifications Table 

Subject Area: Computer Science 

More specific subject area: Biomedical, time series data analysis 

Method name: Sum of Absolute Differences 

Name and reference of original 

method: 

J. Moorer, "The optimum comb method of pitch period analysis of continuous 

digitized speech," in IEEE Transactions on Acoustics, Speech, and Signal 

Processing, vol. 22, no. 5, pp. 330–338, October 1974. 

Resource availability: https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoringht 

https://physionet.org/content/simultaneous-measurements/1.0.0/ 

Method details 

Signals from sensors usually contain some amount of noise that can have a negative impact on

further data analysis. Usually, such signals are pre-processed with a form of a low-pass filter to

remove unwanted elements. One of the typical and simplest low-pass filters is a moving average filter.

In this filter a window of a certain length is continuously applied through the signal and value for the

current time step is substituted for average of current and adjacent steps. The length of the window is

decided either using domain’s rule of thumb or by using Sum of Absolute Differences (SAD) approach.

However, SAD approach might lead to too large window length for some biomedical signals, e.g. heart

rate. 

In the regular SAD approach, a point is identified at which the SAD curve flattens. This point

is then selected as the window length. We propose an extension to the SAD approach with use

of third gradient, also called jerk, of the SAD curve. Zero-points of the third gradient become

suggested window lengths. First point would be considered a conservative value, which preserves 

most information, but might also not remove all the noise. While second zero-point would be

considered a liberal value, which guarantees that most noise is removed while still preserving most

important information. 

General approach to sum of absolute differences 

In SAD approach, a set of filtered versions of the signal is calculated for varying window lengths.

Then each of filtered signals is subtracted from the original one, point by point. Absolute values of

each point difference are then summed. This results in set of sums, each for different window length.

These sums when plotted form a curve that usually flattens from a certain window length, suggesting

that there is no further filtering effect for longer windows. This window length is then selected as the

optimal for filtering the signal for further analysis. 

However, SAD approach might lead to too large window length for some biomedical signals,

e.g. heart rate. As we demonstrate in Figs. 1–5 using PAMAP2 [5] dataset and in Figs. 12–14 using

“Simultaneous physiological measurements with five devices at different cognitive and physical loads”

dataset from PhysioNet database [11 , 12] the resulting window length would become 210–230 or 490–

590 s respectively for each dataset using the established approach. It is not only intuitively too long,

but also would mask physiological response to a change in physical exertion that becomes visible

in less than a minute [9] . Beyond that point a change can still be observed, but it is then related

to cardiac drift when maintaining a level of increased exertion [4] . In such a case, selecting window

length based on the SAD approach would result in significant loss of information in the available data.

The loss of information is clearly visible in the examples. In Fig. 1 a significant increase in heart

rate at point P1 from the original dataset completely disappears after applying Moving Average (MA)

filter with window length 230 s, obtained using regular SAD approach. A drop in heart rate value at

https://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoringht
https://physionet.org/content/simultaneous-measurements/1.0.0/


T. Wiktorski and A. Królak / MethodsX 7 (2020) 101094 3 

Fig. 1. Heart rate, sum of absolute differences, and heart rate with moving average filter with window length based on usual 

SAD approach, for Person 1. 

Fig. 2. Heart rate, sum of absolute differences, and heart rate with moving average filter with window length based on usual 

SAD approach, for Person 2. 
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oint P2 is represented, but its lowest value is around 25 bpm higher than in the original dataset.

uch difference is physiologically significant. 

In Fig. 2 we focus on two significant spikes in heart rate at points P1 and P2. Their value is around

0 bpm higher than the surrounding values. However, after applying MA filter with window length

30 s, the curve tells a completely different story. Points P1 and P2 are part of a consistent heart rate

ncrease. As a result, filtering might lead to a complete change in the interpretation of these data. 

In Figs. 3–5 we further observe how the wrong choice of window length alters characteristic points

f the signal, to an extent that these points blend with the remaining signal. It happens both for

pikes and drops. For point P1 in each of these three figures we notice that a strong spike in heart

ate is greatly reduced. While still visible, it hardly stands out of the general trend. For point P2 in

ach of these three figures a significant drop is reduced to a minor one. Reduction in relative value,

o the spikes that often surround such drops, ranges between 50 and 30 bpm. 

While it might seem that a general shape of the heart rate curve is preserved after applying MA

lter with a window length based on regular SAD approach, we observe that many significant details

re lost. This observation is consistent with typical physiological response of heart rate that should

e visible in less than a minute [4] . What suggests, therefore, that a window length for a MA filter

hould not be longer. 
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Fig. 3. Heart rate, sum of absolute differences, and heart rate with moving average filter with window length based on usual 

SAD approach, for Person 3. 

Fig. 4. Heart rate, sum of absolute differences, and heart rate with moving average filter with window length based on usual 

SAD approach, for Person 4. 

 

 

 

 

 

 

 

 

 

 

 

Zero-Points of third gradient (Jerk) 

If we consider continuous function g(x) , its derivative can be defined as its rate of change with

respect to variable x . If function g(x) is a function of one variable, its derivative is the same as partial

derivative, that can be calculated as a dot product of the gradient of the function g(x) and unit vector

u [1] . In case of uniformly distributed time series with step equal to 1, we can assume that the unit

vector u is equal to 1. It leads us to conclusion that in case of discrete function g(i) with step h = 1 ,

its derivative is equal to the gradient of this function. 

The first gradient of the discrete function g(i) is calculated as presented in Eg. (1) [2] : 

ˆ g ( i ) ( 
1 ) = 

g ( i + 1 ) − g ( i − 1 ) 

2 · h 
(1) 

The calculated gradient may be burdened with an error defined by the limiting behavior of a step

function h , denoted by O(h 2 ) . In case of regular sampling of the discrete time series g(i) with h = 1

the gradient of g(i) can be calculated as shown in Eq. (2) : 

ˆ g ( i ) ( 
1 ) = 0 . 5 ( g ( i + 1 ) − g ( i − 1 ) ) (2) 

We can detect finer changes in the behavior of SAD curve using zero-points of the third gradient

of the curve. The third gradient of a discrete function g(i) can be considered as the third derivative

of g(i) , should g(i) be a continuous function. It can be understood more intuitively by comparison to

the third derivative of position in physics, which is known as jerk, the time derivative of acceleration
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Fig. 5. Heart rate, sum of absolute differences, and heart rate with moving average filter with window length based on usual 

SAD approach, for Person 5. 

Algorithm 1 Algorithm for calculating first three zero-points of SAD curve for a given signal. 

Data : TS : = [v 1 ,…v t ,…,v T ] list of T time-ordered values 

N : = 250 maximum length of SAD curve 

Result : ZP : = [P 1 , P 2 , P 3 ] list of 3 zero-points 

1 SAD_curve : = [] empty list for values of sum of absolute differences 

2 for n in N: 
3 SAD_curve.append((n, sum(abs(TS-moving_avg(TS,n)))) 
4 3_gradient : = gradient(gradient(gradient(SAD_curve))) 
5 ZP : = where_diff(sign(3_gradient))[:3] 
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3] . For example, the effect of acceleration is the feeling of being pressed into the seat of a car. If the

cceleration is not constant, we can talk about jerk that is felt as an increasing or decreasing force on

he body. 

Calculation of zero crossing point of the third gradient of function g(i) can be expressed by Eq. (3) :

i z−c = i i f ˆ g ( i − 1 ) ( 
3 ) > 0 and ˆ g ( i ) ( 

3 ) < 0 or ˆ g ( i − 1 ) ( 
3 ) 

〈
0 and ˆ g ( i ) ( 

3 ) 
〉
0 (3)

If the subsequent zero-points are located less than 3 time-steps apart, then we suggest combining

hem with the resulting value calculated as a ceiling of an arithmetic mean of these zero-points

 Eq. (4) ). 

i z−c = 

⌈ (
i z−c1 , i z−c2 

)⌉
(4)

In Algorithm 1 we present an outline of a simple algorithm to calculate first three zero-points of

hird gradient of SAD curve for a given signal TS . First, in addition to the input signal, we specify N

s a maximum length of SAD curve. In line 1 we create an empty list that will later hold values of

um of absolute differences for different window length of a moving average filter. These values are

alculated in lines 2 and 3. 

In line 4 we calculate third gradient of the SAD curve. Definition of gradient function is provided

arlier in this section and implementation of such function is available in major data analytics tools,

.g. in NumPy. Finally, in line 5, we extract only the sign of third gradient values and check for change

n this sign. We select first three such places in the curve. The algorithm can be further extended by

ombining zero-points located closely to each other. 

electing moving average window size and calculating typical measures 

Later, in method validation, we demonstrate that the first zero-point of jerk corresponds to 5–

 s long window for moving average filter. It is therefore safe to assume that any signal variation in
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that range would be related to simple measurement errors when data are recorded once every few

seconds. Second zero-point of jerk corresponds to 16–24 s window for moving average. In that range

physiological effect should already be visible [9] . 

As a result, there are at least two values that could be applied in further processing. We suggest

two possible approaches to how these values can be used. First approach uses one of these two

zero-points of jerk as the window size for a moving average filter and any further calculations are

performed in a standard way on the filtered signal. Second approach is approximate and combines

the two values together with an uncertainty factor inspired by the interval type-2 fuzzy set footprint

of uncertainty [10] . 

Two of the most typical cumulative measures used to evaluate the condition of a person based

on the heart rate trace are: (1) longest period above threshold value of HR, and (2) area under the

plot for HR greater than the threshold value. We present how these measures are formally calculated,

before using them for validation. 

In order to calculate the longest period above the threshold value thr of HR we define S to be

the set of periods s m 

for the time series HR , where each s m 

is a series of subsequent values from HR

having values HR ( i ) ≥ thr ( Eq. (5) ). Total number of periods s m 

in given HR series is assumed to be

equal to M . 

S = { s m 

} M 

m =1 (5) 

Single element s m 

of set S has length l m 

that is defined by Eq. (6.) : 

l m 

= i stop − i start where 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

i start = i such t hat HR ( i ) ≥ t hr and HR ( i − 1 ) < t hr 

i stop = i such t hat HR ( i ) ≥ t hr and HR ( i + 1 ) < t hr 

∀ iε( i start , i stop ) HR ( i ) ≥ thr 

i stop > i start 

i ∈ [ 0 , I ] 

(6) 

We define L as the set of lengths l m 

. The longest period above the threshold value is denoted as l max 

and is the maximum value of a set L ( Eq. (7) ): 

l max = max L (7) 

Energy is considered as the area A under the plot above the threshold value and is calculated as

shown in Eq. (8) : 

A = 

( 

I ∑ 

i =0 

HR ( i ) ≥thr 

) 

− n · thr (8) 

Number of elements in the HR sequence is defined as I and n is the number of samples in

sequence HR greater or equal to thr value. Area under the plot can be expressed in beats:

heart rate [ bpm ] ∗time [ min ], or heart rate [ bpm ] ∗time [ sec ]/60. In case of the area under the plot and above

the threshold value, it is equal to the number of total beats over the threshold. 

In Fig. 6 we present a typical plot of type-2 fuzzy set membership function with footprint of

uncertainty applied to two zero-points of third gradient of SAD curve. 

We define length adjusted by the uncertainty factor as given in Eq. (9) : 

l adj = l 2 · UF + l 1 (9) 

where: 

l 1 – length of the longest segment above the threshold for sampling time equal to 1st zero-point

of jerk 

l 2 – length of the longest segment above the threshold for sampling time equal to 2nd zero-point

of jerk 
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Fig. 6. Type-2 fuzzy set membership function with footprint of uncertainty applied to two zero-points of jerk. 
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We define uncertainty factor in Eqs. (10) and 11 : 

UF = sin α = 

a 

c 
(10)

c = 

√ 

b 2 
2 

+ 1 (11)

here: 

a = 1 

b 1 – distance between 0 and point P 1 
b 2 – distance between points P 1 and P 2 
P 1 and P 2 – window sizes corresponding to 1st and 2nd zero-point of jerk 

For example, for P 1 = 5, P 2 = 22, l 1 = 950 , and l 2 = 1298; we have b 1 = 5 and b 2 = 17 and consequently: 

c = 

√ 

17 2 + 1 = 17 . 03 

UF = sin α = 

1 

c 
= 0 . 06 

l adj = 0 . 06 · 1298 + 950 = 1028 

We define area adjusted by the uncertainty factor in Eq. (12) : 

A adj = ( A 2 − A 1 ) · UF + A 1 (12)

here: 

A 1 – area under the HR curve above the threshold for Moving Average filter with window length

equal to 1st zero-point of jerk. 

A 2 – area under the HR curve above the threshold for Moving Average filter with window length

equal to 2nd zero-point of jerk. 

Using values from the example with A 1 = 66,253 , and A 2 = 57,314 we obtain: 

A = , 573 , 14 −, 662 , 53 · 0 . 06 + 66 , 253 = 65 , 728 
adj ( ) 
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Fig. 7. Heart rate, sum of absolute differences with third gradient, and heart rate with moving average filter with window 

length based on second zero-point of third gradient, for Person 1 from PAMAP2 dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method validation 

We demonstrate the validity of the proposed method in three different ways. First, we show that

most important characteristics of the heart rate curve are preserved, when using first or second zero-

point of third gradient of SAD as the window length for a MA filter. We also make a connection

between values of the zero-points and physiological phenomena related to heart rate development. 

Subsequently, we demonstrate improved results in calculating longest period over a given threshold 

value, based on the filtered data. Finally, we discuss an impact of MA filtering on integral of heart rate

over a given threshold value. It is another common statistic, that might be impacted in a non-obvious

way by filtering. 

Part 1 of validation – shape of HR curve 

We observed earlier, in Figs. 1–5 , that applying MA filter with window length obtained using

regular SAD approach leads to loss of significant details in heart rate signal. Moreover, such window

length appears also to conceal physiological phenomena. 

We applied the modified SAD approach using zero-points of third gradient, as defined in the

previous section, to the same PAMAP2 data. First three zero-points were calculated. For the first zero-

point values ranged from 5 to 8 s for different persons. For the second zero-point values ranged from

16 to 24 s. For the third zero-point values ranged from 21 to 32 s. 

It is interesting to notice that all these zero-points lie with the physiological response range

for the heart rate [4] . First zero-point is at the very beginning of that range, so it can ensure

that all physiological phenomena will still be visible in the filtered data. Window with the length

corresponding to the second zero-point offers more smoothing, since it is almost triple the value, but

it still fits well within the physiological range. Using the third zero-point might still be useful, but in

some cases the window might be considered too long. Especially, when it exceeds 30 s. 

Based on these observations, first and second zero-points seem to be of most interest. With

first zero-point being a safe choice. While the second zero-point is potentially optimal, balancing

smoothing effect with detail preservation. 

In Figs. 7–11 we apply the modified SAD approach to the same persons from PAMAP2 dataset as

in Figs. 1–5 . Data filtered with MA filter with window length selected using standard SAD approach

are presented in the left part of each figure. First three zero-points of third gradient of SAD curve are

calculated and presented in the middle part of each figure. Finally, the filtered signal using second

zero-point is presented in the right part of each figure. 

We can notice, that in each case the shape of the heart rate curve is well preserved. All

characteristic points that were misrepresented using standard SAD approach, are represented correctly 

with the modified SAD approach. 
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Fig. 8. Heart rate, Sum of Absolute Differences with third gradient, and Heart Rate with Moving Average filter with window 

length based on second zero-point of third gradient, for Person 2 from PAMAP2 dataset. 

Fig. 9. Heart rate, sum of absolute differences with third gradient, and heart rate with moving average filter with window 

length based on second zero-point of third gradient, for Person 3 from PAMAP2 dataset. 
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In Fig. 7 a significant increase in heart rate at point P1 from the original dataset is well represented

pplying Moving Average (MA) filter with window length of 8 s, obtained using modified SAD

pproach. A drop in heart rate value at point P2 is represented with little difference in the absolute

alue. 

In Fig. 8 we focus on two significant spikes in heart rate at points P1 and P2. Their value is around

0 bpm higher than the surrounding values. This characteristic is preserved in the signal filtered with

indow length of 25 s, corresponding to the second zero-point of third gradient of the SAD curve. So,

he interpretation of these data is preserved after the filtering. 

In Figs. 9–11 we further observe how the window length corresponding to the second zero-point

reserves characteristics of the signal. Both spikes and drops maintain the right shape. For point P1

n each of these three figures we notice that a strong spike in heart rate is preserved. For point P2 in

ach of these three figures significant drops are reduced only by a few bits per minute. 

The proposed approach was further validated using PhysioNet dataset “Simultaneous physiological

easurements with five devices at different cognitive and physical loads”. Results for three example

ubjects are presented in Figs. 12–14 . In this case, window length calculated using standard SAD

pproach was even longer, ranging from 490 to 590 s. We can observe very similar loss of detail

s in the case of PAMAP2 dataset. Many potentially useful heart rate fluctuations are lost, while only

eneral trend of heart rate is preserved. 
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Fig. 10. Heart rate, sum of absolute differences with third gradient, and heart rate with moving average filter with window 

length based on second zero-point of third gradient, for Person 4 from PAMAP2 dataset. 

Fig. 11. Heart rate, sum of absolute differences with third gradient, and heart rate with moving average filter with window 

length based on second zero-point of third gradient, for Person 5 from PAMAP2 dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Window length based on the 2nd zero point of 3rd gradient of SAD curve ranged from 8 to 16 s.

The resulting heart rate signal preserved all the major variations of the original, while removing the

noise. 

Based on the shape of the heart rate curve, we conclude that using modified SAD approach as

proposed in the previous section, preserves characteristic points including shape, absolute value, and 

relative values. 

Part 2 of validation – longest period 

Heart-rate related measures are one of the most commonly used markers in monitoring 

performance, fitness and fatigue of a person during physical effort [6] . One of the methods of

evaluating person’s fitness and performance, as well as planning physical training, is based on heart

rate zones [7] . Heart rate zones are determined using predefined percentage of maximum heart rate

of a person. In automatic analysis of time spend during extended physical effort in certain heart rate

zone it is crucial to obtain the whole period of HR above given threshold. For unfiltered HR signal

such periods may be erroneously divided into shorter segments due to HR sensor inaccuracy or a

single sample below the selected threshold. Application of the proposed method allows to minimize

or eliminate such errors. 

For an average middle age person zone 2 of the heart rate, corresponding to the middle exercise

intensity, is a typical aerobic target. The bottom value of heart rate in zone 2 is equal to the 60% of

a maximum heart rated. We approximate this value to be equal to 105 bpm for average young to
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Fig. 12. Heart rate, heart rate with moving average filter with window length based on usual SAD approach, sum of absolute differences with third gradient, and heart rate with moving 

average filter with window length based on second zero-point of third gradient, for Person 1 from simultaneous physiological measurements dataset. 
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Fig. 13. Heart rate, heart rate with moving average filter with window length based on usual SAD approach, sum of absolute differences with third gradient, and heart rate with moving 

average filter with window length based on second zero-point of third gradient, for Person 2 from simultaneous physiological measurements dataset. 
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Fig. 14. Heart rate, heart rate with moving average filter with window length based on usual SAD approach, sum of absolute differences with third gradient, and heart rate with moving 

average filter with window length based on second zero-point of third gradient, for Person 3 from simultaneous physiological measurements dataset. 
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Fig. 15. Heart rate: original signal (gray) with highlighted longest period above the threshold (black), signal with moving 

average filter with window length based on first and second zero-point of third gradient, for Person 1 from PAMAP2 dataset. 

Fig. 16. Heart rate: original signal (gray) with highlighted longest period above the threshold (black), signal with moving 

average filter with window length based on first and second zero-point of third gradient, for Person 2 from PAMAP2 dataset. 

Fig. 17. Heart rate: original signal (gray) with highlighted longest period above the threshold (black), signal with moving 

average filter with window length based on first and second zero-point of third gradient, for Person 3 from PAMAP2 dataset. 

 

 

 

 

 

 

middle-aged person. The results of calculations of the longest period of HR series above the threshold

value thr = 105 bpm are presented in Figs. 15–19 . The first plot in each figure represents the original

signal, the second plot shows the results for signal with Moving Average filter with window length

based on first zero-point of third gradient, while the last plot presentes the signal with Moving

Average filter with window length based on the second zero-point of third gradient. In case of persons

1, 2 and 5 we can see a significant increase of the longest period of the HR series above the defined
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Fig. 18. Heart rate: original signal (gray) with highlighted longest period above the threshold (black), signal with moving 

average filter with window length based on first and second zero-point of third gradient, for Person 4 from PAMAP2 dataset. 

Fig. 19. Heart rate: original signal (gray) with highlighted longest period above the threshold (black), signal with moving 

average filter with window length based on first and second zero-point of third gradient, for Person 5 from PAMAP2 dataset. 

Table 1 

Longest periods of HR above the threshold value, PAMAP2 dataset. 

Original signal Filter based on 

1st zero-point 

Filter based on 

2nd zero-point 

Filter for 230 Adjusted value 

Max. length 

[ sec .] 

Person 1 1371 1371 2558 2539 1489 

Person 2 812 810 1103 2018 826 

Person 3 606 603 598 797 602 

Person 4 310 308 307 527 308 

Person 5 946 943 1281 2578 963 

t  

3  

l

 

d  

t  

1  

fi  

a  

o

 

p  
hreshold value for the second zero-point of the third gradient. This increase is equal to 90%, 36% and

5% respectively. Including the uncertainty factor UF defined in the previous section, this increase was

ower, equal respectively to 8%, 1.7% and 1.8% for persons 1, 2 and 5, as showed in Table 1 . 

In case of person 1 we can observe a drop in the heart rate around 2600s., however the heart rate

rops slightly below the threshold, by about 1–2 bpm. The behavior of the HR curve suggests that

his decrease is insignificant and should not influence the period of heart rate above the threshold of

05 bpm. In case of the original signal and signal filtered using window length corresponding to the

rst zero-point of the third gradient, this decrease in the heart rate is reducing the period of the HR

bove the threshold by almost half, from about 43 min to 22 min, what can be crucial during training

f a middle aged person. 

Cases for person 2 and person 5 are similar, in terms of a slight and short decrease of heart rate, to

erson 1. In both cases the HR drop below the threshold is by 1–2 bpm and should not be considered
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Table 2 

Longest periods of HR above the threshold value, simultaneous physiological measurements dataset. 

Original signal Filter based on 

1st zero-point 

Filter based on 

2nd zero-point 

Adjusted value 

Max. length 

[ sec .] 

Person 1 161 161 262 172 

Person 2 93 210 318 217 

Person 3 123 245 262 247 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in the determination of the value of the longest period above 105 bpm. The increase of this period for

persons 2 and 5 for filtered signal with window length equal to the second zero-point is not as large

as in case of person one, but still significant, equal to around 5 min. 

For persons 3 and 4 the proposed method did not influence the length of the longest period of

heart rate above the threshold. Both HR curves show moments of decreased activity, lasting for few

seconds, before the considered period in case of person 3, and after the considered period in case of

person 4. 

It is clearly visible that the longest period above the threshold value calculated for window length

equal to 230 is significantly longer in case of persons 1, 2, 3 and 5. For person 1 this value is very

similar to the result calculated for the window length corresponding to the second zero-point of the

third gradient. However, in case of persons 2 and 5 these values cannot be taken into consideration

in analysis of the heart rate in terms of person’s performance and fatigue. As we can observe on the

first plot of Figs. 16 and 19 , there are segments of reduced HR: for person 2 this significant decrease

of heart rate is present in segment between 20 0 0s. and 280 0s, while in case of person 5 the period of

rest occurs between 2600s. and 2900s. In Table 1 we can see that the increase of the period length for

person 2 is by 15 min in comparison to the result for the window length based on the second zero-

point and by 20 min in comparison to the value obtained for the original signal. In case of person 5

these differenced are even more significant, equal respectively to 21 min and 27 min. Differences at

this level of values make filtering of the signal with window length of 230 unreliable. 

The method was also validated using Physionet dataset “Simultaneous physiological measurements 

with five devices at different cognitive and physical loads”. The threshold was set to 95 bpm to

evaluate the heart rate signal recorded during the period of five-minute walking on the treadmill

at a moderate speed. As it can be observed in Figs. 20–22 , the signal is very irregular. In case of the

original signals the elevated pulse was evaluated to last for less than 3 min in all three cases. For

the signals processed using filters based on the second zero-point of the third gradient the resulting

longest period increased by 38%, 70% and 53% for persons 1, 2 and 3 respectively. Including the

uncertainty factor UF defined in the previous section, this increase was lower, equal respectively to

6%, 68% and 17%, as showed in Table 2 . 

The longest period above the threshold value calculated for window length equal to 540 for the

three analyzed signals is presented in Fig. 23 . It can be observed that the signal is significantly

smoothed, and its level decreased, what resulted in identification of the region of interest to the

incorrect signal part, namely the region when the persons performed uphill walking on the treadmill.

Therefore, consideration of the longest period above the threshold, as well as the area under the HR

curve and above the threshold in case of the window of such large length is pointless. 

Part 3 of validation – area under the curve 

One of the parameters recommended in analysis of serial measurements in medical research is area

under the curve. It can be interpreted as a kind of weighted average of the analyzed signal and can

be used for finding and evaluating patterns among groups of monitored patients [8] .The area between

the HR curve and the threshold line was calculated for the original signal, signal with Moving Average

filter with window length based on first and second zero-point of third gradient, and length equal to

230. Obtained values are presented in Table 3 . We can observe that for the original signal and signals

with applied Moving Average filter with window length based on first zero-point of third gradient,

are almost the same, with the decreasing tendency for increasing the window length. The reason for
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Fig. 20. Heart rate: original signal (gray) with highlighted longest period above the threshold (black), signal with moving average filter with window length based on first and second 

zero-point of third gradient, for Person 1 from Simultaneous Physiological Measurements dataset. 
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Fig. 21. Heart rate: original signal (gray) with highlighted longest period above the threshold (black), signal with moving average filter with window length based on first and second 

zero-point of third gradient, for Person 2 from simultaneous physiological measurements dataset. 
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Fig. 22. Heart rate: original signal (gray) with highlighted longest period above the threshold (black), signal with moving 

average filter with window length based on first and second zero-point of third gradient, for Person 3 from simultaneous 

physiological measurements dataset. 

Fig. 23. Signal with moving average filter with window length of 540 s, for Persons 1, 2 and 3 from simultaneous physiological 

measurements dataset. 

Table 3 

Area under the HR plot and above the threshold value, PAMAP2 dataset. 

Original signal Filter based on 

1st zero-point 

Filter based on 

2nd zero-point 

Filter for 230 Adjusted value 

Area [heart 

beats] 

Person 1 34,235 34,233 79,858 76,390 38,772 

Person 2 29,003 28,811 34,178 12,131 29,106 

Person 3 23,674 23,604 23,451 18,692 23,588 

Person 4 6385 6380 6365 8416 6378 

Person 5 40,679 40,611 46,426 66,376 40,952 

i  

c  

a  

t  

v  

t  
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u  

w  
t is the fact that the level of the signal decreases with the increase of the length of the window. In

ase of the filter based on the second zero-point of the third gradient the area under the HR plot and

bove the threshold value are significantly increased in case of persons 1, 2 and 5, what is a result of

he increase of the value of the longest period above the threshold value. The significant difference is

isible for the Moving average filter with window of length 230, where the values of the area under

he HR curve decreases by 10–20% for persons 3 and 4. Lower amplitudes of the filtered signal can be

bserved in Figs. 15–19 , what is also visible in values of the total area under the HR plot as presented

n Table 4 . 

Obtained results show that proposed method of filtering does not affect significantly the area

nder the HR curve and this parameter can be used in analysis of the time series. On the other hand,

e can see that filtering affects the amplitude of the signal and applying Moving Average filter with



20 T. Wiktorski and A. Królak / MethodsX 7 (2020) 101094 

Table 4 

Area under the HR plot, PAMAP2 dataset. 

Original signal Filter based on 

1st zero-point 

(decrease [%]) 

Filter based on 

2nd zero-point 

(decrease [%]) 

Filter for 230 

(decrease [%]) 

Area [heart 

beats] 

Person 1 467,396 466,812 (0.12%) 465,647 (0.37%) 439,685 (5.93%) 

Person 2 410,011 408,778 (0.30%) 404,328 (1.39%) 356,012 (13.17%) 

Person 3 380,245 379,699 (0.14%) 378,606 (0.43%) 352,732 (7.24%) 

Person 4 302,638 301,955 (0.23%) 301,073 (0.52%) 280,685 (7.25%) 

Person 5 470,828 470,393 (0.09%) 46 8,573 (0.4 8%) 4 4 4,873 (5.51%) 

Table 5 

Area under the HR plot and above the threshold value, simultaneous physiological measurements dataset. 

Original signal Filter based on 

1st zero-point 

Filter based on 

2nd zero-point 

Adjusted value 

Area [heart 

beats] 

Person 1 900 897 1164 926 

Person 2 548 967 1346 993 

Person 3 482 822 829 823 

Table 6 

Area under the HR plot, simultaneous physiological measurements dataset. 

Original signal Filter based on 

1st zero-point 

Filter based on 

2nd zero-point 

Filter for 540 

Area [heart 

beats] 

Person 1 179,939 179,353 (0.33%) 178,396 (0.86%) 122,789 (31.76%) 

Person 2 207,506 206,904 (0.29%) 205,481 (0.98%) 151,770 (26.85%) 

Person 3 167,675 167,232 (0.26%) 166,240 (0.86%) 113,015 (32.59%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

long window is not recommended as it significantly affects the area under the curve. This problem

might manifest often when measuring heart rate under a load lasting more than several minutes. Due

to aforementioned cardiac drift, average heart rate will increase with time even without changes to

the exercise load. It will result in the time series of heart rate becoming non-stationary. What will

lead to distortion of measurements if a Moving Average filter with long window is applied. 

The area under the HR plot and above the threshold value, as well as the total area under the

HR plot, were evaluated also for the PhysioNet Simultaneous Physiological Measurements dataset and 

are presented in Table 5 and Table 6 . It is clearly visible that for all the analyzed signals there is an

increase of the area under the HR plot and above the threshold value as the length of the longest

period above the threshold increases as a result of applying the filter based on the first and second

zero-point of the third gradient. 

The values of the total area under the HR plot have slightly decreasing tendency as the size of the

window increases, however this decrease is not very significant for the filters based on the first and

second zero-point of the third gradient. It is much greater in case of the window size of 540 and is

equal to 20–30%, as it can be seen in Table 6 . 

Concluding remarks 

Sum of absolute differences is an established approach to selecting window length for a moving

average filter. The underlying properties of a process generating the data might, however, render

results of such approach detrimental to further analysis for some signals. Biomedical signals, such 

as heart rate, are a good example, since underlying physiology is often well understood. As we

demonstrated regular SAD approach results in long windows that undesirably remove physiological 

information from the data. 
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The method outlined in this paper provides a formalized alternative to the regular sum of absolute

ifference approach. It extends it with calculation of zero-points of third gradient, sometimes called

erk, to detect finer variations in the shape of SAD curve. 

We demonstrated validity of this approach on the PAMAP2 Physical Activity Monitoring Data Set,

n open dataset from the UCI Machine Learning Repository, as well as on the PysioNet Simultaneous

hysiological Measurements dataset. It showed that first zero-point usually falls at around 8 and

 second window length respectively, while second zero-point usually falls between 16–24 and 8–

6 s respectively. The value for the first zero-point can remove simple measurement errors when data

re recorded once every few seconds. The value for the second zero-point corresponds well with what

s known about physiological response of heart to changing load [9] . 
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