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Let U be a connected, simply connected compact Lie group 
with complexification G. Let u and g be the associated Lie 
algebras. Let Γ be the Dynkin diagram of g with underlying 
set I, and let Uq(u) be the associated quantized universal 
enveloping ∗-algebra of u for some 0 < q distinct from 1. 
Let Oq(U) be the coquasitriangular quantized function Hopf 
∗-algebra of U , whose Drinfeld double Oq(GR) we view as 
the quantized function ∗-algebra of G considered as a real 
algebraic group. We show how the datum ν = (τ, ε) of an 
involution τ of Γ and a τ -invariant function ε : I → R can 
be used to deform Oq(GR) into a ∗-algebra Oν,id

q (GR) by 
a modification of the Drinfeld double construction. We then 
show how, by a generalized theory of universal K-matrices, 
a specific ∗-subalgebra Oq(Gν\\GR) of Oν,id

q (GR) admits 
∗-homomorphisms into both Uq(u) and Oq(U), the images 
being coideal ∗-subalgebras of respectively Uq(u) and Oq(U). 
We illustrate the theory by showing that two main classes 
of examples arise by such coideals, namely quantum flag 
manifolds and quantum symmetric spaces (except possibly for 
certain exceptional cases). In the former case this connects to 
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work of the first author and Neshveyev, while for the latter 
case we heavily rely on recent results of Balagović and Kolb.

© 2020 Elsevier Inc. All rights reserved.
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Introduction

Let U be a connected, simply connected compact Lie group with complexification 
G, and let u and g be the respective Lie algebras. Fix Chevalley-Serre generators for g
which are compatible with the compact form u (see Section 1.1), and let b and h ⊆ b

be the respective positive Borel and Cartan subalgebra in g. From this data a natural 
Poisson-Lie group structure {−, −} can be constructed on U [66]. Let Γ be the Dynkin 
diagram of g, with underlying set I. Then one has the following two important classes 
of Poisson homogeneous spaces for U :

(1) Flag manifolds KS\U = PS\G for S ⊆ I a subset of the simple roots, PS ⊆ G the 
associated parabolic subgroup and KS = PS ∩ U the compact form of the reductive 
Levi factor of PS .
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(2) Symmetric spaces Uθ\U for Uθ the set of fixed points of a Lie group involution θ of 
U in maximally split position with respect to the fixed Cartan subalgebra of u [33].

Note that the behaviour of the above two classes is different: whereas in the first case 
KS ⊆ U will be a Poisson-Lie subgroup, one has in the symmetric case only that Uθ is 
coisotropic.

This discrepancy persists when turning to their quantizations. Let Uq(g) be the stan-
dard Drinfeld-Jimbo quantized enveloping algebra of g, where we take q > 0 a fixed 
number distinct from 1. Dually, one has a Hopf algebra Oq(G) quantizing the alge-
bra of regular functions on G as a complex affine group variety. When endowed with 
appropriate ∗-structures, reflecting the choice of a compact real form, we will denote 
the resulting Hopf ∗-algebras as Uq(u) and Oq(U). For PS ⊆ G a parabolic subgroup 
with Lie algebra pS and kS = pS ∩ u the Lie algebra of KS = PS ∩ U , we have a 
natural Hopf ∗-subalgebra Uq(kS) ⊆ Uq(u) and dually a surjection of Hopf ∗-algebras 
Oq(U) � Oq(KS). This allows one to make sense immediately of the associated quantum 
flag manifold through its coordinate ∗-algebra Oq(KS\U). These quantum flag manifolds 
are studied intensively both from the algebraic and the operator algebraic viewpoint, see 
e.g. [88,87,24,25,21,26,23,37,54,13,77,16,81].

Quantum symmetric spaces turn out to be less direct to construct. After an ini-
tial period in which particular cases were studied [80,20,79,7,22], using for example the 
formalism of the reflection equation, Letzter developed in a series of papers [57–62] a uni-
form approach to quantum symmetric spaces through a concrete construction of their 
associated coideal subalgebras Uq(uθ) ⊆ Uq(u). This construction was extended to the 
Kac-Moody case by Kolb [51], who also in joint work with Balagović elucidated the 
precise connection to the reflection equation in this full generality [6,52] through the for-
malism of the universal K-matrix; we also mention the earlier work [50] in this setting. 
Associated quantized function algebras Oq(Uθ\U) for the corresponding homogeneous 
spaces can then be constructed by a general procedure.

Our main aim will be to realize the above coideals Oq(KS\U) and Oq(Uθ\U) through 
the method of quantum characters [29], building on and extending the techniques de-
veloped in [53,52]. Let ν = (τ, ε) be a couple consisting of an involution τ of Γ and 
a τ -invariant function ε : I → R. Through a straightforward modification by ν of the 
commutation relations for Uq(u), one arrives at a quantized enveloping ∗-algebra Uq(gν)
where gν is a real Lie algebra determined directly in terms of ν, see Section 2.2. We note 
the following particular cases:

• When τ = id and ε(I) ⊆ {0, 1}, one has gν = kS ⊕ n
−
S where kS and n−S are respec-

tively the compact Levi part and the nilradical of the negative parabolic algebra p−S
associated to the support S of ε.

• When on the other hand τ is an arbitrary involution and ε(I) ⊆ {±1}, we have that 
gν is the real form of g obtained by modifying the compact form u of g with ν. The 
couple (τ, ε) then encodes the so-called Vogan diagram of gν .
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Returning back to the general case, Uq(gν) will still be a quasitriangular Hopf ∗-algebra, 
with a dual Hopf ∗-algebra Oq(Gν). As Oq(Gν) is coquasitriangular, one can consider 
its Drinfeld double Oν

q (GR), which is a quantization of the function algebra of G = GR

as a real affine group along a Poisson-Lie group structure {−, −}ν. Now the precise form 
of the double construction allows the flexibility to let the latter depend rather on two 
distinct data ν = (τ, ε) and μ = (τ ′, η), creating a Poisson manifold (GR, {−, −}ν,μ)
which is a Poisson bitorsor between (GR, {−, −}ν) and (GR, {−, −}μ) [93,65]. Similarly, 
one can construct a ∗-algebra Oν,μ

q (GR) with a left coaction by Oν
q (GR) and a right 

coaction by Oμ
q (GR).

We will be interested in the case where ν is non-trivial but μ = id = (id, +), where +
is a shorthand for the constant function r �→ 1. We write in this case Oid

q (GR) = Oq(GR)
and Oq(Gid) = Oq(U). As we have a Hopf ∗-algebra surjection Oν

q (GR) � Oq(Gν), we 
can consider the ∗-algebra Oq(Gν\\GR) of Oq(Gν)-coinvariant elements in Oν,id

q (GR), 
together with its natural right Oq(GR)-coaction. The method of quantum characters 
then gives a one-to-one correspondence between ∗-characters χ : Oq(Gν\\GR) → C and 
Oq(GR)-equivariant ∗-homomorphisms Φ : Oq(Gν\\GR) → Oq(GR). The image of Φ
will be a coideal ∗-subalgebra Oq(L\\GR) of Oq(GR), giving rise through appropriate 
projection maps to coideal ∗-subalgebras Oq(K\U) and U f

q(k′) of respectively Oq(U) and 
Uq(u). Our main theorems can now be stated as follows.

Theorem (Theorem 3.4, Theorem 3.5 and Theorem 3.6). Let Oq(KS\U) be a quantum 
flag manifold, and let S0 = τ0(S) be the image of S under the Dynkin diagram automor-
phism τ0 induced by the longest word in the Weyl group of g. Let ε be the characteristic 
function of S0, and let ν = (id, ε). Then there exists a ∗-character χ : Oq(Gν\\GR) → C

such that:

• The equality Oq(K\U) = Oq(KS\U) holds.
• The inclusion U f

q(k′) ⊆ Uq(kS) holds, and moreover their completions coincide.

Here ‘completion’ is understood in the weak sense, and can equivalently be formulated 
as equality of their images in any admissible finite dimensional representation of Uq(u).

Theorem (Theorem 4.30, Theorem 4.40 and Theorem 4.41). Let Oq(Uθ\U) be a quantum 
symmetric space. Let ν = (τ, ε) be such that ε(I) ⊆ {±1} with gν inner equivalent to 
gθ inside g, for gθ the real form of g associated to θ. Then there exists a ∗-character 
χ : Oq(Gν\\GR) → C such that:

• The equality Oq(K\U) = Oq(Uθ\U) holds, except possibly for Uθ ⊆ U of type EIII, 
EIV , EV I, EV II or EIX, using notation as in [1].

• The inclusion U f
q(k′) ⊆ Uq(uθ) holds, and their completions coincide.
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Note that in both cases, the character χ will be constructed upon realising 
Oq(Gν\\GR) as a ν-modified braided Hopf algebra structure on Oq(G), for which the 
∗-characters are then determined by a modified theory of universal K-matrices, see also 
[53, Section 3.5].

Let us end the introduction by motivating the above results from the Poisson-Lie 
point of view, without specifying precise details. Drinfeld has shown that a Poisson 
homogeneous manifold for a Poisson-Lie group is completely determined, up to local 
isomorphism, by a Lagrangian subalgebra in the Drinfeld double of its associated in-
finitesimal Lie bialgebra [32]. For our compact group U in question, the Drinfeld double 
Lie bialgebra of u will be g with a particular real Lie bialgebra structure which integrates 
to the real Poisson-Lie group structure {−, −} = {−, −}id on G mentioned before. We 
then have the following:

• In the case of flag manifolds KS\U , the associated Lagrangian subgroup is L =
KSNS ⊆ G, with NS the unipotent radical of the associated parabolic PS.

• In the case of symmetric spaces, the associated Lagrangian subgroup is L = Gθ ⊆ G, 
with Gθ the real form of G determined by θ.

The given U -homogeneous space can then be reconstructed as the U -orbit at the unit of 
the space L\G. In [85,86] one can find similar ideas in the purely complex Poisson and 
quantum setting, using however the (twisted) Heisenberg double instead of (twisted) 
Drinfeld double. We make a brief comparison with this alternative viewpoint in Ap-
pendix A.

In general, in its given position L will not be a Poisson-Lie subgroup of G with its usual 
Poisson bracket {−, −}. However, we can take an inner conjugate copy L′ = Gν of L such 
that it will become a Poisson-Lie subgroup of G with the Poisson-Lie group structure 
{−, −}ν , for ν suitably chosen. Denoting G′ = (G, {−, −}ν) and G′′ = (G, {−, −}ν,id), 
one may then expect an isomorphism of Poisson G-spaces

L′\G′′ ∼= L\G.

In our two specific settings, this isomorphism looks as follows, using notation as in the 
above theorems:

• In the flag case, we have KS0N
−
S0
\G ∼= KSNS\G.

• In the symmetric case, we have Gν\G ∼= Gθ\G.

We note however that a complication results from establishing our results in the purely 
algebraic framework, for the quotient space L\G or L′\G′′ will not necessarily be a real 
affine variety, i.e. the fixed point set of a complex-conjugate involution on a complex affine 
variety. There will however be a natural real affine variety L\\G with a Zariski-dense 
embedding L\G ⊆ L\\G, allowing us to continue to work within the usual framework of 
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unital algebras when quantizing varieties. One can view L\\G as a GIT quotient in the 
setting of real algebraic geometry.

To end, let us mention that important motivation for this paper, in particular with 
respect to the use of the reflection equation, can be found in [85,86,80,53] and the work 
of Mudrov and collaborators [27–30,71–73,3,74,75,2,4]. We also mention that in a more 
restricted setting, constructions closely related to the ones in this paper were performed 
in [15]. Finally, we mention that this paper is a step towards proving part of the conjecture 
posed as [17, Conjecture 4.1]. However, to prove this part of the conjecture completely, 
one needs to complement the results of this paper with more refined representation-
theoretic results. This falls outside the scope of the current paper.

The precise structure of this paper is as follows. In the first section, we establish the 
necessary preliminaries on quantized enveloping algebras and the associated quantized 
function algebras. In the second section, we construct quantum bitorsors for complex 
quantum groups, and examine the quantum orbit spaces with respect to certain quantum 
subgroups. We then relate these to quantum homogeneous spaces for the associated 
compact quantum groups through the method of quantum characters, establishing the 
connection to the twisted reflection equation and modified universal K-matrices. In the 
short third section, we examine in more detail the case of quantum flag manifolds, and in 
the fourth section we look at the connection to the quantum symmetric spaces of Letzter. 
In the Appendix A, we consider some variations of the results in Section 2, connecting to 
the work in [85,86]. In the Appendix B, we establish in detail a technical result concerning 
the relation between Satake and Vogan diagrams for involutions of semisimple compact 
Lie algebras. This result will be verified directly by diagram checking. It would however 
be nice to find a more conceptual proof. In Appendix C we establish certain results on 
spherical vectors in quantized exterior products. In Appendix D, we gather some explicit 
computations regarding the case of a symmetric pair of type FII.

Acknowledgments: The work of K. De Commer was partially supported by the FWO grant 
G.0251.15N and the grant H2020-MSCA-RISE-2015-691246-QUANTUM DYNAMICS. 
The work of M. Matassa was supported by the FWO grant G.0251.15N while working 
at the Vrije Universiteit Brussel (VUB), Belgium. K. De Commer would like to thank 
D. Jordan, A. Mudrov and T. Weelinck for discussions around the topics of this paper.

1. Preliminaries

1.1. Quantized enveloping algebras

Definition 1.1. A Lie ∗-algebra consists of a complex Lie algebra g together with an 
antilinear, antimultiplicative involution ∗ : g → g.

There is a one-to-one correspondence between Lie ∗-algebras and real Lie algebras by 
means of the correspondence
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(g, ∗) �→ g∗ = {X ∈ g | X∗ = −X},
s �→ (sC, ∗), (X + iY )∗ = −X + iY, X, Y ∈ s,

where sC = s ⊗
R
C is the complexification. One calls g∗ the real form of g associated to ∗.

Let now g be a complex semisimple Lie algebra. We fix a Borel subalgebra b and 
associated Cartan subalgebra h, and let b− be the opposite Borel subalgebra. We write 
{αr | r ∈ I} for the set of simple positive roots, and let Γ be the corresponding Dynkin 
diagram on the set I. We write respectively Q ⊇ Δ ⊇ Δ+ for the root lattice, the root 
system and the positive roots. We let W be the Weyl group of g, and we fix a W -invariant 
positive-definite bilinear real form (−, −) on Q ⊗Z R. We write dr = (αr, αr)/2, and use 
the standard notation α∨ = 2α

(α,α) for coroots. We write P for the weight lattice, P+ for 
its positive cone and {	r | r ∈ I} for the set of fundamental weights. We let A = (ars)rs
be the associated Cartan matrix under the convention

ars = (α∨
r , αs) = 2(αr, αs)

(αr, αr)
.

We further fix Chevalley-Serre generators

hr ∈ h, er ∈ b, fr ∈ b−.

Concretely, this means that we identify g with the abstract complex Lie algebra generated 
by

S = {hr, er, fr | r ∈ I}

such that

[hr, hs] = 0, [hr, es] = arses, [hr, fs] = −arsfs, [er, fs] = δrshr

and for r �= s the Serre relations

ad1−ars
er (es) = ad1−ars

fr
(fs) = 0,

where adx(y) = [x, y]. We can then endow g with the unique Lie ∗-algebra structure such 
that

h∗
r = hr, e∗r = fr.

The associated real Lie algebra u = {X ∈ g | X∗ = −X} is called the compact real form
of g.

We now introduce the quantized enveloping algebra of g and u, see e.g. [48,78] for 
details on the associated ∗-structures.
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Definition 1.2. Fix 0 < q with q �= 1. We denote by Uq(g) the quantized enveloping 
algebra of g. Specifically, Uq(g) is generated by Kω, Er, Fr, where r ∈ I and ω takes 
values in the integral weight lattice P , with K0 = 1 and commutation relations

KωKχ = Kω+χ,

KωEr = q(ω,αr)ErKω, KωFr = q−(ω,αr)FrKω,

[Er, Fs] = δrs
Kαr

−K−1
αr

qdr − q−dr

and the quantum Serre relations, whose precise form we will not need in what follows. 
We will in the following use the shorthand Kr = Kαr

and qr = qdr . We endow Uq(g)
with the Hopf algebra structure

Δ(Er) = Er ⊗ 1 + Kr ⊗ Er, Δ(Fr) = Fr ⊗K−1
r + 1 ⊗ Fr, Δ(Kω) = Kω ⊗Kω.

We denote by ε the counit, given by ε(Er) = ε(Fr) = 0 and ε(Kω) = 1, and the 
antipode map by S, determined by

S(Er) = −K−1
r Er, S(Fr) = −FrKr, S(Kω) = K−1

ω .

For α ∈ Q we write

Uq(g)α = {X ∈ Uq(g) | KωX = q(ω,α)XKω}.

We write Uq(b) = Uq(b+) for the positive Borel part of Uq(g), generated by the Kω

and Er, and Uq(b−) for the negative Borel part generated by the Kω and Fr. We write 
Uq(n) = Uq(n+) for the unital algebra generated by the Er, Uq(n−) for the unital algebra 
generated by the Fr, and Uq(h) for the algebra generated by the Kω. We denote Uq(u)
for Uq(g) as a Hopf ∗-algebra with the ∗-structure

K∗
ω = Kω, E∗

r = FrKr, F ∗
r = K−1

r Er.

Note that the antipode map S is not ∗-preserving. To correct this, one introduces the uni-
tary antipode R : Uq(u) → Uq(u), which is a ∗-preserving, involutive, antimultiplicative 
and anticomultiplicative map determined on generators by

R(Er) = −qrK
−1
r Er, R(Fr) = −q−1

r FrKr, R(Kω) = K−1
ω . (1.1)

We call admissible representation of Uq(g) any representation on a finite dimensional 
complex vector space in which the Kω assume positive values. Each admissible repre-
sentation is spanned by joint eigenvectors of the Kω, called weight vectors, and for ξ a 
weight vector there exists a unique wt(ξ) ∈ P with
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Kωξ = q(ω,wt(ξ))ξ, ∀ω ∈ P.

Commonly we will use weight vectors when displaying a formula, with the implicit un-
derstanding that the formula extens (bi-)linearly to other vectors.

One can choose natural representatives V� for the isomorphism classes of irreducible 
admissible representations, indexed by the positive integral weights 	 ∈ P+, and char-
acterized by the existence of a one-dimensional space of highest weight vectors at weight 
	, vanishing under the Er. We can densily embed

Uq(g) ⊆ Uq(g) :=
∏
�

End(V�), (1.2)

where Uq(g) is endowed with the weak topology, that is xα → x if π�(xα) → π�(x) for 
all 	 ∈ P+. The coproduct Δ then extends continuously to a homomorphism

Δ : Uq(g) → Uq(g)⊗̂Uq(g) :=
∏
�,�′

End(V�) ⊗ End(V�′),

coassociative in the natural way, where the symbol ⊗̂ denotes the weak completion of a 
tensor product. Similarly the antipode and unitary antipode can be extended to Uq(g). 
In general, we will use also the notation Uq(n) etc. to denote the weak closure of the 
respective subalgebra of Uq(g). We note that if H ⊆ Uq(g) is a ∗-subalgebra, the weak 
closure of H will coincide with its bicommutant inside Uq(g).

We endow each V� with a Hilbert space structure, unique up to a non-zero positive 
constant, such that it becomes a ∗-representation of Uq(u). The inclusion (1.2) then 
becomes an embedding of ∗-algebras, and we will consequently write the right hand side 
∗-algebra as Uq(u). In the following, we write V ∗ for the contragredient representation 
of V , where V ∗ = {ξ∗ | ξ ∈ V } is a copy of the conjugate-linear Hilbert space of V
realized as the dual of V by the scalar product, ξ∗ = 〈ξ, −〉, and endowed with the left 
Uq(g)-module structure

X · ξ∗ = ξ∗ ◦ S(X). (1.3)

To make this a ∗-representation of Uq(u), the space V ∗ has to be endowed with a Hilbert 
space structure different from the canonical one, but this will not come in to play in 
what follows.

Let R be the universal R-matrix for Uq(u), so

R ∈ Uq(b+)⊗̂Uq(b−) ⊆
∏
�,�′

End(V�) ⊗ End(V�′)

and

(Δ⊗id)R = R13R23, (id⊗Δ)R = R13R12, RΔ(−)R−1 = Δop, R∗ = R21.

(1.4)
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It is completely determined by the above relations and the rule

R(ξ ⊗ η) = q−(wt(ξ),wt(η))ξ ⊗ η (1.5)

for a highest weight vector ξ and a lowest weight vector η. We then have that R = R̃Q, 
where for general weight vectors ξ, η

Q(ξ ⊗ η) = q−(wt(ξ),wt(η))ξ ⊗ η, R̃ =
∑

α∈Q+

R̃α (1.6)

with R̃α ∈ Uq(n)α⊗Uq(n−)−α and where the sum converges weakly. We have for example

R̃0 = 1 ⊗ 1, R̃αr
= (q−1

r − qr)Er ⊗ Fr. (1.7)

1.2. Quantized function algebras

Let Oq(G) = (Oq(G), Δ, ε, S) be the dual Hopf algebra of matrix coefficients for Uq(g)
in admissible representations. We write the pairing as

Uq(g) ×Oq(G) → C, (X, f) �→ (X, f) = (f,X) = X(f) = f(X).

We equip Oq(G) with the ∗-structure dual to that of Uq(u),

(X, f∗) = (S(X)∗, f), X ∈ Uq(u), f ∈ Oq(G),

and write the resulting Hopf ∗-algebra as Oq(U) in the appropriate contexts.

Remark 1.3. Performing the analogues of the above constructions at q = 1, we obtain 
the Hopf algebra O(G) of regular functions on the connected, simply connected complex 
affine group G having g as its complex Lie algebra. The given ∗-structure on O(G)
endows G ∼= Spec(O(G)) with a complex conjugate involution, determined by

f(ḡ) := f∗(g), g ∈ G, f ∈ O(G).

The real affine group variety U ⊆ G of ∗-preserving characters, i.e. of elements g ∈ G with 
g = ḡ, is then the connected, simply connected compact Lie group with Lie algebra u.

When (Vπ, π) is a Uq(u)-representation, we consider

Yπ ∈ End(Vπ) ⊗Oq(G)

for the associated corepresentation matrix of matrix coefficients, and

Y (ξ, η) = (ξ∗ ⊗ id)Yπ(η ⊗ id) ∈ Oq(G), ξ, η ∈ Vπ
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for the matrix coefficients. When considering these as unitary corepresentations of Oq(U), 
we will rather write the coefficients as U(ξ, η).

We can consider the Hopf algebra pairings between Oq(G) and respectively Uq(b+)
and Uq(b−) obtained by restriction, and we let Oq(B) = Oq(B+) and Oq(B−) be the 
respective coimages of Oq(G). We write the corresponding Hopf algebra quotient homo-
morphisms as

P± : Oq(G) � Oq(B±).

We write

T±
π = (id⊗P±)Yπ ∈ End(Vπ) ⊗Oq(B±).

We let

r : Oq(G) ×Oq(G) → C, (f, g) �→ (R, f ⊗ g)

be the natural skew pairing of Oq(G) with itself. Then r factors over a skew pairing

Oq(B) ×Oq(B−) → C.

In fact, we get homomorphisms of Hopf algebras

ι− : Oq(B) → Uq(b−)cop, f �→ (f ⊗ id)R,

ι+ : Oq(B−) → Uq(b+)cop, f �→ (id⊗f)R−1, (1.8)

where cop means that we take the opposite coproduct, i.e. the coproduct composed with 
the tensor flip.

The following result is well-known in the formal setting, and is an instance of Drinfeld’s 
duality between quantized universal enveloping algebras and quantized function algebras 
[31,35]. A proof in the non-formal setting can be found in [43, Corollary 9.2.12]. We repeat 
the proof, mainly to introduce notation.

Proposition 1.4. The maps ι± in (1.8) are isomorphisms.

Proof. By (1.6) and (1.7), we have

ι−(T+
� (ξ, ξ)) = K−wt(ξ), ι−(T+

�r
(ξ�r

, Frξ�r
)) = (q−1

r − qr)FrKαr−�r
,

ι+(T−
� (ξ, ξ)) = Kwt(ξ), ι+(T−

�r
(Frξ�r

, ξ�r
)) = q−2

r (qr − q−1
r )ErK�r−αr

.

Since the image of ι± will be closed under the antipode map, this proves that the maps 
ι± are surjective. If then f ∈ Oq(B) with ι−(f) = 0, we have for all g ∈ Oq(G) that
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(S−1(g), ι−(f)) = (f, ι+(P−(g))) = 0.

As P− and ι+ are surjective, and the pairing between Oq(B) and Uq(b) is non-degenerate 
by definition, it follows that f = 0, and ι− injective. Similarly one shows ι+ injective. �

In the following we write

ι−1
+ (Er) = X+

r , ι−1
− (Fr) = X−

r ι−1
± (Kω) = L±

ω . (1.9)

As in the proof of Proposition 1.4, we have

T+
� (ξ, ξ) = L−

−wt(ξ), T+
�r

(ξ�r
, Frξ�r

) = (q−1
r − qr)X−

r L−
αr−�r

,

T−
� (ξ, ξ) = L+

wt(ξ), T−
�r

(Frξ�r
, ξ�r

) = q−2
r (qr − q−1

r )X+
r L+

�r−αr
,

The skew pairing between generators is then determined by

r(L−
�, L+

χ ) = q(�,χ), r(X−
r , X+

s ) = δrs

qr − q−1
r

, r(L−
�, X+

r ) = r(X−
r , L+

�) = 0.

Let Oq(G) be an antilinear, antihomomorphic, cohomomorphic copy of Oq(G), with 
the copy of the element f written as f†. Then we can view the tensor product Hopf 
algebra Oq(G) ⊗Oq(G) as a Hopf ∗-algebra, which we will denote by Ocom

q (GR), by the 
∗-structure

(f ⊗ g†)† = g ⊗ f†.

In the following we will drop the tensor product symbol, and simply write elements of 
Ocom

q (GR) as fg† = g†f .

Remark 1.5. At q = 1, one has that Ocom(GR) is the ∗-algebra of regular functions on 
G viewed as a real algebraic variety by the embedding

G ↪→ G× Ḡ, x �→ (x, x̄),

where Ḡ is an antiholomorphic copy of G and where G × Ḡ is endowed with the complex 
conjugation (x, ȳ) = (y, ̄x). We then have

(fg†)(x, ȳ) = f(x)g(y).

Alternatively, we may view Ocom(GR) as generated by the holomorphic and antiholo-
morphic regular functions on G. For the above particular quantization Ocom

q (GR), the 
quasi-classical Poisson structure is such that the holomorphic and antiholomorphic func-
tions Poisson commute. In the following section, we will consider deformations where 
there is a more interesting interaction between the holomorphic and antiholomorphic 
structures.
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Similarly, we can form Oq(B) and Ocom
q (BR). In the latter case, we will identify Oq(B)

with Oq(B−) by the identification

Oq(B−) → Oq(B), f �→ (f∗)†, (1.10)

where ∗ : Oq(B−) → Oq(B) is again determined by

(X, f∗) = (S(X)∗, f), f ∈ Oq(B−), X ∈ Uq(b),

so in particular

P+(f∗) = P−(f)∗. (1.11)

Moreover, from

((f∗ ⊗ id)R)∗ = (f ⊗ id)(((S ⊗ id)R)∗) = (f ⊗ id)((R−1)∗) = (id⊗f)(R−1)

we see that ∗ is compatible with the ι±-maps,

ι−(f∗) = ι+(f)∗, f ∈ Oq(B−).

We then also write ∗ for the inverse map ∗ : Oq(B) → Oq(B−). Note that as we are 
assuming our admissible representations π to be ∗-preserving for the compact ∗-structure, 
we have that

(T±
π )∗ = (T∓

π )−1. (1.12)

1.3. Lusztig braid operators

The following results will only be needed from Section 4 onwards.
For r ∈ I, we let Tr be the Lusztig braid operator

Tr ∈ Uq(u), Trξ =
∑

a,b,c≥0
−a+b−c=(wt(ξ),α∨

r )

(−1)bqb−ac
r E(a)

r F (b)
r E(c)

r ξ, ξ ∈ Vπ,

where

E(a)
r = 1

[a]qr !
Ea

r

in standard notation with the convention

[a]q = qa − q−a

−1 , [a]q! = [1]q[2]q . . . [a− 1]q[a]q.

q − q
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We will need to know the behaviour of the Tr under the ∗-operation. In the following, we 
will interpret the maximal torus T = exp(i(h ∩u)) ⊆ U as the space of unitary characters 
of the integral weight lattice P , ω �→ tω, so that we have a natural embedding

T ⊆ Uq(u), tξ = twt(ξ)ξ, ξ ∈ Vπ.

We can then consider

Sr = eπiα
∨
r ∈ T ⊆ Uq(u), Srξ = (−1)(wt(ξ),α∨

r )ξ, ξ ∈ Vπ.

Lemma 1.6. We have

T ∗
r = R(Tr) = TrSr = SrTr, (1.13)

where we recall that R is the unitary antipode of (1.1), extended to Uq(u).

Proof. As in [42, Section 8], it is sufficient to consider the case Uq(su(2)) for su(2) with 
its positive root α such that (α, α) = 2 and in particular α∨ = α. We then write the 
generators of Uq(su(2)) as {K, E, F} with Lusztig braid operator T . It is also sufficient 
to verify (1.13) in the Hilbert space V = Vn with orthonormal basis e0, . . . , en and with 
irreducible representation

Kek = qn−2kek,

Eek = q(n−2k+2)/2[n + 1 − k]1/2q [k]1/2q ek−1,

Fek = q−(n−2k)/2[n− k]1/2q [k + 1]1/2q ek+1,

with the right hand expressions = 0 if ill-defined. Then

Tek = (−1)n−kqn/2qk(n−k)en−k, (1.14)

and it follows that

T ∗ek = (−1)nTek = (−1)n−2kTek = (−1)(wt(vk),α)Tek.

Let us now show that R(T ) = T ∗, so R(T )∗ = T . Note that the conjugate Hilbert space 
V (with its usual Hilbert space structure) can be endowed with the ∗-representation 
Xv̄ = R(X)∗v. Since v̄ has negative the weight of v, we then have, following again the 
notation of [42, Section 8],

R(T )∗v = T v̄ =
∑

a,b,c≥0
−a+b−c=−m

(−1)bqb−ac(−q)a−b+cF (a)E(b)F (c)v = (−q)m ωTv,

where m = (wt(v), α). From [42, 8.6.(7)] we now see that R(T )∗ = T . �



K. De Commer, M. Matassa / Advances in Mathematics 366 (2020) 107029 15
Recall that W denotes the Weyl group of g. For r ∈ I we write sr for the simple 
root reflections generating W . Let w0 be the longest element in W , and choose a specific 
reduced expression for w0,

w0 = sr1 . . . srN . (1.15)

We then write

Tw0 = Tr1 . . . TrN ∈ Uq(u),

which is independent of the choice of reduced expression for w0. Further write

S0 = e2πiρ∨ ∈ T, (1.16)

where

ρ∨ = 1
2

∑
α∈Δ+

α∨.

Proposition 1.7. We have

T ∗
w0

= R(Tw0) = Tw0S0 = S0Tw0 .

Proof. An easy consideration of weight spaces shows that

Tre
πiα∨

T−1
r = eπisr(α∨), α ∈ Δ.

The elements in Δ+ can be enumerated as

β1 = αr1 , β2 = sr1(αr2), . . . , βN = sr1 . . . srN−1(αrN ).

Then it follows from (1.13) and the above observation, together with the fact that Tw0

is independent of the choice of reduced decomposition of w0, that

T ∗
w0

= T ∗
rN . . . T ∗

r1 = Tw0e
2πiρ∨

= e2πiρ∨
Tw0 .

The identity for R follows immediately from the fact that R(−)∗ leaves each factor of 
Tw0 invariant, and hence the whole of Tw0 . �

Denote now by Ad(Tr) the Lusztig algebra automorphism of Uq(g), uniquely deter-
mined by

Ad(Tr)(X) = TrXT−1
r , X ∈ Uq(g).
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From [51, Lemma 3.4], we obtain

Ad(Tw0)(Er)∗ = −Eτ0(r), Ad(Tw0)(Fr)∗ = −Fτ0(r), Ad(Tw0)(Kω)∗ = K−τ0(ω),

(1.17)
where τ0 is the automorphism induced on the Dynkin diagram by the action of −w0. 
Together with the definition of Tr and (1.13), we obtain the following lemma, which also 
follows from the fact that the Tr satisfy the braid relations.

Lemma 1.8. The following identity holds in Uq(u):

Tw0TrT
−1
w0

= Tτ0(r).

2. Twist-braided Hopf algebras and associated characters

We resume the notation from Sections 1.1 and 1.2.

2.1. Endomorphisms of Uq(b)

Let τ be an involutive Dynkin diagram automorphism. We also write τ for the corre-
sponding linear automorphism of the weight lattice P determined by

τ(	r) = 	τ(r).

We can extend τ to a Hopf algebra isomorphism of Uq(g), compatible with the compact 
∗-structure, such that

τ(Er) = Eτ(r), τ(Fr) = Fτ(r), τ(Kω) = Kτ(ω).

By duality, we obtain a Hopf algebra automorphism τ of Oq(G).
Let ε : I → R be a real-valued τ -invariant function on I. We can extend ε to a 

semigroup homomorphism

ε : (Q+,+) → (R, ·).

From the couple (τ, ε) we construct a Hopf algebra endomorphism

ν : Uq(b) → Uq(b), Kω �→ Kτ(ω), Er �→ εrEτ(r).

Denote also by ν the corresponding Hopf algebra endomorphism of Uq(b−) determined 
by

ν(X) = ν(X∗)∗, X ∈ Uq(b−),
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where we restrict ∗ from Uq(u) to a conjugate-linear algebra antihomomorphism from 
Uq(b±) to Uq(b∓). Concretely,

ν : Uq(b−) → Uq(b−), Kω �→ Kτ(ω), Fr �→ εrFτ(r).

Note that because of the involutivity of τ and τ -invariance of ε, we have

(ν ⊗ id)R = (id⊗ν)R. (2.1)

We will write End∗(Uq(b)) for the class of all homomorphisms ν of Uq(b) of the above 
form. Then ν completely determines τ and ε, and we write

ν = ντ,ε, τ = τν , ε = εν .

When τ = id, we will also write ν = νε. On the other hand, we have ντ,ε = τ in case 
εr = 1 for all r.

Definition 2.1. We say that ν is of symmetric type if ε2r = 1 for all r. We say ν is of flag 
type if ε2r = εr for all r and τ = id.

Remark 2.2. It is not hard to show that a general Hopf algebra endomorphism of Uq(b)
satisfying (2.1) must be of the form

Er �→ εrEτ(r), Kω �→ Kσ(ω)

where τ is an involution of I, εr ∈ C satisfies ετ(r) = εr, and σ is an endomorphism of P
with σ = σt (the transpose with respect to the pairing (−, −)) and σ(αr) = ατ(r) for all 
r ∈ I with εr �= 0.

Remark 2.3. Note that for ν ∈ End∗(Uq(b)), the endomorphisms ν of Uq(b±) glue to-
gether to an algebra ∗-endomorphism of Uq(u) if and only if ν is of symmetric type, in 
which case it defines a Hopf ∗-algebra automorphism ν of Uq(u). By duality, we obtain 
in this case a Hopf ∗-algebra automorphism ν of Oq(U).

Remark 2.4. By rescaling, one can always reduce to the case εr ∈ {−1, 0, 1}, but the 
extra flexibility of an arbitrary εr can be convenient with respect to the contraction 
method [41,15].

For ν ∈ End∗(Uq(b)) we write

Rν = (ν ⊗ id)R, rν(f, g) = (Rν , f ⊗ g), f, g ∈ Oq(G).

From (2.1), (S ⊗ S)R = R and R∗ = R21 we find
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rν(f, g∗) = rν(g, f∗). (2.2)

Consider the following bilinear functional

ων : Ocom
q (GR) ×Ocom

q (GR) → C, ων(fg†, hk†) = ε(f)rν(h, g∗)ε(k).

Then ων is a convolution invertible real 2-cocycle functional with

ω−1
ν (fg†, hk†) = ε(f)rν(h, S(g)∗)ε(k), f, g, h, k ∈ Oq(G). (2.3)

By (2.2) we also have

ων(f†, g†) = ων(g, f), f, g ∈ Ocom
q (GR). (2.4)

The following definition extends the usual ‘complexification’ of a Hopf ∗-algebra [69], 
see also [70, Section 7.3] and [90][Section 3.5]. We will in the following use the Sweedler 
notation for (Oq(G), Δ) and other Hopf algebras,

Δ(f) = f(1) ⊗ f(2).

Definition 2.5. For ν, μ ∈ End∗(Uq(b)) the (ν, μ)-Drinfeld double Oν,μ
q (GR) is defined as 

the vector space Ocom
q (GR) endowed with the new multiplication

mν,μ(f, g) = ων(f(1), g(1))f(2)g(2)ω
−1
μ (f(3), g(3)), f, g ∈ Ocom

q (GR),

and the original ∗-structure.

As the ων are 2-cocycle functionals for Ocom
q (GR) satisfying (2.4), it follows that the 

Oν,μ
q (GR) are associative ∗-algebras, where by the particular form of ων one has

mν,μ(f, g†) = fg†, f, g ∈ Oq(G).

The Oν,μ
q (GR) form a connected cogroupoid with compatible ∗-structure [12, Defini-

tion 2.4 and Definition 3.14] by means of the unital ∗-homorphisms

Δκ
νμ : Oν,μ

q (GR) → Oν,κ
q (GR)⊗Oκ,μ

q (GR), fg† �→ f(1)g
†
(1) ⊗ f(2)g

†
(2), f, g ∈ Oq(G).

In particular, the

(Oν
q (GR),Δν) = (Oν,ν

q (GR),Δν
ν,ν)

are Hopf ∗-algebras. We also write

Oq(GR) = Oid
q (GR).
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In the following, we will sometimes in general simply write Δ = Δκ
νμ as this will not lead 

to confusion.

Remark 2.6. The above interchange relations lead to a family of Poisson structures 
{−, −}ν,μ on G considered as a real manifold. They can be viewed as manifolds with an 
affine Poisson structure [93,65].

For π, π′ representations of Uq(g), let us write

Rπ,π′
= (π ⊗ π′)R.

Lemma 2.7. Let ν, μ ∈ End∗(Uq(b)). In Oν,μ
q (GR) we have the following defining com-

mutation relations between the holomorphic and the antiholomorphic part: with Y = Yπ

and Y ′ = Yπ′ ,

Y ′
13R

π′,π
μ,12Y

†
23 = Y †

23R
π′,π
ν,12Y

′
13 (2.5)

as identities in End(Vπ′) ⊗ End(Vπ) ⊗Oν,μ
q (GR).

Proof. We can rewrite (2.5) as

(Y †
23)−1Y ′

13 = Rπ′,π
ν,12Y

′
13(Y

†
23)−1(Rπ′,π

μ,12)−1.

Then this relation follows straightforwardly from the definition of the product in 
Oν,μ

q (GR), using that

(Y †)−1 = (Y −1)† = ((id⊗S)Y )†,

together with the fact that (id⊗S−1)R = R−1 and S(Y (ξ, η))∗ = Y (η, ξ). �
As rν factors over a skew pairing between Oq(B+) and Oq(B−), it follows that simi-

larly as above we can form the (ν, μ)-Drinfeld double Oν,μ
q (BR). Using (1.10) and (1.11), 

we then have a unique surjective ∗-homomorphism

P : Oν,μ
q (GR) → Oν,μ

q (BR), fg† �→ P+(f)P−(g∗) (2.6)

extending the homomorphism Oq(G) → Oq(B). This map preserves also the comulti-
plications Δκ

ν,μ. In particular, we have a surjective map of Hopf ∗-algebras Oν
q (GR) →

Oν
q (BR), where Oν

q (BR) = Oν,ν
q (BR).

Recall now the notation from (1.9). Then we have for ν = (τν , ε) and μ = (τμ, η) that

ων(L+
ω , L

−
χ ) = q(ω,τν(χ)), ων(X+

r , X−
s ) =

εrδr,τν(s)
−1 ,
qr − qr
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ων(L+
ω , X

−
s ) = ων(X+

r , L−
ω ) = 0,

ω−1
μ (L+

ω , L
−
χ ) = q−(ω,τμ(χ)), ω−1

μ (X+
r , X−

s ) =
ηrδr,τμ(s)

q−1
r − qr

,

ω−1
μ (L+

ω , X
−
s ) = ω−1

μ (X+
r , L−

ω ) = 0.

Moreover,

Δ(L±
�) = L±

�⊗L±
�, Δ(X+

r ) = X+
r ⊗L+

r +1⊗X+
r , Δ(X−

r ) = X−
r ⊗1+(L−

r )−1⊗X−
r .

Hence in Oν,μ
q (BR) the following defining interchange rules hold, see also [17, Section 3]:

L+
ωL

−
χ = q(ω,τν(χ)−τμ(χ))L−

χL
+
ω ,

L−
ωX

+
r = q(αr,τμ(ω))X+

r L−
ω , L+

ωX
−
r = q−(αr,τν(ω))X−

r L+
ω , (2.7)

[X+
r , X−

s ] =
δr,τν(s)εrL

+
r − δr,τμ(s)ηs(L−

s )−1

qr − q−1
r

.

2.2. The quantized enveloping Lie ∗-algebra Uq(gν) and its dual Oq(Gν)

For ε as above a real-valued function on I, let U ε
q (g) be the Hopf algebra obtained by 

changing in Uq(g) the commutation relation between Er, Fs to

[Er, Fs] = δrsεr
Kr −K−1

r

qr − q−1
r

.

Then with τ an involutive automorphism of the Dynkin diagram preserving ε, we have 
on U ε

q (g) the Hopf ∗-algebra structure

K†
ω = Kτ(ω), E†

r = Fτ(r)Kτ(r), F †
r = K−1

τ(r)Eτ(r).

Definition 2.8. For ν = ντ,ε, we denote by Uq(gν) the Hopf ∗-algebra obtained by endow-
ing U ε

q (g) with the ∗-structure †.

From (2.7), we see immediately that we have a surjective Hopf ∗-algebra morphism

ιν : Oν
q (BR) → Uq(gν)cop, X+

r �→ Eτ(r), X−
r �→ Fr, L+

ω �→ Kτ(ω), L−
ω �→ Kω,

(2.8)
with kernel generated by the central elements L+

−τ(ω)L
−
ω − 1.

Remark 2.9. As in [15, Appendix B], one sees that Uq(gν) is a quantization of the en-
veloping ∗-algebra of the real Lie algebra gν ⊆ g spanned (over the reals) by the compact 
Cartan algebra t = R[ihr] ⊆ h and the fα − εαeτ(α) and i(fα + εαeτ(α)), where the fα
run through the negative root vectors. In the flag case, we obtain the real Lie subalgebra 
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kS ⊕ n
−
S of the negative parabolic subalgebra p−S of g at S = {r ∈ I | εr = 1}, consisting 

of the nilpotent part n−S , generated by the fr with r /∈ S, and the compact part kS of the 
Levi factor. In the symmetric case this gives the real semisimple Lie algebra associated 
to the involution ν, consisting of all elements X ∈ g with ν(X)∗ = −X.

Proposition 2.10. There is a unique pairing (−, −)ε of Hopf algebras between U ε
q (g) and 

Oq(G) such that

(Kω, f)ε = (Kω, f), (Er, f)ε = εr(Er, f), (Fr, f)ε = (Fr, f). (2.9)

Moreover, there is a unique pairing (−, −)ν of Hopf ∗-algebras between Uq(gν) and 
Oν

q (GR) extending the above pairing (−, −)ε.

Proof. It is easily seen by a rescaling argument that there exists a unique pairing of Hopf 
algebras between U ε

q (g) and Oq(G) satisfying (2.9). It follows that there can be at most 
one extension to a pairing of Hopf ∗-algebras between Uq(gν) and Oν

q (GR), defined by

(X, fg†)ν = (X(1), f)ε(S(X(2))†, g)ε, f, g ∈ Oq(G). (2.10)

To see that this is indeed a pairing of Hopf ∗-algebras, the only non-trivial relation to 
verify is that also

(X, f†g)ν = (S(X(1))†, f)ε(X(2), g)ε. (2.11)

Now the left hand side equals

(X, f†g)ν = ων(f†
(1), g(1))(X, g(2)f

†
(2))νω

−1
ν (f†

(3), g(3))

= rν(g(1), f
∗
(1))(X(1), g(2))ε(S(X(2))†, f(2))εrν(g(3), S(f(3))∗)

It is then sufficient to verify that this equals (2.11) for X ∈ Uq(b) ∪ Uq(b−). Now for 
X ∈ Uq(b), we have

(X, f†g)ν = rν(g(1), f
∗
(1))(νε(X(1)), g(2))(τ(X(2)), f∗

(2))rν(g(3), S(f(3))∗)

= (Rν(νε ⊗ τ)Δ(X)R−1
ν , g ⊗ f∗)

= ((νε ⊗ τ)(RΔ(X)R−1), g ⊗ f∗)

= ((νε ⊗ τ)Δop(X), g ⊗ f∗)

= (τ(X(1)), f∗)(νε(X(2)), g)

= (S(X(1))†, f)ε(X(2), g)ε.

Similarly, for X ∈ Uq(b−) we have
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(X, f†g)ν = rν(g(1), f
∗
(1))(X(1), g(2))(ν(X(2)), f∗

(2))rν(g(3), S(f(3))∗)

= (Rν(id⊗ν)Δ(X)R−1
ν , g ⊗ f∗)

= ((id⊗ν)(RΔ(X)R−1), g ⊗ f∗)

= ((id⊗ν)Δop(X), g ⊗ f∗)

= (ν(X(1)), f∗)(X(2), g)

= (S(X(1))†, f)ε(X(2), g)ε. �
The above pairing will of course not be non-degenerate.

Definition 2.11. We define Oq(Gν) as the coimage Hopf ∗-algebra of Oν
q (GR) under the 

∗-homomorphism

f �→ (f,−)ν

into the dual of Uq(gν). We denote by πν the quotient map

πν : Oν
q (GR) → Oq(Gν)

To see which extra relations one is quotienting out by, we introduce the following 
definition.

Definition 2.12. Fixing ε as above, we let E = Eε be the unique element in Uq(g) =∏
� End(V�) determined by

E ξ = ε�−wt(ξ)ξ, ξ ∈ V�.

We then let Eπ be the corresponding action of E in a general representation π, and 
E� the action in a particular irreducible representation of highest weight 	.

Definition 2.13. We denote Oq(G̃ν) for the Hopf ∗-algebra obtained by quotienting out 
Oν

q (GR) by the extra (∗-compatible) relations

τ(Y †
�)E�Y� = E� (2.12)

for all 	 ∈ P+, where we use the shorthand τ(Y ) = (id⊗τ)(Y ).

Note that we can rewrite the defining relations (2.12) of Oq(G̃ν) as

τ(Y †
�)E� = E�S(Y�), (2.13)

which makes it clear that we are dividing out by a Hopf ideal,

Y †
13Y

′ †
12 E − ES(Y )13S(Y ′)12 = Y †

13(Y
′ †
12 E − ES(Y ′)12) + (Y †

13E − E S(Y )13)S(Y ′)12.



K. De Commer, M. Matassa / Advances in Mathematics 366 (2020) 107029 23
Remark 2.14. As E�⊗E�′ restricts to and equals Δ(E ) on the irreducible module spanned 
by the tensor product of the highest weight vectors, it follows that we only need to impose 
the relations (2.13) on the highest weight representations for the fundamental weights.

Lemma 2.15. The pairing (−, −)ν factors through Oq(G̃ν).

Proof. We have to check that (2.13) is satisfied when applying the pairing (−, −)ν to 
this equation with respect to the generators Er, Fr and Kω. Now for f ∈ Oν

q (GR), we 
have

(Kω, f
†)ν = (K−1

τ(ω), f), (Er, f
†)ν = −(Fτ(r), f), (Fr, f

†)ν = −εr(Eν(r), f).

Hence (2.13) translates to

π�(Kω)E� = E�π�(Kω), π�(Fr)∗E� = εrE�π�(K−1
r Er),

εrπ�(Er)∗E� = E�π�(FrKr).

The first relation is obviously true, while using π�(X)∗ = π�(X∗) and self-adjointness 
of E� the last two relations reduce to

π�(Er)E� = εrE�π�(Er).

This however follows from the fact that if ErV�(	 − α) �= 0 for some α ∈ Q+, where 
V�(ω) is the weight space at weight ω, then α− αr ∈ Q+ and hence εα = εα−αr

εr. �
Remark 2.16. It follows that we obtain a surjective Hopf ∗-algebra homomorphism

Oq(G̃ν) � Oq(Gν).

It is easy to see that this will be an isomorphism when εr �= 0 for all r, as the defining 
relations for Oq(G̃ν) can then be written

τ(Y †
�) = E�S(Y�)E −1

� ,

from which it follows that Oq(G̃ν) will be non-degenerately paired with Uq(gν). We 
suspect that this will be true in general.

Remark 2.17. As we are only interested in the classical limit for motivational reasons, 
the classical limit O(Gν) for q → 1 will be interpreted without further justification as 
the algebra of regular functions on the real affine group Gν = Spec∗(O(Gν)) ⊆ G with 
Lie algebra gν . For example, in the flag case we have that the group Gν of ∗-preserving 
characters of O(Gν) equals KSN

−
S , with N−

S the unipotent part of the negative parabolic 
subgroup P−

S associated to the simple roots S = {r ∈ I | εr = 1}, and with KS = U∩P−
S . 
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In the symmetric case, we have that the space of ∗-characters of O(Gν) is the subgroup 
Gν = {g ∈ G | ν(g)∗ = g−1}, which has Lie algebra gν but is not necessarily connected 
or simply connected.

2.3. ν-braided deformation of Oq(G)

Consider the left, resp. right coactions (= ∗-preserving comodule algebra structures)

λν,μ = (πν ⊗ id)Δν
ν,μ : Oν,μ

q (GR) → Oq(Gν) ⊗Oν,μ
q (GR),

ρν,μ = (id⊗πμ)Δμ
ν,μ : Oν,μ

q (GR) → Oν,μ
q (GR) ⊗Oq(Gμ).

In the following, we will be interested in characterizing the fixed point ∗-subalgebra 
of λν,μ in case μ = id, which we will denote

Oq(Gν\\GR) = Oν,id
q (GR)λν,id = {f ∈ Oν,id

q (GR) | λν,id(f) = 1 ⊗ f}.

We then put λν = λν,id and ρν = ρν,id.

Remark 2.18. We are mimicking notation from geometric invariant theory (GIT): for 
q = 1 we will not necessarily have that the ordinary quotient Gν\GR is a real affine 
variety, and in particular will not equal the (real) spectrum Gν\\GR of O(GR)λν,id . 
However, Gν\GR will be embedded in this spectrum as a Zariski dense open subset, see 
Remark 2.29.

Let us write

Wπ = (id⊗πν)Yπ ∈ End(Vπ) ⊗Oq(Gν).

Then the left and right coactions λν and ρν of resp. Oq(Gν) and Oq(U) on Oν,id
q (GR)

are determined by

(id⊗λν)Yπ = Wπ,12Yπ,13, (id⊗ρν)Yπ = Yπ,12Uπ,13. (2.14)

Recall the element E introduced in Definition 2.12.

Lemma 2.19. The elements

Zπ = τ(Y †
π )(Eπ ⊗ 1)Yπ ∈ End(Vπ) ⊗Oν,id

q (GR)

lie in End(Vπ) ⊗Oq(Gν\\GR).

Proof. By Lemma 2.15 we can use the relation (2.12), so that using (2.14) we find

(id⊗λν)(Zπ) = τ(Y †
π,13)τ(W †

π,12)(Eπ ⊗ 1)Wπ,12Yπ,13 = τ(Y †
π,13)(Eπ ⊗ 1)Yπ,13,
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so Zπ has entries in Oq(Gν\\GR). �
Lemma 2.20. The matrices Zπ satisfy the τ -modified reflection equation: with Z = Zπ

and Z ′ = Zπ′ , we have

Rπ,π′

21 Z13R
π,π′

τ,12Z
′
23 = Z ′

23R
π,π′

τ,21Z13R
π,π′

12 ,

where we write Rπ,π′ = (π ⊗ π′)R and Rπ,π′

21 = (π ⊗ π′)R21.

Proof. Writing also Yπ = Y etc., we compute using (2.5) that

Rπ,π′

21 Z13R
π,π′

τ,12Z23 = Rπ,π′

21 τ(Y )†13E1Y13R
π,π′

τ,12 τ(Y ′)†23E ′
2Y

′
23

= Rπ,π′

21 τ(Y )†13E1τ(Y ′)†23R
π,π′

ε,12 Y13E
′
2Y

′
23

= Rπ,π′

21 τ(Y )†13τ(Y ′)†23E1R
π,π′

ε,12 E ′
2Y13Y

′
23

= τ(Y ′)†23τ(Y )†13R
π,π′

21 E1R
π,π′

ε,12 E ′
2Y13Y

′
23

Now we use that

R21(E ⊗ 1)Rε(1 ⊗ E ) = R21R(E ⊗ E ) = (1 ⊗ E )Rε,21(E ⊗ 1)R,

which follows from an easy weight argument. Hence

Rπ,π′

21 Z13R
π,π′

τ,12Z
′
23 = τ(Y ′)†23τ(Y )†13E ′

2R
π,π′

ε,21 E1R
π,π′

12 Y13Y
′
23

= τ(Y ′)†23τ(Y )†13E ′
2R

π,π′

ε,21 E1Y
′
23Y13R

π,π′

12

= τ(Y ′)†23E ′
2τ(Y )†13R

π,π′

ε,21 Y
′
23E1Y13R

π,π′

12

= τ(Y ′)†23E ′
2Y

′
23R

π,π′

τ,21 τ(Y )†13E1Y13R
π,π′

12

= Z ′
23R

π,π′

τ,21Z13R
π,π′

12 . �
Note also that

Z†
π = τ(Zπ). (2.15)

We want to view Oq(Gν\\GR) as a deformation of Oq(G). We will need some prepa-
ration. For ξ, η ∈ Vπ, denote

Z(ξ, η) = (ξ∗ ⊗ 1)Zπ(η ⊗ 1) ∈ Oq(Gν\\GR)

for the associated matrix coefficient. Recall that we view V ∗ as the dual of V with the 
contragredient representation (1.3). By the Peter-Weyl-decomposition, we have a vector 
space isomorphism
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⊕�∈P+V ∗
� ⊗ V� → Oq(G), ξ∗ ⊗ η �→ Y (ξ, η) = (ξ∗ ⊗ 1)Y�(η ⊗ 1)

Proposition 2.21. The map

jν : Oq(G) → Oq(Gν\\GR), Y (ξ, η) �→ Z(ξ, η) (2.16)

is a linear bijection.

Proof. Let us identify the space of operators Hom(V, W ) with W ⊗ V ∗ in the natural 
way,

W ⊗ V ∗ ∼= Hom(V,W ), ξ ⊗ η∗ �→ ξη∗.

Since the multiplication map Oq(G) ⊗ Oq(G) → Oν,id
q (GR) is bijective, it follows from 

the Peter-Weyl-decomposition that we have a bijective linear map

PW : ⊕�,�′∈P+V ∗
� ⊗ Hom(V�′ , V�) ⊗ V�′ → Oν,id

q (GR), (2.17)

ξ∗ ⊗ (η ⊗ ξ′ ∗) ⊗ η′ �→ τ(Y�(η, ξ)†)Y�′(ξ′, η′).

Since

jν(Y�(ξ, η)) = PW(ξ∗ ⊗ E� ⊗ η)

and none of the E� are zero, this proves that the map jν is injective.
To see that the map is surjective, consider on Oν,id

q (GR) the infinitesimal right action 
of Uq(gν) via

f � X = ((X,−)ν ⊗ id)λν(f), X ∈ Uq(gν), f ∈ Oν,id
q (GR).

It is easy to see that under the isomorphism (2.17), the action � restricts to each of the 
components V ∗

� ⊗ Hom(V�′ , V�) ⊗ V�′ , on which it is given by

(ξ∗ ⊗ T ⊗ η) � X = ξ∗ ⊗ (T � X) ⊗ η

for an action of Uq(gν) on Hom(V�′ , V�). We are to show that T � X = ε(X)T for all 
X ∈ Uq(gν) implies 	 = 	′ and T ∈ CE�. However, it is easily seen that

T � Er = −K−1
r ErT + εrK

−1
r TEr, T � Fr = −εrFrKrTK

−1
r + TFr,

T � Kχ = K−1
χ TKχ.

Hence if T � X = ε(X)T for all X ∈ Uq(gν), it follows that

ErT = εrTEr, TFr = εrFrT, KχT = TKχ.
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The first identity implies that T preserves the vector space spanned by highest weight 
vectors, while the second identity implies that the action of T on the highest weight vector 
completely determines the action. Combined with the third identity, it then follows that 
T = 0 unless 	′ = 	, in which case the space of T ’s is one-dimensional, consisting of 
multiples of E�. �

We want to determine explicitly the resulting ∗-algebra structure that Oq(G) inherits 
through jν .

Definition 2.22. Let ε : I → R, and extend ε as before to a semigroup homomorphism 
(Q+, +) → (R, ·). We define

Ωε ∈ Uq(g)⊗̂Uq(g)

as the unique element such that

Ωει = ε�+�′−�′′ι, ∀ι ∈ HomUq(u)(V�′′ , V� ⊗ V�′).

It is easily seen that Ωε is well-defined, as non-zero ι as above exist only when 	 +
	′ −	′′ ∈ Q+. Moreover, when ε has no zero values, it is easily seen that

Ωε = (E ⊗ E )Δ(E −1).

It follows by continuity that, in general, Ωε satisfies the 2-cocycle identity

(Ωε ⊗ 1)(Δ ⊗ id)(Ωε) = (1 ⊗ Ωε)(id⊗Δ)(Ωε).

Moreover, as Ωε assumes constant values on isotypical components in the tensor product, 
we have

ΩεΔ(X) = Δ(X)Ωε, X ∈ Uq(u). (2.18)

Finally, we note the following behaviour with respect to the universal R-matrix.

Lemma 2.23. The following identity holds:

RΩε = Ωε,21R. (2.19)

Proof. This follows immediately from the fact that, with Σ the flip map, the elements 
Σ(π ⊗ π′)R preserve spectral subspaces, while the (π ⊗ π′)Ωε are constant on spectral 
subspaces. �

The following modifies the construction of braided Hopf algebras as in [68, Theo-
rem 4.1], see also [48, Proposition 10.3.30] and the references in [70].
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Definition 2.24. We define Oq(Zν) = Oν−br
q (G) to be the vector space Oq(G) with the 

product

f ∗ g = (g(2) ⊗ f(1),Ωε)r(f(2), g(3))f(3)g(4)r(f(4), τ(S(g(1)))) (2.20)

and the ∗-structure

f � = τ(S(f)∗), (2.21)

where on the right hand sides one uses the Hopf ∗-algebra structure of Oq(U).

We will show in a moment, by an indirect argument, that this defines a unital ∗-algebra 
structure, but for now we just view the above as a binary and unary operation.

Definition 2.25. We will call Oq(Zν) the ν-modified braided Hopf algebra.

Note that the unit 1 ∈ Oq(G) is still the unit of Oq(Zν). We record the following 
‘inverse formula’ to (2.20).

Lemma 2.26. For all f, g ∈ Oq(Zν) we have

(f(1) ⊗ g(1),Ωε)f(2)g(2) = r(S(f(1)), g(1))f(2) ∗ g(3)r(f(3), τ(g(2))). (2.22)

Proof. From (2.19), we see that

f ∗ g = r(f(1), g(2))(f(2) ⊗ g(3),Ωε)f(3)g(4)r(f(4), τ(S(g(1)))).

The result then follows from the fact that (S⊗id)R = R−1, while (id⊗S)R is the inverse 
of R with respect to Uq(g)⊗̂Uq(g)op, where Uq(g)op has the opposite product. �
Remark 2.27. In case E is invertible, we can further reduce (2.22) by inverting Ωε and 
using (2.19),

fg = r(S(f(1)), g(1))(g(2) ⊗ f(2),Ω−1
ε )f(3) ∗ g(4)r(f(4), τ(g(3))). (2.23)

Theorem 2.28. The map jν introduced in (2.16) induces an isomorphism of ∗-algebras

jν : Oq(Zν) ∼= Oq(Gν\\GR).

Remark that, borrowing again the coproduct from Oq(U), the map jν can be written 
more intrinsically as

jν : Oq(Zν) → Oq(Gν\\GR), f �→ f(2)(E )τ(S(f(1)))∗†f(3). (2.24)
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Proof. By Proposition 2.21, it only remains to show that jν is a ∗-algebra map. Now 
the preservation of ∗-structures follows immediately from the definitions and (2.16). On 
the other hand, to show that jν is multiplicative we may restrict to the case where none 
of the εr are zero, as the structure coefficients of our algebras depend continuously on 
the εr. Let us fix elements f, g ∈ Oq(Zν). By the bijectivity of the map jν , there exists 
h ∈ Oq(Zν) such that

jν(f)jν(g) = jν(h).

We are to show that h = f ∗ g. We have

jν(f)jν(g)

= f(2)(E )g(2)(E )τ(S(f(1)))∗†f(3)τ(S(g(1)))∗†g(3)

= f(2)(E )g(4)(E )ω−1
ν (τ(S(g(3)))∗†, f(3))τ(S(f(1)))∗†

× τ(S(g(2)))∗†f(4)g(5)ωid(τ(S(g(1)))∗†, f(5))

= f(2)(E )g(4)(E )rν(f(3), τ(g(3)))τ(S(f(1)))∗†τ(S(g(2)))∗†f(4)g(5)r(f(5), τ(S(g(1))))

= h(2)(E )τ(S(h(1)))∗†h(3).

Applying the counit to the ∗†-parts and bringing E to the other side, this reads

h = f(1)(E )g(3)(E )rν(f(2), τ(g(2)))(f(3)g(4)(E −1))f(4)g(5)r(f(5), τ(S(g(1)))).

But since

rν(f, g) = g(1)(E )r(f, τ(g(2)))g(3)(E −1),

we then have for X ∈ Uq(g) that

h(X) = f(1)(E )g(2)(E )r(f(2), g(3))(f(3)g(4)(E −1))(f(4)g(5)(X))r(f(5), τ(S(g(1))))

= (f ⊗ g,E R1E
−1
(1) X(1)R1′ ⊗ τ(S(R2′))E R2E

−1
(2) X(2))

= (f ⊗ g,E E −1
(2) R1X(1)R1′ ⊗ τ(S(R2′))E E −1

(1) R2X(2)).

It follows that h = f ∗ g. �
Now as the left coaction λν commutes with the comultiplication Δid

ν,id, viewed as a 
right coaction on Oν,id

q (GR), it follows that the latter descends to a right coaction of 
Oq(GR) = Oid

q (GR) on Oq(Gν\\GR). From the bijectivity of jν , we get that Oq(Zν)
inherits this coaction, given concretely via

δν : Oq(Zν) → Oq(Zν) ⊗Oq(GR) : Zπ �→ τ(Yπ)†13Zπ,12Yπ,13, (2.25)
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where we transport the matrices Zπ to Oq(Zν). This in particular descends to a coaction 
of Oq(U) as

ρν : Zπ �→ τ(Uπ)∗13Zπ,12Uπ,13, (2.26)

which we can also write as a twisted coadjoint coaction

ρν(f) = f(2) ⊗ S(τ(f(1)))f(3), f ∈ Oq(Zν). (2.27)

On the other hand, we can also descend to a coaction of Oq(BR) by

βν : Zπ �→ τ(T−
π )−1

13 Zπ,12T
+
π,13,

which through the natural Hopf ∗-algebra surjection ι : Oq(BR) → Uq(u)cop introduced 
in (2.8) descends to a left coaction

γν : Oq(Zν) → Uq(u) ⊗Oq(Zν). (2.28)

Since (id⊗ι)T+
π = (π ⊗ id)R and (id⊗ι)T−

π = (π ⊗ id)R−1
21 , we can write

(id⊗γν)Zπ = (π ⊗ id)(Rτ,21)Zπ,13(π ⊗ id)(R)12. (2.29)

Remark 2.29. The notation Zν refers to an isomorphic copy of the real spectrum of 
O(Gν\\GR). Classically, it corresponds to the real variety of Y ∈

∏
� End(V�) satisfying 

the identities

Y ⊗ Y = ΩεΔ(Y ), τ(Y )∗ = Y. (2.30)

We have

Gν\GR → Zν , Gνg �→ τ(g)∗E g.

When E is invertible, we can rewrite (2.30) as

E −1Y ⊗ E −1Y = Δ(E −1Y ),

so that we can naturally identify

Zν
∼= Hν := {g ∈ G | τ(g)∗ = E gE −1} ⊆ G ⊆

∏
�

End(V�), Y �→ E −1Y.

If moreover ν is of symmetric type, so that we can view ν as an involutive automorphism 
of G, we obtain that

Hν = {g ∈ G | ν(g)∗ = g}, (2.31)
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and the map Gν\GR → Zν
∼= Hν is in this case given by Gνg �→ ν(g)∗g, which is in 

general not surjective but has Zariski dense image.

2.4. Embedding of Oq(Zν) inside Oν,id
q (BR)

We want to relate now Oq(Zν) with Oν,id
q (BR). Recall the ∗-homomorphism P intro-

duced in (2.6).

Proposition 2.30. The natural ∗-homomorphism

Iν = P ◦ jν : Oq(Zν) → Oν,id
q (BR)

is injective.

Proof. Using the expression (2.24) for jν , we have

Iν(f) = f(2)(E )P−(τ(S(f(1))))P+(f(3)). (2.32)

Assume now that P(jν(f)) = 0. Using the natural vector space pairing of Uq(b−) ⊗
Uq(b+) with Oν,id

q (BR) ∼= Oq(B−) ⊗ Oq(B+), together with the stability of Uq(b−)
under τ ◦ S, we see that

f(XE Y ) = 0, ∀X ∈ Uq(b−), Y ∈ Uq(b+).

Now since

Y E = E νε(Y ), EX = νε(X)E , Y ∈ Uq(b+), X ∈ Uq(b−), (2.33)

it follows from Uq(g) = Uq(b+)Uq(b−) = Uq(b−)Uq(b+) that in fact

f(XE Y ) = 0, ∀X,Y ∈ Uq(g).

Since E is non-zero in each irreducible representation, it follows easily, using the Peter-
Weyl decomposition and the fact that the center of Uq(g) separates representations of 
Uq(g), that f = 0. �

The map Iν has an important equivariance property. Note first that the right Oq(U)-
coaction ρν endows Oq(Zν) with an infinitesimal left Uq(u)-module ∗-algebra structure

X � f = (id⊗(X,−))ρν(f), X � Z(ξ, η) = Z(S(τ(X(1)))∗ξ,X(2)η), (2.34)

where compatibility with the ∗-structure means that

(X � f)# = S(X)∗ � f#.



32 K. De Commer, M. Matassa / Advances in Mathematics 366 (2020) 107029
On the other hand, as Oν,id
q (BR) forms part of a connected cogroupoid, it is in particular 

a right Galois object for Oq(BR) = Oid
q (BR). We thus have on Oν,id

q (BR) the adjoint 
(or Miyashita-Ulbrich) action of Oq(BR) [83, Definition 2.1.8], which is a right Oq(BR)-
module ∗-algebra structure determined explicitly in our case by

X � Y = S(Y(1))XY(2), X ∈ Oν,id
q (BR), Y ∈ Oq(B) ∪ Oq(B−),

using the usual Hopf algebra structure of Oq(B±). Recall now again the Hopf ∗-algebra 
homomorphism ι = ιid : Oq(BR) → Uq(u)cop introduced in (2.8).

Proposition 2.31. The following equivariance property holds: for all f ∈ Oq(Zν) and 
g ∈ Oq(BR) we have

Iν(ι(S(g)) � f) = Iν(f) � g.

Proof. It is enough to verify this for g ∈ Oq(B), as both sides are module ∗-algebras and 
ιS = S−1ι. Fix now π, π′, and note that

(id⊗πι)T+
π′ = (π′ ⊗ π)R = Rπ′,π.

As ι flips the coproduct, it follows that

(id⊗ιS)(T+
π′)13 � Zπ,23 = (Rπ′,π◦τ ⊗ 1)(1 ⊗ Zπ)(R−1

π′,π ⊗ 1). (2.35)

On the other hand, as (id⊗Iν)Zπ = τ(T+,∗
π )(Eπ ⊗ 1)T+

π , we have by the fundamental 
interchange relation (2.7) and (1.12) that

((id⊗Iν)Zπ)23 � T+
π′,13 = (T+

π′)−1
13 τ(T−

π )−1
23 Eπ,2T

+
π,23T

+
π′,13

= (T+
π′)−1

13 τ(T−
π )−1

23 Eπ,2Rπ′,π,12T
+
π′,13T

+
π,23R

−1
π′,π,12

= (T+
π′)−1

13 (T−
π◦τ )−1

23 Rν,π′,π◦τ,12T
+
π′,13Eπ,2T

+
π,23R

−1
π′,π,12

= Rπ′,π◦τ,12(T−
π◦τ )−1

23 Eπ,2T
+
π,23R

−1
π′,π,12

= Rπ′,π◦τ,12((id⊗Iν)Zπ)23R−1
π′,π,12.

Comparing this with (2.35) finishes the proof. �
Remark 2.32. In the case ν = id this result is well-known, see e.g. [10, Theorem 3] and 
the references [10].

We want to characterize the image of Iν . Note first that from the proof of Proposi-
tion 2.30, we see that for ξ� a unit highest weight vector and X ∈ Uq(b−), Y ∈ Uq(b+)
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(Iν(Z�(ξ�, ξ�)), X ⊗ Y ) = 〈ξ�, τ(S(X))E�Y ξ�〉
= (L−

−�, Y )(L+
−τ(�), X)〈ξ�,E�ξ�〉

= (L+
−τ(�)L

−
−�, X ⊗ Y ).

As the above pairing of Oq(BR) with Uq(b−) ⊗Uq(b+) is non-degenerate, we deduce that

Iν(Z(ξ�, ξ�)) = L+
−τ(�)L

−
−�. (2.36)

Let us denote in the following

a� = Z(ξ�, ξ�). (2.37)

Lemma 2.33. We have the following relations

a�� = aτ(�), a�Z(ξ, η) = q((id+τ)�,wt(ξ)−wt(η))Z(ξ, η)a�.

Proof. The identity for a�� follows immediately upon applying the ∗-homomorphism Iν
and using (2.36). For the second identity, we have by Proposition 2.31 and (2.36) that

a�Z(ξ, η) = (K−(id +τ)� � Z(ξ, η))a� = q(�,(id+τ)wt(ξ)−(id +τ)wt(η))Z(ξ, η)a�. �
It follows from the above that we can consider the ∗-algebra

Oloc
q (Zν) = Oq(Zν)[a−1

� ]

obtained by localising the a�. We can extend 	 �→ a� to the whole of P by requiring 
the relations

aω+χ = q((id−τ)ω,χ)aωaχ, ω, χ ∈ P. (2.38)

The map Iν then extends to Oloc
q (Zν).

Proposition 2.34. The elements X+
r lie in the image of Oloc

q (Zν) under Iν . Moreover, as 
a ∗-algebra Oloc

q (Zν) is generated by the aω and the

xr = I−1
ν (X+

r ).

Proof. Since Iν(Oq(Zν)) is closed under the right action of Oq(BR), it follows by (2.36)
that the range of Iν contains

L+
−τ(�)L

−
−� � X+

r = (1 − q((id+τ)�,αr))L+
−τ(�)L

−
−�X+

r ,

and so X+
r ∈ Iν(Oloc

q (Zν)). Now by (2.34) and the definition (2.37) of the a�, we have 
that Oq(Zν) is generated as a left Uq(u)-module by the a�. It follows that Iν(Oq(Zν)) is 
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the smallest subspace containing the a� and stable under the � X+
r and � (X+

r )∗. As 
the latter operations can be implemented by left and right multiplication with the X+

r

and (X+
r )∗, it follows that Iν(Oloc

q (Zν)) is contained in the ∗-algebra generated by the 
aω and xr, and must hence coincide with it. �

It follows that we can present Oloc
q (Zν) directly by generators and relations: using 

(2.7), we see that it is generated by elements aω, xr, yr = x�
r, with a�� = aτ(�), such 

that the xr and yr satisfy the quantum Serre relations for the Dynkin diagram under 
consideration, and such that (2.38) holds together with a0 = 1 and

aωxr = q−((id+τ)ω,αr)xraω, aωyr = q((id+τ)ω,αr)yraω

xrys − q−(αr,αs)ysxr =
δr,τ(s)εsa−αs

− δr,s

qr − q−1
r

.

Remark 2.35. For ν = id, one can characterize the image of Iν(Oq(Zν)) into Uq(g) by 
means of ι as the locally finite part of Uq(g) with respect to the adjoint action [44]. 
The precise connection with the locally finite part of Oν,id

q (BR), or a quotient ∗-algebra 
thereof, becomes more muddy in the general case, particularly when τ �= id, but will not 
be needed in what follows.

Remark 2.36. The embedding Iν puts ‘spectral conditions’ on the ∗-algebra Oq(Zν) ∼=
Oq(Gν\\GR). For example if 	 = τ(	), then Iν(a�) = (L+

−�)∗L+
−� is a positive element. 

This might allow one to define Oq(Gν\GR) as the finer structure of Oq(Gν\\GR) together 
with such spectral conditions, putting a restriction on its ∗-representation theory. We 
will however not dive deeper into these matters here.

2.5. Characters of Oq(Zν)

Lemma 2.37. The unital ∗-characters of Oq(Zν) are in one-to-one correspondence with 
elements

K ∈ Uq(g) =
∏
�

End(V�)

such that ε(K ) = 1,

K ∗ = τ(K ) (2.39)

and

ΩεΔ(K ) = R−1(K ⊗ 1)Rτ (1 ⊗ K ). (2.40)

Proof. Using Definition 2.24 and the fact that Uq(g) is the linear dual of Oq(G), it follows 
that any linear functional of Oq(Zν) is given by a map
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Zπ �→ Kπ

for some K ∈ Uq(g). This map will then be unital if Kε = ε(K ) = 1, and from (2.15)
it will be ∗-preserving if and only if (2.39) holds. Finally, from (2.22) it follows that K
is a character if and only if

(f(1) ⊗ g(1),Ωε)(f(2)g(2),K ) = r(S(f(1)), g(1))(f(2),K )(g(3),K )r(f(3), τ(g(2))),

∀f, g ∈ Oq(G).

Regrouping, this becomes

(f ⊗ g,ΩεΔ(K )) = (f ⊗ g,R−1(K ⊗ 1)Rτ (1 ⊗ K )), ∀f, g ∈ Oq(G),

which is equivalent with (2.40). �
Note that in case E is invertible, (2.40) can be rewritten as

Δ(E −1K ) = R−1(E −1K ⊗ 1)Rν(1 ⊗ E −1K ). (2.41)

Another way of writing this is

Δ(E −1K ) = (1 ⊗ E −1K )Rν,21(E −1K ⊗ 1)R−1
21 , (2.42)

but it is not clear what the corresponding limit would be in the case of E not invertible. 
However, if (2.39) holds, we get using (2.18) that, upon applying ∗ to (2.40),

ΩεΔ(K ) = (1 ⊗ K )Rτ,21(K ⊗ 1)R−1
21 , (2.43)

so that in particular we have the τ -modified reflection equation

(1 ⊗ K )Rτ,21(K ⊗ 1)R−1
21 = R−1(K ⊗ 1)Rτ (1 ⊗ K ). (2.44)

Finally, note that the counitality assumption ε(K ) = 1 is automatic once K �= 0.

Definition 2.38. A non-zero element K ∈ Uq(g) satisfying (2.40) will be called a ν-
modified universal K-matrix. If also (2.39) holds, we call K ∗-compatible.

Theorem 2.39. There is a one-to-one correspondence between

(1) ∗-compatible ν-modified universal K-matrices K ∈ Uq(u),
(2) unital ∗-characters χ : Oq(Zν) → C,
(3) unital ∗-homomorphisms φ : Oq(Zν) → Oq(U) intertwining ρν with Δ,
(4) unital ∗-homomorphisms φ̂ : Oq(Zν) → Uq(u) intertwining γν with Δ,
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(5) unital ∗-homomorphisms Φ : Oq(Zν) → Oq(GR) intertwining δν with Δ.

The correspondence is determined by

χK (f) = f(K ), φχ(f) = (χ⊗ id)ρν(f),

φ̂χ(f) = (id⊗χ)γν(f), Φχ(f) = (χ⊗ id)δν(f).

Proof. The equivalence between the first two items is the content of Lemma 2.37.
If (L, Δ) is any Hopf ∗-algebra, and (A, α) a right L-comodule ∗-algebra, it is well-

known that there is a one-to-one correspondence between ∗-characters on A and ∗-algebra 
maps π : A → L intertwining α and Δ, given by the correspondence

f �→ πf = (f ⊗ id)α, π �→ fπ = ε ◦ π,

where ε is the counit of L; see e.g. [29] for a discussion. A similar correspondence holds 
for left coactions. This gives the correspondence between the last four items. �

Note that by (2.25) and (2.26), we have

(id⊗Φ)Z� = τ(Yπ)†12(π(K ) ⊗ 1)Yπ, (2.45)

(id⊗φ)Z� = τ(Uπ)∗12(π(K ) ⊗ 1)Uπ. (2.46)

In the following, we fix a unital ∗-character

χ : Oq(Zν) → C,

and we let K be the associated ∗-compatible ν-modified universal K-matrix. Then φ, φ̂
and Φ are the associated equivariant maps into respectively Oq(U), Uq(u) and Oq(GR). 
We write the images of φ, φ̂ and Φ respectively as

Oq(K\U) = φ(Oq(Zν)) ⊆ Oq(U),

U f
q(k′) = φ̂(Oq(Zν)) ⊆ Uq(u),

Oq(L\\GR) = Φ(Oq(Zν)) ⊆ Oq(GR).

Then Oq(K\U) and Oq(L\\GR) are right coideal ∗-subalgebras in their respective Hopf 
∗-algebras, while U f

q(k′) is a left coideal ∗-subalgebra in Uq(u), which (slightly deviating 
from [53]) we call a Noumi-Sugitani coideal subalgebra. We may view Oq(L\\GR) as the 
Drinfeld codouble of Oq(K\U) and U f

q(k′).

Remark 2.40. Interpreting K classically as an element in the spectrum of Zν , the groups 
L and K are its stabilizers under the respective actions of G and U on Zν . The symbol ‘f’ 
in U f

q(k′) should be seen as indicating that it corresponds to some ‘locally finite part’ of 
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a quantized enveloping coideal subalgebra. Finally, as we will justify in Proposition 2.44, 
k′ should be seen as a Lie subalgebra of the Lie algebra k of K, and will coincide with it 
in many cases of interest. In the setting of Poisson homogeneous spaces, L corresponds 
to the Lagrangian in the Drinfeld double G of U associated to the Poisson homogeneous 
space K\U [32].

Proposition 2.41. The ∗-homomorphism Φ : Oq(Zν) → Oq(L\\GR) is a ∗-isomorphism.

Proof. We claim that π(K ) �= 0 for all representations π. Indeed, assume that π�(K ) =
0 for some 	 ∈ P+. Then (2.40) and (2.18) imply that

(π� ⊗ id)Δ(K )(π� ⊗ id)Ωε = 0.

However, let ι be a non-zero Uq(u)-intertwiner C = V0 → V� ⊗ Vτ0(�). Then it follows 
that

(π� ⊗ πτ0(�))Δ(K )(π� ⊗ πτ0(�))Ωει = (π� ⊗ πτ0(�))Δ(K )ι = ε(K )ι = 0,

contradicting ε(K ) = 1.
Let now {ek} be an orthonormal basis of Vπ. Then by (2.45) the map Φ is given by

Zπ(ek, el) �→
∑
ij

π(K )ijτ(Yπ(ei, ek))†Yπ(ej , el). (2.47)

As the τ(Y (ei, ek))†Y (ej , el) are all linearly independent when π = π�, i, j, k, l vary, it 
follows that the kernel is trivial unless π(K ) = 0 for some π, which we have shown is 
impossible. �

Let us end by showing a duality relation between Oq(K\U) and U f
q(k′). We start 

with a general result, see [45] for similar results in the operator algebraic framework 
and [56,34] for the framework of algebraic quantum groups. In the following proposition, 
we will use again the unitary antipode R (1.1), acting by duality also on Oq(U) as an 
involutive Hopf ∗-algebra anti-automorphism.

Proposition 2.42. Let Ir/l be a right/left coideal ∗-subalgebra of Oq(U), and let Jl/r be a 
left/right coideal ∗-subalgebra of Uq(u). Then

Îr = {X ∈ Uq(u) | ∀f ∈ Ir : X(−f) = ε(f)X} ⊆ Uq(u),

Îl = {X ∈ Uq(u) | ∀f ∈ Il : X(f−) = ε(f)X} ⊆ Uq(u)

are respectively a left/right coideal ∗-subalgebra of Uq(u), while

Ĵl = {f ∈ Oq(U) | ∀X ∈ Jl : f(X−) = ε(X)f} ⊆ Oq(U),
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Ĵr = {f ∈ Oq(U) | ∀X ∈ Jr : f(−X) = ε(X)f} ⊆ Oq(U)

are respectively a right/left coideal ∗-subalgebra of Oq(U). Moreover,

(1) ˆ̂
Ir/l = Ir/l,

(2) ˆ̂
Jl/r is the weak closure of Jl/r,

(3) if Ir/l,1 ⊆ Ir/l,2, resp. Jl/r,1 ⊆ Jl/r,2, then Îr/l,1 ⊇ Îr/l,2, resp. Ĵl/r,1 ⊇ Ĵl/r,2.

Proof. By means of the unitary antipode R, we can switch between left and right coideal 
∗-subalgebras, in a way which is compatible with the above dualities. It is thus sufficient 
to show that the above proposition holds for a left coideal ∗-subalgebra I ⊆ Oq(U) and 
a right coideal ∗-subalgebra J ⊆ Uq(u). Moreover, item (3) is immediately clear from the 
definitions.

It is further clear that Î and Ĵ are respectively right and left coideals. To see that 
they are ∗-algebras, we consider the Heisenberg ∗-algebra H = Uq(u) ⊗Oq(U) consisting 
of Uq(u) and Oq(U) as ∗-subalgebras with the interchange relation

X · f = f(1) ·X(f(2)−).

Put

Ĩ = {X ∈ Uq(u) | ∀f ∈ I : X · f = f ·X}, J̃ = {f ∈ Oq(U) | ∀X ∈ J : X · f = f ·X}.
(2.48)

Then clearly Ĩ and J̃ are ∗-subalgebras. As Oq(U) and Uq(u) are independent within H, 
we have that

X ∈ Ĩ ⇔ ∀f ∈ I : f(1) ⊗X(f(2)−) = f ⊗X. (2.49)

Applying the counit to the first leg, we find Ĩ ⊆ Î. On the other hand, since I is a left 
coideal, it follows that (2.49) holds for all X ∈ Î, whence Ĩ = Î and Î a ∗-algebra. On 
the other hand,

f ∈ J̃ ⇔ ∀X ∈ J : f(1) ⊗X(f(2)−) = f ⊗X. (2.50)

Applying the counit to the second leg, we find J̃ ⊆ Ĵ , and the right coideal property of 
J ensures that X(−g) ∈ J for all g ∈ Oq(U), from which the equality J̃ = Ĵ follows. In 
particular Ĵ is a ∗-algebra.

Let us now prove item (2). It is clear that J ⊆ ˆ̂
J , and that ˆ̂

J is weakly closed. To 

see that ˆ̂
J equals the weak closure of J , note first that since J ⊆ Uq(u) ∼=

∏
� End(V�)

is a unital ∗-algebra, the weak closure J will be isomorphic to 
∏

π End(Wπ) for certain 
finite dimensional Hilbert spaces Wπ. Moreover, since ε is a non-trivial character on 
J , it corresponds to a particular one-dimensional W0. Let p be the projection on W0. 
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Considering p as an element of Uq(g), we have that pV� consists of vectors on which J

acts by the counit, and hence Ĵ is spanned by all U(ξ, pη). In turn, this implies that ˆ̂
J

consists of all X ∈ Uq(u) with

Δ(X)(p⊗ 1) = p⊗X. (2.51)

Let now X be an element satisfying (2.51). Applying the comultiplication to the first leg 
and multiplying the second leg to the left with S−1 of the third leg reveals that

(X ⊗ 1)Δ(p) = (1 ⊗ S−1(X))Δ(p). (2.52)

In particular, since p ∈ J and J a right coideal, we find that

X(id⊗f)(Δ(p)) ∈ J, ∀f ∈ Oq(U).

Since all Y ∈ J satisfy (2.52), we then obtain that also

XY (id⊗f)(Δ(p))Z ∈ J, ∀f ∈ Oq(U), Y, Z ∈ J.

In particular, let B be the weak closure of the algebra generated by the Y (id⊗f)(Δ(p))Z
where f ∈ Oq(U) and Y, Z ∈ J . Then B is a weakly closed, ∗-closed two-sided ideal in J , 
with

XB ⊆ J.

To finish the proof of (2), we need to show that B = J (and hence contains the unit). 
Suppose however this were not the case. Then as B is a weakly closed, ∗-closed two-sided 
ideal in J ∼=

∏
π End(Wπ), there would exist a finite dimensional representation V of 

Uq(u) and a non-zero vector ξ with Bξ = 0. This implies however Δ(p)(1 ⊗ ξ) = 0, and 
hence 0 = S(p(1))p(2)ξ = ε(p)ξ = ξ, a contradiction.

Finally, let us prove item (1). Again, the inclusion I ⊆ ˆ̂
I is immediate. As I is a left 

coideal, it is clear that I will be spanned by elements U�(ξ, η) where ξ ranges over V�

and where η ∈ W� for a certain subspace W� ⊆ V�. Let q� be the projection of V�

onto W�, and let q =
∏

q� ∈ Uq(u). Let p ∈ Î be the projection onto the orthogonal 
complement of the kernel projection of the restriction of ε to Î. Since I ⊆ ˆ̂

I, we have 

p ≤ q. If we can show that p ∈ Î, then also q ≤ p (since ε(p) = 1), and hence I = ˆ̂
I.

To see that p ∈ Î, we will first faithfully represent H on Oq(U). Consider on Oq(U)
the Haar state ϕ : Oq(U) → C, uniquely characterized by the conditions ϕ(1) = 1 and 
ϕ(U�(ξ, η)) = 0 for 	 �= 0. Then ϕ is faithful, and Oq(U) becomes a pre-Hilbert space 
for the inner product

〈f, g〉 = ϕ(f∗g).
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Concretely, we have

〈U�(ξ, η), U�′(ξ′, η′)〉 = δ�,�′
〈ξ′,K2ρξ〉〈η, η′〉
Tr(π�(K2ρ))

,

see e.g. [78, Theorem 1.4.3 and Proposition 2.4.10]. Consider the following representa-
tions:

π : Oq(U) → End(Oq(U)), π(f)g = fg,

π̂ : Uq(u) → End(Oq(U)), π̂(X)f = f(−X),

so in particular π̂(X)U(ξ, η) = U(ξ, Xη). Then we obtain in particular a ∗-representation

πH : H → End∗(Oq(U)), X �→ π̂(X), f �→ π(f),

where End∗(Oq(U)) denotes the ∗-algebra of adjointable endomorphisms. We claim that 
πH is faithful. To see this, consider also the ∗-representation

π̂′ : Uq(u) → End∗(Oq(U)), π̂′(X)f = f(S−1(X)−),

so that π̂′(X)U(ξ, η) = U(S−1(X)∗ξ, η). Then End∗(Oq(U)) has the right π̂′-adjoint 
Uq(u)-module ∗-algebra structure

y � X = π̂′(S(X(1)))yπ̂′(X(2)).

Let Endf
∗(Oq(U)) be the locally finite part of End∗(Oq(U)) with respect to �, i.e. the 

∗-algebra of elements which span a finite-dimensional subspace under �. Then we can 
consider the projection map

E : Endf
∗(Oq(U)) → Endf

∗(Oq(U))0

onto the �-trivial subspace. Since x ∈ End∗(Oq(U)) is �-trivial if and only if x commutes 
with all π̂′(X) for X ∈ Uq(u), and since the π(Y ) commute with the π̂′(X) for X ∈ Uq(u)
and Y ∈ Uq(u), it follows that in fact Endf

∗(Oq(U))0 = π̂(Uq(u)). On the other hand, an 
easy computation reveals

π(f) � X = π(f(X−)),

so in particular π(U(ξ, η)) � X = π(U(X∗ξ, η)). It follows that

E(π̂(X)π(f)) = ϕ(f)π̂(X), f ∈ Oq(U), X ∈ Uq(u),

which implies πH is faithful.
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We are now ready to show that p ∈ Î. Indeed, by the characterisation of Î in (2.48)
and the faithfulness of πH, it is sufficient to show that π̂(p)π(f) = π(f)π̂(p). However, 
this follows immediately from the fact that I is a ∗-algebra, for then we have

π(f)π̂(p)U(ξ, η) = fU(ξ, pη) = π̂(p)(fU(ξ, pη))

= π̂(p)π(f)π̂(p)U(ξ, η), ∀f ∈ I,∀ξ, η. �
Definition 2.43. We define

Û f
q(k′) = {f ∈ Oq(U) | ∀X ∈ U f

q(k′) : f(X−) = ε(X)f} ⊆ Oq(U),

Ôq(K\U) = {X ∈ Uq(u) | ∀f ∈ Oq(K\U) : X(−f) = ε(f)X} ⊆ Uq(u).

It follows from Proposition 2.42 that Û f
q(k′) is a right coideal ∗-subalgebra in Oq(U), 

while Ôq(K\U) is a left coideal ∗-subalgebra in Uq(u) in the sense that

(f ⊗ id)Δ(X) ∈ Ôq(K\U), X ∈ Ôq(K\U), f ∈ Oq(U). (2.53)

Moreover, if we denote by Uq(k′) the weak closure of U f
q(k′), we also have

̂̂
Uq

f(k′) = Uq(k′),
̂̂Oq(K\U) = Oq(K\U).

Part of the following proposition can be found (in the untwisted case) in [53, Corol-
lary 4.5].

Proposition 2.44. We have

Oq(K\U) ⊆ Û f
q(k′), U f

q(k′) ⊆ Ôq(K\U).

Furthermore,

Ôq(K\U) = {X ∈ Uq(u) | (1 ⊗ K )Δ(X) = (id⊗τ)(Δ(X))(1 ⊗ K )}. (2.54)

Proof. From (2.27), we have that

φ(f)(Y ) = f(S(τ(Y(1)))K Y(2)), (2.55)

hence X ∈ Ôq(K\U) if and only if

X(1) ⊗ S(τ(X(2)))K X(3) = X ⊗ K ,

which is equivalent to

(1 ⊗ K )Δ(X) = (id⊗τ)(Δ(X))(1 ⊗ K ),
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proving (2.54).
On the other hand, by (2.29) we see that

φ̂(f) = (f ⊗ id)(Rτ,21(K ⊗ 1)R), f ∈ Oq(Zν). (2.56)

We then compute, using that R∗R commutes with Δ(X) for X ∈ Uq(u) and with Ωε, 
that

(1 ⊗ 1 ⊗ K )(id⊗Δ)(Rτ,21(K ⊗ 1)R) = K3Rτ,21Rτ,31K1R13R12

= Rτ,21K3Rτ,31K1R13R12

= Rτ,21(K3Rτ,31K1R
−1
31 )(R∗R)13R12

=
(2.40)

Rτ,21Ωε,13Δ(K)13(R∗R)13R12

= Rτ,21(R∗R)13Ωε,13Δ(K)13R12

=
(2.43)

Rτ,21(R∗R)13(R−1
13 K1Rτ,13K3)R12

= Rτ,21R31K1Rτ,13K3R12

= Rτ,21R31K1Rτ,13R12K3

= (id⊗(id⊗τ)Δ)(Rτ,21(K ⊗ 1)R)(1 ⊗ 1 ⊗ K ).

From (2.54), it now follows that φ̂(f) ∈ Ôq(K\U) for all f ∈ Oq(Zν), i.e. U f
q(k′) ⊆

Ôq(K\U).
We then have also Oq(K\U) = ̂̂Oq(K\U) ⊆ Û f

q(k′). �
Remark 2.45. It is possible that the equality Oq(K\U) = Û f

q(k′) holds in full generality, 
but we were not able to prove this. Conditions for equality of these algebras were already 
asked for in the non-modified case in [53, Remark 4.6]. We will however verify this 
property directly in many cases, sometimes by quite ad hoc computations.

In the next sections, we will construct ∗-compatible ν-modified universal K-matrices 
in the case where ν is either of flag type or of symmetric type.

3. Quantum flag varieties

In this section, we will examine in more detail the case where ν = (id, ε) ∈ End∗(Uq(b))
is of flag type, so εr ∈ {0, 1} for all r. We resume notation from Section 1 and Section 2.
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3.1. Construction of a ∗-compatible ν-modified universal K-matrix

Let S0 = {r | εr = 1}, and let S = {τ0(r) | r ∈ S0}, where we recall that τ0
is the Dynkin diagram automorphism defined by the longest word w0 of W , that is 
τ0(ω) = −w0(ω) for ω ∈ P .

Definition 3.1. We define K ∈ Uq(u) by

K ξ := ε�−w0(wt(ξ))ξ, ξ ∈ V�.

Note that this is meaningful: if ξ is a non-zero weight vector at ω, then Tw0ξ is a 
non-zero weight vector at w0ω, hence w0ω = 	 − α for some α ∈ Q+.

We will in the following also write ν0 := τ0 ◦ ν ◦ τ0 ∈ End∗(Uq(b)). Explicitly we have

ν0(Kω) = Kω, ν0(Er) = ετ0(r)Er, ν0(Fr) = ετ0(r)Fr.

Observe that ν0(Er) = Er for r ∈ S and ν0(Er) = 0 for r /∈ S. Similarly for Fr.
We denote by Q+

S the positive span of the simple roots αr with r ∈ S.

Lemma 3.2. Let X ∈ Uq(b) and Y ∈ Uq(b−). Then

K X = ν0(X)K , Y K = K ν0(Y ).

Moreover, if X ∈ Uq(b)α and Y ∈ Uq(b−)−β for α, β ∈ Q+
S then K X = XK and 

K Y = Y K .

Proof. Let ξ be of weight ω. First we compute

K Erξ = ε�−w0(ω+αr)Erξ = ετ0(r)Erε�−w0(ω)ξ = ν0(Er)K ξ.

Next we compute

FrK ξ = ε�−w0(ω)Frξ = ε�−w0(ω−αr)ετ0(r)Frξ = K ν0(Fr)ξ.

The final statement in the lemma follows immediately from the fact that ετ0(r) = 1 for 
r ∈ S. �
Lemma 3.3. We have ΩεΔ(K ) = K ⊗ K .

Proof. Given V� ⊆ V�′ ⊗ V�′′ we have Ωε|V�
= ε�′+�′′−�. For ξ ∈ V� of weight ω we 

get

ΩεΔ(K )ξ = ε�′+�′′−�ε�−w0(ω)ξ = ε�′+�′′−w0(ω)ξ.
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Now consider ξ′ ⊗ ξ′′ ∈ V�′ ⊗ V�′′ with wt(ξ′) = ω′ and wt(ξ′′) = ω′′. Then we have

K ξ′ ⊗ K ξ′′ = ε�′−w0(ω′)ξ
′ ⊗ ε�′′−w0(ω′′)ξ

′′ = ε�′+�′′−w0(ω′+ω′′)ξ
′ ⊗ ξ′′.

From this we conclude that (K ⊗K )ξ = ε�′+�′′−w0(ω)ξ. Comparing the two expressions 
we obtain the equality ΩεΔ(K ) = K ⊗ K . �
Theorem 3.4. The element K is a ∗-compatible ν-modified universal K-matrix.

Proof. Since R ∈ Uq(b+)⊗̂Uq(b−), we obtain by Lemma 3.2

(1 ⊗ K )R21(K ⊗ 1)R−1
21 = Rν0,21(K ⊗ K )R−1

21 = Rν0,21(K ⊗ 1)R−1
ν0,21(1 ⊗ K ).

We have ν0(Fr) = 0 for r /∈ S, hence the first leg of the element Rν0,21 only contains 
expressions in the generators Fr with r ∈ S, and similarly for its inverse. Then again by 
Lemma 3.2 we have (K ⊗ 1)R−1

ν0,21 = R−1
ν0,21(K ⊗ 1) and we get

(1 ⊗ K )R21(K ⊗ 1)R−1
21 = Rν0,21R

−1
ν0,21(K ⊗ K ) = K ⊗ K .

Since ΩεΔ(K ) = K ⊗ K by the previous lemma, we see that K is a ν-modified 
universal K-matrix. The ∗-compatibility is immediate, since K ∗ = K . �
3.2. Comparison of the coideal subalgebras U f

q(k′) and Uq(kS)

Fix S, S0 as in the previous section. Recall the notations introduced following The-
orem 2.39, using the ∗-compatible ν-modified universal K-matrix K constructed in 
Definition 3.1. Let further kS be the compact form of the Levi factor of the parabolic 
subalgebra associated to S, so that the complexification kCS ⊆ g is generated by h and 
the er, fr with r ∈ S. Let Uq(kS) ⊆ Uq(u) be the quantized enveloping ∗-algebra of kS, 
generated by the Kω for ω ∈ P and the Er, Fr for r ∈ S, and let Uq(kS) be its weak 
completion. Finally, let Oq(KS\U) = Ûq(kS) be the dual right coideal ∗-subalgebra of 
Oq(U).

We denote by WS ⊆ W the subgroup generated by the sr with r ∈ S, and wS,0
the longest element in WS with respect to the natural word length on WS . We let 
wS = wS,0w0.

Theorem 3.5. The equality Uq(k′) = Uq(kS) holds.

Proof. We recall from (2.56) that

φ̂(f) = (f ⊗ id)(R21(K ⊗ 1)R).

Since by Lemma 3.2
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R21(K ⊗ 1) = (K ⊗ 1)Rν0,21, (K ⊗ 1)R = Rν0(K ⊗ 1),

we obtain from the fact that K is a self-adjoint projection that

φ̂(Z(ξ, η)) = (U(K ξ,K η) ⊗ id)(Rν0,21Rν0).

This shows that Uf
q (k′) ⊆ Uq(kS), and hence Uq(k′) ⊆ Uq(kS).

On the other hand, let ηw0� ∈ V� be a lowest weight vector for Uq(u). Then 
Uq(kS)ηw0� is an irreducible Uq(kS)-module of highest weight wS(	) = wS,0w0(	). 
Then with ξwS(�) a corresponding highest weight vector of unit norm, we find

φ̂(Z(ξwS(�), ξwS(�))) = (U(K ξwS(�),K ξwS(�)) ⊗ id)(Rν0,21Rν0).

Now

K ξwS(�) = ε�−w0wS(�)ξwS(�) = ε�−wS,0(�)ξwS(�) = ξwS(�),

since 	 − wS,0(	) ∈ Q+
S . It follows that

φ̂(Z(ξwS(�), ξwS(�))) = (U(ξwS(�), ξwS(�)) ⊗ id)(Rν0,21Rν0)

= (U(ξwS(�), ξwS(�)) ⊗ id)(Q2)

= K−2wS(�).

Similarly, since FrξwS(�) still lies in the range of K for r ∈ S, it follows that

φ̂(Z(ξwS(�), FrξwS(�))) = (U(ξwS(�), FrξwS(�)) ⊗ id)(Rν0,21Rν0)

will be a scalar multiple of Kαr−2wS(�)Fr. Since Uq(k′) can be identified with the bicom-
mutant of the ∗-algebra U f

q(k′), it now follows immediately that Uq(k′) = Uq(kS). �
3.3. Comparison of the coideal subalgebras Oq(K\U) and Oq(KS\U)

Fix again the setting as in the previous subsection. We then also have the following 
dual result.

Theorem 3.6. The equality Oq(K\U) = Oq(KS\U) holds.

Proof. We already know by Proposition 2.44 and Theorem 3.5 that Oq(K\U) ⊆
Oq(KS\U). On the other hand, consider the elements a� = Z(ξ�, ξ�) introduced in 
(2.37). Then

φ(a�) =
∑

U�(ei, ξ�)∗U�(K ei, ξ�),

i
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for ei an orthonormal basis of V�. However, choosing the ei to be eigenvectors of K , 
the non-zero K ei then form an orthonormal basis of the Uq(kS)-module spanned by 
the Uq(u)-lowest weight vector ηw0� in V�. Following the reasoning as in [16, Propo-
sition 2.3], we see that the φ(a�) generate Oq(KS\U) as a Uq(u)-module. Since φ is 
Uq(u)-equivariant, we must have Oq(K\U) = Oq(KS\U). �
4. Quantum symmetric spaces

In this section we fix a semisimple Lie algebra g with Dynkin diagram Γ and underlying 
set I, and use again notation as in Section 1 and Section 2. We will further write a ⊆ g

for the real span of the hr, and T = eia ⊆ U for the maximal torus of U associated to h.

4.1. Involutions in Satake form

We recall some preliminaries on involutions of g in maximally split form. We follow 
mainly the exposition in [51, Section 2].

For X ⊆ I, we write gX for the semisimple Lie algebra generated by the {er, fr, hr |
r ∈ X}, and we write ΔX ⊆ Δ for the associated root system. We denote by QX ⊆ Q the 
root lattice spanned by ΔX , equipped with the restriction of the bilinear form (−, −). 
We write WX ⊆ W for the Weyl group of gX , and wX for the longest element in WX . 
We further write

ρ∨X = 1
2

∑
α∈Δ+

X

α∨ ∈ P.

Definition 4.1. We call concrete Satake diagram1 on the Dynkin diagram Γ the datum 
of a subset X ⊆ I and a Dynkin diagram involution τ of I such that the following two 
conditions are satisfied:

• τ preserves X and coincides on it with the action of −wX ,
• (αr, ρ∨X) ∈ Z for all r ∈ I \X with τ(r) = r.

We call enhanced Satake diagram a concrete Satake diagram that is also equipped 
with a function

z : I → {±1}

such that

zr = 1 when (αr, ρ
∨
X) ∈ Z, zrzτ(r) = −1 when (αr, ρ

∨
X) /∈ Z.

1 In what follows, we will exclude the trivial Satake diagram X = I and τ = id.



K. De Commer, M. Matassa / Advances in Mathematics 366 (2020) 107029 47
Table 1
Concrete Satake diagrams for so∗(4p).

1 2 3 2p − 2
2p − 1

2p

1 2 3 2p − 2
2p − 1

2p

Note that such a z always exists, since (αr, ρ∨X) /∈ Z implies τ(r) �= r. Moreover, 
zr = 1 for r ∈ X as then (αr, ρ∨X) = 1. A function z as above satisfies in particular

zrzτ(r)(−1)(αr,2ρ∨
X) = 1, ∀r ∈ I. (4.1)

By direct diagram checking, one verifies that the resulting Satake diagrams correspond 
to the (unions of) Satake diagrams as in [1], from which we also borrow the nomenclature, 
together with the diagrams consisting of two copies of the same Dynkin diagram and the 
involution interchanging the two copies. Note however that as we are fixing the Dynkin 
diagram beforehand, we also need to treat as separate the Satake diagrams obtained by 
applying Dynkin diagram automorphisms. This means:

(1) In the non-simple case, the ordering of the different components is taken into account.
(2) In the DIII-case u∗2p(H) = so∗(4p) we include also the Satake diagram with the 

coloring of the fork endpoints interchanged, see Table 1.
(3) In the D-cases so(1, 7), so(2, 6) and so(3, 5) we include the Satake diagrams obtained 

by rotation, see Table 2. Note that one of these establishes the isomorphism so(2, 6) ∼=
so∗(8).

When we do not care about the connection with the underlying Dynkin diagram, we 
will talk of an abstract Satake diagram. More precisely, let us call concrete Satake dia-
grams on respective Dynkin diagrams Γ, Γ′ equivalent if one is carried to the other by 
an isomorphism of Dynkin diagrams. Then we refer to abstract Satake diagram as an 
equivalence class under this relation.

Recall that τ0 is the Dynkin diagram automorphism induced by −w0.

Lemma 4.2. Let (X, τ, z) be an enhanced Satake diagram. Then

• τ0(X) = τ(X) = X,
• ττ0 = τ0τ ,
• z is ττ0-invariant,
• z is wX-invariant.

Proof. For the first three properties we refer to [6, Remark 7.2]. Note here that τ0
commutes in fact with any Dynkin diagram automorphism, as τ0 is trivial in the only case 
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Table 2
Concrete Satake diagrams for so(p, 8 − p) with 1 ≤ p ≤ 3.

so(1, 7) (DII) 1 2
3

4

1 2
3

4

1 2
3

4

so(2, 6) (DI) 1 2
3

4

1 2
3

4

1 2
3

4

so(3, 5) (DI) 1 2
3

4

1 2
3

4
1 2

3

4

(namely D4) where there is more than one non-trivial Dynkin diagram automorphism. 
The last property follows from the fact that zr = 1 for r ∈ X. �

Fix now an enhanced Satake diagram (X, τ, z). One constructs explicitly an involution 
θ = θ(X, τ, z) of g as follows.

Extend first again τ to an automorphism of g by

τ(er) = eτ(r), τ(fr) = fτ(r), τ(hr) = hτ(r).

Let ω be the Chevalley involution of g, which is the complex Lie algebra automorphism 
determined by

ω(er) = −fr, ω(fr) = −er, ω(h) = −h.

Let

mr = exp(er) exp(−fr) exp(er) ∈ U (4.2)

and identify sr = Ad(mr)|h ∈ W . Let

w0 = sr1 . . . srN , wX = sr′1 . . . sr′M (4.3)

be reduced expressions for the longest elements in respectively W and WX , and write 
the corresponding elements in U as

m0 = mr1 . . .mrN ∈ U, mX = mr′1 . . .mr′M
∈ U.

We note that m0, mX are independent of the chosen reduced expressions.
Finally, note that z may be extended uniquely to a unitary character on Q. The 

following lemma ensures that z can be extended to a character on the weight lattice, 
i.e. an element of T , such that some of the symmetry properties of z are preserved.
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Lemma 4.3. Let (X, τ, z) be an enhanced Satake diagram. Then we can pick χ0 ∈ a with 
ττ0(χ0) = χ0 and such that z̃ = e2πiχ0 ∈ T is an extension of z.

Proof. For X = ∅ or τ = id we have z = 1, and we can hence take χ0 = 0. On the other 
hand, if ττ0 = id the existence of χ0 follows from T = exp(ia). We may thus assume 
that g is simple with X �= ∅, τ �= id and ττ0 �= id. By direct diagram checking (see again 
also [6, Remark 7.2]) it can be verified however that this can only happen for g of type 
Dl for l even and gθ ∼= so(p, 2l − p) for p odd, for which the Satake diagram is given by

1 p p + 1
�− 1

�

(where contrary to custom we indicated also the action of τ on X for clarity). It is clear 
that then (αr, ρ∨X) ∈ Z for all r ∈ I, except possibly for r = p. However, using e.g. [82, 
Reference Chapter, Section 2, Table 1], we find that also (αp, ρ∨X) = l−p −1 ∈ Z. Hence 
z = 1, so we can take χ0 = 0 in this case. �

In the following, we will fix χ0 and z̃ as above.

Definition 4.4. Let (X, τ, z) be an enhanced Satake diagram for Γ. We define

θ = θ(X, τ, z) = Ad(z̃) ◦ τ ◦ ω ◦ Ad(mX) ∈ Aut(g), (4.4)

and call it the Satake involution of g associated to (X, τ, z).

Remark 4.5. Note that the Satake involution indeed only depends on (X, τ, z). More-
over, it is easy to see that θ depends only on (X, τ) up to inner conjugacy, with (X, τ)
corresponding to a unique inner conjugacy class, see Theorem B.1.

Remark 4.6. It is not hard to check that θ is indeed an involution, and that θ commutes 
with ∗. In particular, θ restricts to a Lie algebra involution of u. Associated to θ we then 
have the real Lie algebra

gθ = {X ∈ g | θ(X)∗ = −X},

and all real semisimple Lie algebras arise in this way, their isomorphism class uniquely 
determined by the associated abstract Satake diagram.

Note (for example by [8, Lemme 4.9]) that one can write ω = τ0 ◦Ad(m0) = Ad(m0) ◦
τ0, from which it follows that we can also write the Satake involution as

θ = Ad(z̃) ◦ τ ◦ τ0 ◦ Ad(m0) ◦ Ad(mX). (4.5)
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Let us write Θ for the dual of the restriction of θ to h. From the Definition of θ and 
Lemma 4.2, we immediately obtain the following.

Lemma 4.7 ([51, Equation (2.10)]). We have Θ(α) = −wXτ(α), and Θ commutes with 
τ0 and τ .

4.2. Construction of a ∗-compatible ν-modified universal K-matrix

Let (X, τ, z) be an enhanced Satake diagram for Γ, and let θ = θ(X, τ, z) be the 
associated Satake involution. Fix an extension to the weight lattice

z̃ = e2πiχ0 ∈ T

with χ0 ∈ a a ττ0-invariant element as in Lemma 4.3. We then put

z̃τ = z̃ ◦ τ = τ(z̃). (4.6)

Let us write

ρ = 1
2

∑
α∈Δ+

α, ρX = 1
2

∑
α∈Δ+

X

α,

and let

cr = q
1
2 (αr,Θ(αr)−2ρX), r ∈ I,

where we note that cr = 1 for r ∈ X.
Write

TwX
= Tr′1 . . . Tr′M

∈ Uq(g)

for the Lusztig braid operator associated to wX .

Lemma 4.8. The Lusztig braid operators Tw0 and TwX
commute.

Proof. This follows from Lemma 1.8, Lemma 4.2 and the fact that TwX
is independent 

of the chosen reduced expression for wX . �
The following algebras were introduced by Letzter [57]. We follow the conventions of 

[51,6].

Definition 4.9. We define U ′
q(gX) as the subalgebra of Uq(g) generated by the Kr, Er, Fr

for r ∈ X. We define Uq(hΘ) as the subalgebra of Uq(h) generated by the elements Kω
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with Θ(ω) = ω. We define B ⊆ Uq(g) as the subalgebra of Uq(g) generated by U ′
q(gX)

and Uq(hΘ) together with the elements

Br = Fr + crXrK
−1
r , r ∈ I \X,

where

Xr = −zτ(r) Ad(TwX
)(Eτ(r)).

One then has that B is a right coideal subalgebra,

Δ(B) ⊆ B ⊗ Uq(g).

Remark 4.10. In [51, Definition 4.3] a specific function z = s(X, τ) is used which does 
not satisfy our requirements as it takes values in {±1, ±i} in general. However, one can 
also use the current conventions for z throughout the theory, see [6, Remark 5.2].

Remark 4.11. In general B depends more freely on the parameter c, and can have an 
additional parameter s. The specific choice for c is needed to apply the results of [6], 
while the choice s = 0 simplifies some of the constructions.

Remark 4.12. By Lemma 4.2 both z and c are ττ0-invariant, from which it follows that

ττ0(Br) = Bττ0(r).

In particular, B is ττ0-invariant.

In the following, we also write c for the unique character

c : P → R>0, cαr
= cr.

We then write γ for the C×-valued character on P given by

γ(ω) = z̃τ (ω)c(ω), ω ∈ P.

We further write2 ξ ∈ Uq(h) for the unique element such that for ω ∈ P

ξ(ω) = γ(ω)q−(ω+,ω+)+
∑

r∈I(α−
r ,α−

r )(ω,�∨
r ), (4.7)

where 	∨
r = 2�r

(αr,αr) are the fundamental coweights determined by (	∨
r , αs) = δrs and 

where

2 We follow the notation in [6], even though we also use ξ for an arbitrary vector in a Hilbert space. This 
should however not lead to any confusion, as the rôles of the two different uses are quite different.
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ω± = 1
2(ω ± Θ(ω)). (4.8)

We now want to introduce the quasi-K-matrix as constructed in [6, Theorem 6.10]. 
This construction is however performed in the formal setting. To be able to transfer the 
arguments, let us briefly make a digression into the formal setting.

Let Uq(g) be defined as in Definition 1.2, except that we consider it over the field 
C(q1/N ) with q replaced by the formal variable q. Here N can be taken for example to 
be the determinant of the Cartan matrix for g, so that we can make sense of the variables 
qr. We can also make sense of the coideal subalgebra B ⊆ Uq(g) in this setting. Note 
that in the definition of the Br one treats zr as a complex scalar, but the q in cr as a 
formal parameter.

Define then the bar involution as the unique C-algebra automorphism of Uq(g)
satisfying

f(q) = f(q−1), Er = Er, Fr = Fr, Kω = K−1
ω , f ∈ C(q).

Proposition 4.13. For r ∈ I \X we have

Br = Fr − (−1)(2ρ
∨
X ,ατ(r))q−(2ρX ,ατ(r))c−1

r zτ(r) Ad(T−1
wX

)(Eτ(r))Kr ∈ Uq(g). (4.9)

Proof. First of all we have

Br = Fr + crXrKr.

Since zτ(r) ∈ C, we have zτ(r) = zτ(r). On the other hand, we have in the notation of 
[67, 37.1] that Ad(Tr) = T ′′

r,1 and Ad(T−1
r ) = T ′

r,−1, with

T ′′
r,±1(X) = T ′′

r,∓1(X), T ′
r,±1(X) = T ′

r,∓1(X), X ∈ Uq(g).

Hence we have

Xr = −zτ(r)Ad(TwX
)(Eτ(r)) = −zτ(r)T

′′
wX ,−1(Eτ(r)).

In the proof of [5, Lemma 2.9] it is shown that

T ′′
wX ,−1(Er) = (−1)(2ρ

∨
X ,αr)q−(2ρX ,αr)T ′

wX ,−1(Er).

Using this we get

Xr = −(−1)(2ρ
∨
X ,ατ(r))q−(2ρX ,ατ(r))zτ(r) Ad(T−1

wX
)(Eτ(r)).

Plugging this into Br and using cr = c−1
r shows (4.9). �
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The value of Br in (4.9) now of course makes sense also in the non-formal setting, 
independently of its construction through the bar involution. We formalize this in the 
next definition.

Definition 4.14. For r ∈ I \X we define

Br = Fr − (−1)(2ρ
∨
X ,ατ(r))q−(2ρX ,ατ(r))c−1

r zτ(r) Ad(T−1
wX

)(Eτ(r))Kr ∈ Uq(g). (4.10)

Theorem 4.15. There exists a unique X =
∑

α∈Q+ Xα ∈ Uq(n) with Xα ∈ Uq(n)α, with 
X0 = 1 and

BrX = XBr, FsX = XFs, r ∈ I \X, s ∈ X.

Proof. Using the concrete formula (4.10), we see that the equivalence (2) ⇔ (3) of [6, 
Proposition 6.1] still holds in the non-formal setting. The uniqueness of X then follows as 
at the end of [6, Proposition 6.3], which is again still valid in the non-formal setting. For 
the existence one notes that the proof of [6, Theorem 6.10] can be followed ad verbatim 
for q > 0 and distinct from 1. �
Corollary 4.16. The quasi-K-matrix X satisfies ττ0(X) = X. Similarly, ττ0(K) = K.

Proof. As in Remark 4.12, we have ττ0(Br) = Bττ0(r) for r ∈ I \ X. The equality 
ττ0(X) = X then follows immediately from the uniqueness in Theorem 4.15. The ττ0-
invariance of K then follows immediately from its definition, Lemma 4.2 and the ττ0-
invariance of c and z̃. �
Theorem 4.17 ([6, Corollary 7.7 and Theorem 9.5]). The element

K = XξT−1
wX

T−1
w0

∈ Uq(g) (4.11)

satisfies

Δ(K) = (K ⊗ 1)Rττ0,21(1 ⊗K)R = R21(1 ⊗K)Rττ0(K ⊗ 1). (4.12)

Moreover, for all X ∈ B

KX = ττ0(X)K. (4.13)

Remark 4.18. Note that when comparing conventions, the element R̂ in [6, Theorem 9.5]
coincides with our Σ ◦ R, where Σ is the flip map.

In the following, we will modify K so that it becomes a ∗-compatible ν-modified 
universal K-matrix for a particular ν. We will need some preliminary results concerning 
the behaviour of X under the ∗-operation.
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Our first goal will be to show the identities

X∗ = Ad(Tw0)(τ0(X)), Ad(z̃)(X) = τ(X),

see Theorem 4.22. We use here the notation Ad(t)(X) = tXt−1 for t a grouplike in Uq(h)
and X ∈ Uq(g).

Let S0 be as in (1.16), and let similarly

SX = e2πiρ∨
X ∈ T. (4.14)

Let us further denote

S = eπiρ
∨ ∈ T,

so that S2 = S0. Note that since (ρ∨, αr) = 1 for all r ∈ I, we have

Ad(S)(Er) = −Er, Ad(S)(Fr) = −Fr, Ad(S)(Kω) = Kω.

Lemma 4.19. The identity ST−1
wX

= T−1
wX

SS−1
X holds.

Proof. We have

ST−1
r ξ = eπi(ρ

∨,wt(ξ)−(wt(ξ),α∨
r )αr)T−1

r ξ = e−πi(wt(ξ),α∨
r )T−1

r Sξ.

Hence

ST−1
wX

ξ = e−2πi(wt(ξ),ρ∨
X)T−1

wX
Sξ = T−1

wX
SS−1

X ξ. �
Let further σ : Uq(g) → Uq(g) be the unique algebra anti-isomorphism such that

σ(Er) = Er, σ(Fr) = Fr, σ(Kω) = K−1
ω .

Note that by [42, 8.(10)], one has

σ(Ad(Tr)(X)) = Ad(T−1
r )(σ(X)), X ∈ Uq(g).

Lemma 4.20. For r ∈ I\X we have

(1) Ad(S)(σ(Br)) = −Br,
(2) Ad(z̃)(τ(Br)) = zτ(r)Bτ(r),
(3) Ad(z̃)(τ(Br)) = zτ(r)Bτ(r).
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Proof. Let us first prove (1). We have

Ad(S)(σ(Br)) = −Fr + crKr Ad(S)(σ(Xr)).

Since Xr ∈ Uq(g)−Θ(αr), the same is true for Ad(S)(σ(Xr)). Therefore we can write

Ad(S)(σ(Br)) = −Fr + q−(αr,Θ(αr))cr Ad(S)(σ(Xr))Kr.

Now from the identity σ ◦Ad(Tr) = Ad(T−1
r ) ◦σ we obtain σ ◦Ad(TwX

) = Ad(T−1
wX

) ◦σ. 
Since by Lemma 4.19 we have

Ad(S) Ad(T−1
wX

)(Eτ(r)) = −(−1)(2ρ
∨
X ,ατ(r)) Ad(T−1

wX
)(Eτ(r)),

we get

Ad(S)(σ(Xr)) = (−1)(2ρ
∨
X ,ατ(r))zτ(r) Ad(T−1

wX
)(Eτ(r)).

Plugging this into Ad(S)(σ(Br)) and observing that

q−(αr,Θ(αr))cr = q−
1
2 (αr,Θ(αr)+2ρX) = q−(2ρX ,ατ(r))c−1

r

gives the result.
Let us now prove (2). Using that τ(Xr) ∈ Uq(n)wXαr

, z2
r = 1, z̃(wX(αr)) = zr and 

cτ(r) = cr, we find

Ad(z̃)(τ(Br)) = zτ(r)Fτ(r) + z̃(wXαr)zrzτ(r)crXτ(r)K
−1
τ(r) = zτ(r)Bτ(r).

The proof of (3) follows similarly. �
Proposition 4.21. We have Ad(S)(σ(X)) = X.

Proof. We can write

Ad(S)(σ(X)) =
∑

α∈Q+

Ad(S)(σ(Xα))

with Ad(S)(σ(X0)) = 1 and Ad(S)(σ(Xα)) ∈ Uq(n)α.
Now since X commutes with Fr for r ∈ X, we also have that Ad(S)(σ(X)) commutes 

with Fr. On the other hand, applying Ad(S) ◦ σ to BrX = XBr with r ∈ I\X, we get

Ad(S)(σ(X)) Ad(S)(σ(Br)) = Ad(S)(σ(Br)) Ad(S)(σ(X)).

But we have Ad(S)(σ(Br)) = −Br from Lemma 4.20, which is also equivalent to Br =
− Ad(S)(σ(Br)). Using these we get
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Ad(S)(σ(X))Br = Br Ad(S)(σ(X)).

By Theorem 4.15 we conclude Ad(S)(σ(X)) = X. �
Let now

cc : Uq(g) → Uq(g)

be the unique antilinear algebra homomorphism which is the identity on Er, Fr, Kω. 
Then we have the identities

Ad(Tw0) = ∗ ◦ cc ◦ Ad(S) ◦ σ ◦ τ0, Ad(T−1
w0

) = τ0 ◦ σ ◦ Ad(S) ◦ cc ◦ ∗, (4.15)

where the first identity follows from (1.17) and where the second expression follows from 
the first, since all the various maps are involutions. Note further that the maps Ad(S), 
τ0, σ and cc all commute among themselves.

Theorem 4.22. We have X∗ = Ad(Tw0)(τ0(X)).

Proof. We clearly have cc(X) = X by the defining property in Theorem 4.15, using that 
z is real-valued and hence the Br and Br are invariant under cc. The result then follows 
from (4.15) and Proposition 4.21. �

We now perform various small changes to B, first to make it ∗-invariant and then to 
make it rather a left coideal. Define

ω0 = −1
2(ρ− ρX). (4.16)

Using the obvious notation Kω0 ∈ Uq(h), let us write

B̃ = Ad(Kω0)(B), X̃ = Ad(Kω0)(X), K̃ = Ad(Kω0)(K).

Clearly B̃ is again a right coideal subalgebra. Note that B̃ is generated by U ′
q(gX), 

Uq(hΘ) and the elements

B̃r = Fr + q(ω0,αr−Θ(αr))crXrK
−1
r , r ∈ I \X.

Since wXρ = ρ − 2ρX , and hence wXω0 = ω0, we can simplify this expression as

B̃r = Fr + q2(ω0,αr)crXrK
−1
r = Fr + q−(α−

r ,α−
r )XrK

−1
r ,

using once more the notation (4.8) and the identity (2ρ, αr) = (αr, αr).

Lemma 4.23. The algebra B̃ is ∗-invariant.
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Proof. By [17, Theorem 3.11], we need to check that

q2(ω0,αr+ατ(r))crcτ(r) = q(Θ(αr)−αr,ατ(r)). (4.17)

Note that this theorem was proven under a different assumption on z mentioned in 
Remark 4.10, but it is easily verified that for the ∗-invariance of B̃ the only feature of z
which was used was (4.1) and the fact that zr = 1 for αr ⊥ X, which is still valid in the 
current setup.

Following the discussion under [17, Theorem 3.14], it is sufficient to show that 
(ω0, αr) = 0 for r ∈ X, and

(ω0, αr) = 1
4(Θ(ατ(r)) − ατ(r) − Θ(αr) + 2ρX , αr), r ∈ I \X. (4.18)

Now since (ρX , αr) = (ρ, αr) for r ∈ X, we obtain (ω0, αr) = 0 for r ∈ X. On the other 
hand, if r ∈ I \X, we have by [5, Lemma 3.2] that

Θ(ατ(r)) − ατ(r) − Θ(αr) = −αr.

Since 2(ρ, αr) = (αr, αr) for all r ∈ I, it follows that (4.18) holds. �
Remark 4.24. Remark that ∗-invariance of Letzter coideals was also discussed in [9, 
Proposition 4.6], and in a less concrete manner in [59, discussion before Theorem 7.6].

We will now proceed to show that also K̃ has a nice behaviour with respect to ∗, see 
Proposition 4.29. We again need some preliminaries.

Let

ξ′ = ξK2ω0 = K2ω0ξ,

with ξ as in (4.7). Using that

Kω0Tw0 = Tw0K
−1
ω0

, Kω0TwX
= TwX

Kω0 ,

we find

K̃ = X̃ξ′T−1
wX

T−1
w0

.

Let CΘ ∈ Uq(h) be the unique operator such that

CΘη = q−(wt(ξ)+,wt(ξ)+)η, η ∈ V�,

with ω± defined as in (4.8).
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Lemma 4.25. We have

ξ′ = z̃τCΘ.

Proof. We can write

cr = q−2(ω0,αr)q−(α−
r ,αr), r ∈ I,

and hence for ω =
∑

r krαr ∈ P with kr ∈ Q we have

γ(ω) = z̃τ (ω)
∏
r∈I

ckr
r = z̃τ (ω)q−(2ω0,ω)

∏
r∈I

q−
∑

r∈I\X kr(α−
r ,αr).

On the other hand, since (α−
r , α

+
r ) = 0 by Θ-invariance of (−, −), we have

∑
r∈I

(α−
r , α

−
r )(ω,	∨

r ) =
∑
r∈I

kr(α−
r , α

−
r ) =

∑
r∈I

kr(α−
r , αr),

and hence

ξ(ω) = z̃τ (ω)q−(2ω0,ω)
∏

r∈I\X
q−

∑
r∈I\X kr(α−

r ,α−
r −αr)q−(ω+,ω+),

from which the lemma follows. �
Lemma 4.26. The element CΘ is invariant under τ and τ0, and commutes with X
and Kω0 .

Proof. The invariance of CΘ under τ and τ0 follows immediately from Lemma 4.7. It 
is also immediate that CΘ commutes with Kω0 . Finally, write again X =

∑
α∈Q+ Xα

with Xα ∈ Uq(n)α. Let V be a representation of Uq(g), and ξ ∈ V . Then CΘXαC
−1
Θ ξ =

CΘ(wt(ξ)+α)
CΘ(wt(ξ)) Xαξ. From [6, Proposition 6.1], we know that Xα �= 0 implies Θ(α) = −α

(their argument still being valid for q non-formal). As the latter implies in turn that 
CΘ(wt(ξ) + α) = CΘ(wt(ξ)), the commutation of X and CΘ follows. �
Lemma 4.27. We have

Ad(Tw0)(z̃) = z̃−1
τ , Ad(TwX

)(z̃) = z̃ (4.19)

and

Ad(Tw0)(ξ′) = z̃−1z̃−1
τ ξ′. (4.20)
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Proof. As zr = 1 for r ∈ X, it follows that z̃ is WX -invariant. The identities (4.19) then 
follow from the assumption that τ(z̃) = τ0(z̃).

The identity (4.20) follows from (4.19) by the computation

CΘ(w0ω) = CΘ(−w0ω) = CΘ(τ0(ω)) = CΘ(ω). �
Lemma 4.28. We have

Ad(z̃)(X) = τ(X) (4.21)

and

Xξ′ = ξ′τ(X). (4.22)

Proof. For (4.21), it is by Theorem 4.15 sufficient to show that

Brτ(Ad(z̃)(X)) = τ(Ad(z̃)(X))Br,

Fsτ(Ad(z̃)(X)) = τ(Ad(z̃)(X))Fs, r ∈ I \X, s ∈ X.

By Lemma 4.20 this is equivalent with the defining property of X.
For (4.22) we note that

Xξ′ = z̃τ Ad(z̃−1
τ )(X)CΘ = z̃τ τ(Ad(z̃−1)(τ(X))CΘ.

From (4.21) and Lemma 4.26, it then follows that

Xξ′ = z̃τ τ(X)CΘ = z̃τCΘτ(X) = ξ′τ(X). �
Proposition 4.29. We have

Δ(K̃) = (K̃ ⊗ 1)Rττ0,21(1 ⊗ K̃)R = R21(1 ⊗ K̃)Rττ0(K̃ ⊗ 1) (4.23)

and for all X ∈ B̃

K̃X = ττ0(X)K̃. (4.24)

Moreover,

ττ0(K̃) = K̃, K̃∗ = K̃SXS0z̃z̃
−1
τ . (4.25)

Proof. Since Kω0 is a ττ0-invariant grouplike element, the element K̃ satisfies (4.12), and 
(4.13) with respect to B̃.

As ξ′, Tw0 and TwX
are ττ0-invariant, and as X̃ is ττ0-invariant by Corollary 4.16 and 

ττ0-invariance of ω0, the identity ττ0(K̃) = K̃ follows.
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Note now that TwX
commutes with ξ′, and with X by (4.13). Using also Lemma 4.28

and the fact that Kω0 is τ -invariant, we see that we can write

K̃ = T−1
wX

ξ′τ(X̃)T−1
w0

.

Since Ad(Tw0), τ and τ0 commute, since τ0(ω0) = ω0 and since Kω0Tw0Kω0 = Tw0 , we 
find from Theorem 4.22 and ττ0-invariance of X̃ that

K̃ = T−1
wX

ξ′T−1
w0

X̃∗,

and thus from Lemma 4.27

K̃ = T−1
wX

T−1
w0

z̃−1z̃−1
τ ξ′X̃∗ = z̃z̃τT

−1
wX

T−1
w0

ξ′X̃∗.

Using now Proposition 1.7, and the fact that SX , S0 assume values in {±1}, we see that

K̃∗ = X̃ξ′ ∗T−1
w0

S0T
−1
wX

SX z̃−1z̃−1
τ = X̃ξ′ ∗T−1

w0
T−1
wX

S0SX z̃−1z̃−1
τ ,

where in the last step we used that wXρ∨ = ρ∨ − 2ρ∨X and e4πiρ∨
X = 1. As ξ′ ∗ = ξ′z̃−2

τ , 
and as TwX

and Tw0 commute by Lemma 4.8, this becomes the second identity in (4.25)
by another application of (4.19). �

Let us now move from right coideals to left coideals to have compatibility with the 
conventions in Section 2. This can be achieved by means of the unitary antipode R
defined in (1.1). We then write

Uq(uθ) = R(B̃), (4.26)

which is a left coideal ∗-subalgebra of Uq(u). Note that by (1.13), we have that Uq(uθ)
is generated by the U ′

q(gX), Uq(hΘ) and the elements

Cr = −qrR(B̃r)∗ = Er + q(α+
r ,α+

r )YrKr, Yr = −zτ(r) Ad(TwX
)(Fτ(r)) (4.27)

for r ∈ I \X.
Let further v ∈ Uq(u) be the ribbon element

vη = q−(�,�+2ρ)η, η ∈ V�, (4.28)

so that v is central, self-adjoint and

R21R = Δ(v)(v−1 ⊗ v−1). (4.29)

Put
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K̃ = R(K̃)v−1.

Then since (R⊗R)R = R and R commutes with ττ0, we find by Proposition 4.29 that

Δ(K̃ ) = (1 ⊗ K̃ )Rττ0,21(K̃ ⊗ 1)R−1
21 , K̃ ∗ = SXS0z̃τ z̃

−1ττ0(K̃ ). (4.30)

For a categorical motivation of passing between these different kinds of conditions for 
K-matrices, we refer to [11]. See also [19,18,92] for further discussion on the categorical 
origin of K-matrices.

Let now τν = ττ0, and let ε = εν be an (X, τ)-admissible sign function on I as in 
Definition B.8. Put ν = (τν , εν) ∈ End∗(Uq(b)). The crucial property we will need for ε
is that by Theorem B.10 we can find an extension ε̃ ∈ T of ε such that

ε̃τ τ0(ε̃) = S0SX z̃z̃−1
τ . (4.31)

Define E as in Definition 2.12, and put

K = E ε̃−1K̃ ∈ Uq(u). (4.32)

Theorem 4.30. The element K is a ∗-compatible ν-modified universal K-matrix.

Proof. Since ε̃ is grouplike, it follows from (4.30) that E −1K satisfies (2.42), hence 
K is a ν-modified universal K-matrix. To see that it is ∗-compatible, note that by 
selfadjointness of E we have (E ε̃−1)∗ = E ε̃. Now E ε̃ is central, with

E ε̃ξ = ε̃�ξ, ξ ∈ V�.

Hence by (4.30) and the defining property of ε̃, we find that

K ∗ = ε̃−1ττ0(ε̃)−1ττ0(K̃ )E ε̃ = ττ0(ε̃)−1E ττ0(K̃ ) = ττ0(K ),

since ε and hence E is ττ0-invariant. This proves ∗-compatibility. �
Note also that K satisfies the following commutation relation, using (4.24) and the 

fact that E ε̃−1 is central,

K X = ττ0(X)K , X ∈ Uq(uθ). (4.33)

Remark 4.31. The only property of the ττ0-invariant sign function ε which is needed in 
the above construction is the existence of an extension ε̃ satisfying (4.31). This property 
is in general much weaker than being (X, τ)-admissible (for example one could have 
ε = 1). However, we believe that only in case of (X, τ)-admissible ε will the associated 
K-matrix lead to a ∗-homomorphism φ : Oq(Zν) → Oq(U) with sufficiently nice spectral 
properties, cf. Remark 2.36. Again, we will not deal here with this subtle phenomenon, 
which deserves further investigation.
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4.3. Comparison of the coideal subalgebras U f
q(k′) and Uq(uθ)

In this section, we clarify the connection between the left coideal ∗-subalgebra U f
q(k′) ⊆

Uq(u) as constructed from the ∗-compatible ν-modified universal K-matrix of (4.32) by 
the map φ̂ in Theorem 2.39, and the left coideal ∗-subalgebra Uq(uθ) ⊆ Uq(u) as defined 
by (4.26).

We introduce first the following map

Φ̂ : Oq(U) → Uq(g), f �→ (id⊗f)(Rττ0,21(1 ⊗K)R),

where K was introduced in (4.11). Recall further the unitary antipode R defined in (1.1)
and the element ω0 introduced in (4.16).

Lemma 4.32. The equality φ̂(Oq(Zν)) = (R ◦ Ad(Kω0) ◦ Φ̂)(Oq(U)) holds.

Proof. Recall from (2.56) that

φ̂(f) = (f ⊗ id)(Rττ0,21(K ⊗ 1)Rττ0) = (id⊗f ◦ ττ0)(R(1 ⊗ K )Rττ0,21),

where in the last step we used that K is ττ0-invariant by Corollary 4.16. On the other 
hand, since Kω0 is ττ0-invariant, we find that

R(Ad(Kω0)(f)) = (id⊗f ◦ Ad(K−1
ω0

) ◦R)(R(1 ⊗R(K̃))Rττ0,21).

Since R(K̃) and K differ only by multiplication with an invertible central element, this 
proves the lemma. �
Corollary 4.33. We have U f

q(k′) ⊆ Uq(uθ).

Proof. By [52, Theorem 3.11.(0)], the image of Φ̂ is contained in B (note that the 
element R in [52] indeed coincides with our element R). The corollary then follows from 
Lemma 4.32. �

To obtain an inclusion in the opposite direction after completion, we need some pre-
liminaries. Let us write

R̃ =
∑
A

wAE
A ⊗ FA

where EA and FA denote the standard PBW-bases, A being words in the positive roots 
and wA are non-zero scalars. We write wt(A) = wt(EA) ∈ Q+, where EA ∈ Uq(n)wt(EA). 
Write

K =
∑

+

Kγ , Kγ = XγξT
−1
wX

T−1
w0

(4.34)

γ∈Q
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with X =
∑

γ Xγ and Xγ ∈ Uq(n)γ as before. Then writing V (ω) for the ω-weight space 
of a representation V , we have

Kγ : V (ω) → V (wXw0(ω) + γ).

Lemma 4.34. We have

Φ̂(U�(ξ, η)) =
∑
A,B

∑
γ∈Q+

wAwBκA,B,γττ0(FA)K−1
Θ(wt(η)−wt(B))+ττ0(γ)E

BK−1
wt(η)

where κA,B,γ = 〈ξ, EAKγF
Bη〉.

Proof. This follows straightforwardly by writing out the left hand expression using the 
formulas (1.6) and (4.34). �

Note that the (A, B, γ)-term in the sum for Φ̂(U�(ξ, η)) has weight −ττ0(wt(A)) +
wt(B).

Choose now for each 	 ∈ P+ non-zero vectors ηw0(�), ξwX(�) ∈ V� with respective 
weights w0(	) and wX(	). Put

k� = U�(ηw0(�), ξwX(�))

Lemma 4.35. We have

Φ̂(k�) = t�Kτ(�)+Θ(τ(�))

where t� = 〈ηw0(�), K0ξwX(�)〉 is non-zero.

Proof. We need to analyze the inner products

κA,B,γ = 〈ηw0(�), E
AKγF

BξwX(�)〉.

Since ηw0(�) is a lowest weight vector, it follows that κA,B,γ = 0 unless A = γ = 0. 
On the other hand, the element K0F

BξwX(�) has weight wXw0(wX(	) − wt(B)) =
w0(	) − wXw0(wt(B)), hence κ0,B,0 = 〈ηw0(�), K0F

BξwX(�)〉 is zero unless w0(	) =
w0(	) − wXw0(wt(B)) = 0, i.e. wt(B) = 0.

It follows that

Φ̂(k�) = κ0,0,0K
−1
Θ(wX(�))K

−1
wX(�).

Using wX(	) = −Θ(τ(	)), we can write K−1
Θ(wX(�))K

−1
wX(�) = Kτ(�)+Θ(τ(�)). Finally, 

κ0,0,0 �= 0 since the weight spaces at w0(	) and wX(	) are one-dimensional and K0 =
ξT−1

w T−1
w . �
X 0
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Write now

f�,r = U�(Erηw0(�), ξwX(�))

Lemma 4.36. There exists t�,r ∈ C and Y�,r ∈ Uq(b) such that

Φ̂(f�,r) = t�,rFττ0(r)Kτ(�)+Θ(τ(�)) + Y�,r. (4.35)

Moreover,

(1) t�,r �= 0 if Erηw0(�) �= 0,
(2) Y�,r = 0 if r ∈ X,
(3) Y�,r ∈ Uq(b)−Θττ0(αr) for r ∈ I \X.

Proof. Fix 	, r, where we assume that Erηw0(�) �= 0. We have to analyze again the 
coefficients

κA,B,γ = 〈Erηw0(�), E
AKγF

BξwX(�)〉.

Since ηw0(�) is a lowest weight vector, it is clear that κA,B,γ = 0 unless A is the simple 
root αr or the empty word.

If A = αr, we have that

καr,B,γ = 〈Erηw0(�), ErKγF
BξwX(�)〉 = 〈E∗

rErηw0(�),KγF
BξwX(�)〉.

Since E∗
rErηw0(�) is a non-zero multiple of ηw0(�), it follows as before that καr,B,γ = 0

unless γ = B = 0, in which case καr,B,γ is a non-zero scalar. This already accounts for 
the general form (4.35) and (1).

Assume now that A is the empty word. We claim that κ0,B,γ = 0 unless γ = 0. Indeed, 
from the proof of [6, Proof of Theorem 6.10] it follows that Kαs

= 0 for all s ∈ I, which 
proves the claim. On the other hand, by weight arguments the element

κ0,B,0 = 〈Erηw0(�),K0F
BξwX(�)〉

will be zero unless

w0(	) + αr = w0(	) − wXw0(wt(B)).

This forces wt(B) = −Θττ0(αr). As Θ(αr) = αr for r ∈ X, it follows that in this 
case no such B exist, and hence Y�,r = 0. On the other hand, this also shows that 
Y�,r ∈ U(b)−Θττ0(αr) for r ∈ I \X. �

We will need some more detailed information in the case r ∈ I \X. In the following, 
we write QX ⊆ Q for the root lattice of gX , generated by the αr with r ∈ X.
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Definition 4.37. For r ∈ I \X, we define

Λr = 	r − Θ(	r) ∈ P+.

Proposition 4.38. The following identity holds for r ∈ I \X: Φ̂(fΛr,r) = tΛr,rBττ0(r) with 
tΛr,r �= 0.

Proof. Clearly Erηw0(Λr) �= 0 since (Λr, αr) > 0. This shows that tΛr,r �= 0. Also note 
that in this case

Φ̂(fΛr,r) = tΛr,rFττ0(r) + YΛr,r

since Θ(Λr) = −Λr. Using notation as in Definition (4.9), we can thus write Φ̂(fΛr,r) =
tΛr,rBττ0(r) + Y ′

r where

Y ′
r = YΛr,r − tΛr,rcττ0(r)Xττ0(r)K

−1
ττ0(αr).

We clearly still have Y ′
r ∈ U(b)β with β = −Θττ0(αr). We claim that β /∈ Q+

X . Indeed, 
if β were in Q+

X , it would follow from Θ|Q+
X

= id and Θ2 = id that β = −ττ0(αr), which 
is impossible. Since Y ′

r ∈ B, we then find Y ′
r = 0 by the following lemma. �

Lemma 4.39. Let β ∈ Q+ \Q+
X . Then B ∩ U(b)β = {0}.

Proof. As usual, let us put Br = Fr for r ∈ X. For J = (j1, . . . , jn) with jk ∈ I, write 
FJ = Fj1 . . . Fjn and BJ = Bj1 . . . Bjn , and put |J | = n. Let J be a collection of indices 
such that {FJ | J ∈ J } is a basis of U(n−). Let Uq(nX) be the unital algebra generated 
by the Er with r ∈ X, and let as before Uq(hΘ) be the algebra generated by the Kω with 
ω ∈ P and Θ(ω) = ω. In [51, Proposition 6.2] it is shown that {BJ | J ∈ J } is a basis 
for B as a left Uq(nX)Uq(hΘ)-module. This uses the following fact: if we take BJ with 
|J | = n, then BJ − FJ ∈ U(b)Fn−1(U(n−)), where F• is the filtration of U(n−) defined 
by Fn(U(n−)) = span{FJ | |J | ≤ n}.

Assume now that Y ∈ U(b)β is a non-zero element with β /∈ Q+
X , and assume Y ∈ B. 

Write

Y =
∑
J∈J

TJBJ ,

for uniquely determined TJ ∈ Uq(nX)Uq(hΘ) with only finitely many non-zero. Since Y
is non-zero and weights for Uq(nX)Uq(hΘ) lie in Q+

X , there must exist J ∈ J with |J | > 0
and TJ �= 0. Let

N = max{|J | | TJ �= 0} > 0.

Then we have
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Y −
∑
J∈J

TJFJ ∈ U(b)FN−1(U(n−)).

Since Y ∈ U(b)β , this would imply that also∑
J∈J

TJFJ ∈ U(b)FN−1(U(n−)).

However, as the FJ form a basis of Uq(g) as a left Uq(b)-module, this implies TJ = 0
for all J with |J | = N , in contradiction with the definition of N . This concludes the 
proof. �
Theorem 4.40. The equality Uq(k′) = Uq(uθ) holds.

Proof. From Corollary (4.33) we already know that ⊆ holds. For the reverse inclusion, 
it is by Lemma 4.32 sufficient to show that the weak closure of the image of Φ̂ equals the 
weak closure of B. However, by Lemma 4.35, Lemma 4.36 and Proposition 4.38 we know 
that the range of Φ̂ contains the Kτ(�)+Θ(τ(�)) for all 	, the Fττ0(r)Kτ(�r)+Θ(τ(�r)) for 
all r ∈ X, and the Br for all r ∈ I \X. Since the range of Φ̂ is ∗-closed, its weak closure 
equals its bicommutant. This easily implies that the weak closure of the range of Φ̂ will 
equal the weak closure of B. �
4.4. Comparison of the coideal subalgebras Oq(K\U) and Oq(Uθ\U)

Let again K be the ∗-compatible ν-modified universal K-matrix defined in (4.32), and 
let Oq(K\U) ⊆ Oq(U) be the right coideal ∗-subalgebra as constructed from the map 
φ in Theorem 2.39. Let Oq(Uθ\U) = Ûq(uθ) ⊆ Oq(U) be the right coideal ∗-subalgebra 
dual to Uq(uθ) ⊆ Uq(u) as defined by the general duality in Definition 2.43. We will show 
the following theorem.

Theorem 4.41. The equality Oq(K\U) = Oq(Uθ\U) holds, except possibly for Uθ ⊆ U

containing a component of type EIII, EIV , EV I, EV II or EIX.

The proof of this theorem will not be uniform, and will be subdivided into a separate 
treatment for different classes, see Proposition 4.49, Proposition 4.52, Proposition 4.53
and Proposition 4.54. For some cases the proof is straightforward, and for others the 
proof is very ad hoc and computational. As such, our methods were not strong enough 
to cover also the mentioned E-cases in the above theorem. However, at the end of the 
section we will sketch a uniform proof for all cases when q is sufficiently close to 1, 
Theorem 4.55, based on deformation theory.

Let us first start with the following easy result.

Proposition 4.42. The inclusion Oq(K\U) ⊆ Oq(Uθ\U) holds.
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Proof. This follows by general duality for coideals, Theorem 4.40 and Proposi-
tion 2.44. �

To obtain an inclusion in the other direction, we first recall the following classical 
terminology. Let us write

Oq(U)� = linear span{U(ξ, η) | ξ, η ∈ V�}, Oq(Uθ\U)� = Oq(U)� ∩ Oq(Uθ\U)

for spectral subspaces, and call

mq,� = dim(Oq(Uθ\U)�)
dim(V�)

the associated multiplicity. We also use this notation at q = 1.

Definition 4.43. A positive integral weight 	 ∈ P+ is called spherical with respect to Uθ

if

O(Uθ\U)� �= 0.

We denote by P+
s the set of spherical weights.

The following theorem states in particular that Uθ ⊆ U and its quantum companion 
are Gelfand pairs, i.e. the multiplicity function is {0, 1}-valued.

Theorem 4.44. If 	 ∈ P+ and q > 0, then mq,� = δ�∈P+
s

.

Proof. For q = 1 this is classical. For q �= 1 this is proven3 in [58, Theorem 4.2 and 
Theorem 4.3], see also [59, Theorem 7.8]. �

Let now IΣ ⊆ I \X be a fundamental domain for τ , and define μr ∈ P+ for r ∈ IΣ
as follows in terms of the Satake diagram (X, τ) and the fundamental weights 	r:

μr =

⎧⎪⎨⎪⎩
	r if τ(r) = r and r is connected to a black vertex,
2	r if τ(r) = r and r is not connected to a black vertex,
	r + 	τ(r) if τ(r) �= r.

Theorem 4.45 ([89, Theorem 2 and Theorem 4], see also [91]). A weight μ is spherical 
if and only if μ is a positive integer combination of the μr.

We call the μr the fundamental spherical weights. In particular, it follows that P+
s is 

a cone.

3 The references assume that q is an indeterminate, but one can check that the proofs for these specific 
results are also valid for the case of q a scalar.
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Corollary 4.46. The spectral subspaces Oq(Uθ\U)μr
generate Oq(Uθ\U) as an algebra.

Proof. Let vr be a non-zero Uq(uθ)-invariant vector in Vμr
, and let ξr be a highest 

weight vector in Vμr
. Then fr = U(vr, ξr) ∈ Oq(Uθ\U) must be non-zero, as it generates 

Oq(Uθ\U)μr
as a Uq(g)-module for the translation action X�f = f(−X). Now as Oq(U)

does not have zero-divisors [43, Lemma 9.1.9.(1)], it follows that fn = fn1
r1 . . . fna

ra �= 0, 
with r1, . . . , ra an enumeration of IΣ and ns ∈ N. On the other hand, it is clear that 
fn ∈ Oq(Uθ\U)μ for μ =

∑a
s=1 nsμs. As the algebra generated by the Oq(Uθ\U)μr

is 
closed under the Uq(u)-action, this shows that the latter algebra must equal the whole 
of Oq(Uθ\U). �
Lemma 4.47. Assume 	 ∈ P+ vanishes on X. Then Oq(Uθ\U)�+τ(�) lies in the range 
of φ.

Proof. Let ξ� and ηw0� be respectively a non-zero highest weight and lowest weight 
vector in V�. Then it is clear that Z(ηw0�, ξ�) is a highest weight vector for the natural 
Uq(g)-action (2.34) on Oq(Zν), with highest weight 	−ττ0w0(	) = 	+τ(	). It follows 
that

φ(Z(ηw0�, ξ�)) ∈ Oq(Uθ\U)�+τ(�).

Since the latter spectral subspace has multiplicity one, it now suffices by Uq(u)-
equivariance of φ to show that φ(Z(ηw0�, ξ�)) �= 0. This will follow once we show 
that

ε(φ(Z(ηw0�, ξ�))) = 〈ηw0�,K ξ�〉 �= 0.

Now from the correspondence between K = ττ0(K )∗ and K, it is clear from taking 
contragredient representations that

〈ηw0�,K ξ�〉 �= 0 ⇔ 〈ξτ0(�),Kητ0(�)〉 �= 0.

Write now K =
∑

γ∈Q+ Kγ as in (4.34). As wX	 = 	 by the assumption 	|X = 0, we 
have that T−1

wX
T−1
w0

ητ0(�) will be a non-zero multiple of ξτ0(�). Hence 〈ξτ0(�), Kγητ0(�)〉 =
0 for γ �= 0. From this, it is clear that

〈ξτ0(�),Kητ0(�)〉 = 〈ξτ0(�),K0ητ0(�)〉 �= 0. �
Corollary 4.48. The spectral subspace Oq(Uθ\U)μr

lies in the range of φ for r ∈ IΣ with 
τ(r) �= r, and for r ∈ IΣ with τ(r) = r but r not connected to a black vertex. For r ∈ IΣ
with τ(r) = r and r connected to a black vertex, we have that Oq(Uθ\U)2μr

lies in the 
range of φ.



K. De Commer, M. Matassa / Advances in Mathematics 366 (2020) 107029 69
Proposition 4.49. The equality Oq(K\U) = Oq(Uθ\U) holds in the following irreducible 
cases, using still the classification as in [1]:

• AI, AIII, AIV ,
• CI,
• DI in the case of so(p) × so(2l − p) ⊆ so(2l) with p = l − 1 or p = l,
• EI, EII, EV , EV III,
• FI,
• G,
• diagonal inclusions u ⊆ u ⊕ u.

In particular, equality holds for all the symmetric pairs corresponding to split real 
semisimple Lie algebras.

Proof. This follows immediately from Corollary 4.46, Corollary 4.48 and the fact that in 
the Satake diagrams corresponding to the above cases there are no τ -fixed white points 
connected to black vertices. �

There are some further cases which can be obtained by an easy argument, using the 
following lemma.

Lemma 4.50. For all 	 ∈ P+, the operator π�(K ) is not a scalar.

Proof. If ξ� is a highest weight vector, we have that K ξ� is a non-zero scalar multiple 
of the vector T−1

wX
T−1
w0

ξ�. The latter is a weight vector at weight wXw0	 = −wXτ0(	). 
We claim that −wXτ0(	) �= 	, which will finish the proof. For suppose this were not 
the case. Then wX	 = −τ0(	) is a negative weight. However, let β ∈ Δ+ be the highest 
root. Since β =

∑
r∈I krαr with kr > 0 for all r, we know that β /∈ Δ+

X . On the other 
hand, wX preserves the set Δ+ \ Δ+

X , and hence wXβ ≥ 0. It follows that

0 ≥ (wX	,wXβ) = (	,β) > 0,

a contradiction. �
Corollary 4.51. Let μ ∈ P+

s \{0}, and assume that there exists a positive weight 	 ∈ P+

such that Vτ(�) ⊗ V� contains Vμ as its only non-trivial spherical representation. Then 
Oq(Uθ\U)μ lies in the range of φ.

Proof. The matrix coefficients of the Z�(ξ, η) span an Uq(g)-module which is isomorphic 
to the tensor product representation V ∗

ττ0(�)⊗V�
∼= Vτ(�)⊗V�. Hence the range of this 

module lies in C1 + Oq(Uθ\U)μ by assumption. However, the range can not be C1, as 
this would imply by (2.46) that π�(K ) intertwines π� and π� ◦ ττ0, and must hence 
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be a scalar, in contradiction with Lemma 4.50. This entails that Oq(Uθ\U)μ lies in the 
range of φ. �
Proposition 4.52. The equality Oq(K\U) = Oq(Uθ\U) holds also in the following irre-
ducible cases:

• BI, BII,
• DI (remaining cases) and DII.

Proof. In these cases, there is a unique white vertex s which is τ -fixed and connected to 
a black vertex. By Corollary 4.46, Corollary 4.48 and Corollary 4.51, it is then sufficient 
to show that there exists an irreducible representation V� such that Vμs

is the only 
non-trivial spherical representation in Vτ(�) ⊗ V�.

Let us consider the BI and BII cases first. In these cases g is of type B�, τ = id and 
X = {p + 1, · · · , �} with 1 ≤ p ≤ � − 1. The Satake diagram is as follows.

1 p �

The spherical weights are μr = 2	r for r = 1, · · · , p − 1 and μp = 	p. We have

V��
⊗ V��

∼= V2��
⊕
(

�⊕
r=1

V��−r

)
,

where by convention V�0 is the trivial representation, see for instance [82, Reference 
Chapter, Section 2, Table 5]. Hence V�p

is the only non-trivial spherical representation 
appearing in V��

⊗ V��
.

Next consider the cases DI and DII. In these cases g is of type D� and X = {p +
1, · · · , �} with 1 ≤ p ≤ � − 2. The automorphism τ depends on the parity of � − p: we 
have τ = id for � −p even, while for � −p odd we have that τ switches the two end nodes 
of the Dynkin diagram.

1 p
�− 1

�

1 p
�− 1

�

The spherical weights in these cases are μr = 2	r for r = 1, · · · , p − 1 and μp = 	p. We 
have the following tensor product decompositions:

V��
⊗ V��

∼= V2��
⊕

⎛⎝⊕
V��−2r

⎞⎠ , V��
⊗ V��−1

∼= V��−1+��
⊕

⎛⎝⊕
V��−2r−1

⎞⎠ ,

r≥1 r≥1
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see again [82, Reference Chapter, Section 2, Table 5]. In the case � − p even we use the 
first decomposition. Then we have V��−2r = V�p

for r = (� − p)/2 and this is the only 
non-trivial spherical representation appearing. In the case � − p odd we use the second 
decomposition, since τ(�) = � − 1. Then we have V��−2r−1 = V�p

for r = (� − p − 1)/2
and this is the only non-trivial spherical representation appearing. �

The only remaining classical cases to be dealt with are now the following.

Proposition 4.53. The equality Oq(K\U) = Oq(Uθ\U) holds also in the following irre-
ducible cases:

• AII,
• CII,
• DIII.

Proof. We give the corresponding Satake diagrams of slp+1(H), sp(p, q) and su∗l (H) the 
standard ordering as can be found for example in the Tables 6 and 7. Then taking the 
weight 	 = 	1 in Corollary 4.51, we obtain that the range of φ contains Oq(Uθ\U)μ2 , 
where μ2 = 	2. It suffices to show that these elements generate Oq(Uθ\U) as an algebra. 
This claim will be proven in Proposition C.2 in Appendix C. �

Finally, we treat the case FII of g = f4. This corresponds to the following Satake 
diagram.

1 2 3 4

For this case, we will very explicitly verify that Oq(K\U)μ1 �= 0.

Proposition 4.54. The equality Oq(K\U) = Oq(Uθ\U) holds also in the irreducible case 
FII.

Proof. By Corollary 4.46 and equivariance of φ, it is sufficient to show that Oq(Uθ\U)�1

contains a non-zero element. This is the content of Proposition D.4 in Appendix D. �
In what follows, we will sketch a uniform argument showing that Theorem 4.41 holds 

true, also in the exceptional cases, for q close to 1. As this result is not as strong as we 
would like, we will not be very detailed.

Theorem 4.55. For any compact symmetric pair Uθ ⊆ U , the identity Oq(K\U) =
Oq(Uθ\U) holds for q sufficiently close to 1.

Proof. First we note that the highest weight modules V� for Uq(g) can be identified as 
vector spaces over all 0 < q in such a way that the structure coefficients of Oq(G) depend 
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continuously on q [76, Theorem 1.2]. Similarly, the structure coefficients of the algebra 
Oq(Zν) depend then continuously on q, becoming in the limit q = 1 the vector space 
O(G) with product and ∗-structure

f ∗ g = (g(1) ⊗ f(1),Ωε)f(2)g(2), f �(g) = f(τ(g)∗)

We now claim that the ∗-homomorphisms

φ = φq : Oq(Zν) → Oq(U)

have a well-defined limit at q = 1. For this, it is enough to show that the K-matrix 
K = Kq, or equivalently Kq has a well-defined limit at q = 1. Now Tw0 and TwX

converge 
respectively to m0 and mX , while the functions ξ and ξ′ converge to z̃τ . Finally, from its 
construction in [6] one sees that the quasi-K-matrix Xq becomes the unit at q = 1. Since 
also the ribbon element v becomes 1 in the limit q = 1, it follows that the Kq indeed 
vary continuously over q, and at the limit q = 1 we have

K1 = E ε̃−1m0mX z̃−1
τ .

If now φ1 is surjective, it follows that φq will hit all the Oq(Uθ\U)μr
for q close to 1, 

and hence φq will be surjective by Corollary 4.46.
To see that φ1 is surjective, note that the range of φ1, being a coideal, will be of the 

form O(K\U) for K a closed subgroup of Uθ. Since

φ1(f)(u) = f(τ0τ(u)−1K1u), u ∈ U,

it follows that

K = {u ∈ U | τ0τ(u)−1K1u = K1}.

But as E ε̃−1 is central, as θ = Ad(z̃) ◦ττ0 ◦Ad(m0) Ad(mX) and as m0mX z̃τ = z̃m0mX , 
we see that K = Uθ. �

Let us end with the following remark.

Remark 4.56. By construction, the Vogan automorphism ν of U determined by (ττ0, ε)
will be inner conjugate to θ, say by u ∈ U ,

θ = Ad(u)ν Ad(u−1).

Let

w = wν,θ = uν(u)∗ ∈ U.
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Then w∗ = ν(w), i.e. w ∈ Hν with Hν as in (2.31), and moreover

Ad(w)(x) = ν(x), x ∈ Uθ.

In particular, we obtain a map

Uθ\U → Hν , Uθx �→ ν(x)−1wx.

Now by the proof of Theorem 4.55, we see that in the classical limit K corresponds to 
the element w′ = ε̃−1m0mX z̃−1

τ . It would hence be interesting to see if one can take 
w = w′, and if then the factorisation w = uν(u)∗ passes through to the quantum setting 
for K . We believe that this will be connected to a notion of quantum Cayley transform, 
see [63] for some closely related material.

Appendix A. Variations on twisting

In this appendix, we consider some variations on the results in Section 2 by modifying 
the twist. We resume the notation of that section.

As a first variation, consider the opposite universal R-matrix and associated coquasi-
triangular structure

R̃ = R−1
21 , r̃ = r−1

21 .

With ν ∈ End∗(b), we can then also consider

R̃ν = R−1
ν,21, r̃ν = r−1

ν,21

and the associated convolution invertible real 2-cocycle functional

ω̃ν : Ocom
q (GR) ×Ocom

q (GR) → C, ω̃ν(fg†, hk†) = ε(f)r̃ν(h, g∗)ε(k).

Definition A.1. For ν, μ ∈ End∗(Uq(b)) we define Õν,μ
q (GR), resp.

≈
Oν,μ

q (GR) as the vector 
space Ocom

q (GR) endowed with the respective new multiplications

m̃ν,μ(f, g) = ω̃ν(f(1), g(1))f(2)g(2)ω
−1
μ (f(3), g(3)), f, g ∈ Ocom

q (GR),
≈
mν,μ(f, g) = ω̃ν(f(1), g(1))f(2)g(2)ω̃

−1
μ (f(3), g(3)), f, g ∈ Ocom

q (GR)

and the original ∗-structure.

As before, these can be made into a connected cogroupoid with compatible ∗-structure 
using the tensor product comultiplication on Ocom

q (GR). In particular, we have the 

Hopf ∗-algebra 
≈
Oν

q (GR) =
≈
Oν,ν

q (GR), and the ∗-algebra Õν,id
q (GR) with commuting left 
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and right coactions by respectively 
≈
Oν

q (GR) and Oq(GR). We then have the following 
straightforward modifications of the results in Section 2. Unexplained notation should 
be straightforward to interpret.

Lemma A.2 (Cf. Lemma 2.7). Let ν, μ ∈ End∗(Uq(b)), and let π, π′ be representations of 
Uq(u). In Õν,μ

q (GR), resp.
≈
Oν,μ

q (GR) we have the commutation relations

Ỹ ′
13R

π′,π
μ,12Ỹ

†
23 = Ỹ †

23R̃
π′,π
ν,12 Ỹ

′
13,

≈
Y ′

13R̃
π′,π
μ,12

≈
Y †

23 =
≈
Y †

23R̃
π′,π
ν,12

≈
Y ′

13.

Proposition A.3 (Cf. Proposition 2.10). There is a unique pairing (−, −)′ε of Hopf alge-
bras between U ε

q (g) and Oq(G) such that

(Kω, f)′ε = (Kω, f), (Er, f)′ε = (Er, f), (Fr, f)′ε = εr(Fr, f). (A.1)

Moreover, there is a unique pairing (−, −)ν of Hopf ∗-algebras between Uq(gν) and 
≈
Oν

q (GR) extending the above pairing (−, −)′ε.

We then denote by 
≈
Oq(Gν) the Hopf ∗-algebra arising as the coimage of 

≈
Oν

q (GR)
obtained by dividing out through the kernel of this pairing. Clearly 

≈
Oq(Gν) ∼= Oq(Gν)

as Hopf ∗-algebras.
Let us denote Õq(Gν\\GR) for the coinvariants in Õν,id

q (GR) with respect to the left 
coaction by 

≈
Oq(Gν). Denote by Õq(Zν) the vector space Oq(G) with the product

f ∗̃ g = r(f(1), g(2))(f(2) ⊗ g(3),Ωε)f(3)g(4)r̃(f(4), τ(S(g(1)))), (A.2)

and the ∗-structure f � = τ(S(f)∗).

Theorem A.4 (Cf. Theorem 2.28). The map

j̃ν : Õq(Zν) ∼= Õq(Gν\\GR), f �→ (f(2),E )S(f(1))τ(f(3))∗†

induces an isomorphism of ∗-algebras.

In terms of the generating matrices of Õq(Zν), which we write Z̃, this means

j̃ν : Z̃π �→ Ỹ −1
π (Eπ ⊗ 1)τ(Ỹ )−1,†

π .

We then have the following form of the reflection equation:

R̃π,π′

21 Z̃13R̃
π,π′

τ,12 Z̃
′
23 = Z̃ ′

23R̃
π,π′

τ,21 Z̃13R̃
π,π′

12 ,

with the induced right coaction of Oq(GR) now given by
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Z̃π �→ Y −1
π,13Z̃π,12τ(Yπ)−1,†

13 .

Inverting (A.2) leads to

(f(1) ⊗ g(1),Ωε)f(2)g(2) = r(S(f(1)), g(1))f(2) ∗̃ g(3)r̃(f(3), τ(g(2))),

so that the corresponding ∗-characters of Õq(Zν) are those K̃ ∈ Uq(g) with

K̃ ∗ = τ(K̃ ), ΩεΔ(K̃ ) = R−1(K̃ ⊗ 1)R̃τ (1 ⊗ K̃ ) = (1 ⊗ K̃ )R̃τ,21(K̃ ⊗ 1)R−1
21 .

(A.3)
Let Õq(K\U) the corresponding right coideal ∗-subalgebra of Oq(U). Let v be the ribbon 
element as defined in (4.28).

Proposition A.5. Assume that ν is of symmetric type. Then any ∗-compatible ν-modified 
universal K-matrix is invertible, and there is a one-to-one correspondence between ∗-
compatible ν-modified universal K-matrices and elements satisfying (A.3), the corre-
spondence being given by

K̃ = v−1K −1. (A.4)

Moreover,

Oq(K\U) = τ(Õq(K\U)). (A.5)

Proof. If K is a ∗-compatible ν-modified universal K-matrix, put Kε = E −1K . Then

Δ(Kε) = R−1(Kε ⊗ 1)Rν(1 ⊗ Kε) = (1 ⊗ Kε)Rν,21(Kε ⊗ 1)R−1
21 . (A.6)

As in [53, Lemma 3.13] one finds by applying Kε to S(a(1))a(2) and using (A.6) that 
K ε ∈ Uq(u), defined by

(K ε, a) = r(S(a(2)), a(4))(Kε, S(a(3)))rν(S(a(1)), a(5)),

is a left inverse to Kε. Similarly one constructs a right inverse, proving invertibility of 
K . The same argument shows that any element satisfying (A.3) is invertible.

Using now the identities (2.18) and (4.29), the centrality of v and the fact that, in the 
symmetric case, Ωε = Ω−1

ε , one deduces that the correspondence (A.4) is well-defined.
To see that (A.5) holds, note that the same argument as in Proposition 2.44 shows 

that

̂̃Oq(K\U) = {X ∈ Uq(u) | (1 ⊗ K̃ )(id⊗τ)Δ(X) = Δ(X)(1 ⊗ K̃ )}.

Using centrality of v, it is then immediate that



76 K. De Commer, M. Matassa / Advances in Mathematics 366 (2020) 107029
̂̃Oq(K\U) = {X ∈ Uq(u) | (1 ⊗ K )Δ(X) = (id⊗τ)Δ(X)(1 ⊗ K )},

hence ̂̃Oq(K\U) = Ôq(K\U) by Proposition 2.44, and then Õq(K\U) = Oq(K\U) by 
the biduality statement in Proposition 2.42. �
Remark A.6. It was not clear to us how (or if) the above correspondence can be gener-
alized to the non-symmetric case, as one no longer has invertibility of K .

Let us now present a second variation. Let us for the moment identify Oq(Ḡ) with 
Oq(G) by the map f† �→ f∗, and identify then further Oν

q (GR) with Oq(G) ⊗Oq(G) by 
applying this map to the second component. In particular, we then have (f⊗g)† = g∗⊗f∗. 
By general twisting arguments, Oν

q (GR) is coquasitriangular with universal r-form

rν,D = rν,14r13r24r−1
ν,32,

cf. [70, Theorem 2.3.4 and Proposition 7.3.2]. Moreover, rν,D is real in the sense that

(S ⊗ S)(rν,D)† = rν,D,21 ∈ Uq(g)⊗̂2⊗̂Uq(g)⊗̂2.

It follows that we can consider the rν,D-twisted ∗-algebra Oν
q (GR)′, obtained by endowing 

Oν
q (GR) with the original ∗-structure and the new product

f · g = (rν,D, f(1) ⊗ g(1))f(2)g(2), f, g ∈ Oν
q (GR). (A.7)

This ∗-algebra fits into a connected cogroupoid linking Oν
q (GR)op with Oν

q (GR). By com-
position, we also obtain an rν,D-twisted ∗-algebra Oν,id

q (GR)′ with new product given 
again by (A.7), but interpreting f, g ∈ Oν,id

q (GR). This time the ∗-algebra Oν,id
q (GR)′ fits 

into a connected cogroupoid linking Oν
q (GR)op with Oq(GR). The ∗-algebra Oν,id

q (GR)′
is the ν-twisted Heisenberg double analogon of the ν-twisted Drinfeld double Oν,id

q (GR), 
and corresponds to4 the twisted doubles considered in respectively the Poisson and quan-
tum setting in [85,86].

Let us show that this second variation is actually isomorphic to the first variation. 
We will need some preparations.

Theorem A.7. There exists an invertible element t ∈ Uq(g) such that the following holds: 
Ad(t) is an algebra and anticoalgebra homomorphism satisfying

Ad(t)(Kω) = K−τ0(ω), Ad(t)(Er) = −q2
rFτ0(r), Ad(t)(Fr) = −q−2

r Eτ0(r),

(A.8)
and

4 In [85,86] the constructions are carried out in the complex setting, without consideration of the ∗-
structure. This allows one to consider a more general class of automorphisms than the involutive ones.
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R = (t⊗ t)Δ(t−1) = Δop(t−1)(t⊗ t). (A.9)

Moreover,

S(t)∗ = t. (A.10)

Proof. Let c ∈ Uq(u) be defined by cξ = q(wt(ξ),wt(ξ))/2ξ for ξ in some V�, and let T ′
w0

be the alternative Lusztig braid operator at the longest root constructed from the

T ′
rξ =

∑
a,b,c≥0

−a+b−c=(wt(ξ),α∨
r )

(−1)bqac−b
r E(a)

r F (b)
r E(c)

r ξ.

Then from [84, Lemma 3.10 and Theorem 3.11] (see also [47,64,46]) it follows that

t = cK−ρT
′
w0

= cT ′
w0

Kρ

satisfies (A.8) and (A.9), upon noting that

• the above references use the opposite comultiplication,
• their R-matrices hence correspond to our R−1,
• in [84, Definition 3.5] one should correct the small typo by adding an extra sign in 

the expression under the summation sign and changing the root to the associated 
coroot, and

• we have changed the appearance of Kρ in [84, Definition] into K−ρ as this does not 
change (A.9) but is important to have the right compatibility with the ∗-structure.

Finally, to see that S(t)∗ = t we first note that S(c)∗ = c. Since we can write 
K−ρT

′
w0

as a product of the rank one operators K−αr/2T
′
r, it is hence sufficient to 

verify that K−α/2T
′ is stable under S(−)∗ in the rank one case. However, since 

S(X)∗ = R(Ad(K−α/2)(X))∗, and since K−α/2T
′ = T ′Kα/2, this is equivalent to 

R(T ′)∗ = T ′K2α. This now follows similarly as in Lemma 1.6. �
Consider now the corestricted left coaction of Oq(Gν)op on Oν,id

q (GR)′, and let 
Oq(Gν\\GR)′ be the associated coinvariant ∗-subalgebra. Let t be as in Theorem A.7.

Proposition A.8. The map

F : Oν,id
q (GR)′ → Õν,id

q (GR), f �→ f((t⊗ t)R−1
ν,21−)

is a right Oq(GR)-equivariant ∗-isomorphism, carrying Oq(Gν\\GR)′ isomorphically onto 
Õq(Gν\\GR).
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Proof. Pulling the algebra structures back to Ocom
q (GR) ∼= Oq(G) ⊗Oq(G), we need to 

compare the two products

f · g = (rν,14r13r24, f(1) ⊗ g(1))f(2)g(2)(r−1
32 , f(3) ⊗ g(3)), f, g ∈ Ocom

q (GR)

of Oν,id
q (GR)′ and

fg = (r−1
ν,23, f(1) ⊗ g(1))f(2)g(2)(r−1

32 , f(3) ⊗ g(3)), f, g ∈ Ocom
q (GR)

of Õν,id
q (GR) by means of F . This entails checking that, with x = (t ⊗ t)R−1

ν,21,

(x−1 ⊗ x−1)Rν,14R13R24Δ⊗(x) = R−1
ν,23, (A.11)

where Δ⊗ is the tensor product coalgebra structure. Now using (A.8), we easily see that

(t−1 ⊗ t−1)Rν = Rν,21(t−1 ⊗ t−1).

By (A.9) we can then simplify (A.11) to

Rν,21Rν,43Rν,41Δ⊗(R−1
ν,21) = R−1

ν,23.

However, an easy calculation shows that Δ⊗(R−1
ν,21) = R−1

ν,41R
−1
ν,21R

−1
ν,43R

−1
ν,23, proving 

the above identity.
This shows that F is an algebra isomorphism, and it is right Oq(GR)-equivariant by 

construction. To see that F is ∗-preserving, we need to show that x as above satisfies 
S(x)† = x, i.e.

(S ⊗ S)((t⊗ t)R−1
ν )∗⊗∗ = (t⊗ t)R−1

21,ν .

This follows from (S ⊗ S)Rν = Rν and R∗⊗∗
ν = Rν,21 together with (A.10).

Finally, to see that F (Oq(Gν\\GR)′) = Õq(Gν\\GR), it is enough to compare the 
right infinitesimal actions � of respectively Uq(gν) and Uq(gν)cop on Õq(Gν\\GR) and 
Oq(Gν\\GR)′. Transporting these actions along the natural vector space isomorphisms 
Õq(Gν\\GR) ∼= Oq(G) ⊗ Oq(G) ∼= Oq(Gν\\GR)′ and taking care of implementing cor-
rectly the pairings (−, −)ε and (−, −)′ε, we compute for example for f ∈ Oq(G) ⊗Oq(G)
that

F (f) � Kω = f(x(Kω ⊗Kω)−) = f((K−τ0(ω) ⊗K−τ0(ω))x−) = F (f � K−τ0(ω)).

Similarly, using again (A.8), we find

F (f) � Er = f((t⊗ t)R−1
ν,21(Er ⊗ 1 + εrKr ⊗Eτ(r))−)

= f((t⊗ t)(εr1 ⊗ Er + Er ⊗Kτ(r))R−1
ν,21−)
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= f((−εrq
2
r1 ⊗ Fτ0(r) − q2

rFτ0(r) ⊗K−τ0τ(r))(t⊗ t)R−1
ν,21−)

= F (f � (−q2
rFτ0(r))),

where in the last step we use that τ and τ0 commute, cf. Lemma 4.2. One similarly 
shows that F (f) � Fr = F (f � (−q−2

r Eτ0(r))), from which the preservation of invariant 
subalgebras under F then follows. �
Appendix B. Enhanced Satake diagrams and associated Vogan diagrams

Let g be a semisimple complex Lie algebra with Dynkin diagram Γ and compact form 
u. We use notation as in Section 1. In particular, we endow g with the Lie ∗-algebra 
structure inducing u.

Recall that two Lie algebra involutions σ, σ′ of u or, equivalently, two Lie ∗-algebra 
involutions of g are called inner equivalent or inner conjugate if there exists g ∈ G with

σ′ = Ad(g)σAd(g)−1.

It is not hard to see that one may always take g ∈ U , so that σ, σ′ are unitarily 
inner equivalent. More generally, we call σ, σ′ equivalent or conjugate if there exists 
φ ∈ Aut(u) = Aut(g, ∗) such that

σ′ = φσφ−1.

Recall from Definition 4.4 the construction of involutions θ = θ(X, τ, z) starting from 
a concrete Satake diagram (X, τ, z). It is straightforward to check that θ(X, τ, z) does not 
depend on z up to unitary inner conjugacy by an element Ad(t) for t ∈ T , the maximal 
torus in U . We then have the following theorem.

Theorem B.1. The assignment

(X, τ, z) �→ θ(X, τ, z)

descends to a one-to-one correspondence between concrete Satake diagrams (X, τ) on Γ
and unitary inner conjugacy classes of Lie algebra involutions of u.

Proof. It is well-known that any ∗-compatible involution is equivalent to a Satake invo-
lution up to conjugacy with an automorphism of u [1]. We have to show then that two 
concrete Satake diagrams induce inner conjugate involutions if and only if the concrete 
Satake diagrams are equal. This follows from [40, Theorem 3.11]. �

In fact, for the proof of the previous theorem we may clearly restrict to the case of g
simple, and then only the cases of the Satake diagrams associated to u∗2p(H) = so∗(4p)
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and so(1, 7), so(2, 6) and so(3, 5) need to be investigated, as they are the only ones ad-
mitting Dynkin diagram automorphisms which are not Satake diagram automorphisms. 
In Proposition B.4 and Proposition B.5 we will show explicitly that these automorphisms 
induce non-inner equivalences by using instead the Vogan form for the involutions.

Definition B.2. A ∗-preserving involution ν of g is said to be in Vogan form with re-
spect to the Chevalley-Serre generators S if there exists an involutive Dynkin diagram 
automorphism τ and a τ -invariant sign function

ε : I → {±1}

such that

ν(hr) = hτ(r), ν(er) = εreτ(r), ν(fr) = εrfτ(r). (B.1)

Conversely, whenever τ is an involutive automorphism of the Dynkin diagram Γ and 
ε is a τ -invariant sign function on the underlying set I, we can define a ∗-compatible 
involution ν = ν(Y, τ) by (B.1), where we write Y = Yε for the set of points with εr = −1. 
One can reduce to the case with εr = 1 for τ(r) �= r, but it will be more natural not to 
make this reduction a priori. The datum (Y, τ) can be encoded on the Dynkin diagram 
by connecting 2-point orbits of τ via arrows and coloring the Y -elements black. One calls 
the resulting diagram a concrete Vogan diagram.

It is well-known that any involution of u is inner conjugate to some ν(Y, τ), see e.g. [39, 
Chapter X] or [49, Chapter VI]. To see which ν(Y, τ) are inner conjugate, we will use the 
following lemma. Note first that any sign function ε on I can be extended uniquely to a 
{±1}-valued character on the root lattice Q. Given a subset Z ⊆ I, let us further write

ηZ : I → {±1},
{

r �→ −1 if r ∈ Z

r �→ 1 if r /∈ Z

Lemma B.3. Two Vogan involutions ν(Y, τ) and ν(Y ′, τ ′) with associated sign characters 
ε, ε′ are inner conjugate if and only if τ = τ ′ and ε, ε′ are equivalent with respect to the 
smallest equivalence relation generated by the following two types of relations:

• type 1: ε ∼ ε′ = ε ◦ sr for r ∈ I with τ(r) = r and ε(r) = −1.
• type 2: ε ∼ ε′ = η{r,τ(r)} · ε for r ∈ I with τ(r) �= r.

Proof. It is clear that (inner) conjugacy implies τ = τ ′, so we will assume this in what 
follows.

Fix ε. If ε′ = η{r,τ(r)} · ε for τ(r) �= r, we can pick z ∈ T such that

z(ατ(s))z(αs)−1 = η{r,τ(r)}(s), for all s ∈ I.
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Table 3
Equivalence classes for Vogan diagrams of type A with non-trivial auto-
morphism.

Table 4
Equivalence classes for Vogan dia-
grams of type E with non-trivial au-
tomorphism.

Then ν(Y ′, τ) = Ad(z)ν(Y, τ) Ad(z)−1. On the other hand, if ε′ = ε ◦ sr for τ(r) = r and 
ε(r) = −1, we have, using the notation (4.2), that τ(mr) = mr, and it is then easy to 
see that

Ad(mr)ν Ad(mr)−1 = ν′.

Hence ε ∼ ε′ implies ν(Y, τ) ∼ ν(Y ′, τ).
Conversely, assume that ν(Y, τ) ∼ ν(Y ′, τ). We may assume that g is simple. If τ = id, 

we only need to use the first operation, and the result follows from5 [14, Theorem 5.1]. 
If τ �= id, we treat the three cases A, D, E separately, following the arguments in [14, 
Section 4].

For the A-case, it is clear that any two inner equivalent ν, ν′ must have diagrams 
related by an equivalence of type 2 (Table 3).

For the E-case, there is only E6 to consider. It is easy to check directly in this case 
that the equivalence relation on the possible signs creates two orbits, which correspond 
precisely to the two choices of real forms (Table 4).

The same argument as in [14, Section 4] can be used in the D-case, whereby the 
operation of the first kind can be used to reduce to the case of a single painted τ -fixed 
vertex. If the single painted vertex is at position p, the Vogan diagram corresponds to 
the symmetric pair

so(2p + 1) × so(2q + 1) ⊆ so(2p + 2q + 2) = so(2l),

see e.g. [49, Appendix C.3]. The only thing left to prove is then that the two sign functions 
associated to the diagrams with non-trivial automorphism and a single painted vertex 
either at p or q = l − p − 1 (for p ≤ l − 2) are equivalent,

5 Note that the proof of [14, Theorem 5.1] is with respect to equivalence by inner conjugacy, although 
the authors introduce the equivalence relation as being by general conjugacy with an automorphism.
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1 2 3 p �− 2
�− 1

�

∼= 1 2 3 q �− 2
�− 1

�

This follows by an easy direct verification (using also the type 2 equivalence!). �
It is known from the Borel-de Siebenthal theorem [49, Theorem 6.96] that any Vogan 

involution is equivalent by conjugation with an automorphism to a Vogan involution 
coming from a diagram with at most one painted vertex. Moreover, as we have seen 
there is no distinction between conjugation by an automorphism and conjugation by an 
inner automorphism, except in the case corresponding to the real forms so∗(4p) or real 
forms of so(8). In these cases, we have the following.

Proposition B.4. Consider the Vogan diagrams ({l}, id) and ({l−1}, id) on Dl for l even,

1 2 3 � − 2
� − 1

�

, 1 2 3 � − 2
� − 1

�

.

Then ν({l}, id) and ν({l − 1}, id) are equivalent but not inner equivalent.

Proof. As in the proof of Lemma B.3, we have that the two diagrams are inner equivalent 
if and only if the associated sign functions satisfy ε = ε′ ◦w for w ∈ W . But consider the 
value

c = ε(α1 + α3 + . . . + αl−1).

Then it is easily seen that c is the same value on the whole of Wε. However, c differs for 
the two choices of Vogan diagrams. �
Proposition B.5. There are nine inner equivalence classes for Vogan diagrams of so(8), 
obtained by rotations of the following three cases (Table 5):

(1) so(1, 7): Y = ∅, τ(3) = 4,
(2) so(2, 6): Y ∈ {{1}, {1, 2}, {3, 4}, {2, 3, 4}}, τ = id,
(3) so(3, 5): Y ∈ {{1}, {1, 2}, {3, 4}, {2, 3, 4}}, τ(3) = 4.

Proof. It follows by an immediate verification on the Dynkin diagram D4 by means of 
Lemma B.3. �
Definition B.6. We call a concrete Satake diagram (X, τ) and a concrete Vogan diagram 
(Y, τ ′) compatible if θ(X, τ) and ν(Y, τ ′) are inner conjugate.

The following lemma is clear by (4.5).
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Table 5
Vogan diagrams for so(p, 8 − p) with 1 ≤ p ≤ 3 with at 
most one colored vertex.

so(1, 7) 1 2
3

4

1 2
3

4
1 2

3

4

so(2, 6) 1 2
3

4

1 2
3

4

1 2
3

4

so(3, 5) 1 2
3

4

1 2
3

4
1 2

3

4

Lemma B.7. If a concrete Satake diagram (X, τ) and a concrete Vogan diagram (Y, τ ′)
are compatible, then τ ′ = ττ0.

We can hence reformulate Definition B.6 as follows. Recall that if ε is a sign-function, 
we denote by Yε the set of points with value −1.

Definition B.8. Let (X, τ) be a concrete Satake diagram. We call (X, τ)-admissible sign 
function ε : I → {±1} any sign function which is ττ0-invariant and such that ν(Yε, ττ0)
is inner conjugate to θ(X, τ). We call two sign functions ε, ε′ equivalent if they are (X, τ)-
admissible for the same Satake diagram (X, τ).

One can find at least one (X, τ)-admissible sign function by comparing the classifica-
tions of involutions in terms of Satake diagrams on the one hand, and of special Vogan 
diagrams with at most one painted root on the other. Again, one can use standard tables 
to look up the equivalence, but we need to know more specifically the correspondence 
up to inner conjugacy in the case of so∗(4p).

Lemma B.9. Consider the concrete Satake diagram (X, τ) corresponding to so∗(4p) with 
the 2p −1th root painted as in Table 1. Then θ = θ(X, τ) is inner conjugate to ν({2p}, id).

1 2 3 2p − 2
2p − 1

2p

Satake

∼= 1 2 3 2p − 2
2p − 1

2p

V ogan

Proof. Let us realize so(4p) concretely on C4p with basis {ek}. We have that

θ = Ad(m0mX).
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We can easily see that for a constant sign c

m0ek = c(−1)kek.

On the other hand,

mX = m1m3 . . .m2p−1

is a diagonal block matrix with constant blocks in M4(C). It follows that θ can be put 
into Vogan form inside SO(4) × . . .× SO(4). Looking at the bottom block, we see that 
this corresponds to the transformation of the Satake diagram of SO(4) ∼ SU(2) ×SU(2), 
with the top vertex colored, into Vogan form, with the lower vertex colored.

2p− 1

2p
Satake

→
2p− 1

2p
V ogan

As the same happens in each copy, and only the simple roots of the form ei−ei+1 appear 
in the remainder of the Dynkin diagram, it follows that the complete Vogan diagram is 
the one described in the lemma. �

We will be interested in verifying a certain compatibility between the sign function of 
a Vogan diagram and a particular sign function constructed from an equivalent Satake 
diagram.

Fix χ0 as in Lemma 4.3, and recall the notations S0, SX , ̃z and z̃τ from (1.16), (4.14), 
Lemma 4.3 and (4.6).

Theorem B.10. Let (X, τ, z) be an enhanced Satake diagram, and let ε be an (X, τ)-
compatible sign function. Then there exists an extension ε̃ ∈ T of ε such that

ε̃τ τ0(ε̃) = S0SX z̃z̃−1
τ . (B.2)

Proof. We may assume that g simple. Note that by (4.1), the right hand side of (B.2)
lies in the center Z (U) = Char(P/Q), while by Lemma 4.2 and the choice of z̃ we 
have that the right hand side of (B.2) is ττ0-invariant. It is then easily seen that if ε
admits an extension ε̃ satisfying (B.2), any ε′ = sr(ε), for τ(r) = r and εr = −1, admits 
the extension ε̃′ = sr(ε̃) satisfying (B.2). It is also easy to see that the existence of an 
extension is stable under an equivalence of type 2 in Lemma B.3, since we can extend any 
η{r,ττ0(r)} for r �= ττ0(r) to an element η̃ ∈ T with η̃ττ0(η̃) = 1: for example, choosing 
n ∈ N such that 1

nQ ⊇ P ⊇ Q, and choosing a fundamental domain for the ττ0-action 
on I, we can put η̃

( 1αr

)
= 1 for r fixed under ττ0 and
n
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η̃

(
1
n
αr

)
= eπi/n, η̃

(
1
n
αττ0(r)

)
= e−πi/n

for r �= ττ0(r) in the fundamental domain. By Lemma B.3 we may hence restrict to 
the case of a reduced Vogan diagram with at most one painted root. By applying an 
automorphism, we may also assume that the Satake diagram corresponds to the standard 
presentation in, say, [82, Reference Chapter, Section 2].

For A an abelian group we write Char(A) for the characters A → U(1). Consider the 
group homomorphism

π : P ×Q → P, (ω, α) �→ ω + ττ0(ω) + α.

Then π dualizes to a homomorphism

π̂ : Char(P ) → Char(P ) × Char(Q), ρ �→ (ρττ0(ρ), ρ|Q).

Let us write

η : P → U(1), ω �→ S0SX z̃z̃−1
τ (ω) = e2πi(ρ∨+ρ∨

X+χ0−τ(χ0),ω).

Then we are to show that (η, ε) lies in the range of π̂. This is equivalent with (η, ε)
vanishing on Ker(π). Now since χ0 is ττ0-invariant, this means that we have to check

ε(α) = eπi(ρ
∨+ρ∨

X+χ0−τ(χ0),α), ∀α ∈ Q′, (B.3)

where

Q′ = {α ∈ Q | ∃ω ∈ P such that α = ω + ττ0(ω)}.

Now it is easy to see that

Q′ = {α ∈ Q | ττ0(α) = α, (α, α∨
r ) ∈ 2Z for ττ0(r) = r}.

Write

δr = eπi(ρ
∨+ρ∨

X+χ0−τ(χ0),αr) ∈ {±1}.

Identify Zl ∼= Q via k �→
∑

krαr, where l is the rank of g, and let I0 ⊆ I be the set of 
ττ0-fixed points. Let A′ be the rectangular matrix obtained by restricting the rows of 
the Cartan matrix A to the index set I0. Then we see that (B.3) becomes

l∏
(εrδr)kr = 1, ∀k ∈ Zl such that ττ0(k) = k, A′k ∈ 2Z|I0|. (B.4)
r=1
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As the left hand side takes values in ±1, we can consider the condition on k modulo two, 
and are thus to check (B.4) on

B = {k = (kr) ∈ (Z/2Z)l | ττ0(k) = k, A′k = 0 mod 2}.

Let us present the elements of B in the different cases, listing only those for which 
B �= {0}. We will use the ordering of simple roots as in [82, Reference Chapter, Section 2].

(1) Case of ττ0 = id. Then B = Ker(A) mod 2, and we find the following non-zero 
elements of B:
(a) Al for l odd: k = (1, 0, 1, . . . , 1, 0, 1).
(b) Bl: k = (1, 0, 1, 0, . . . , 1, 0) for l even, (1, 0, 1, 0, . . . , 1, 0, 1) for l odd.
(c) Cl: k = (0, 0, . . . , 0, 1).
(d) Dl for l odd: k = (0, 0, 0, . . . , 0, 1, 1).
(e) Dl for l even: k = (a, 0, a, 0, . . . , a, 0, b, c) with a + b + c = 0.
(f) E7: k = (1, 0, 1, 0, 0, 0, 1).

(2) Case of ττ0 �= id:
(a) Al for l = 2p: k = (a1, . . . , ap, ap, . . . , a1).
(b) Al for l = 2p + 1: k = (a1, . . . , ap, ap+1, ap, . . . , a1).
(c) Dl for l odd: k = (a, 0, a, 0, . . . , a, 0, a, b, b).
(d) Dl for l even: k = (0, 0, . . . , 0, 0, a, a).
(e) E6: k = (a, b, 0, b, a, 0).

One can now check (B.4) by an easy case-by-case verification, using Tables 6, 7, 8
with the following legend:

• The first column presents an enhanced Satake diagram, with zr = ±1 indicated 
whenever the value is not a priori determined, and (contrary to custom) with also 
the action of τ drawn for black vertices when non-trivial (to avoid possible confusion).

• The second column encodes ττ0 and the function δ with a root colored black if 
δr = −1. Note that δ depends on the choice of χ, but this will only come into play 
in the DIII-case so∗(2l) = su∗l (H) for l odd, where we list the two possibilities.

• The third column presents an associated standard Vogan diagram, which can for 
example be deduced from the Kac diagrams in [82, Reference Chapter, Table 7]. �

Remark B.11. Note that the theorem is no longer true if we work with conjugacy instead 
of inner conjugacy, as then the case so∗(4p) fails!

Remark B.12. It is clear that the converse of the theorem does not hold. It would be 
interesting to determine which extra conditions are needed to make the converse hold.
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Table 6
Satake diagrams, δ-function and Vogan diagrams, Type A/B/C.

Lie algebra Satake (X, τ, z) (δ, ττ0) Vogan (ε, ττ0)

sl(�,R)
� odd 1 �

sl(�,R)
� even

slp+1(H)
�=2p+1

1 2 �

su(p, � + 1 − p)
� odd,(�−2p+1)/2 odd

1 p
−1

+1
�

1 p

�
1 p

�

su(p, � + 1 − p)
� odd,(�−2p+1)/2 even

1 p

�

su(p, p)
�=2p−1

1
p

�

1
p

�

1
p

�

so(p, 2� + 1 − p)
�,p even

1 p

1 p
1 p/2

so(p, 2� + 1 − p)
�,p odd

1
2l+1−p

2

so(p, 2� + 1 − p)
� odd,p even 1 p

1 p/2

so(p, 2� + 1 − p)
� even,p odd

1
2l+1−p

2

sp2�(R) 1 � 1 � 1 �

sp(p, � − p)
� even 1 2 2p �

2 2p �
p �

sp(p, � − p)
� odd

2 2p �

sp(p, p)
�=2p

1 2 � � �/2 �

Appendix C. Invariant vectors and exterior algebras

In this appendix we will prove a result concerning the spectral subspaces Oq(Uθ\U)μi
, 

for certain fundamental spherical weights μi in the cases AII, CII and DIII. The proof will 
make use of the explicit results of Noumi and Sugitani [80], as well as some appropriate 
q-analogues of exterior algebras.
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Table 7
Satake diagrams, δ-function and Vogan diagrams, Type D.

Lie algebra Satake (X, τ) (δ, ττ0) Vogan (ε, ττ0)

so(p, 2� − p)
�,p odd

1 p
�− 1

�

1 p
�− 1

�

1
p−1
2

�− 1

�

so(p, 2� − p)
�,p even

1 p
�− 1

�

1
p
2

�− 1

�

so(p, 2� − p)
� odd,p even

1 p
�− 1

�

1 p
�− 1

�

1
p
2

�− 1

�

so(p, 2� − p)
� even,p odd

1 p
�− 1

�

1
p−1
2

�− 1

�

so(� − 1, � + 1)
� odd

1
�− 1

�

1
�− 1

�

1
�−1
2

�− 1

�

so(� − 1, � + 1)
� even

1 p
�− 1

�

1
�
2 − 1 �− 1

�

so(�, �)
� odd

1
�− 1

�

1
�− 1

�

1
�−1
2

�− 1

�

so(�, �)
� even

1 p
�− 1

�

1
�
2 − 1 �− 1

�

su
∗
� (H)

� even

1 2
�− 1

�

1
�− 1

�

1
�− 1

�

su
∗
� (H)

� odd

1 2
�− 1

−1

�
+1

1 p
�− 1

�

1
�
2 − 1 �− 1

�

1 p
�− 1

�

C.1. Noumi-Sugitani coideals

In [80] Noumi and Sugitani construct some quantum analogs of U(uθ) for certain invo-
lutions θ and g of classical type. The construction is based on finding explicit solutions J
of the reflection equation, from which one can build coideals BJ ⊆ Uq(u) which specialize 
to U(uθ). In [57, Section 6], Letzter shows that the coideals BJ are subalgebras of appro-
priate Bθ, where Bθ is the coideal corresponding to the involution θ that she constructs 
in the cited paper. Moreover it follows from [80, Theorem 1] and [59, Theorem 7.7] that 
one has equality of the invariant subspaces V BJ

� = V Bθ
� for all 	 ∈ P+.
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Table 8
Satake diagrams, δ-function and Vogan diagrams, Type E.

Lie algebra Satake (X, τ) (δ, ττ0) Vogan (ε, ττ0)

EI
1 2 3 4 5

6

EIV

EV
1 2 3 4 5 6

7

EV I

EV II

Table 9
Relevant spherical weights for the AII, CII and DIII cases.

Case g Relevant spherical weights
AII A2n−1 = sl2n �2,�4, · · · ,�2n−2

CII (� ≤ [n/2]) Cn = spn �2, �4, · · · , �2�
DIII (first case) D2� = so4� �2, �4, · · · , �2�−2

DIII (second case) D2�+1 = so4�+2 �2, �4, · · · , �2�−2

Let us give some more details regarding [80]. Let V = V�1 be the N -dimensional fun-
damental representation for g of classical type. Then, for the classical symmetric pairs 
considered in the cited paper, V ⊗ V contains only one non-trivial spherical representa-
tion, namely V�2 . A vector invariant under BJ is then given by

wJ =
N∑

i,j=1
Jijvi ⊗ vj ∈ V ⊗ V,

where {vi}Ni=1 is a basis of V and J =
∑

i,j Jijeij in terms of the matrix units eij . The 
matrices J are given explicitly for the classical symmetric pairs under consideration.

C.2. Classical and quantum exterior algebras

Let us consider the symmetric pairs AII, CII and DIII. We are concerned with those 
spherical weights μi such that τ(i) = i and the node i is connected to a black vertex 
in the Satake diagram. These spherical weights are summarized in Table 9, where we 
recall that we use the standard ordering for the Dynkin diagrams as can be found in the 
Tables 6 and 7.
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Recall that most of the representations V�i
can be constructed as exterior powers 

of the fundamental representation V�1 , see for instance [36, Section 5.5.2]. In the case 
An−1 = sln we have Λk(V�1) ∼= V�k

for k = 1, · · · , n − 1. In the case Dn = so2n we 
have Λk(V�1) ∼= V�k

for k = 1, · · · , n − 2. In the case Cn = spn the exterior powers are 
reducible and we have the decomposition

Λk(V�1) ∼=
[k/2]⊕
p=0

V�k−2p ,

with the convention that V�0 is the trivial representation. Observe that the weight space 
Λk(V�1)�k

is one-dimensional, since V�i
with i < k does not have the weight 	k.

For each V = V�1 as above, it is possible to construct a q-deformation Λq(V ) of 
the exterior algebra of V which has the same graded dimension as the classical one. 
The relations in Λq(V ) are more complicated that those of the classical exterior alge-
bra, but nevertheless we have the following result, see [38, Proposition 3.6] and [55, 
Proposition 4.6].

Proposition C.1. Let {vi}Ni=1 be a basis of V . Then there is a filtration F of Λq(V ) such 
that grFΛq(V ) is generated the vi with relations vi ∧ vj = −qijvj ∧ vi for some qij > 0.

From this result it can be readily seen that the elements vi1∧· · ·∧vik with i1 < · · · < ik
give a basis of Λk

q (V ). Hence dim Λk
q (V ) = dim Λk(V ) for k = 1, · · · , N . Moreover the 

Uq(g)-module algebra Λk
q (V ) decomposes as in the classical case. The algebra Λq(V ) can 

be realized as a subspace of the tensor algebra T (V ), see for instance [55, Section 3.4]. 
Write πΛ : T (V ) → Λq(V ) for the projection. Then we denote by π : T (V ) → grFΛq(V )
the map obtained by composing πΛ with the projection Λq(V ) → grFΛq(V ).

C.3. Spectral subspaces

The content of the previous subsections will be used for the following result.

Proposition C.2. Let μi be a spherical weight from Table 9 for AII, CII or DIII. Then 
the spectral subspace Oq(Uθ\U)μi

is contained in the algebra generated by Oq(Uθ\U)�2 .

Proof. Recall that by Theorem 4.44 the subspace of Uq(uθ)-invariant vectors in Vμi
is 

one-dimensional. Fix non-zero invariant vectors wi ∈ Vμi
for all i. Observe that if w is an 

invariant vector, then so is w⊗n for any n ∈ N, since Uq(uθ) is a coideal. Now consider 
the invariant vector w2 corresponding to μ2 = 	2. Suppose that, for each i as in Table 9, 
there exists some ni ∈ N such that the component of w⊗ni

2 in Vμi
is non-zero. Then this 

component is a non-zero multiple of wi. If this holds then the claim follows from

U(w2, v1) · · ·U(w2, vni
) = U(w⊗ni

2 , v1 ⊗ · · · vni
).
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Upon changing conventions, it is equivalent to prove the same statement for the algebra 
Oq(G)Bθ , where Bθ is Letzter’s coideal. Moreover we have Oq(G)BJ = Oq(G)Bθ , where 
BJ is the coideal of Noumi and Sugitani. In [80] a BJ -invariant vector wJ ∈ V ⊗ V is 
constructed explicitly for the cases AII, CII and DIII, where V = V�1 is the fundamental 
representation. The component of wJ in V�2 ⊆ V ⊗ V is non-zero. We will show in 
Lemma C.3 that w⊗m

J has non-zero component in V�2m for the appropriate values of m. 
Then the conclusion follows from the previous discussion. �

In the next lemma we will use the explicit invariant vectors wJ given in [80].

Lemma C.3. Let wJ be the appropriate invariant vector for AII, CII or DIII.

(1) For AII the component of w⊗m
J in V�2m is non-zero for 1 ≤ m ≤ n − 1.

(2) For DIII the component of w⊗m
J in V�2m is non-zero for 1 ≤ m ≤ � − 1.

(3) For CII the component of w⊗m
J in V�2m is non-zero for 1 ≤ m ≤ �.

Proof. (1) We have g = A2n−1 and V�1 has dimension N = 2n. The invariant vector is

wJ =
n∑

k=1

a2k(v2k−1 ⊗ v2k − qv2k ⊗ v2k−1),

where the a2k are non-zero. Applying the projection π we get π(wJ) =
∑n

k=1 bkv2k−1∧v2k

for some non-zero bk. It is enough to show that π(wJ)∧m �= 0 for 1 ≤ m ≤ n − 1. Let us 
focus on the term w2m = v1 ∧ v2 ∧ · · · ∧ v2m−1 ∧ v2m. It follows from the commutation 
relations that we have

v2j−1 ∧ v2j ∧ v2k−1 ∧ v2k = c · v2k−1 ∧ v2k ∧ v2j−1 ∧ v2j ,

for some c > 0. Then w2m appears with non-zero coefficient in π(wJ)∧m and hence 
π(wJ)∧m �= 0.

(2) We have g = Dn and V�1 has dimension N = 2n. We use the notation j′ =
N + 1 − j. First we consider the case when n = 2� is even. The invariant vector is given 
by

wJ =
�∑

k=1

a2k(v2k−1⊗v2k−qv2k⊗v2k−1)+
�∑

k=1

a(2k−1)′(v(2k)′⊗v(2k−1)′−qv(2k−1)′⊗v(2k)′),

where the coefficients are non-zero. Therefore its projection is given by

π(wJ) =
�∑

bkv2k−1 ∧ v2k +
�∑

b′kv(2k)′ ∧ v(2k−1)′ .

k=1 k=1
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Observe that (2k)′ > 2� for 1 ≤ k ≤ �. It is enough to show that π(wJ)∧m �= 0 for 
1 ≤ m ≤ � −1. As for the AII case, we see that the term w2m = v1∧v2∧· · ·∧v2m−1∧v2m

appears with non-zero coefficient, hence π(wJ)∧m �= 0. The odd case n = 2� + 1 is 
very similar. The only difference is that in wJ we also have a term proportional to 
vn ⊗ vn′ − vn′ ⊗ vn. The rest of the argument is completely identical.

(3) We have g = Cn and V�1 has dimension N = 2n. We will use the notation 
j′ = 2n + 1 − j and consider the parameter � ≤ [n/2]. We have the invariant vector

wJ =
�∑

k=1

a2k(v2k−1 ⊗ v2k − qv2k ⊗ v2k−1)

+
�∑

k=1

a(2k−1)′(v(2k)′ ⊗ v(2k−1)′ − qv(2k−1)′ ⊗ v(2k)′)

+
n∑

j=2�+1

(a′jvj ⊗ vj′ − a′−1
j vj′ ⊗ vj) +

2�∑
j=1

a′′j vj ⊗ vj′ ,

where the coefficients are non-zero. Therefore applying the projection we get

π(wJ) =
�∑

k=1

bkv2k−1 ∧ v2k +
�∑

k=1

b′kv(2k)′ ∧ v(2k−1)′ +
n∑

j=2�+1

cjvj ∧ vj′ +
2�∑
j=1

c′jvj ∧ vj′ .

First we show that π(wJ)∧m �= 0 for 1 ≤ m ≤ �. Let us consider again w2m = v1 ∧ v2 ∧
· · · ∧ v2m−1 ∧ v2m. We claim that this element arises only from products of the terms 
v2k−1 ∧ v2k with 1 ≤ k ≤ �. Indeed, as j′ > n for j ≤ n and j′ ≤ n for j > n, the element 
w2m can not contain any of the terms vj ∧ vj′ . Then, as in the other cases, we conclude 
that w2m appears with non-zero coefficient and hence π(wJ)∧m �= 0.

Finally, since Λ2m
q (V ) is reducible, we still need to show that we obtain a non-zero 

component in V�2m . Recall that the fundamental representation V�1 of Cn has weights 
{λi}ni=1 ∪ {−λi}ni=1, where λi = 	i − 	i−1 and we use the convention 	0 = 0. The 
vectors vi for i = 1, · · · , n have weight λi. Then we see that the term w2m has weight ∑2m

i=1 λi = 	2m and hence belongs to V�2m . �
Appendix D. Computations for the symmetric pair of type FII

We realize the root system of g = f4 explicitly in R4 with the usual orthonormal basis 
{εr} by putting

α1 = 1
2(ε1 − ε2 − ε3 − ε4), α2 = ε4,

α3 = ε3 − ε4, α4 = ε2 − ε3.



K. De Commer, M. Matassa / Advances in Mathematics 366 (2020) 107029 93
In particular, with dr = 1
2(αr, αr) we have d1 = d2 = 1/2 and d3, d4 = 1. Then 	1 = ε1, 

and V = V�1 is a quasi-minuscule 26-dimensional ∗-representation of Uq(f4). To realize 
it explicitly, let us use the notation

[n] = qn/2 − q−n/2

q1/2 − q−1/2 ,

so in particular [1] = 1, [2] = q1/2 + q−1/2 and [3] = q+1 + q−1. Fix in V an orthonormal 
basis

es0k , fs1s2s3s4 , e0, e
′
0, 1 ≤ k ≤ 4, si ∈ {±},

and put

f0 = [2]−1(e0 + [3]1/2e′0),

so that f0 is a unit vector. Then we can let Uq(f4) act uniquely by the following rules: the 
vectors fs1s2s3s4 have weight 1

2
∑

i siεi, the vectors e±k have weight ±εk, and the vectors 
e0, f0 have weight zero. Further, the Fr act as in Diagram 1.

The operators Er = KrF
∗
r act in the obvious way by the adjoint operation, for example

E1f−+++ = [2]1/2f0, E1f0 = q1/2[2]1/2f+−−−,

E1e0 = q1/2[2]−1/2f+−−−,

E2e
−
4 = [2]1/2e0, E2e0 = q1/2[2]1/2e+

4 ,

E2f0 = q1/2[2]−1/2e+
4 .

Put X = {α2, α3, α4}.

Lemma D.1. On basis vectors, we have the following action of TwX
,

TwX
fs1s2s3s4 = s2s4q

9/4fs1,−s2,−s3,−s4 ,

TwX
e±1 = e±1 , TwX

e±2 = q5/2e∓2 , TwX
e±3 = −q5/2e∓3 , TwX

e±4 = q5/2e∓4

and

TwX
e0 = −q3e0, TwX

f0 = f0 − q3/2([3] − 2)e0.

Proof. The longest word in WX is given by

wXε1 = ε1, wXεr = −εr for r ∈ {2, 3, 4},

with reduced expression

wX = sε2sε3sε4 = (s4s3s2s3s4)(s3s2s3)s2.
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e+1

F1 q−1/4

f++++

F2 q−1/4

f+++−

F3 q−1/2

f++−+
F2

q−1/4 F4

q−1/2

f++−−
F1

q−1/4 F4

q−1/2
f+−++

F2

q−1/4

e+2

F4

q−1/2
f+−+−

F1

q−1/4 F3

q−1/2

e+3

F3

q−1/2
f+−−+

F1

q−1/4 F2

q−1/4

e+4

F2 q−1/2[2]1/2

f+−−−

F1 q−1/2[2]1/2

e0

F2 [2]1/2

F1

[2]−1/2

f0F2

[2]−1/2

F1 [2]1/2

e−4
F3

q−1/2 F1

q−1/4
f−+++

F2

q−1/4

e−3
F4

q−1/2 F1

q−1/4
f−++−

F3

q−1/2

e−2

F1

q−1/4
f−+−+

F4

q−1/2 F2

q−1/4

f−−++

F2

q−1/4
f−+−−

F4

q−1/2

f−−+−

F3 q−1/2

f−−−+

F2 q−1/4

f−−−−

F1 q−1/4

e−1
Diagram 1. Action of the Fr on V .
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Now consider for Uqr (su(2)) the spin 1/2-representation and spin 1-representation 
determined by respective orthonormal weight bases {v±1/2} and {v−, v0, v+} with actions

Frv+1/2 = q−1/2
r v−1/2, Frv+ = q−1

r (qr + q−1
r )1/2v0, Frv0 = (qr + q−1

r )1/2v−.

Then with respect to these bases, we have from (1.14) that the Lusztig braid operator 
Tr acts via

Trv+1/2 = −q1/2
r v−1/2, Trv−1/2 = q1/2

r v+1/2,

Trv+ = qrv−, Trv− = qrv+, Trv0 = −q2
rv0.

One can then easily compute from this the action of TwX
on the e±r . For the fs1s2s3s4

one can compute TwX
on f++++, and use the formula (1.17) for the remaining f+s2s3s4 . 

For the f−s2s3s4 one can then use the U ′
q(gX)-isomorphism f+s2s3s4 �→ f−s2s3s4 . Finally, 

for e0 the value of TwX
is directly computed. Since e0 − [2]f0 is a U ′

q(gX)-fixed vector, it 
must also be a TwX

-fixed vector, from which the value of TwX
f0 can be computed. �

Consider now the enhanced Satake diagram (X, id, 1) with associated Satake involu-
tion θ and coideal ∗-subalgebra Uq(fθ4) ⊆ Uq(f4). Using that α+

1 = −1
2 (ε2 + ε3 + ε4) and 

that z1 = 1, consider as in (4.27) the generator

C1 = E1 − q3/4TwX
F1T

−1
wX

K1 ∈ Uq(fθ4).

Then by direct computations using Lemma D.1 one finds the following values:

C1e
+
1 = −q13/4f+−−−, C1e

−
1 = q1/4f−−−−,

C1f++++ = q1/4e+
1 − q−5/2[2]1/2f0 + q−1[2]1/2([3] − 2)e0,

C1f−+++ = [2]1/2f0 − q−11/4e−1 , (D.1)

C∗
1f+−−+ = q1/4e+

4 , C∗
1f−−−+ = q−1/4e+

4 .

Let now K be the ∗-compatible ν-modified universal K-matrix for Uq(fθ4).

Lemma D.2. There exists a non-zero scalar a ∈ C such that

aK e+
1 = e−1 , aK f+s2s3s4 = −q−3f−s2s3s4 ,

aK e0 = −q−7/2e0, aK f0 = q−1/2f0 + [2]−1/2q−1/4(q3 − q−3)e−1 − q−2([3] − 2)e0.

Proof. Since

K : V (ω) �→ V (−wXω) ⊕ V (−wXω − ε1) ⊕ V (−wXω − 2ε1)
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on weight spaces, there will exist a non-zero a ∈ C such that aK e+
1 = e−1 . Now since 

K commutes with C1 and C1e
+
1 is a multiple of f+−−−, we can compute the action of 

aK on f+−−− using the formulas in (D.1). As K commutes with U ′
q(gX), this then 

determines aK on all f+s2s3s4 . Since e0 is a scalar multiple of F2C
∗
1f+−−+, we can once 

again use the commutation of K with C∗
1 and F2 to determine the value of aK on e0.

Finally, using that

C1aK f++++ = −q−3C1f−+++ = −q−3([2]1/2f0 − q−11/4e−1 )

equals

aK C1f++++ = q1/4e−1 − q−5/2[2]1/2aK f0 − q−9/2[2]1/2([3] − 2)e0,

we find the expression for aK f0. �
Consider now the span of the ZV (ξ, η) in Oq(Zν) with its left Uq(f4)-action

x � ZV (ξ, η) = ZV (S(x(1))∗ξ, x(2)η).

Write

z0 =
∑

s2,s3,s4

as2,s3,s4ZV (f−s2s3s4 , f+s2s3s4),

where

a+++ = 1, a++− = q−1, a+−+ = q−3, a+−− = q−4,

a−++ = q−5, q−+− = q−6, a−−+ = q−8, a−−− = q−9.

Write further

z+ = ZV (e0 − [2]f0, e
+
1 ), z− = ZV (e−1 , e0 − [2]f0).

Then a straightforward computation shows the following lemma.

Lemma D.3. The elements z0, z+, z− are U ′
q(gX)-invariant, and

z = q5/4z+ − [3]
[2]1/2

z0 + q−41/4z−

is a highest weight vector for Uq(f4) at weight ε1.

Proposition D.4. The element φ(z) is a non-zero element in Oq(Uθ\U)�1 .
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Proof. By Lemma D.3 and equivariance of φ it is clear that φ(z) ∈ Oq(Uθ\U)�1 . To 
see that φ(z) �= 0 it is sufficient to compute that ε(φ(z)) �= 0. We have however by 
Lemma D.2 that

aε(φ(z))

= q5/4〈e0 − [2]f0, aK e+
1 〉

− [3]
[2]1/2

∑
s2,s3,s4

as2s3s4〈f−s2s3s4 , aK f+s2s3s4〉 + q−41/4〈e−1 , aK (e0 − [2]f0)〉

= [2]−1/2(q−3[3]
∑

as2s3s4 + q−21/2[2](q−3 − q3))

= q−1/2[2]1/2(q−3[3](1 + q−3 + q−5 + q−8) + q−10(q−3 − q3))

> 0. �
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