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Abstract 20 

Knowing the displacement capacity and mobility patterns of industrially exploited (i.e. fished) 21 

marine resources is pivotal to establish effective conservation management strategies in a 22 

progressively anthropized ocean. To establish the sizes and adequate locations of marine 23 

protected areas within the framework of large international societal programs (e.g. European 24 
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Community H2020, as part of the Blue Growth economic strategy), accurate behavioral 25 

information of deep-sea fished ecosystems is necessary but currently scarce and poorly accessible 26 

to high-frequency and prolonged data collection. A breakthrough in the autonomous capability of 27 

mobile platforms to deliver data on animal behavior beyond traditional fixed platform capabilities 28 

(e.g. cabled observatories or acoustic long-baseline systems) is overcoming these limitations. 29 

Here, we present useful example of that potential in relation to the implementation of autonomous 30 

underwater vehicles (AUVs) and remotely operated vehicles (ROVs) as an aid for acoustic long-31 

baseline localization systems for autonomous tracking of Norway lobster (Nephrops norvegicus), 32 

one of the key living resources exploited in European waters. We reported the outcomes of that 33 

monitoring in combination with seafloor moored acoustic receivers to detect and track the 34 

movements of 33 tagged individuals at 400 m depth over more than three months. We identified 35 

best procedures to localize both the acoustic receivers and the tagged-lobsters, based on cutting-36 

edge algorithms designed for off-the-self acoustic tags identification. These procedures represent 37 

an important step forward for prolonged, in situ monitoring of deep-sea benthic animal behavior 38 

at meter spatial scales.  39 

40 

Summary 41 

Mobile robots with different degrees of platform operability are a key element to improve and 42 

extend the traditional acoustic tracking methods to study the spatiotemporal behavior of deep-sea 43 

fishery resources. 44 

45 

Introduction 46 

The marine benthic realm is progressively becoming wired with cabled infrastructures in an 47 

attempt to transform strategic or protected areas (i.e. those of commercial or ecological value) 48 

into robotized laboratories with permanent monitoring functions (1, 2). At the same time, other 49 
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relevant oceanic-networks are being established worldwide, seeking to track the large-scale 50 

pelagic movements of species over large geographic areas and durations by animal-borne data-51 

loggers (3–6). Data like these provide essential behavioral information for applying new cutting-52 

edge conservation policies (7). 53 

Large marine megafauna (e.g. cetaceans, dolphins, elasmobranchs or sea turtles), which rise to 54 

the sea surface habitually, allows the use of the data-loggers with global positioning system (GPS) 55 

and remote communication (e.g. Argos satellite network) to determine the duration and 56 

trajectories of those movements (8). However, never-surface emerging benthic and pelagic 57 

species cannot be tracked using such a methodology since electromagnetic waves suffer the 58 

drawbacks of high attenuation in seawater medium (9).  59 

For those non-emerging benthic species, acoustic positioning methods from fixed platforms 60 

can be used alongside acoustic tags sensors deployed on animals (10), being tracked using long 61 

base-line (LBL) triangulation techniques (11). However, deploying benthic anchored receivers 62 

may increase operation complexity (e.g. in terms of spatial precision) and economic costs (12), 63 

with minimal flexibility (e.g. single location). Moreover, it is necessary to use specific tags in 64 

order to maintain synchronization between each receiver into the listening network, which may 65 

increase the complexity in data post-processing (13). While this technology has proven useful for 66 

behavioral tracking in shallow water scenarios (14), its performance has not yet been fully 67 

examined in the deep-sea. Only a few efforts have been conducted to follow populations 68 

movements over kilometer scales (15) with acoustic receivers mounted on moored of curtain or 69 

gate typologies (16). 70 

A complementary strategy to the use of moored devices is to mount acoustic receivers on 71 

autonomous underwater vehicles (AUV), which is used as a virtual LBL, measuring the distance 72 

range with the target by acoustic modems (17, 18). Differently from acoustic tags, these modems 73 

have bi-directional communications capabilities, and therefore, the time of flight (TOF) and slant 74 
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range of an acoustic signal can be measured knowing the sound’s velocity. Finally, triangulation 75 

localization techniques are applied to estimate the position of tagged-individuals with different 76 

algorithms (19). In addition, the bearing information estimated by ultra-short base-line (USBL) 77 

systems can also be used, which increases the overall speed response (20, 21). Nevertheless, the 78 

investigations are again limited to large animals due to the size of electronic tags (22). Other 79 

authors use bearing-only techniques in order to avoid the use of acoustic modems and overcome 80 

the size limitations (23, 24), where an AUV borne hydrophones’ array is used to track acoustic 81 

tags. Unfortunately, a significant localization uncertainty is produced by the too-close positioning 82 

of hydrophones, which often requires larger separation that is not achievable on AUVs (25). 83 

However, marine robots have in recent years been used for the tracking of marine species. For 84 

example, AUVs equipped with a single hydrophone were used to track fishes with different error 85 

ranges and procedures (e.g. SYNAPS and SPLWCA (14, 26, 27)). Some of the studies were 86 

conducted in combination with seafloor moored receivers, allowing records of the presence of 87 

tagged animals within the area of detection, but with high uncertainty in their position (28–31). 88 

Other authors used custom transponders attached to large marine species to increase the efficiency 89 

of vehicle tracking capabilities (20, 32), but this approach is impractical for small marine species. 90 

Despite this interest, to our best knowledge, no previous study has addressed the tracking 91 

methodologies’ performance by using static receivers and underwater vehicles, including testing 92 

its accuracy and capabilities in deep waters. 93 

Here, we describe a new procedure for the multi tracking of one of the most important fishery 94 

resource in Europe, the Norway lobster (Nephrops norvegicus Linnaeus, 1758) (33), using a set of 95 

moored seabed receivers along with a remotely operated vehicle (ROV) and an AUV (Fig. 1). We 96 

developed a new area-only target tracking (AOTT) method to achieve active tracking of 97 

instrumented individuals, which only uses the detection pings of acoustic tags. Moreover, time 98 

difference of arrival (TDOA) algorithms have been adapted and tested to study their accuracy in 99 
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variable operational scenarios. Specific objectives were: (i) TDOA algorithms performance 100 

comparison through Monte Carlo (MC) simulations; (ii) new AOTT algorithm capabilities 101 

presentation, where both simulations and field tests have been conducted; and (iii) the results of a 102 

3-month campaign using static receivers (i.e. mooring lines with acoustic receivers) and 103 

underwater vehicles (an ROV and an AUV), where both TDOA and AOTT algorithms have been 104 

used. The tracking potential of this combined mobile and moored technology was tested in a 105 

deep-sea, no-take fishing zone under restoration, to show how a long-lasting acoustic-based 106 

deployment can provide new behavioral data that can inform the establishment and spatial extent 107 

of conservation areas. 108 

 109 

Results  110 

 111 

TDOA tracking algorithms performance  112 

The performance of the different TDOA algorithms tested is presented in Fig. 2, where a set of 113 

MC simulations has been conducted. We used 4 receivers to localize a target on two-dimensional 114 

(2D) scenario, since the depth of the targets under study was known and constant as the species is 115 

benthic, with no swimming capability. These simulations are important to demonstrate the 116 

capabilities to track benthic tagged animals and to set the appropriate configuration (e.g. number 117 

of receivers, receivers’ positions, or acoustic tag transmission period).  118 

The Cramér-Rao bound (CRB) representation is presented in Fig. 2A, where 4 receivers with 119 

200 m of baseline distance and a time error of 1 ms have been used (for other array configurations 120 

see Fig. S1). The area inside of the receivers’ array showed the lowest expected measurement 121 

standard deviation error (< 1 m), whereas the error increased up to 7 m at 250 m off the receivers’ 122 

array center.  123 
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To compare the algorithms’ performance, a predefined target trajectory has been designed 124 

(Fig. 2B and Movie S1), according to which the target moves at 1 ms-1 among fourth receivers 125 

with a transmission period of 60 s. The root mean square error (RMSE) over the time is shown in 126 

Fig. 2C, where all the algorithms were iterated 100 times with a Gaussian error with 1 ms 127 

standard deviation (Fig. S2 shows the RMSE evolution with other errors). This result clearly 128 

showed that the error is lower inside the receivers’ array, especially for the maximum likelihood 129 

(ML) estimation algorithm. That latter registered the greatest error. Due to numerical singularities 130 

around the receivers, the ML estimation failed to find the minimum of the cost function, and 131 

instead, it reached the local minimum nearby the receiver position. This problem was reduced by 132 

choosing a different initial estimation (i.e., closer to the real position), as explored with the 133 

weighted least squares ML (WLS-ML) algorithm, where the WLS method is used to initialize the 134 

ML estimation algorithm. 135 

The algorithms’ RMSE over the 100 MC iterations with different noise added in the time of 136 

arrival (TOA) measurements are presented in Fig. 2D. We simulated the algorithms’ performance 137 

with noise standard deviation ( ) equal to 0.5, 1.0, and 1.5 ms. Moreover, additional tests with a 138 

Gaussian TOA error with 1.5 =  ms plus 5% of outliers were simulated to observe the 139 

algorithms’ behavior when facing strong multipath scenarios. These simulations showed that the 140 

particle filter (PF) had the best performance under different noise conditions, however, it had 141 

more difficulties to handle scenarios with outlier measurements, whereas the WLS excelled. In 142 

addition, the use of the WLS-ML combination slightly improved the algorithm’s performance 143 

with different noise configurations. Nonetheless, this benefit was not observed in scenarios with 144 

outliers. 145 

Finally, the average runtime required to compute one target position is shown in Fig. 2E, were 146 

the fastest algorithm was the WLS with 5 ms per iteration. In contrast, the PF required 977 ms, 147 

which means an increase of more than two orders of magnitude of the computational resources. 148 
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 149 

AOTT algorithm performance 150 

A set of simulations were conducted to observe the optimal parameters for the AOTT algorithm 151 

(Fig. 3A) and the functions to weight the PF’s particles (Fig. 3B). For example, the results 152 

showed a clear relationship between the tracker circumference radius (TCR) and the maximum 153 

transmission range (MTR), where the greatest ratio, radius /TCR MTR = , was equal to 0.8 (Fig. 154 

3C). This means that the tracker had to conduct circumference maneuvers over the target 155 

estimation position with radius less than the MTR but closer to it. Nonetheless, is hard to known a 156 

priori the MTR achievable by an acoustic tag, which can be affected by different factors such as 157 

the sea state or the acoustic noise. Therefore, different in situ tests should be conducted to 158 

estimate its value. In our case, those tests pinpointed a maximum range less than 400 m with only 159 

a 20% of successful receptions (Fig. S3). In addition, the MTR is pivotal to spread the PF’s 160 

particles, and therefore, different relationships between MTR and the maximum particles range 161 

(MPR) were studied, which allowed to identify the relation between the ratio 162 

range /MPR MTR =  and the AOTT’s performance (see Fig. 3C). Moreover, the behavior of 163 

missing some of the tag’s transmissions could also be observed, where the successful reception 164 

(SR) over the total transmissions (TT) ratio defined by reception /SR TT =  is presented. Finally, 165 

random particles were spread around the latest estimated target position (Compound resampling 166 

method), which helped to increase the particles diversity, and emphasized the latest time that the 167 

tag was detected, which yielded to an increase in tracking performance (see Fig. 3C). 168 

The AOTT’s performance can be observed on Fig. 3D (and Movie S2), where all the 169 

recommendations derived from the previous MC simulations presented above were used, which 170 

showed an error of 100 m. After these simulations, a field test was conducted on June 27-28, 171 

2018 (Fig. 3E) using the Monterey Bay Aquarium Research Institute (MBARI) coastal profile 172 
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float (CPF) as a target (Fig. 3F) and a Wave Glider as a tracker (Fig. 3G) in Monterey Bay area, 173 

(CA, USA) (Fig. 3H). This test lasted more than 15 h, where the CPF conducted 3 immersions at 174 

60 m depth.  175 

 176 

Norway lobster tracking 177 

The results of the four-step process to adjust the receiver clocks’ drift and offset is shown in Fig. 178 

4A–F, where a resolution greater than 2 ms was obtained. Moreover, a small number of outliers 179 

were detected during the post-processing (e.g. Fig. 4E), which had a random nature due to the 180 

homogeneous bathymetry of the experiment zone (i.e. a quasi-flat slope ground). In addition, the 181 

deployment position of the mooring lines using the oceanographic vessel’s GPS, the ROV’s 182 

USBL and the positions computed using the acoustic receivers are presented in Fig. 4G. Here, a 183 

great difference between the GPS’s and ROV’s positions could be observed, which pinpointed the 184 

necessity of the use of underwater vehicles to know final position of the receivers (Table 1). 185 

After determining the receiver localizations and calibrating their clock offsets, the tagged 186 

Norway lobster positions could be tracked using the TDOA algorithms (see next section). The 187 

trajectory showed by each animal can be observed in Fig. 5A (and Movie S3), where the 188 

localization of the synchronization acoustic tags attached on the mooring lines, and the acoustic 189 

tags attached on the 33 individuals, are shown. After the canister release in the center of the 190 

receivers’ array, the individuals show a dynamic dispersion and occupation of the monitored area. 191 

Furthermore, the accumulative distance of each individual was plotted in Fig. 5B, where we could 192 

appreciate how some animal went outside of the receivers’ reception range, being therefore not 193 

detectable any more, from that moment on. 194 

By the use of the two underwater robots (an ROV and an AUV), we could track the presence 195 

of some of those area-evading animals. The ROV conducted different lawn pattern movements on 196 

the southeast of the area, covering 10 km2, and the AUV conducted a circumference path on the 197 
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west (see Fig. 5C) with a radius equals to 150 m. During these tests, 4 tags were localized, and 198 

moreover, different images could be obtained, which will be used to study the seabed recovery in 199 

the protected areas (Fig. 5D and Movie S4). 200 

 201 

Comparison between methods 202 

The algorithms studied to track acoustic tags using the TDOA information could be compared 203 

together during the entire Norway lobster tracking experiment. Because the “true” position of the 204 

tagged lobsters was unknown, the synchronization tags attached on the mooring lines were used. 205 

In this case, the tags were not moving but static. Fig. 6A-6E show their estimated position and the 206 

error covariance matrix, which are represented as error bars in Fig. 6F (and summarized in Table 207 

S1). For example, the accuracy obtained to localize the lobster canister synchronization tag (i.e. 208 

base station (BS) D), which was placed in the receiver array center, was similar among all the 209 

algorithms (error <1 m). However, the PF had the poorest performance when it came to localize 210 

the synchronization tags attached on the mooring lines. This low performance was due to the 211 

nature of the PF’s particles distribution near the receivers in a TDOA topology (i.e. eccentricity of 212 

the hyperbola close to 1). Moreover, we found that both PF and WLS methods showed higher 213 

errors in positioning moorings Vemco acoustic receiver indicated as BS(D) and BS(E), which had 214 

different configuration (smaller dead weights and VR2AR-69k receivers). Taking into 215 

consideration the simulations conducted and the run-time required for each method, the WLS-ML 216 

offered the best reliability. 217 

Finally, whereas the error of AOTT (order of tens of meters) is greater than the error that 218 

can be obtained with TDOA algorithms (order of few meters), the AOTT method overperforms 219 

these techniques due to the use of a single moving received on a mobile vehicle. This strategy, 220 

dramatically reduced infrastructure requirements. 221 

 222 
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Discussion  223 

To the best of the authors’ knowledge, this is the first study conducted to acoustically track tagged 224 

deep-sea benthic species, combining the information provided by underwater vehicles and 225 

anchored receivers, with meter spatial resolution. Here, the challenges of accurately positioning 226 

the receivers, adjusting the clocks’ drift, and algorithms’ performance have been analyzed, 227 

observing that are the primary cause of tracking success for an EU relevant fishery resource as the 228 

Norway lobster into a no-take zone. Thus, we set the basis and procedures which should be 229 

followed to obtain the best accuracy possible in similar operative deep-sea scenarios. In order to 230 

achieve such performance, the use of underwater mobile robotic platforms has been crucial, 231 

which can significantly boost traditional tracking methods (e.g. (15, 16)), and extend target 232 

tracking beyond the limits of current LBL systems. In doing so, we have worked with two 233 

methods for target localization, which has been used in combination to extend their capabilities, 234 

(i) through static receivers anchored on the seabed and using TDOA algorithms, where a meter-235 

resolution can be achieved, and (ii) using a single receiver installed on an underwater vehicle for 236 

dynamic tracking using the AOTT algorithm, which is capable to localize and track acoustic tags 237 

only by ping’s detections.  238 

Many efforts to study deep-sea species using acoustic target tracking systems has been 239 

conducted, and a complete survey of design settings, detection algorithms and used platforms are 240 

presented in Table 2. In this scenario, the strength of our contribution lies in the fact that we have 241 

faced the problem from a technological, operational and scientific point of view, covering 242 

different areas of study and sheds new light on the difficulties and solutions we encountered. We 243 

are confident that our results may improve knowledge about a comprehensive solution to track 244 

deep-sea species using both acoustic mooring receivers and underwater robotized platforms, 245 

which within the next years could be an important component in fishery resources management, 246 

and are destined to enable new scientific discoveries (34).  247 
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 248 

TDOA algorithms 249 

This hyperbolic scheme is the method used when the acoustic target to be localized is not 250 

synchronized with the receivers or no bi-directional communications capability is available (35). 251 

In these cases, the slant range between target and receiver cannot be computed, and therefore, the 252 

triangulation methods for target localization based on range are not feasible. In a one-way 253 

communication scenario, the main problem to compute the TOF is to know the initial 254 

transmission time 
0t . The TDOA was designed to avoid this inconvenient (36), where using two 255 

synchronized receivers, the unknown 
0t  can be eliminated. In (37), the authors studied a method 256 

which estimated also the 
0t , however this method has its limitations when the acoustic tag does 257 

not transmit in a specific and fixed period. Moreover, in (35) the authors studied analytically and 258 

through simulations different TDOA target localization algorithms, and found that it is not 259 

necessary to use the full set of TDOA measurements. In general, a set of L  well-localized 260 

receivers are used, where there are ( 1) / 2m L L= − distinct TDOA measurements from all 261 

possible sensor pairs, which is known as the full TDOA set (35). With only a subset, one can 262 

achieve the same performance, but not when the target is outside of the center of the receivers’ 263 

array (see Fig. S1). Moreover, we could observe that the WLS had the best performance, being 264 

also the fastest method. The target tracking experiments, in general, use a set of receivers 265 

anchored on the seabed (e.g. (38, 39)). These receivers can operate for months continuously 266 

recording information of the tagged animals, and therefore, the number of measurements and 267 

consequently the number of computations required to track each animal can be significant. Thus, 268 

the runtime required is important in order to obtain the trustable tracking data.  269 

 270 

AOTT algorithm  271 
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The area-based tracking method is used when the information to estimate the tag position is only 272 

the ping received by one receiver. Two sets of simulations with different reception ratios ( reception273 

) were conducted, using ratios equal to 100% and 60%. Before and after the target right turn (at 274 

67 min from the beginning of the simulation), the error was 50 m using the ideal reception ratio, 275 

and 100 m using the 60% ratio. In this last situation, the AOTT had more problems to find and 276 

track the real target position, which lose the target position about 2% of the iterations. Despite 277 

that, the tracker in general did not lose the target’s position, and therefore, the great capabilities of 278 

the AOTT method were demonstrated in relation to previous efforts. For example, in (23) the 279 

authors used two hydrophones and bearing-only methods to track a tagged animal, resulting in 280 

critical consequences on vehicle’s performance due to the payload’s size, and drag effects of these 281 

hydrophones, with a reported error greater than 40 m. In order to increase the accuracy, the same 282 

authors presented a custom tag design (32), integrating an inertial measurement unit, which was 283 

used to adjust the velocity and attitude of the species during an offline post-processing. However, 284 

this approach augments considerably the tag’s size, and therefore, is not suitable for smaller ones. 285 

The tag’s size is also an important constrain in (20). In (14) the authors developed a method 286 

which uses the signal strength to infer the tag’s position, nonetheless its performance and 287 

observability studies were not reported. Finally, in (17) a synthetic LBL is presented, where a 288 

constant, precise tag burst rate and a high resolution tag detection timestamp on the receiver are 289 

both necessary for estimating tag positions, which are not always possible.  290 

From the AOTT’s initial field test error, we could pinpoint three elements: (i) the algorithm 291 

was notably stable, where the target was mostly all the time localized; (ii) during the first CPF’s 292 

immersion, the error was lower than 100 m, and then increased up to 100 m. If we compare this 293 

performance with the simulations conducted previously, and if we take into consideration that the 294 

Wave Glider’s path was not optimal, the error’s values were inside the expected boundaries; and 295 
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(iii) when the CPF was in the surface (i.e. at 5h) the error obtained was greater, probably due to 296 

poor tag reception. 297 

 298 

Norway lobster tracking 299 

We efficiently detected 33 tagged lobsters during several months with a high precision (i.e. less 300 

than 2 m) using the WLS-ML algorithm (see Table 1). Once the tagged animals were localized, 301 

their pattern of displacement could be inferred, e.g. using the joint estimation over multiple 302 

individuals method (40). 303 

Nevertheless, the reception of the tags using the underwater vehicles was operationally 304 

complex. During the cruise, conducted after 5 months since the release of tagged-individuals, 305 

different dives were conducted with both the AUV and the ROV. Based on these dives, we were 306 

able to detect 4 Norway lobsters. In addition to the possibly that most of the tagged lobsters were 307 

lost or disappeared from the study area, the small number of detections could be caused by (i) 308 

acoustic interferences caused by the thrusters or the equipment installed on the vehicles (e.g. the 309 

USBL or the doppler velocity log), or (ii) due to lobster’s diel burrow emergence patterns (41), 310 

since the acoustic signal could suffers strong attenuation while the individual is inside its burrow 311 

(42). For example, in (31) the authors used a Wave Glider to track Snow crabs (Chionoecetes 312 

opilio), which is powered by sea waves, and therefore, it does not use thrusters. Moreover, it does 313 

not use any acoustic positioning systems but GPS, as it stays permanently on the sea surface. Both 314 

aspects help to reduce the noise, and interferences with the tag’s signal. This was also 315 

experimented during the AOTT field test, where the reception ratio was greater. Though, one of 316 

the main constrains for benthic deep-sea tag tracking is the maximum distance that an acoustic tag 317 

signal can be detected (e.g. less than 300 m for smaller devices), and therefore, the use of surface 318 

vehicles as Wave Gliders are not possible. One solution could be the use of an AUV with “silent” 319 
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mode capabilities (i.e. dynamic buoyancy control) such as (43, 44), or tethered the receiver at a 320 

sufficient distance. 321 

 322 

Materials and Methods 323 

 324 

Fieldwork experiments 325 

Tracking procedures were conducted during 2019 in a no-take fishing zone, established at 380-326 

400 m depth in the northwestern Mediterranean Sea (42º 00.8006’ N and 03º 31.9723’ E; Fig. 327 

1E). During an oceanographic cruise on-board of the Research Vessel (R/V) García del Cid, on 328 

June 6, 2019, we deployed four mooring lines with Vemco receivers (Vemco, Canada): two 329 

equipped with VR2W-69k receivers and V7-69k synchronization tags; two equipped with 330 

VR2AR-69k acoustic release receivers. In the middle of these four mooring lines, we 331 

simultaneously released 33 Norway lobsters, each dorsally glued (i.e. cyanoacrylate) to a Vemco 332 

V7-69k tags, by using release canisters (an adaptation of (42)). All lobsters were captured in the 333 

study area with creels during the previous days before their release. The mooring lines with the 334 

receivers were recovered on September, 23, 2019 during a second oceanographic cruise on-board 335 

the R/V García del Cid.   336 

In addition to the four mooring receivers, and also to detect the tagged-lobsters, during a third 337 

oceanographic cruise on-board the R/V Sarmiento de Gamboa in October 2019, we deployed two 338 

underwater vehicles in the same field site: an AUV (Girona 500 AUV, IQUA Robotics, Spain) 339 

and an ROV (Super Mohawk II, Forum Energy Technologies, Houston, TX, USA), both equipped 340 

with VR2W receivers. 341 

Complementarily, some of these materials and procedures were tested on different preliminary 342 

operational calibration trials: (i) conducted at OBSEA observatory (www.obsea.es) deployed at 343 

20 m depth and 4 km east off central Catalan coast, Barcelona (Mediterranean Sea), one of the 344 
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three EMSO testing-sites (45, 46), Fig. S4; and (ii) at Monterey Bay, California (USA), using the 345 

installations of MBARI. 346 

 347 

Methodology 348 

Four receivers created an acoustic LBL localization system, where each one was in self-recording 349 

mode and was not accessed in real time. The tags transmitted periodically an acoustic and 350 

individualized ping with a unidirectional communication protocol, which was recorded by the 351 

receivers. The tags were programmed to send this ping every 60 s (plus a random value up to 30 s 352 

to avoid multiple tags consistently overlap in time). Each tag transmits its own identifier using a 353 

pulse position modulation (PPM) with a carrier signal frequency of 69 kHz. The Vemco V7 tag 354 

has a typical working range of ~ 250 m, and therefore, the receivers’ baseline was set to 200 m.  355 

In addition, the V7 synchronization tags from Vemco were used to correct the receivers clock 356 

drift and to adjust the final receiver array position using a four-step process described below. 357 

These synchronization tags were attached on each mooring (1 m above the receivers) and to the 358 

lobster canister. During the experiment, both the ROV and the AUV positions were known using 359 

the R/V’s USBL. Also, the AUV had its own dead reckoning system for autonomous navigation. 360 

The final position of the receivers could be computed using the information provided by the 361 

ROV’s USBL, which was more exact than the deployment position obtained on surface with the 362 

GPS of the R/V due to the drift during the 400 m dive. The ROV was piloted above the moorings 363 

and its position was used as a “true” position of two of them. Then, knowing the TOF among the 364 

other lines and the lobster canister through the synchronization tags and the receivers, their 365 

relative positions could be determined by simple trigonometry functions and rotation matrices.  366 

 367 

TDOA algorithms 368 
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Target localization using TDOA is a well-known problem which has been addressed on both 369 

terrestrial and underwater environments during the last decades. The TDOA has been usually 370 

used when no synchronization between transmitters and receivers can be enforced, and even 371 

more, if transmitters ping-time is irregular (e.g. using Vemco devices). In both cases, the TOF 372 

cannot be measured or estimated, and consequently, the TDOA between different pair of receivers 373 

is used.  374 

In general, TDOA algorithms can be divided in two groups, the ML and least-squares (LS) 375 

methods (47). Using 1n+  receivers (where  2,3n is the space dimensionality of the problem) a 376 

set of hyperbolic equations can be obtained to find the coordinates of the target. The TDOA 377 

measurement between two receivers  nb  and the target at position  nq can be written as 378 

  379 

 
0 0

1

||
1 1

( ) ( ) ( ||| )

(||

|

|| |||| )

ij

ji

i j

t t w
c c

w
c

 = + − − + − +

= − − − +

x || q b q b

q b q b

,  (1) 380 

where , {0,  , }i j m   and i j , c  is the sound velocity in water, and 
0t  is the target 381 

transmission time. Assuming a zero-mean white Gaussian error noise distribution of the TDOA 382 

measurements, i.e. 2~ (0, )w   with variance 2 , the unknown parameter  nq can be 383 

estimated using the ML estimation method. In this case, the density function for each ( )ij q  is 384 

given by  385 
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where   represents the measured TDOA. Given a vector of observations mμ  the function 387 

: [0,1]n →   which for any target position  nq  yields the probability ( | )p μ q , is 388 

referred to as the likelihood function, given by 389 
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, (3) 390 

where 2 1|| || T −

Ma a M a , and R  is the covariance matrix, and mI is the identity matrix of dimension 391 

m m . The ML estimator is defined as 392 

 ˆ arg max ( )
nq

q =  q . (4) 393 

A common practice in ML estimation is to work with the log-likelihood function. Since the 394 

logarithm is a strictly increasing function, and ( )q  is strictly positive, maximizing the 395 

likelihood and the log-likelihood are equivalent. Neglecting constant terms, the ML estimator can 396 

be found by solving the optimization problem 397 

 ˆ arg min ( )
n

f
q

q =  q , (5) 398 

where : nf →  is given by the following cost function 399 

 ( ) ( )2

2 11 1
( ) : ||  - ( ) ||  - ( )  - ( )

2 2

T
f −==

R
q q q R q      . (6) 400 
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In general, there is no closed form solution to the previous optimization problem. The cost 401 

function is relatively complex, nonlinear and even not differentiable at some points because of the 402 

square roots that defines the TDOA measurements.  403 

A standard approach for its optimization is to employ Newton-Raphson iterative minimization 404 

(48). In order to implement gradient and Newton descent algorithms to minimize the cost function 405 

it is necessary to have expressions for its gradient ( )f q  and Hessian 2 ( )f q , which are the 406 

vector of its first partial derivatives and matrix of its second partial derivatives respectively. This 407 

can be done resorting to Matrix Differential Calculus, see (11, 49) and the references therein. 408 

Nonlinear estimation problems are also often addressed using linearized estimators, e.g., the 409 

extended Kalman filter (EKF) (50). However, linearization-based filtering approach marginalize 410 

all but the current state and is hence unable to refine past linearization points. In contrast, a batch 411 

maximum a posteriori (MAP) estimator computes the estimates for the states at all-time steps 412 

using all available measurements (51). The difference between MAP and ML estimation lies in 413 

the assumption of an appropriate prior distribution of the parameters to be estimated (52). The 414 

MAP estimator utilizes all available information to estimate the entire target’s trajectory which is 415 

represented by stacking all states in the time interval  0, k  as 416 

 0:k 0 1 k

T
T T T =  x x x x , (7) 417 

where 
2

T
n

k qk qk qk qkx x y y =  x is the target’s position and all the higher order time 418 

derivatives (i.e. velocity or acceleration). In addition, a motion model is used, which typically 419 

consider that the target moves randomly but assume that a stochastic kinematic model describing 420 

its motion (e.g., constant velocity) is known. Thus, the discrete-time state propagation equation is 421 

generally given by 422 

 1 1 1k k k k− − −=  +x x w , (8) 423 
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where 1k−w is zero-mean white Gaussian noise with covariance Q , and the state transmission 424 

matrix, 1k− , is given by 425 

 1

1 0 0

0 1 0 0

0 0 1

0 0 0 1

k

t

t
−

 
 
  =
 
 
 

. (9) 426 

Then, the MAP estimator seeks to determine the entire state-space trajectory that maximizes 427 

the following posterior probability density function 428 
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, (10) 429 

where a prior distribution equal to 0 0|0 0|0
ˆ( , )( )p =x x P has been used, and 

1:kμ denotes all the 430 

measurements in the time interval  1, k . Using the same procedure as in eq. (3), the cost function 431 

is given by 432 
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. (11) 433 

And finally, the solution can also be computed employing Newton-Raphson iterative 434 

minimization methods, see (51) and references therein. However, this solution, heavily depends 435 



Science Robotics Manuscript Template Page 20 of 47 

 

on the quality of the initial estimate, especially if multi-modal probability density functions are 436 

involved (i.e., the solution may lie on local minimum instead of the true target position).  437 

To estimate multi-modal distributions, one of the most used methods is the PF (53, 54). The PF 438 

solves in a non-parametric way the probability distribution problem using a set of particles, 439 

2nx , which are spread on the area in order to represent the true distribution. Each particle 440 

represents a hypothesis of the target state. The particles are weighted and normalized based on 441 

their measurement likelihood, and resampled accordingly (55, 56). 442 

Another method to solve the likelihood function eq. (3) is using a closed-form LS solution. A 443 

wide used closed-form method was developed by Chan and Ho (36). They give an alternative 444 

solution for hyperbolic position fix by using an approximation of the ML estimation when the 445 

TDOA estimation errors are small. The original set of TDOA equations are transformed into 446 

another set 
1

0

T
nT r + =  x q , which are linear in source position coordinates q , and adding 447 

an extra variable 
0r , which is the range between the target and the reference sensor. Then, the 448 

algorithm uses a two-step WLS method to estimate the target position, which is given by 449 

 ( )1
1

1T T

a a a

− −
−

=x G G G h  , (12) 450 
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and 
0|| - ||a m=B q b I . 453 

Further, different authors have improved this technique, for example, in (57) the WLS includes 454 

a vertical plane constraint and a cone tangent plane constraint. These two constraints are derived 455 

from the initial value and updated again after each iteration. 456 
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Finally, in (37) the authors developed the yet another positioning solver (YAPS) method, 457 

where they used the TOA instead of the TDOA to estimate the target position. Because of that, 458 

they had to also estimate the target transmission time 
kt . The modelling follows the state space 459 

paradigm, which uses the process and observation models as in MAP estimation method. They 460 

used a stochastic processes to describe the state propagation as a random walk with different 461 

degrees of standard deviation for both transmission time 2

1 1 2 ,( )k k k k bit t t t − − −− − and target 462 

position 0.5

1 ), 2(k k xyD t− q q , where xyD is the diffusivity. The YAPS method is coded as a 463 

C++ file, which evaluates the joint density through the template model builder (TMB) framework. 464 

That latter uses the Laplace approximation to find the unobserved random variables (e.g. x , y , 465 

and t ), and the parameters (e.g. xyD ) that can be estimated using the ML principle and built-in 466 

optimizer in R. Therefore, this model analysis follows a standard ML analysis of non-linear 467 

mixed-effects model, suing the TMB as the computational tool to automatize the process with R 468 

software. 469 

Here, all these algorithms have been compared with the CRB (58), which sets the lowest 470 

bound on the performance of unbiased estimators that use observations according to a certain 471 

probability density function. This bound is one of the most widely used (59–61), which for a 472 

TDOA target localization problem is given by  473 

   1ˆC (ov )−Iq q , (14) 474 

where I  denotes the Fisher Information Matrix (FIM) defined as  475 

 1( ) ( ) ( )Tf f−= I q q R q , (15) 476 

where ( )f q  is the gradient of the log likelihood function with respect to the unknown 477 

parameters, which has been used to compute the target position using the ML estimation. Taking 478 
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the trace of I we obtain a new inequality, which sets a fundamental lower bound on the mean-479 

square error of any unbiased estimator, given by 480 

     ( )12ˆ ˆvar =E || ( ) | r ( )| t −− q Iq qq  (16) 481 

TDOA Simulations 482 

Different simulations have been conducted in order to characterize the TDOA target localization 483 

algorithms explained above under different parameters and scenarios. These simulations have 484 

been carried out using the MC simulation method. For all the simulations, the RMSE has been 485 

computed using the median, and the 5th and 95th percentile, over 100 iterations, where different 486 

TDOA Gaussian noise has been added using 0.5 = ms, 1 = ms, and 1.5 = ms. The 487 

parameters of the scenario simulated used were: (i) tag transmission delay = 120 s, (ii) target 488 

velocity = 0.2 m/s, and (iii) number of particles (for the PF algorithm) = 6000 particles. 489 

Algorithms’ run-time has been obtained using a Processor Intel® Core™ i7-4760HQ CPU @ 490 

2.10 GHz with 8 GB of RAM memory. 491 

 492 

Receiver clock drift adjustment and localization 493 

Four receivers have been used in this study, where each one has an internal clock which is not 494 

synchronized periodically. Consequently, during the campaign they suffered from drift and 495 

misalignment. This behavior introduces an error which must be fixed for twofold: (i) to be able to 496 

associate independent receptions at separate receivers, corresponding to the same target and 497 

emission time, and (ii) to compute the TDOA accurately. The TDOA between two receivers 498 

(considering their clocks’ drift) can be modelled as 499 

( ) ( )|| |( ) || |
1ij

k k k j ik jki C C
c

 = − − − + −q || q b q b , (17) 500 
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where ikC is the clock’s misalignment of receiver i  at time step k . Considering static receivers 501 

and a static acoustic tag 0q (typically localized in the center of the receivers’ array), the 502 

measurement 0( )ij

k q  should be constant. However, due to the differences in the clocks’ drift 503 

0 0
| |ij ik jkC C C= −
q q

this is not true, which would result in target localization errors. Therefore, here 504 

we developed a procedure to adjust the drift using a four-step process: (i) using the initial points 505 

and a linear regression, (ii) using a polynomial regression with all the points, (iii) using different 506 

polynomial regression functions at different segments of data, and (iv) using the distance 507 

difference to correct the offset.  508 

The first step was used to adjust the main drift, which is necessary to associate independent 509 

receptions at separate receivers. If the clock's drift is greater than the acoustic tag transmission 510 

interval time, it is not possible to associate the receptions of an acoustic tag transmission at 511 

different independent receivers (in long field studies, i.e. more than one month, the drift can reach 512 

more than 30 seconds). Thus, only the initial points can be used. Then, the different receptions 513 

can be associated and a polynomial fitted curve can be used to eliminate the main clocks' drift for 514 

the entire data. In addition, the whole data was segmented into small portions (e.g., by weeks), 515 

and a second polynomial fitted curve was used for a fine tune. With this procedure, the drift was 516 

adjusted (i.e. the slope of the
ijC , aka slope

ijC ). Nonetheless, a final step to adjust the clocks’ offset 517 

was still necessary. We know that the distance between the receiver pair ij  have to be equal to the 518 

distance between the receiver pair ji , and therefore, an offset equal to ( ) 2offset

ij ij jiC d d= −  can be 519 

added. Thus, each clock’s receiver adjustment is given by  520 

 , ,( ) ,

0

N
slope r offset

i n ij N r i n ij

r

Clk C Clk C−

=

= + , (18) 521 
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where ,i nClk  is the timestamp value n of receiver i , and N is the polynomial degree of the fitting 522 

curve. 523 

Once the internal clock drift was adjusted, the position of each receiver ib  could be computed. 524 

First, the distance among each receiver ijd were calculated using the TOF, which was known due 525 

to the fact that each receiver had also a synchronization acoustic tag attached on the mooring line, 526 

and therefore, the 
0t  was known. Then, the ib positions were computed using these distances and 527 

trigonometry. Finally, the positions were adjusted using a rotation matrix and a translation matrix 528 

to obtain the final position referenced to the geographic coordinates system, where the mooring 529 

anchors’ positions found by the ROV were used.  530 

 531 

AOTT algorithm 532 

The AOTT method uses a single moving receiver, and therefore, no TDOA information is 533 

present. In its place, the tag’s position is estimated by using the ping detection/no-detection 534 

information provided by a receiver. However, the detection of a tag’s transmission is complex due 535 

to acoustic noise form platforms’ thrusters, multipath, or distance between the tag and the 536 

receiver. Consequently, the AOTT algorithm attributes such as the reception ratio or maximum 537 

transmission range have been studied through simulations and field tests before the Norway 538 

lobsters’ field survey. 539 

Given the acoustic receiver and transmitter tag used for this work, the only information that 540 

can be determined is the presence or absence of acoustic tag transmissions in the area of the 541 

receiver, without information about the tag’s direction or range of detection. The AOTT method 542 

infers the target position by taking the area determined by the maximum reception range as the 543 

only filter input (62). Two types of areas can be defined: one where the tag is detected, and one 544 

where the tag is not detected. The estimation of the target’s localization can then be computed by 545 
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overlapping all of these areas, where the zone with a main coincidence is where the target should 546 

be, thereby representing its probability distribution. 547 

 The AOTT was implemented by using a PF algorithm, where a set of particles 
2nx  are 548 

randomly spread in the area, and then, each particle is moved accordingly to a motion model eq. 549 

(8), and each particle’s weight is updated for each new detection (or no-detection) until all of 550 

them converge into the target position estimation. Therefore, the probability distribution function 551 

can be derived using the Bayes’ rule (63) with the recursion of the prediction step 552 

 : 1 1 1 : 1

1
Motion model Particles

( | ) ( | ) ( | )
k

k k k k k kp p p− − − −

−

=
x

x z x x x z , (19) 553 

and the update state 554 

 
: : 1

Importance weights Particles

( | ) ( | ) ( | )k k k k k kp p p −x z z x x z , (20) 555 

where 
mz are a set of measurements.  556 

The main difference between the range-only (19) and area-only target tracking algorithm based 557 

on PF is how the particles are weighted. In a range-only method, the likelihood ratio based on the 558 

measurement probability function is described as 559 
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22
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k kn
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ww

z z
W



 
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 

x
, (21) 560 

in this case, the index {0, , }n N  indicates the particle number up to N .  561 

Whereas in the area-only method, the measurement probability function is based on the 562 

distance that each particle has between each other and the observer, where the particles which are 563 

inside the area defined by the maximum range that an acoustic tag can be detected will be more 564 

weighted than the particles which are outside of this area. Moreover, if an acoustic tag detection is 565 

missed, the particles inside the area will be less weighted than the particles which are outside. 566 
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This behavior can be represented using the cumulative distribution function (CDF) (64) and its 567 

complementary survival function (SF) (known also as Q-function (65)), which are given by 568 
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, (22) 569 

where r  is the distance between each particle and the observer,   is the maximum range that an 570 

acoustic tag can be detected, and 2

w  is the variance, which is used to modify the slope of the 571 

function. In addition, the resampling method used in PF has also an important impact on its 572 

performance. As was pinpointed in (66), a Compound resampling method can improve the target 573 

accuracy. The main idea of the Compound method is to spread a certain number of particles 574 

randomly. In this case, the random particles are spread around the latest estimated target position, 575 

which helps to increase the particles diversity, and emphasize the latest time that the tag was 576 

detected.  577 

 578 

AOTT simulations 579 

The idea of observability in target tracking using a single vehicle is of primary importance (67–580 

69), which is related to the local weak observability properties for a specific non-linear system. 581 

The observability problem is concerned with determining conditions under which a knowledge of 582 

the input-output data uniquely determines the state of the system (70), e.g., the optimal path that 583 

should be conducted by the vehicle to maximize the accuracy of the estimated target position (71–584 

73). These studies pinpointed two basic rules to follow: (i) all measurements must be performed 585 

uniformly distributed on a circumference centered over the target, and (ii) the circumference’s 586 

radius must be greater than the target depth and in some cases as large as possible. Using these 587 

two ideas, we conducted different simulations to characterize the AOTT algorithm under different 588 
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parameters and scenarios, which were used to optimize the algorithm’s parameters and tracker’s 589 

path. These simulations had been carried out using the MC simulation method. For all the 590 

simulations, the mean and the average result after 30 iterations are presented. The other 591 

parameters, which are not involved in the current simulation, had been considered ideal. Two 592 

different scenarios had been developed for each case: (i) localizing a static target, and (ii) tracking 593 

a moving target with a velocity equal to 0.2 m/s. The weight’s distribution used in the area-only 594 

method was computed using a 4.5W = m for the SF, and a 9W = m for the CDF functions, 595 

which were detection and no-detection scenarios respectively. 596 

A second set of simulations was carried out to observe the AOTT’s performance using all the 597 

results derived from the previous section. In this case, the target was moving at 0.2 m/s and 598 

performed a 90º right turn after 67 min, the rest of the parameters were: (i) tag transmission delay 599 

= 60 s, (ii) maximum tag transmission range = 250 m, (iii) tracker radius = 200 m, (iv) tracker 600 

velocity = 1 m/s, (v) number of particles = 10000, (vi) resampling method = Compound with ratio 601 

1.5%, (vii) maximum particles range = 300 m, and (viii) number of iterations = 50. 602 

 603 

AOTT test 604 

Experimental field testing were conducted on June 27-28, 2018 using a Wave Glider (Liquid 605 

Robotics, USA) as a tracker and the MBARI’s CPF (74) as a target. The Wave Glider was 606 

equipped with a Vemco receiver (VR2C-69kHz, Vemco, Canada), and two Vemco acoustic tags 607 

(V7P-69k, Vemco, Canada) were installed to the CPF. Additionally, the CPF was equipped with a 608 

Benthos acoustic modem (ATM-900, Teledyne Marine – Benthos, USA) and the Wave Glider 609 

with a Benthos DAT (direction acoustic transponder) modem (DAT, Teledyne Marine – Benthos, 610 

USA), which is a type of USBL. This test lasted more than 15 h, where the CPF conducted 3 611 

immersions at 60m depth. During the tests, the Wave Glider carried out different 612 

circumferences around the area (manually piloted) which were used in twofold purposes: (i) to 613 
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perform an acoustic tag detection ratio versus range test, finding the maximum range where the 614 

tags could be detected; and (ii) to compare the accuracy of the USBL, the range-only target 615 

tracking (ROTT), and the AOTT methods. 616 

 617 
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 893 

Fig. 1. Tracking deep water benthic marine animals. The strategy designed to track Norway 894 

lobsters (Nephrops norvegicus) is represented. Four receivers created an acoustic LBL 895 

localization system, where each one was in self-recording mode and was not accessed in real-896 

time. The tags transmitted periodically an acoustic ping, which was recorded by the static 897 

receivers and the underwater vehicles, both systems were used to track the lobsters’ movements. 898 

Moreover, different pictures detailing operations and systems are included: (A) the canister used 899 

to release the Norway lobsters, (B) the Super Mohawk II ROV, (C) a tagged Norway lobster 900 

showing the Vemco tag glued on its superior portion of the cephalothorax ( manipulation of the 901 

lobsters occurred in red light to avoid eye damaging), and (D) the Girona500 AUV. The 902 

experiment was conducted in the northwest area of the Mediterranean Sea (E). 903 

 904 

905 
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 906 

Fig. 2. TDOA algorithms performance. The CRB for TDOA target estimation (A), where the 907 

red crosses represent static receivers creating an acoustic LBL system. Target trajectory designed 908 

to compere the different TDOA algorithms’ performance (B) are presented in relation to the 909 

particle filter (PF), the maximum a posteriori (MAP) estimation, the MAP marginalizing the latest 910 

measures (MAP-M), the maximum likelihood (ML) estimation, the weighted least squares 911 

(WLS), the WLS-ML, and the YAPS. The target estimation RMSE over the time (C), and the 912 

RMSE over 100 Monte Carlo iterations for all the algorithms (D), where different TDOA noise 913 

has been added ( 0.5 ms, 1 ms, 1.5 ms = ), the plots show the median, and 5th and 95th 914 

percentiles. Finally, the average run-time required to compute one target position is shown (E). 915 

916 
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 917 

Fig. 3. AOTT method applied to the Monterey Bay test-site. AOTT method representation (A). 918 

Functions designed to weight the PF’s particles (B). MC simulations to find the optimal value for 919 

different parameters (C), such as the circumference radius, the particles range, the reception, and 920 

the PF’s resampling ratio, computed for static and moving targets. Simulations conducted to 921 

observe the AOTT’s performance under different scenarios (D), where a reception ratio of 100% 922 

and 60% were used over 100 MC iterations. Results obtained during a field test (E), where a CPF 923 

(F) was used as a target and a Wave Glider (G) as an observer. Map of the study area in Monterey 924 

Bay, CA, USA (H). 925 

926 
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 927 

Fig. 4. Clock drift results during the Norway lobsters tracking. The synchronization process 928 

of the receivers can be observed in the flowchart (A). Then, the four-step process and the results 929 

obtained at each step are also presented as: the main drift at the beginning (B), the coarse drift 930 

after the first step (C), the fine drift (D), the TDOA error result and its outliers (E), and the final 931 

TDOA using a synchronization tag as a reference (F). C12, C13, and C14 denotes the difference 932 

between two receiver clock drifts. In addition, the positions of the moorings and the lobster 933 

canister in (G), where their initial position using the ship’s GPS, the position obtained using the 934 

ROV’s USBL, and the position computed acoustically are also pictured. 935 

936 
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 937 

Fig. 5. Norway lobster tracking results. (A) The trajectories conducted by the tagged Norway 938 

lobsters during the moored experiment are represented, where the receivers are denoted as BS(X) 939 

and each tagged lobster has a different color. (B) The accumulative traveled distance covered by 940 

each tagged individual. (C) The different trajectories conducted by the underwater robots, in order 941 

to localize and track the Norway lobsters, where the receivers’ localizations are represented by a 942 

red X and the detected tags denoted as T0-T3. Finally, an image obtained with the ROV HD 943 

camera (D), picturing the slope seabed with serval tunnel entrances and a wandering Norway 944 

lobster (15 cm distanced laser green-beams dots can also be observed).  945 

  946 
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 947 

Fig. 6. Algorithms’ performance during the Norway lobster experiment. Synchronization tag 948 

positions computed using different TDOA algorithms. These tags were attached on each mooring 949 

line alongside with a Vemco acoustic receiver (BS) (A, B, D and E). A last tag was mounted on 950 

the lobster canister, which was deployed on the center of the experiment (C). The error 951 

covariance matrix with a confidence interval of 98% is also presented. This information is 952 

presented as error bars in (F). The plots show the median, and 5th and 95th percentiles. 953 

 954 

955 
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Table 1. Mooring lines positioning error. Position of the moorings obtained using the ROV and 956 

the TOA signals (Position 1) compared with the positions computed using the WLS-ML 957 

algorithm (Position 2), and the associated error. 958 

Moorings 
Position 1 Position 2 

Error (m) SD (m) 
x (m) y (m) x (m) y (m) 

BS(A) 543957.71 4651491.78 543958.24 4651491.60 0.74 0.55 

BS(B) 544090.23 4651482.54 544089.80 4651482.68 0.68 0.40 

BS(C) 544092.14 4651434.09 544092.10 4651433.95 1.29 1.05 

BS(D) 543952.24 4651347.94 543952.56 4651348.23 0.51 0.29 

BS(E) 544114.21 4651341.26 544114.03 4651341.52 0.48 0.27 

 959 

  960 



Science Robotics Manuscript Template Page 41 of 47 

 

 961 

 

R
e
f.

 

(2
6

) 

(1
4

, 
2
7

) 

(1
4

) 

(2
8

) 

(2
9

) 

(2
1

, 
7
5

) 

(7
6

) 

(2
4

) 

(3
2

) 

(2
0

) 

(3
0

) 

(3
1

) 

(7
7

) 

(7
8

) 

(7
9

) 

¶ S
p

ec
ie

s 
n
am

es
: 

A
ci

p
en

se
r 

o
xy

ri
n

ch
u

s 
o

xy
ri

n
ch

u
s,

 P
se

u
d

o
p

le
u

ro
n

ec
te

s 
a

m
er

ic
a

n
u

s,
 M

ic
ro

p
o
g

o
n
ia

s 
u
n
d

u
la

tu
s,

 A
n

o
p

lo
p

o
m

a
 f

im
b

ri
a

, 
P

a
ra

li
th

o
d

es
 c

a
m

ts
ch

a
ti

cu
s,

 C
a

rc
h
a

ro
d
o
n

 c
a

rc
h
a

ri
a

s,
 C

a
rc

h
a

ri
a

s 

ta
u

ru
s,

 T
ri

a
ki

s 
se

m
if

a
sc

ia
ta

, 
D

er
m

o
ch

el
ys

 c
o

ri
a

ce
a

, 
E

p
in

ep
h

el
u

s 
m

o
ri

o
, 

L
u

tj
a
n
u

s 
ca

m
p

ec
h
a

n
u

s,
 C

h
io

n
o
ec

et
es

 o
p

il
io

, 
G

a
d

u
s 

m
o

rh
u

a
, 

O
n
co

rh
yn

ch
u

s 
ts

h
a
w

yt
sc

h
a

, 
a
n

d
 P

a
ra

li
th

o
d

es
 c

a
m

ts
ch

a
ti

cu
s 

N
R

 =
 I

n
fo

rm
at

io
n

 n
o

t 
re

p
o

rt
ed

 
 

     
    

D
y

n
a
m

ic
 t

ra
n

sp
o

n
d

er
s 

V
e
h

ic
le

 

R
E

M
U

S
-1

0
0

 A
U

V
 

R
E

M
U

S
-1

0
0

 A
U

V
 

R
E

M
U

S
-1

0
0

 A
U

V
 

S
lo

cu
m

 G
2

 G
li

d
er

 

R
E

M
U

S
 1

0
0

 A
U

V
 

R
E

M
U

S
 1

0
0

 A
U

V
 

S
lo

cu
m

 G
2

 G
li

d
er

 

Iv
er

2
 A

U
V

 

Iv
er

2
 A

U
V

 

R
E

M
U

S
 1

0
0

 A
U

V
 

S
lo

cu
m

 G
1

 G
li

d
er

 

W
av

e 
G

li
d
er

 

S
lo

cu
m

 G
2

 G
li

d
er

 

R
E

M
U

S
 1

0
0

 A
U

V
 

S
ai

ld
ro

n
e 

A
S

V
 

          

E
r
ro

r 
(m

) 

2
5
 

- N
R

 

- - N
R

 

- 8
0
 

~
1

0
 

N
R

 

N
R

 

N
R

 

N
R

 

N
R

 

N
R

           

A
lg

o
ri

th
m

 

S
Y

N
A

P
S

‡
 

- S
P

L
W

C
A

 

- - N
R

 

- P
F

 

P
F

 

N
R

 

- D
W

A
‡

‡
 

B
B

M
M

*
*

*
 

S
Y

N
A

P
S

‡
 

N
R

 

          

A
c
o

u
st

ic
 

r
a

n
g

e
 (

m
) 

N
R

 

~
8

9
0
 

N
R

 

N
R

 

~
5

0
0
 

N
R

 

2
5
0
 

N
R

 

N
R

 

N
R

 

N
R

 

~
5

0
0
 

~
1

0
0
0
 

~
5

0
0
 

N
R

 

          

M
e
th

o
d

 

T
D

O
A

 

P
re

se
n
ce

 

S
P

L
 

P
re

se
n
ce

 

P
re

se
n
ce

 

U
S

B
L

 

P
re

se
n
ce

 

B
ea

ri
n
g
 

B
ea

ri
n
g
 

U
S

B
L

 

P
re

se
n
ce

 

P
re

se
n
ce

 

P
re

se
n
ce

 

T
D

O
A

 

N
R

 

   
†
†
T

h
e 

S
m

ar
tT

ag
 p

ac
k

ag
e 

co
n

si
st

 o
f 

an
 I

M
U

, 
a 

L
o
te

k
 M

M
-M

-1
6

-5
0

-P
M

 a
co

u
st

ic
 t

ag
, 
a 

V
H

F
 t

ra
n

sm
it

te
r 

an
d

 a
 v

id
eo

 l
o

g
g

er
 s

y
st

em
 

 
*

 U
si

n
g

 A
L

P
S

: 
A

sy
n

ch
ro

n
o
u

s 
L

o
g

g
in

g
 P

o
si

ti
o

n
in

g
 S

y
st

em
 s

o
ft

w
ar

e 
(L

o
te

k
 W

ir
el

es
s,

 I
n
c.

) 
 

    

S
ta

ti
c
 t

r
a

n
sp

o
n

d
e
rs

 

E
r
ro

r 
(m

) 

- ~
2
 

- - N
R

 

- - - - - N
R

 

N
R

 

N
R

 

- - 

        

A
lg

o
ri

th
m

 

- T
D

O
A

*
 /

 
S

P
L

W
C

A
 

- - N
R

 

- - - - - - V
P

S
*

*
 

B
B

M
M

*
*

*
 

- - 

        

A
c
o

u
st

ic
 

r
a

n
g

e
 (

m
) 

- N
R

 

- ~
8

0
0
 

N
R

 

- ~
8

0
0
 

- - - N
R

 

N
R

 

~
1

0
0
0
 

- - 

        

M
e
th

o
d

 

- L
B

L
 

- G
at

e 
F

.§
 

N
R

 

- G
at

e 
F

.§
 

- - - P
re

se
n
ce

 

L
B

L
 

F
is

h
er

ie
s 

F
.§

 

- - 

        

 
D

e
p

th
 

(m
) 

~
1

8
 

<
 8

 

1
0
 

~
9

0
 

<
 5

8
5
 

9
3

-1
3
0
 

<
2
5
 

<
 1

0
0
 

<
 1

0
 

0
-2

0
 

3
0

-6
0
 

~
1

1
6
 

<
 5

0
 

3
0

-1
0
0
 

<
1
0

0
       

‡
S

Y
N

A
P

S
: 

sy
n

th
et

ic
 h

y
d

ro
p
h

o
n

e 
ar

ra
y

, 
p

ro
p

ri
et

ar
y

 s
o

ft
w

ar
e 

fr
o

m
 L

o
te

k
 

 

 

T
im

e 

2
 d

 

5
1
d
 

7
 h

 

1
0
9
5

 d
 

6
1
 d

 

1
2
 h

 

1
2
 d

 

3
 d

 

3
 d

 

3
6
 h

 

3
6
5

 d
 

7
2
0

 d
 

7
2
0

 d
 

7
 d

 

3
6
5

 d
 

       

 
T

a
g

 s
iz

e
 

(m
m

) 

3
2
x
1

0
1
 

○
 

○
 

1
6
x
5

4
 

6
2
x
1

6
 

7
6
x
3

8
0
 

1
6
x
5

4
 

1
6
x
8

0
 

2
0
0
x

1
2
7
 

7
6
x
3

8
0
 

1
3
x
3

6
 

1
3
x
3

6
 

1
6
x
5

4
 

8
.5

x
4
3
 

N
R

 

○
=

 I
n

fo
rm

at
io

n
 n

o
t 

fo
u

n
d

 
- 

=
 I

n
fo

rm
at

io
n
 n

o
t 

ap
p

li
ca

b
le

 
†
D

es
ig

n
ed

 b
y

 W
H

O
I 

§
 S

ee
 M

. 
R

. 
H

eu
p

el
 e

t 
al

. 
(1

6
) 

*
*

V
P

S
: 

V
em

co
 P

o
si

ti
o
n
in

g
 S

y
st

em
 a

rr
ay

 
*

*
*
B

B
M

M
: 

B
ro

w
n

ia
n
 B

ri
d
g

e 
M

o
v

em
en

t 
M

o
d

el
 (

8
0

) 

‡
‡
D

W
A

 =
 D

ai
ly

 W
ei

g
h

te
d
 A

v
er

ag
e 

 

T
a
g

 t
y

p
e 

M
A

P
3
2

 1
s 

M
A

-T
P

1
1

 1
8
 

M
A

-T
P

1
1

 1
8
 

V
1

6
 6

9
k

H
z 

M
A

-T
P

1
6

-3
3
 

T
ra

n
sp

.†
 

V
1

6
 6

9
k

H
z 

M
M

-M
-1

6
-5

0
 

S
m

ar
t 

T
ag

†
†
 

T
ra

n
sp

.†
 

V
1

3
P

 L
 

V
1

3
 a

n
d
 V

9
 

V
1

6
-6

H
 

M
M

-M
-8

-S
0
 

V
em

co
 

  #
 

2
 

3
9
 

1
 

4
 

4
1
 

6
 

2
9
2
 

1
 

3
 

9
 

6
1
 

1
6
4
 

3
1
7
 

2
0
 

1
5
0
 

 

S
p

e
c
ie

s 

A
.O

. 
o

xy
ri

n
ch

u
s 

P
. 
a

m
er

ic
a
n
u

s 

M
. 
u

n
d
u

la
tu

s 

A
.O

. 
o

xy
ri

n
ch

u
s 

A
. 

fi
m

b
ri

a
 a

n
d

 
P

.c
a

m
ts

ch
a

ti
cu

s 

C
. 
ca

rc
h
a

ri
a

s 

C
. 
ta

u
ru

s 

T
. 

se
m

if
a

sc
ia

ta
 

T
. 

se
m

if
a

sc
ia

ta
 

D
. 

co
ri

a
ce

a
 

E
. 

m
o
ri

o
 a

n
d

  
  

L
. 

ca
m

p
ec

h
a
n
u

s 

C
. 
o
p

il
io

 

G
. 

m
o

rh
u
a
 

O
. 

ts
h

a
w

yt
sc

h
a
 

P
. 

ca
m

ts
ch

a
ti

cu
s 

 

L
o
c
a

ti
o

n
 

H
u

d
so

n
 R

. 

N
av

es
in

k
 R

. 

C
ar

ib
b

ea
n

 S
. 

N
W

 A
tl

an
ti

c 

N
 P

ac
if

ic
 

N
E

 P
ac

if
ic

 

N
W

 A
tl

an
ti

c 

N
E

 P
ac

if
ic

 

N
E

 P
ac

if
ic

 

N
E

 P
ac

if
ic

 

G
. 

M
ex

ic
o
 

N
W

 A
tl

an
ti

c 

N
W

 A
tl

an
ti

c 

G
. 

A
la

sk
a 

B
er

in
g

 S
. 

 

Y
e
a

r 

2
0
0
8
 

2
0
1
3
 

2
0
1
3
 

2
0
1
3
 

2
0
1
4
 

2
0
1
5
 

2
0
1
5
 

2
0
1
6
 

2
0
1
7
 

2
0
1
8
 

2
0
1
8
 

2
0
1
9
 

2
0
1
9
 

2
0
1
9
 

2
0
1
9
 

962 

T
a
b

le
 2

. 
T

a
rg

et
 t

ra
ck

in
g
 e

x
p

er
im

en
ts

 u
si

n
g
 u

n
d

er
w

a
te

r 
ro

b
o
ts

. 
D

if
fe

re
n
t 

ca
m

p
ai

g
n
s 

co
n
d
u

ct
ed

 t
o
 l

o
ca

li
ze

 a
n
d
 f

o
ll

o
w

 a
 m

ar
in

e 

ta
g
g
ed

 a
n
im

al
 u

si
n
g
 b

o
th

 f
ix

ed
 r

ec
ei

v
er

s 
an

d
/o

r 
u
n

d
er

w
at

er
 v

eh
ic

le
s 

(a
k

a 
d

y
n
am

ic
 t

ra
n
sp

o
n
d
er

s)
 

 



Science Robotics Manuscript Template Page 42 of 47 

 

SUPPLEMENTARY MATERIALS 963 

 964 
 965 

Fig. S1. Algorithms’ performance vs receivers’ position. The CRB for TDOA target estimation 966 

using different receivers’ configuration (red crosses). (A) four receivers using a non-square shape. 967 

Using five receivers the error is reduced (B), whereas using only three receivers the error clearly 968 

augments (C).  If the separation between receivers is augmented (i.e. we have a greater baseline 969 

distance), so does the accuracy (D). 970 

 971 

972 
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 973 
 974 

Fig. S2. TDOA algorithms performance over the time. The RMSE evolution over the time for 975 

different algorithms and compered with CRB. (A) using a Gaussian noise of 0.5 ms added at each 976 

TOA measurement, (B) using a Gaussian noise of 1.0 ms, (C) using a Gaussian noise of 1.5 ms, 977 

and (D) using a Gaussian noise of 1.5 ms plus a random outlier (i.e. multiplying by 4 the TOA 978 

measured). 979 

 980 

  981 
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 982 
Fig. S3. Reception ratio. Reception ratio versus distance between devices. Results obtained 983 

during field trials in Monterey Bay, California, between a Wave Glider and an acoustic tag (V7P-984 

69 kHz). 985 

 986 

 987 

  988 



Science Robotics Manuscript Template Page 45 of 47 

 

 989 
 990 

Fig. S4. Fieldwork methods evaluation at the OBSEA platform. The OBSEA (www.obsea.es) 991 

is an underwater cabled observatory located at 20 m depth in the “Coll Mira el Peix” Marine 992 

Protected (EU Natura 2000 network) area. (A) The cage was built at the Universitat Politècnica 993 

de Catalunya facilities. (B) the cage installation by divers at the cabled observatory, in front of the 994 

video camera. (C) Testing the automatic release canister to release the Norway lobsters. (D) 995 

Different artificial burrows, made by PVC pipes buried in concrete, were also installed inside the 996 

cage. (E) a Norway lobster inside the cage (with an attached visual tag mimicking the Vemco 997 

emitter and also used to facilitate the remote visual inspection via the camera). And (F) one of the 998 

animals being released by the canister.  999 

 1000 

 1001 
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Table S1. Algorithms’ performance during the Norway lobster experiment. Error and 1003 

standard deviation of each Vemco acoustic receiver (BS) and the lobster canister (denoted as 1004 

BS(C)), and their synchronization tag associated, using different TDOA algorithms.  1005 

 BS(A) BS(B) BS(C) BS(D) BS(E) 

Algorithms error (m) SD (m) error (m) SD (m) error (m) SD (m) error (m) SD (m) error (m) SD (m) 

PF 3.20 0.46 3.85 0.20 0.48 0.29 5.36 0.17 10.28 0.16 

MAP-M 0.06 0.43 0.06 0.47 0.02 0.25 - - 0.15 0.40 

ML 0.04 0.75 0.01 0.41 0.02 0.25 0.07 0.52 0.04 0.56 

WLS 0.03 0.25 0.12 1.22 0.08 0.28 7.07 2.52 9.02 4.67 

WLS-ML 0.03 0.27 0.09 0.92 0.02 0.25 0.15 0.91 0.02 0.74 

 1006 

1007 
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Movie S1. Simulation of target tracking using TDOA. One of the simulations conducted to 1008 

observe the performance of different algorithms for target tracking using TDOA signals. 1009 

 1010 

Movie S2. Simulation of target tracking using AOTT. One of the simulations conducted to 1011 

observe the performance of tagged target tracking using the AOTT algorithm. 1012 

 1013 

Movie S3. Norway lobster movements. Trajectory conducted by the 33 Norway lobsters tagged 1014 

during the RESNEP campaign, first three days. 1015 

 1016 

Movie S4. Seabed images. Images of the seabed obtained inside the area of the Norway lobster 1017 

experiment by the ROV. 1018 

 1019 




