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Building information modeling (BIM) in industrialized bridge construction is usually performed based on initial design in-
formation. Differences exist between the model of the structure and its actual geometric dimensions and features due to the
manufacturing, transportation, hoisting, assembly, and load bearing of the structure. (ese variations affect the construction
project handover and facility management. (e solutions available at present entail the use of point clouds to reconstruct BIM.
However, these solutions still encounter problems, such as the inability to obtain the actual geometric features of a bridge quickly
and accurately. Moreover, the created BIM is nonparametric and cannot be dynamically adjusted. (is paper proposes a fully
automatic method of reconstructing parameterized BIM by using point clouds to address the abovementioned problems. An
algorithm for bridge point cloud segmentation is developed; the algorithm can separate the bridge point cloud from the entire
scanning scene and segment the unit structure point cloud. Another algorithm for extracting the geometric features of the bridge
point cloud is also proposed; this algorithm is effective for partially missing point clouds.(e feasibility of the proposed method is
evaluated and verified using theoretical and actual bridge point clouds, respectively. (e reconstruction quality of BIM is also
evaluated visually and quantitatively, and the results show that the reconstructed BIM is accurate and reliable.

1. Introduction

Industrialized construction at present needs to consider not
only the industrialization of the building construction
process but also the building life cycle. (e life cycle of
bridges includes design, construction, completion, operation
and maintenance, and demolition phases.(e operation and
maintenance stage is a crucial phase, which accounts for half
of the total life cycle cost [1]. (e National Institute of
Standards and Technology reported that 68% ($10.6 billion)
of the additional costs from inadequate interoperability in
the construction industry are incurred by building owners
and operators, and 85% ($9.0 billion) of these costs are
generated in the operation and maintenance phase [2]. (e
promotion and application of building information mod-
eling (BIM) technology provides benefits to traditional and
industrialized (high-technology) construction. Compared to

the application of BIM in traditional construction, BIM in
industrialized construction can realize modular design and
industrial assembly.(e reasonable and effective application
of BIM technology in the industrialized construction of
bridges can result in large reductions in operation and
maintenance costs and improvement of the status quo [3].
(is research is dedicated to provide technical support for
the industrialized construction of bridges, thus helping to
accelerate the development of industrialized construction.

BIM facilitates information exchange for operation and
maintenance processes in architecture, engineering, and
construction industries. In bridge construction projects,
BIM is usually reconstructed according to 2D drawings in
the design stage (as-designed BIM). However, construction
errors, construction changes, and several uncontrollable
factors lead to inconsistencies between the bridge and the
design [4]. (erefore, as-designed BIM cannot accurately
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reflect the actual geometric dimension and feature infor-
mation of bridges. (is inadequacy affects the accuracy of
using BIM statistical engineering quantities and 3D finite
element analysis. Hence, BIM cannot represent the original
geometric deformation information nor support comple-
tion, acceptance, operation, and maintenance. Even though
the BIM reconstructed based on 2D drawing is consistent
with the geometric features of the bridge, the geometric
features change as the service time of the bridge in the
process of operation and maintenance phase [5]. (e gap in
the geometric features of the two gradually enlarges.
(erefore, the reconstruction of parameterized and dy-
namically updateable BIM highly consistent with the actual
geometric shape of bridges is essential for the completion,
acceptance, operation, and maintenance of bridges in in-
dustrialized construction.

Research efforts in recent years have focused on
reconstructing BIM with the aid of point clouds from ter-
restrial laser scanning (TLS) to cater to different needs [6].
TLS is a precise measuring equipment that can capture
reality. (e scanned point cloud data can reach millimeter-
level accuracy and are as realistic as an image [7]. (e model
reconstructed in initial research is not a semantically rich
BIM but a mesh model that cannot carry information.
Although current research uses the point cloud plane rec-
ognition and extraction algorithm to reconstruct BIM, most
of the reconstructed BIM are houses with a single structure
type, and most of them are planar structures with walls and
floors [8]. Studies on the reconstruction of bridge point
cloud BIM are relatively few, and the BIM reconstructed by
these studies is not parameterized.(e geometric dimension
accuracy of reconstructed BIM cannot meet certain re-
quirements, and the BIM cannot be dynamically updated.
(e structure of a bridge is complex, and the cross-sectional
shape and spatial position of its components are changeable
compared with those of a house. In the same situation,
complex structure types are likely to result in incomplete
scans and loss of point clouds. (erefore, new algorithms
need to be developed to solve various problems, such as
quickly and automatically segmenting the unstructured
point cloud of a bridge, accurately extracting a bridge’s
geometric features when the point cloud is partially missing,
and reconstructing a parameterized and dynamically
updateable BIM based on geometric feature data [9].

To address this research gap, this study proposes a
method of automatically reconstructing bridge parametric
BIM by using point cloud data. One of the contributions of
this work is the development of a novel point cloud seg-
mentation algorithm. (e algorithm has a simple principle,
few parameters to be adjusted, and high segmentation ac-
curacy, and it can maximize the avoidance of “over- and
undersegmentation.” (e algorithm separates the entire
bridge point cloud from the scanned scene to remove the
ground point cloud and then divides the bridge structure
into units to obtain the point cloud of each component. A
new point cloud geometric feature extraction algorithm that
has a good boundary fitting effect is also proposed. It can
perform high-precision boundary fitting even with local
missing points on the point cloud boundary. To achieve the

transition from point cloud to BIM and obtain a native BIM
instead of a mesh model, a “link” must be formed between
the point cloud and the BIM. (is study uses the visual
programming software Dynamo to handle the extracted
point cloud geometric features [10, 11] and drive the
modeling software Autodesk Revit to reconstruct and as-
semble the BIM components [12]. (e rest of this paper is
organized as follows. Section 2 introduces the research
background of the three aspects of point cloud BIM re-
construction: point cloud segmentation, point cloud geo-
metric feature extraction, and parametric modeling. Section
3 describes the implementation method and technical
process of the entire point cloud BIM reconstruction. It also
tests the proposed algorithm with the theoretical point cloud
in completing theoretical point cloud segmentation, geo-
metric feature extraction, and parameter modeling. Section 4
compares the developed method with an existing segmen-
tation algorithm and uses an actual bridge point cloud to
reconstruct its BIM, thus verifying the effectiveness of the
method. Visual and quantitative analyses of the BIM ac-
curacy of point cloud reconstruction are carried out, and the
reliability of BIM reconstruction via this method is further
demonstrated. Section 5 summarizes the research and
clarifies the directions for future work.

2. Related Work Background

In general, 3D reconstruction involves transforming point
clouds into a 3D mesh model. (is kind of model recon-
struction is simple, but unlike BIM, it cannot carry infor-
mation on the life cycle of buildings. BIM reconstruction
must undergo the two key steps of point cloud segmentation
and point cloud geometric feature extraction.

2.1. Point Cloud Segmentation. (e point cloud obtained by
any method is a collection of discrete points, and what is
used in research is usually only one or a few subsets.
(erefore, the point cloud must be segmented. Traditional
point cloud segmentation is generally performed manually,
but the efficiency is extremely low. Many researchers have
attempted to automate the segmentation of point clouds in
recent years. For example, Schnabel et al. [13] proposed a
RANSAC algorithm to extract the rule part of point cloud
data and proved that the algorithm performs well even in the
presence of many outliers and high noise. Günther et al. [14]
used an RGB-D camera to capture a series of 3D point
clouds, reconstructed a semantic map of the indoor envi-
ronment in an incremental and closed-loop manner, and
performed model-based object recognition. Bogdan and
Cousins [15] utilized the RANSAC method to segment
messy desktop scenes in a house. (e method performs well
in terms of versatility and stability, but when the number of
scene point clouds is large, the algorithm consumes a large
amount of computation time. Rabbani et al. [16] proposed a
cylinder detection algorithm that decomposes cylinder de-
tection into two steps: orientation estimation and position
and radius estimation. Ruodan et al. [17] introduced a top-
down detection method for the detection of reinforced
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concrete bridge slabs, piers, pier caps, and beam compo-
nents. (is method uses a sliding algorithm to separate the
beam and slab components from the pier components, but
the method does not consider the segmentation of the scene
point cloud around the bridge. Richtsfeld and Vincze [18]
presented a segmentation algorithm that can be directly used
in the point cloud itself. (e algorithm is based on the
principle of radial reflection and has good robustness to
small object point clouds without scene information. George
et al. [19] used features based on normal vector and point
neighborhood flatness to segment large-scale scenic spots.
(e segmentation algorithm is suitable for the classification
of scene objects but has certain limitations in the segmen-
tation of bridge structural units.

(ese extant studies have achieved good segmentation
results in their experiments. However, the practicability of
the segmentation algorithms is limited, and very few suitable
segmentation algorithms are available for the special
structure type of bridges. Moreover, the purpose of point
cloud segmentation in these studies is to reconstruct the
parametric BIM to be in accordance with the actual geo-
metric characteristics of bridges. (e purpose of segmen-
tation differs, which makes these segmentation algorithms
nonuniversal. Several researchers have attempted to convert
3D point cloud data into depth images and used image
segmentation algorithms for processing. However, a certain
amount of point cloud data may be lost during the con-
version of 2D images. (is method is only suitable for small
scene point clouds with a small amount of data and low-
precision requirements. We need a segmentation algorithm
that can be used to process large scenes, massive ground, and
bridge point clouds. Such an algorithm is suitable for the
point cloud segmentation of all similar bridge structure
types, namely, simply supported beam bridges, continuous
rigid frame bridges, and other beam bridges with simple
structures. (ey are all featured as simple bridge structure
and single structural component. (ey can also be used for
the local structure segmentation of complex bridge
structures.

2.2. Point Cloud Geometric Feature Extraction. Geometric
feature extraction of the target point cloud is required in
obtaining the geometric feature number of the target point
cloud. For example, the boundary contour of the point cloud
is extracted, the axis line of the point cloud is determined,
and the plane of the point cloud is fitted. (ese steps are also
the premise of point cloud reconstruction for parameterized
BIM. Gumhold et al. [20] constructed a covariance matrix
based on the measurement point field.(rough a covariance
analysis, the points were divided into crease, boundary,
inflection, and plane points, and a minimum spanning tree
was established for the various feature points to construct
lines. Kim et al. [21] described a method of extracting road
marking features from point cloud data and LiDAR sensor
intensity information. (is method is effective for uncali-
brated LiDAR sensors. Ramamurthy et al. [22] extracted the
geometric and topological features of a line segment from
the 2D cross-sectional data of a 3D point cloud to

conveniently “extract” design features, such as size, from the
point cloud. However, the noise points and the roughness of
the target surface complicate the extraction process. Verma
et al. [23] developed an algorithm to detect building roofs
and terrain surfaces by using a 3D connected component
analysis to identify continuous smooth regions. Zhang et al.
[24] proposed a scattered point cloud feature extraction
method based on density space clustering that uses a new
feature detection operator. However, the method is only
effective for models with large differences in potential
surface shapes. Deng et al. [25] presented a point cloud
feature extraction method based onmorphological gradients
that can effectively extract large-scale, hole-like point cloud
data features.

Previous research has studied the geometric feature
extraction of point clouds of many basic structures but did
not consider the accurate extraction of geometric infor-
mation when the point cloud is partially missing. (e
geometric feature extraction algorithm proposed in this
study can effectively solve this problem.

2.3. Point Cloud BIM Reconstruction. Currently, many
methods can be used to reconstruct BIM from point cloud
data. Gao et al. [26] created a BIM of ancient buildings by
collecting point cloud data and extracting the features of
these structures. Pepe et al. [27] completed the transfor-
mation from a point cloud to a 3D model by using a 3D
modeling software and developed toolkit. However, the
reconstructed model is not a real BIM. Jung et al. [28]
completed the creation of the interior and exterior walls of
buildings through point cloud segmentation and feature
recognition. However, the created model has a single
structure type. Danielle et al. [29] proposed the use of the
data processing algorithm provided by the point cloud li-
brary and several functions from the extensible building
information modeling toolkit. However, this method only
considers BIM reconstruction of regular geometric planes
(e.g., walls and floors) and thus has certain limitations.
(omson and Boehm [30] used 3D laser scanning tech-
nology to collect subway point clouds and developed a 2D
vector map by using the point cloud slice of each station
floor. (ey created a BIM by combining the vector diagram
and field situation. Danielle et al. [31] proposed a system that
converts indoor point clouds to BIM. (e system can
produce excellent results with a small amount of point cloud
information, but it is mainly suitable for point clouds on flat
surfaces, such as walls and floors.

(e BIM reconstructed by these research methods has
certain limitations, such as low degree of automation,
unparameterized models, and inability to dynamically up-
date based on data. (is study develops a new technology to
automatically reconstruct a bridge point cloud BIM and
overcomes these limitations.

3. Methods

3.1. Overview. (e proposed method has three parts. First,
the unstructured point cloud is segmented. Second, slicing
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and geometric feature extraction of the segmented point
cloud are performed. Lastly, the model is reconstructed
based on the extracted geometric feature data. (e first part
mainly involves point cloud preprocessing and segmenta-
tion. In point cloud segmentation, the ground point cloud is
removed first before segmenting the bridge point cloud.
Element segmentation refers to dividing the superstructure
and substructure of a bridge into separate component point
clouds. (e second part includes component slicing,
boundary fitting of the point cloud slice, and calculation of
the boundary intersection coordinates. (e third part
comprises the generation of the intersection coordinate data
table, retrieval of the table through visual programming to
rebuild components, and assembly of the components. (e
specific process is illustrated in Figure 1.

3.2. Point Cloud Segmentation. Before the reconstruction of
the actual bridge point cloud, two different types of theoretical
point clouds are tested to evaluate the entire technical process.
(ese theoretical point clouds are regular point clouds without
noise points that do not require preprocessing [32]. Figure 2(a)
shows the first group of flat surface point clouds, which rep-
resent the ground and the bridge substructure and super-
structure from bottom to top. For this type of point cloud, the
stacking direction of the structure is parallel to that of theZ-axis
of the coordinate system.(emutation of the number of point
clouds in the unit interval along the direction of these clouds,
which is called the interval density of point clouds, is used as the
basis of point cloud segmentation.

(e average density of point clouds and the interval value
must be determined to avoid the over- and undersegmentation
caused by excessively large or extremely small interval values.
(e concept of neighborhood query is used in the calculation of
the average density. (e point cloud is divided into N intervals
along the stacking direction of the Z-axis of the point cloud
model, and the length of each interval is set to n, as shown in
Figure 2(b). (eoretically, a small n value is good. However,
considering that the point cloud is a discrete point set, n should
be greater than the average point density ρ to avoid adding null
values to the region [33, 34]. Subsequently, with the help of the
mature Kd-tree neighborhood query method, b points
(K1, . . . , Kb) are randomly selected from the point cloud as
query objects. Each query object Ki is taken as the center of the
circle, and the circle with radius R is considered a range
threshold. (e value of R is an adjustable parameter. Different
types of point clouds need to be tested to determine the most
appropriate value because of the different scanning densities
and modes. As shown in Figure 3, the number of points in the
query range PKi and ρ should satisfy the following equation:

ρ � 
PKi/ R

2 ∗ π  

b
(i ∈ (1, b)),

n> ρ> 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

(rough this calculation procedure, an n value that
satisfies the conditions of the algorithm is selected, the
number of point clouds in each interval length n is

determined, and the interval density map along the stacking
direction of the Z-axis is established, as shown in Figure 4.
(e resulting graph has three extreme points (1, 2, and 3),
and each point represents the position with the largest
number of point clouds in the Ni region. Given the same
scanning environment and the same length of n interval
conditions, the entire ground and beam bottom point clouds
are divided into separate intervals. (e point cloud of the
column is a circle consisting of contour point clouds in a
single interval, and the number of points is smaller than that
of the ground and beam bottom point clouds.(e number of
points in each area from the bottom to the top of the column
is almost the same. (e corresponding positions of extreme
points 1 and 2 denote the numbers of ground and beam
bottom point clouds, respectively, and extreme point 3
represents the number of point clouds on the top of the
beam.

(e corresponding interval of extreme point 1 can be
directly used to remove the ground, whereas that of extreme
point 2 can be utilized to separate the column and the beam.
(e point cloud after segmentation is shown in Figure 5.

To approximate actual construction bridge point clouds,
the second group of theoretical point clouds is regarded as a
group of nonplane ground point clouds. Each point cloud
consists of two double cylinders, one tie beam, and two
supports, as shown in Figure 6. No flat ground point cloud
exists in the scanned point cloud of the bridge. (e pro-
cessing of the point cloud of the nonplane surface is different
from the processing of the abovementioned method because
the point cloud in the interval at the junction of the column
and ground has lost the features of extreme points. As a
result, the ground point cloud cannot be separated using the
density characteristics. (erefore, other methods need to be
applied to remove such clouds.

(e density map in the stacking direction of the Z-axis is
calculated, and local element segmentation is conducted.
Figure 6(b) shows five extreme points. Compared with the
situation in the first group of experiments, the extreme
points corresponding to the ground point clouds are
missing, and the corresponding extreme points of the tie
beam and support are added. Extreme points 1 and 2, which
correspond to the bottom and top surfaces of the tie beam,
respectively, appear at the 45th interval. Extreme point 3
represents the junction of the column top and the bearing.
(e segment point cloud represented by other extreme
points is unchanged. As shown in Figure 7, the bent cap and
support can be separated. For the segmentation of the
remaining nonplanar surface and double cylinder point
clouds, the point cloud projection filtering segmentation
algorithm must be applied to remove the former.

(e first step in the automatic segmentation algorithm
(Algorithm 1) of point cloud projection filtering is the
projection of the nonplanar ground point cloud of the
double cylinder to the xoy coordinate plane. (is step
promotes the rapid increase in the density of the point
clouds at the boundary of the column, as shown in Figure 8.
(e m domain points of each point P are determined, the
average distance from each point to its domain point is
calculated, and the distance distribution is statistically
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analyzed. (e corresponding mean value μ and standard
deviation σ are obtained under the assumption that the
distribution is Gaussian. If the distance between the domain
point and the point exceeds μ+Tσ, where T is the threshold
value of the standard deviation multiple that needs to be
adjusted according to the actual situation, then the point is
marked as an outlier. (e formula is shown in equations

(2)∼(5) [35, 36]. After multiple sets of experimental tests,
when the value of m is 50, 100, and 200 and the value of T is
in the range of 0.1 to 1, the segmentation effect presents the
best. (e appropriate m and T values can be selected from
the above range of values according to the actual situation of
the point cloud:
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where Dn×m−1 denotes the distance matrix, Dij is the Eu-
clidean distance between a point and its neighborhood

points, and D is the average distance between each point P
and its neighborhood points [37].
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(e values of m and T are set to 50 and 0.5, respectively.
(e point cloud outside the boundary of the outer column is
removed in the first iteration. (erefore, the original point
cloud corresponding to the nonflat ground before point
cloud projection is also deleted, and only the point clouds of
the column and tie beam projection remain. To separate the
column and tie beam point clouds, the threshold value is
adjusted to 0.3, and another iteration is performed. (e
middle tie beam point cloud is then removed, leaving only
the column point cloud. After saving the two cylindrical
point clouds, the coordinate range projected by this point
cloud is regarded as a judgment condition, and the point
cloud saved in the first iteration is judged based on this
condition [38]. (e tie beam can be completely divided after
removing the point cloud within the coordinate range, and
this process is called backsubstitution, as shown in Figure 9.

(e segmentation results of the two groups with different
types of theoretical point clouds imply that the segmentation
algorithm that combines the concept of interval density and
projection filtering has a good effect on theoretical point
cloud segmentation.

3.3. Point Cloud Geometric Feature Extraction andModeling.
After the segmentation of the second group of point clouds,
the overall shape of the theoretical point cloud resembles
two types of simple geometric structures, namely, cylindrical
and cuboid. To facilitate the calculation, the two structures
are sliced to transform the 3D problem into a 2D problem to
a certain extent [39, 40], as shown in Figure 10.

Before slicing the point clouds, the appropriate slice
thickness Δ, which is related to the average density ρ of the
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point clouds, should be determined. However, because point
cloud projection filter segmentation has a certain impact on
point cloud density, ρ should be recalculated before point
cloud slicing. In general,Δ should be greater than ρ. Zi and Zj
represent the z-coordinate values of the point clouds on the
upper and lower surfaces of the slices, respectively. (e least
squares method can be directly used to fit the slice of the
cylinder point cloud and obtain the feature data of the center

coordinates and the radius of each slice [41, 42]. (e
z-coordinate value of the center of each slice is the difference
between the average values of Zi and Zj. Figure 11 shows the
axis fitting of the point coordinates of the theoretical cyl-
inder point cloud.(e fitting points do not fluctuate because
the point cloud is theoretical [43].

(e bent cap point cloud is adopted as an example of the
cuboid structure. (e point cloud is sliced into rectangular
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Figure 6: Group 2 theoretical point cloud: (a) nonplanar ground point cloud; (b) Z-axis stacking direction interval density of the point
cloud.
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Input: initial point cloud Datan× 3; neighborhood value m; threshold T;
Output: processed point cloud PCn-i× 3
(1) Datax�Datan× 3 (:, 1);
(2) Datay�Datan× 3 (:, 2);
(3) PC� [Datax, Datay];//Project the point cloud of the precast box girder to the y direction.
(4) Neighbor search (PC);//Find m neighborhood points of each point in PC.
(5) Dn × m-1;//Construct the distance matrix.
(6) Dn × 1 �Dn × m-1 × [1/m]m-1 × 1;//Calculate the average distance between each point and its domain point.
(7) μ, σ;//Calculate the mean and standard deviation of the distribution.
(8) for i� 0: n do
(9) if Di>μ +Tσ;//Determine the points with average distances that are greater than the threshold.
(10) then
(11) Dn-i × 1 � Dn × 1\Di;//Delete eligible distances.
(12) PCn-i × 3;//Determine the coordinates after the segmentation.
(13) end if
(14) end for
(15) return PCn-i × 3

ALGORITHM 1: Point cloud projection filter segmentation.
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Figure 10: Slice diagram of the cylinder point cloud.
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sections, as shown in Figure 12. Given that a part of the point
cloud of the actual bridge beam body is a polygon, the
coordinate data of the four corners of the rectangular slice
should be obtained to establish the cap beam model. To
rapidly extract the corner coordinates of shapes with four or
more edges, this study proposes a boundary fitting algorithm
for extracting corner data. (e algorithm is divided into the
following steps:

(1) A random angle α is rotated around the Z-axis in the
counterclockwise direction, and a seed point P1 is
randomly selected.

(2) (e point P2 nearest to P1 is determined and used as
the new seed point. After traversing all points during
the turn, the points are sorted in accordance with
Euclidean distance.

(3) (e appropriate grid size L is selected, and the
number of points in grid N is calculated. (en, the
assessment conditions are set, and the grid points
that are less thanM are skipped. (e random sample
consensus algorithm is used to fit the grid points with
the composite conditions, and the corresponding
slope Ki is calculated.

(4) All Ki values are obtained and sorted. (e line
equation of each side is derived using the slope and
known points. (en, the intersection coordinates of
two adjacent lines are calculated, and α is rotated
clockwise around the Z-axis. Finally, the corner
coordinates of each slice are obtained.

After completing the feature data extraction of the
theoretical point cloud, the visual programming software
Dynamo is used to retrieve the feature data. (e BIM
modeling software Revit is utilized to complete the para-
metric creation of the points, lines, and volumes, as shown in
Figure 13. Given that the reconstructed model is created in
Revit, it supports parameter adjustment and material
property assignment, thereby addressing the limitations of
current reconstruction methods and realizing the theoretical
transformation from a point cloud to BIM [44, 45].

4. Experiments

A construction bridge located in a high-altitude area in
China is selected as the object of this experiment, and an
industrialized construction method is adopted. Considering
the actual situation of the construction site, the gully part
with six spans is taken as the scanning target. Each span has
four standard precast box girders with a length of 20m. (e
gully consists of 24 precast box girders, 10 single columns, 5
tie beams, and 7 capping beams. (e surface layer of the
precast box girder is uneven and has numerous sundries
because the wet joints and deck pavement of the bridge are
not completed. (erefore, this layer is not scanned.

4.1. Experimental Overview. A FARO Focus3d X 330 3D
laser scanner is used in the experiment. Scanning is con-
ducted at night to avoid capturing images of various moving
objects in the scanned data during daytime. Eight scanning

stations are arranged in advance in accordance with the
terrain and environment of the site, as shown in Figure 14.
(e scanning parameters and scanning time for each station
are consistent.

(e registration accuracy of the point clouds of each
station can reach 2mm when the target ball is used. Pre-
liminary noise reduction and point cloud format transfor-
mation are performed. During the exportation of point
clouds, preliminary sampling must be conducted to avoid
exporting an excessive amount of point cloud data; a large
amount of exported data can affect the subsequent algorithm
process. (e resulting point cloud after the preprocessing is
depicted in Figure 15.

To remove the ground point cloud, the vertical interval
density of the entire bridge is calculated to realize the po-
sition segmentation of the upper and lower structures of the
bridge, as shown in Figure 16. As a result, the upper part
point cloud no longer participates in the calculation, and the
time efficiency can be improved.

During the removal of the ground point cloud, m and T
are set to 100 and 0.2, respectively, and four loop iterations
are performed. Seven point clouds of the edge contour of the
cap beam and the contour point clouds of the edges of the tie
beam and column are obtained. In addition, the ground
point cloud is removed, as shown in Figure 17. Two loop
iterations are performed during the division of the double
columns and tie beam, and the values ofm and Tare 100 and
0.3, respectively.

In the division of the tie beam and double column, them
value is 100, and the T value is 0.3. (e ground points are
deleted after the first iteration calculation, and the tie beam
point cloud is deleted with the same parameters in the
second iteration; thus, only the double column point cloud
remains, as shown in Figure 18. (e projection coordinate
range is replaced with the initial point cloud to segment the
tie beam, as shown in Figure 19.

(e segmentation effect of the point cloud projection
filtering algorithm is verified. Specifically, the segmentation
algorithm called “region growing algorithm based on nor-
mal vectors and curvature” (RGNC) is used to segment and
compare the first and second groups of theoretical and actual
bridge local point clouds. (e RGNC algorithm has multiple
parameters. After numerous parameter tuning experiments,
two sets of segmentation results of the RGNC algorithm are
obtained, as shown in Figure 20. Figures 20(a) and 20(b)
show that the RGNC algorithm has a good segmentation
effect on the theoretical point cloud, but a certain loss in the
structure edge point cloud is observed. (is segmentation is
structured. For example, the cover beam point cloud is
divided into six faces instead of one cover beam as a whole.
Figure 20(c) shows that the RGNC algorithm does not
perform well in the segmentation of the actual bridge point
clouds, and serious over- and undersegmentation occur.

4.2. ExperimentResults. Obtaining several hidden structures
in the bridge, such as the supports at the lower part of the
precast box girder, the beam at the end of the precast box
girder, and the internal cavity structure of the precast box
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girder, is difficult because of the limitation of the actual
scanning environment. (e hidden structures mainly per-
tain to the bearing on the pier cap and the beam at the end of
the prefabricated box girder. (ese structures are relatively
small in size. (erefore, the hidden structure model
established using the 20m standard precast box girder

slightly affects the calculation of the engineering quantity
and the force analysis of the entire bridge. (e creation
sequence is as follows: precast box girder, cap beam, column,
and tie beam. Figure 21 shows the interactive reconstruction
process of the BIM of the construction bridge in Dynamo
and Revit.

(a)

Pier location

Scan station

Bridge location

(b)

Figure 14: Site cloud scanning of the construction bridge: (a) site photos; (b) instrument site layout and field scan.

x

z

y

Figure 15: Construction bridge point cloud after pretreatment.

(a) (b) (c) (d)

Figure 13: Reconstruction of BIM: (a) importation of the feature points; (b) generation of the contour line; (c) loft to solid; (d) BIMmodel.
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To check the original coordinate matching between the
reconstructed BIM of the bridge and its point cloud and the
actual reconstruction effect, the point cloud of the con-
struction bridge before segmentation is imported into Revit
after format conversion. (e blue point cloud in Figure 22 is
the point cloud before segmentation. (e top model of the
precast box girder can be seen in Figure 22(a) because the
point cloud at the top of the precast box girder is not scanned
and is therefore uncovered. As shown in Figure 22(c), the
point cloud on the side of a single precast box girder does not
completely coincide with the model. (is phenomenon
occurs because the boundary data of the extracted point
cloud slice are obtained by fitting the best straight line; thus,

avoiding the slight concavity and convexity on the side of the
precast box girder is difficult. (e enlarged view of
Figure 22(d) shows that the overlapping effect of the capping
beam is considerable. Overall and local inspections indicate
that the real BIM constructed in the reconstruction has a
high degree of coincidence (almost completely coincident)
with its point cloud.

Performing an intuitive analysis of the degree of fit
between the point cloud and the model is insufficient in
determining the actual accuracy of the point cloud BIM
reconstruction. To verify and quantify this accuracy, the
bridge substructure and precast box girder are randomly
extracted with the corresponding point clouds for a 3D

(a) (b)

Figure 17: Projection filtering segmentation of the real bridge point cloud: (a) point cloud projection under the bridge; (b) ground point
cloud removal.

Figure 18: Segmentation of the pier point cloud structure unit.

1
2 3 4

5 6 7

Figure 16: Point clouds of the upper and lower parts of the bridge after segmentation.
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comparative analysis. (e 3D comparison of the bridge
substructure and precast box girder is illustrated in
Figure 23.

(e results of the 3D comparative analysis indicate that
the standard deviations of the precast box girder and bridge

substructure are less than 0.02m, and the average positive
and negative deviations are less than 0.015m, as shown in
Table 1. (e overall deviation of the bridge substructure is
slightly larger than that of the precast box girder. (e large
local deviations in several parts can be ascribed to three

(a) (b) (c)

Figure 20: Segmentation test results of RGNC algorithm.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 21: Dynamo drives Revit to complete the process of BIM reconstruction of the construction bridge: (a) feature line of the precast box girder;
(b) precast box girdermodel; (c) capping beam feature line; (d) capping beammodel; (e) column feature line; (f) columnmodel; (g) tie beam feature
line; (h) tie beam model.
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Figure 19: Tied beam and column point cloud after segmentation: (a) cylinder point cloud; (b) tie beam point cloud.
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(a) (b)

(c) (d)

Figure 22: Reconstructed BIM is consistent with its scanned point cloud.
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Figure 23: (a, b) 3D comparison of the pier column; (c, d) 3D comparison of the precast box girder structure.
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reasons: (1) the relatively dense number of lofted contours
during model creation, (2) the format conversion among the
models in the software, and (3) the error of the boundary
fitting algorithm.

5. Conclusions and Prospect

(e goal of this study is to quickly reconstruct a BIM that
conforms to the geometric features of the bridge. (e key
point is to automatically segment the bridge point cloud with
scenes and extract the geometric features of the bridge point
cloud accurately. To achieve the research goal, a point cloud
projection filter segmentation algorithm was proposed to
realize the automatic segmentation of bridge point clouds. A
geometric feature extraction algorithm was also developed.
(e visual programming software Dynamo was used as the
link between the point cloud and BIM. (e effectiveness of
the algorithms was initially tested through the segmentation
of a theoretical point cloud and BIM reconstruction. Af-
terward, the algorithm and the entire technical process were
verified by using actual bridge point clouds, and bridge point
cloud scene segmentation and unit segmentation were re-
alized. By fitting and extracting the segmented point cloud
slices and geometric feature parameters, the geometric pa-
rameters of each structure of the bridge point cloud were
obtained. (e parameters were then used to reconstruct the
parametric BIM of the bridge.

To verify the accuracy and quality of the reconstructed
BIM, the model and its point cloud were visualized and
quantitatively evaluated. (e results showed that the degree
of overlap between the BIM and point cloud was relatively
high. (e standard deviations of the bridge pier and pre-
fabricated box girder obtained through a quantitative
comparison were less than 0.02m, the average positive and
negative deviations were less than 0.015m, and the overall
deviation was within the controllable allowable range. (e
reconstructed BIM exhibited high accuracy, reliability, and
quality. In summary, the rapid reconstruction of parame-
terized BIM through point clouds not only increases the
geometric consistency between BIM and the actual structure
but also provides technical support for the industrialized
construction of bridges.

However, this study has drawbacks that need to be solved
in future works. First, the versatility of the algorithm when
dealing with complex steel truss bridges, such as segmenting
a large number of I-steel point clouds with staggered po-
sitions while completing model creation, should be im-
proved. Second, a new software system that integrates point
cloud processing and BIM creation should be developed in
the future. Solving these problems would further accelerate
the development of industrialized bridge construction.
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