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We study the photoionization process of a hydrogen atom initially prepared in a circular Rydberg state. The
atom is exposed to a two-cycle laser pulse with a central wavelength of 800 nm. Before the atom approaches
saturation, at field intensities of the order of 1017 W/cm2, relativistic corrections to the ionization probability
are clearly seen. The ionization is predominantly driven by the radiation pressure in the propagation direction
of the laser field, not by the electric field. Direct comparisons with the full numerical solution of the time-
dependent Dirac equation demonstrate quantitative agreement with a semi-relativistic approximation, which is
considerably easier to implement.

I. INTRODUCTION

Experiments in atomic and optical physics are about to en-
ter an intensity regime in which the electrons involved are
driven towards relativistic speeds. Thus, theoretical and com-
putational studies must account for relativistic effects in order
to be relevant. A fully relativistic description of the laser mat-
ter interaction for a fermionic system requires the solution of
the time-dependent Dirac equation. In spite of the growing
experimental interest, comparatively few works involving the
full solution of this equation are, however, seen in the litera-
ture. This is owing to the fact that the time-dependent Dirac
equation is notoriously hard to solve – for a number of reasons
[1–3].

As a consequence of the complexity inherent in describing
atoms exposed to strong laser fields, many studies resort to
models of reduced dimensionality or approximations such as
the dipole approximation or the strong field approximation.
While the former approximation neglects the spatial depen-
dence of the laser field, and, thus, also the magnetic interac-
tion, the latter neglects the influence of the Coulomb potential
during interaction with the strong laser field. Nonetheless, we
have seen several notable contributions when it comes to solv-
ing the time-dependent Dirac equation numerically, see, e.g.,
[4–8]. And numerical solutions of the time-dependent Dirac
equation in full dimensionality beyond the dipole approxima-
tion have been reported for atoms exposed to fields in the x-ray
and extreme ultra violet regions, see, e.g., [3, 9, 10], and in the
optical and infrared regions, see, e.g., [11–13].

Recently proposed alternative formulations of the light-
matter interaction have contributed significantly in facilitating
computational studies. The so-called propagation gauge [14–
17] provides a formulation of the interaction which is numer-
ically favourable. This is particularly so for its relativistic
version as it, to a large extent, removes problems related to
the inclusion of the spatial dependence of the laser field [18];
for a multipolar expansion of the light-matter interaction in
the usual minimal coupling formulation, this is in fact quite
involved [3]. Moreover, it has also been shown that rela-
tivistic effects induced by the external laser field may be in-
corporated in a non-relativistic framework by substituting the
electron mass by its effective relativistic mass in the adequate

manner [19]. This, in turn, allows us to study relativistic ef-
fects within a slightly modified Schrödinger equation, which
requires far less effort in terms of implementation and compu-
tational power than does the Dirac equation. Previously, such
semi-relativistic approaches have provided quantitative agree-
ment with the fully relativistic calculations both in the ultra
violet and x-ray regions [10, 17, 19].

Here we present results pertaining to a laser field on the
border between infrared and optical wavelengths – at 800 nm.
We will, by direct comparison with the numerical solution of
the Dirac equation, demonstrate that quantitatively accurate
results are obtained within the semi-relativistic approach also
in this case.

We take our initial state to be a circular Rydberg state, i.e.,
a highly excited state in which both the angular and magnetic
quantum numbers are maximal. In a non-relativistic context
this means that ` = m` = n − 1. While relativistic cor-
rections to the total hydrogen ground state photoionization
probability are seen in the ultra violet region [3], such effects
are harder to reveal at optical and infrared wavelengths. The
reason is simply that with increasing intensity, the transition
rate tends to saturate before the onset of relativistic effects
in these regimes. However, for an atom initially prepared in
a highly excited state, a Rydberg atom, ionization is signifi-
cantly suppressed [20]. Moreover, by preparing the atom in
a circular state, the initial state becomes quite stable against
de-excitation as such transitions are dipole-forbidden. Thus,
looking for relativistic effects in the photoionization of such
a system would seem viable – also in the optical and infrared
regimes.

In experiments with atoms in the gas phase, hydrogen
atoms are rarely used; typically, noble gasses are preferred.
Of course, atoms with several electrons are quite different
from hydrogen atoms in their ground states. However, Ry-
dberg atoms with one single excited electron can, to a large
extent, be considered hydrogen-like. The excited electron ef-
fectively sees a Coulomb-like nuclear potential of one elemen-
tary charge. By introducing modified potentials or quantum
defects, discrepancies from a pure Coulomb potential may be
compensated for. As the wave function of a circular Rydberg
state has a very small overlap with the inner region, such dis-
crepancies are quite moderate in the first place. Thus, select-
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ing a circular Rydberg state as initial state is likely to facili-
tate a comparison with experiment. Furthermore, the fact that
circular Rydberg states may be produced experimentally, see,
e.g., [21–26], also provides reason for optimism in this regard.

In the next section, we will give a brief account for the
methods employed to solve the relativistic and non-relativistic
equations involved. Some details regarding the actual imple-
mentation are also provided. In Sec. III we present the find-
ings of our numerical studies, while conclusions are drawn in
Sec. IV. Atomic units, “a.u.”, which are defined by choosing
~, the elementary charge e, the electron mass m and 4πε0 as
the unit of their respective quantities, are used where stated
explicitly.

II. THEORY AND IMPLEMENTATION

In order to identify relativistic corrections, we solve the rel-
evant dynamical equations, i.e., the Schrödinger equation and
the Dirac equation, numerically. These equations may both be
expressed as

i~
d

dt
Ψ = HΨ, (1)

where the wave function Ψ is scalar in the non-relativistic
case and a four component bi-spinor in the relativistic
case. Additionally, we solve a semi-relativistic version
of the Schrödinger equation in which relativistic effects
are accounted for by introducing a field-dressed relativistic
mass [19].

All of these equations are solved within the so-called long
wavelength approximation (LWA), which consists in first for-
mulating the interaction in the so-called propagation gauge,
and then disregarding the spatial dependence of the vector po-
tential of the laser field [15, 16, 18]. In the propagation gauge,
the canonical momentum corresponds to that of a free electron
propagating in the combined electric and magnetic field of the
laser – not just the electric field, as is the case for the usual
minimal coupling formulation. For this reason, the magnetic
interaction is preserved to leading order when we neglect the
spatial dependence of the vector potential of the laser field in
this gauge. Thus, this long wavelength approximation is far
less restrictive than the much applied dipole approximation,
in which the magnetic field is neglected altogether.

The LWA Hamiltonians H for which we solve Eq. (1) are

HNR =
p2

2m
+ V (r) +

e

m
A · p +

e2A2

2m2c
k̂ · p, (2a)

HSR =
p2

2µ
+ V (r) +

e

µ
A · p +

e2A2

2mµc
k̂ · p and (2b)

HR = cα · p + V (r) +mc2β + ceα ·A +
e2A2

2m
k̂ ·α,

(2c)

for the non-relativistic case [15], the semi-relativistic
case [19] and the fully relativistic case [18], respectively.
Here V (r) is the Coulomb potential of the nucleus, which
is assumed to be of infinite mass. In the semi-relativistic

Hamiltonian of Eq. (2b) we have introduced the field-dressed
mass [27, 28]

µ(t) = m

(
1 +

e2

2m2c2
[A(t)]2

)
. (3)

The semi-relativistic Hamiltonian, Eq. (2b), acts on scalar
wave functions, as in the non-relativistic case, Eq. (2a). Thus,
also in the semi-relativistic representation, the spin degree
of freedom is neglected. For the relativistic Hamiltonian,
Eq. (2c), we apply the usual representation for the α-matrices
in terms of Pauli matrices,

α =

(
0 σ
σ 0

)
. (4)

The β matrix is usually represented by a block diagonal matrix
with the 2×2 identity matrix I2 in the first diagonal block and
−I2 in the second. However, in our implementation we have
shifted the energy downwards by the rest mass energy of the
electron so that it actually reads

β =

(
0 0
0 −2I2

)
. (5)

The unit vector k̂ is the propagation direction of the laser
pulse. In our case, we take this direction to be along the
x-axis, and the field is linearly polarized along the z-axis.
The duration of the pulse corresponds to two optical cycles.
Specifically, we model the laser field by

A(t) =
E0

ω
ẑ sin2(ωt/4) sin(ωt) (6)

for t ∈ [0, 4π/ω a.u.]; it is zero at all other times. The central
angular frequency is ω = 0.057 a.u., which corresponds to a
wavelength of 800 nm.

It is worth emphasizing that, while we have imposed the
LWA in the present work, the propagation gauge formulations
do not rely on the applicability of this approximation. With a
spatially dependent vector potential, the Hamiltonians of both
Eq. (2a) and (2c) assume a form which differ only slightly
from the LWA formulations. This form, in turn, may be ob-
tained by imposing the gauge transformation

A→ A +∇ξ, ϕ→ ϕ− ∂

∂t
ξ where

ξ(η) = −mc
2

2eω

∫ η

−∞

(
eA(η′)

mc

)2

dη′, (7)

η ≡ ωt− k · r,

within the minimal coupling formulation, and, as such, it
is mathematically equivalent to the conventional interaction
form. For details on the propagation gauge formulations of
the laser-matter interactions – and how they are obtained, we
refer the reader to Refs. [15, 16, 18].

In arriving at the semi-relativistic interaction form,
Eq. (2b), we may take the relativistic expression for the ki-
netic energy,

T =
√
m2c4 + p2c2 −mc2, (8)
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as our starting point. As explained in Ref. [19], if the gauge
transformation (7) is now imposed, the resulting Hamiltonian
reads

H = µc2

√1 +

(
q

µc

)2

− 1

+ V (r) =

V (r) +
q2

2µ
− q4

8µ3c2
+ ... (9)

where

q2 = p2 + 2eA · p +
e2A2

mc
k̂ · p (10)

within the LWA. Eq. (2b) is obtained by retaining only the first
two terms in Eq. (9). For total ionization probabilities in the
ultra violet region, such a truncation at lowest order in (q/µc)2

has been shown to be adequate [19], while calculations in the
x-ray regime required also next order contributions in order to
produce photo electron spectra in quantitative agreement with
the Dirac equation [10, 17].

In all three approaches, the non-relativistic, the semi-
relativistic and the fully relativistic one, Eq. (1) is solved
within a spectral basis. We use the same numerical basis for
the non-relativistic and the semi-relativistic approaches. The
eigenstates of the unperturbed part of the Hamiltonian, H0,
are, as in previous studies [3, 18, 19], found numerically by
an expansion in B-splines for the radial part and spherical
harmonics for the angular part. The latter allows for an al-
gebraic approach which enables us to significantly reduce the
memory requirement for the stored information of the cou-
pling elements by exploiting the Wigner-Eckhart theorem. In
the non-relativistic case, all transition matrix blocks between
symmetries with fixed angular momenta, i.e., ` → `′ , are
identical up to a scaling factor that depends on the m` → m′`
transition. The same holds true in the relativistic case with a
slight modification due to the two radial components [3, 29].

The propagation is performed using an Arnoldi propaga-
tor, i.e., a Magnus propagator approximated numerically by
projection onto a Krylov subspace [30–32]. We choose the
number of time-steps per optical cycle such that it requires a
Krylov sub-space of maximum dimension 15 per step in the
non-relativistic and semi-relativistic calculations and about 30
for the Dirac equation, which in our experience gives a ro-
bust and yet time efficient propagation. For further details,
see Refs. [3, 18]. Our propagators use a hybrid paralleliza-
tion strategy, in which all associated objects are distributed
in nested MPI communicators. The bulk of work consists
of the local matrix-vector products between distributed cou-
plings and corresponding parts of the time dependent state
vector. Due to the factorization of couplings described above,
multiple matrix-vector products are now simultaneously ac-
counted for by blocking them into matrix-matrix products.
This in itself reduces the computational load significantly, and
it is further boosted by using a threaded version of the Intel
Math Kernel Library. For further technical details, the reader
is referred to Ref. [29].

As mentioned, solving Eq. (1) with the Dirac Hamilto-
nian, Eq. (2c), is considerably more involved than with the

Schrödinger Hamiltonian, Eq. (2a). This is not only due to
the fact that the wave function has four components; another
complicating factor is the stiffness induced by the mass term,
i.e., the third term in Eq. (2c). For this reasons, several prop-
agation schemes are subjected to the requirement that the nu-
merical time-step must be even lower than the inverse of the
mass energy splitting, ∆t < 1/(2mc2). This severe restric-
tion may, however, be evaded by applying a propagator of
Magnus form [31].

When it comes to implementing calculations involving the
semi-relativistic formulation, Eq. (2b), the complexity is more
or less the same as in the non-relativistic case. The two last
interaction terms in Eq. (2b) differ only from those of Eq. (2a)
in the time-dependent prefactors. The coupling originating
from the field-induced relativistic modification of the kinetic
energy is conveniently calculated in our spectral basis as

p2

2m

(
m

µ(t)
− 1

)
=

(
m

µ(t)
− 1

)
(H0 − V (r)) , (11)

where the time-independent part

H0 =
p2

2m
+ V (r) (12)

is diagonal in our basis, and the coupling elements of the
isotropic Coulomb potential V (r) are rather easily obtained.

For both the non-relativistic and semi-relativistic calcula-
tions we achieved converged results within a numerical do-
main extending up to a distance of rmax = 1600 a.u. from
the nucleus. Such a large domain is necessary not only in
order to contain the wave function, which has a rather large
excursion amplitude, but also in order to obtain a sufficiently
precise distinction between Rydberg states and (pseudo) con-
tinuum states in the spectral basis. Within this radial domain,
B-splines of order seven with a uniformly distributed knot se-
quence with a spacing of 1 a.u. for each knot was used. In or-
der to avoid artificial reflections of high-energy components, a
complex absorbing potential was imposed close to the numeri-
cal boundary. For the angular part, we used partial waves with
maximum angular quantum number `max = 200 and included
all magnetic quantum numbers, giving 40401 angular sym-
metries for the Schrödinger equation and twice as much for
the Dirac equation. States with eigenenergies beyond 50 a.u.
where removed from the spectral basis.

For the numerical solution of the Dirac equation, we
used the same numerical parameters as for the Schrödinger
equations – with certain adjustments. In solving the time-
independent Dirac equation, i.e., obtaining the eigenstates of
Eq. (2c) with A = 0, we expanded the radial part of the lower
spinor in B-splines of order eight – as opposed to seven in the
case of the upper spinor. This was done in order to avoid con-
tamination of the spectrum by so-called spurious states [33].
As the Dirac Hamiltonian, contrary to the Schrödinger Hamil-
tonian, is unbounded from below, we imposed energy trun-
cation in both ends of the spectrum; in addition to remov-
ing pseudo continuum states beyond 50 a.u., we also removed
states of energy below−2mc2− 50 a.u. It is worth emphasiz-
ing that, in spite of the large energy separation, a full trunca-
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tion of the negative energy continuum is not admissible, see,
e.g., Refs. [1, 2].

The computational load is quite severe. The number of ba-
sis functions is roughly 6.4 · 107 and 2.6 · 108 for the non-
relativistic and relativistic cases, respectively. The aforemen-
tioned factorization of angular couplings reduces the stored
coupling information from 4.8 TB to 8 GB in the non-
relativistic case and from 76.8 TB to 128 GB in the relativis-
tic case. The largest simulations were carried out on the su-
percomputer Fram in Tromsø, Norway, employing 2208 cpu-
cores for about a week. In terms of the total number of re-
quired operations, the semi-relativistic propagator is roughly
30 times lighter than the fully relativistic propagator signify-
ing the benefit of being able to use the former version.

Finally, it should be noted that the angular quantum num-
bers ` and m` are not actually good quantum numbers for
the unperturbed Dirac Hamiltonian. However, for a state
with total angular quantum numbers j and mj both equal to
`+1/2, the upper, large component of the solution of the time-
independent Dirac equation does have well defined ` and m`

values; when solving the time-dependent Dirac equation, we
take our initial state to be such a state. Specifically, when re-
solving the dynamics, i.e., solving Eq. (1) with the Hamiltoni-
ans of Eqs. (2), our initial Rydberg state has principal quantum
number n = 11. Our circular state has angular quantum num-
bers ` = m` = 10 in the non-relativistic and semi-relativistic
cases and j = mj = 21/2 (κ = −11) in the fully relativistic
case.

III. RESULTS AND DISCUSSION

Figure 1 shows the ionization probability as a function of
the maximum intensity of the laser pulse. Only two data
points originates from the solution of the Dirac equation. The
reason for this is the high demand on computational resources,
as discussed above. In our calculations, the highest peak elec-
tric field strength is E0 = 3 a.u., which corresponds to about
3.2 · 1017 W/cm2 in intensity. According to a classical es-
timate of the maximum quiver velocity of a free electron,
vquiv = eE0/mω, this corresponds to about 38 % of the speed
of light. At peak intensity, the field dressed mass µ, cf. Eq. (3),
exceeds the rest mass by 7 %. Thus, it should come as no sur-
prise that we do see relativistic corrections at this intensity.

Another interesting observation is that the ionization prob-
ability as predicted by the semi-relativistic approach with the
Hamiltonian of Eq. (2b) agrees very well with the fully rela-
tivistic calculations; this is particularly evident from the lower
panel of Fig. 1, which depicts the difference between the rela-
tivistic and non-relativistic ionization yields. For E0 = 3 a.u.,
the correction predicted by the semi-relativistic approach dif-
fers by less than one percent from the fully relativistic correc-
tion. By including the next to leading order in Eq. (9), this
relative error is reduced to 0.2 %.

It is thus clear that the semi-relativistic approach is indeed
able to provide the correct relativistic ionization probability.
This, in turn, implies that neither spin-effects nor relativistic
corrections to the spectrum of the atom affect the total yield
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FIG. 1: The upper panel shows the ionization probability for a hydro-
gen atom initially prepared in the circular Rydberg state with n = 11
exposed to a two-cycle laser pulse as a function of the peak inten-
sity of the laser. The central wavelength of the laser is 800 nm.
The dashed curve is obtained with the Schrödinger equation, i.e.,
with the Hamiltonian of Eq. (2a), while the full curve is calculated
with the semi-relativistic version, Eq. (2b). The circular data points
are obtained from full solutions of the Dirac equation, i.e., with the
Hamiltonain of Eq. (2c). In all cases, the so-called long wavelength
approximation is applied. In the lower panel, the difference between
the non-relativistic and the relativistic results are plotted.

significantly for this setup. Since the semi-relativistic descrip-
tion, Eq. (2b), effectively amounts to a dynamic increase in the
inertia of the electron, this is indeed the most important rela-
tivistic correction. It is seen in Fig. 1 that the increased inertia
consistently leads to an ionization probability which is lower
than the non-relativistic one; as in Refs. [3, 19] we find that
relativistic effects tend to somewhat stabilize the atom against
ionization. This has also been seen in a one-dimensional
model of photoionization from the ground state [34]. The
lower panel of Fig. (1) shows that the effect is not entirely
monotonic; initially, the correction increases with increasing
intensity as relativistic effects start to become significant. As
the system at higher intensities approaches saturation, both
according to relativistic and non-relativistic calculations, the
difference in ionization probability is seen to decrease again.

It is worth noting that the much applied dipole approxi-
mation fails completely in predicting these ionization yields.
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FIG. 2: Left panel: The classical translation of an initial circular
Rydberg “state”, illustrated by a black ring, imposed by a two-cycle
laser field of maximum electric field strength E0 = 3 a.u. The black
dot illustrates the position of the nucleus, whose influence is disre-
garded in this illustration. The red circle marks the resulting position.
While the electric component imposes a strong excursion during in-
teraction with the pulse, there is no net translation in the polarization
direction (z-axis) after the interaction. The radiation pressure, on the
other hand, pushes the electron far into the propagation direction (x-
axis). Within the dipole approximation, there is no such push, and
the initial and final positions coincide (right panel).

Calculations we have performed within the dipole approx-
imation turn out to underestimate the ionization probabil-
ity by orders of magnitude for these intensities. Since the
dipole approximation disregards magnetic interactions alto-
gether, its inapplicability should come as no surprise. It is
well known that the magnetic interaction contributes signif-
icantly to the dynamics of atoms in strong fields in the op-
tical and infrared regions – both from theoretical considera-
tions [27, 35–38], other numerical studies [11, 20] and from
experiment [13, 39–43]. However, since electric interactions
tend to dominate magnetic interactions, it may be surprising
to see the dipole approximation fail this miserably. For in-
stance, if we assume that the electron’s momentum is about
0.1 a.u. in both the polarization and the propagation direction,
the dipole interaction term e/mA(t)pz amounts to an energy
of 5.26 a.u. at peak intensity, while the radiation pressure
term e2/(2m2c) [A(t)]2px would contribute about 1.01 a.u.,
i.e., the former exceeds latter by about a factor 5. When the
last term still provides the dominant ionization mechanism,
this is related to the fact that the dipole part of the interaction
corresponds to a zero-displacement pulse; although subjected
to a strong driving, a free, classical electron would experience
no net displacement in the polarization direction after being
exposed to the electric field provided by the vector potential
in Eq. (6) [44]. The combined action of the electric and the
magnetic fields, however, provides a radiation pressure which
is non-oscillatory; for each half-cycle it pushes the electron in
the positive propagation direction [45]. This effect is precisely
what the last term of each of the Hamiltonians in Eqs. (2) ac-
count for. Our numerical results suggest that this displacement
effect is the dominant ionization mechanism. For illustration,
we show the dynamical displacement imposed by the pulse on
a classical, free electron in Fig. 2.
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FIG. 3: The photo electron spectrum obtained from relativistic (blue
full curve), semi-relativistic (red dashed) and non-relativistic (black
dotted) calculations. The peak electric field strength corresponds to
an intensity of 3.2 · 1017 W/cm2. In the upper panel, the spectrum
is shown using a logarithmic y-axis, while the lower panel shows a
close-up at the peak just above threshold using a linear y-axis.

Figure 3 shows the ionization probability differential in en-
ergy obtained with the three Hamiltonians of Eqs. (2). Again,
the peak electric field strength is E0 = 3 a.u. With our wave
function expressed in a spectral basis, the spectra are readily
obtained by interpolating the final population of each pseudo
continuum state within each angular symmetry. In the upper
panel we see that virtually all probability is concentrated just
above threshold. The spectrum is seen to be rather mono-
tonic; no structure corresponding to multi-photon ionization
is seen. This is not only due to the comparatively short time-
duration of the pulse. With an effective ionization potential of
−1/(2n2) = 0.0041 a.u. for n = 11 the Keldysh parameter
γ = 0.0019 indicates that the multi-photon ionization mecha-
nism is entirely suppressed [46]. On the other hand, the laser
field is so strong that the modified Coulomb potential does not
feature any barrier against ionization at all. Thus, tunneling
theories such as the relativistic PPT theory, see, e.g., [47–50],
are not applicable here. Rather, according to the above dis-
cussion, ionization predominantly comes about by the radia-
tion pressure, which displaces the electron in the propagation
direction of the laser pulse. In this simple picture, the laser
pulse does not impose any net acceleration onto the liberated
electron.
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The spectra seen in the upper panel of Fig. 3 are virtually
indistinguishable. A close up on the peak near threshold, how-
ever, reveals small differences between the non-relativistic
calculation and the other ones. This is depicted in the lower
panel of Eq. (3), where we, contrary to the upper panel, have
used a linear y-axis. We do not see any difference between
the relativistic and the semi-relativistic predictions. In other
words, also when it comes to the photo-electron spectrum,
the semi-relativistic approach provides quantitative agreement
with the solution of the Dirac equation.

The spectrum is peaked at an energy of about 10−3 a.u.
Also this can be understood from the simple semi-classical
picture illustrated in Fig. 2. If the wave packet is simply dis-
placed by the laser field, unaffected by both dispersion and
diffraction, the kinetic energy of the particle is also unaffected.
However, as the particle is still subject to the Coulomb poten-
tial, the total energy depends on the position. If we, as an
estimate, assume that the kinetic energy of the displaced par-
ticle coincides with the mean value of the initial wave packet
and average the total energy over the positions indicated by
red ring depicted in the left panel of Fig. 2, we arrive at an
estimated mean energy of 0.0017 a.u. The actual mean value
according to the distributions depicted in Fig. 3 is 0.0021 a.u.
(for both the non-relativistic and the relativistic distributions).

If we, within the same picture, also take into account that
the wave packet, to a certain extent, is subject to diffraction
induced by the Coulomb potential as it is driven by the laser
field, we may also understand the small differences seen be-
tween the non-relativistic and the relativistic spectra in the
lower panel Fig. 3. A relativistic calculation of the path fol-
lowed by a classical particle would differ slightly from a non-
relativistic one. Correspondingly, the wave packet experi-
ences Coulomb-diffraction which differs slightly in the non-
relativistic and relativistic calculations. This, in turn, may ex-
plain the small but distinguishable fluctuations in the respec-
tive energy distributions.

IV. CONCLUSIONS

We investigated the ionization dynamics of a hydrogen
atom initially prepared in a circular Rydberg state exposed to a

short laser pulse with a wavelength of 800 nm. It was seen that
the dominant ionization mechanism relied on the magnetic in-
teraction, thus rendering the dipole approximation inadequate.
The laser pulse was strong enough to accelerate the electron
towards a large fraction of the speed of light, and relativistic
corrections to the ionization probability were found to be sig-
nificant. It was also found that these relativistic corrections
tend to shift the total ionization probability downwards, indi-
cating that the increased inertia of the relativistic electron to
some extent stabilizes the atom against ionization.

This explanation in terms of increased inertia is supported
by quantitative agreement between fully relativistic calcula-
tions and a semi-relativistic approach in which the electron’s
mass is replaced by an efficient field-dressed mass. The
demonstrated adequacy of this semi-relativistic approach is a
very useful result indeed as it facilitates relativistic calcula-
tions considerably. It is by no means restricted to the particu-
lar laser pulse or the initial state used here, it applies to several
systems in which the external field, not the internal Coulomb
field, accelerates the electrons towards relativistic speeds.
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