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Abstract: The reduction of the moisture content of concrete during the drying process reduces the
concrete’s volume and causes it to shrink. In general, concrete shrinkage is a phenomenon that
causes concrete volume to dwindle and can lead to durability problems. There are different types
of this phenomenon, among them chemical shrinkage, autogenous shrinkage, drying shrinkage
including free shrinkage and restrained shrinkage, and thermal contraction. Shrinkage-reducing
admixtures are commercially available in different forms. The present study investigates the effect
of liquid propylene glycol ether on mechanical properties and free shrinkage induced by drying at
different water-cement (w/c) ratios. Furthermore, the effect of shrinkage-reducing admixtures on
the properties of hardened concrete such as compressive and tensile strength, electrical resistivity,
modulus of elasticity, free drying shrinkage, water absorption, and depth of water penetration was
investigated. The results indicated that shrinkage reducing agents performed better in a low w/c
ratio and resulted in up to 50% shrinkage reduction, which was due to the surface reduction of
capillary pores. The prediction of free shrinkage due to drying was also performed using an artificial
neural network.

Keywords: concrete; mechanical properties; shrinkage reducing admixture; water-cement ratios;
artificial neural network

1. Introduction

Concrete is the most widely used building material in the world, such that in some countries,
the use of reinforced concrete is more common than steel structures [1–3]. The scope of concrete
consumption encompasses everything from small concrete blocks to the spillways of dams and bridge
decks. One of the biggest concerns about concrete is cracking and the factors contributing to this. One of
the factors that cause cracking in concrete is drying shrinkage. The evaporation rate is high for curing
concrete in environments with insufficient moisture, when water temperature is high, and in windy
conditions. Drying shrinkage is also more likely to occur in structures with a high surface-to-volume
ratio. It has long been the concern of researchers in the field of concrete technology to find ways to
reduce this type of shrinkage [4]. In this regard, one of the most effective methods is to use shrinkage
reducing admixtures (SRA). The use of SRA increases the time it takes to reach the maximum hydration
temperature in concrete and mortar, and by increasing the amount of SRA, the time it takes to reach
maximum temperature increases; the application of SRA in mixtures with superplasticizers will further
delay hydration reactions. Mora et al. [4] showed that SRA, even in high strength concrete (HSC),
not only reduces shrinkage and cracking due to a reduction in evaporation rate, but also results in
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delayed maximum capillary pressure because of crescent cavity growth. The rate of evaporation
and pore pressure in concrete containing SRA is lower than that of conventional concrete, and this
difference results in reduced concrete discharge. Adding 1% SRA by cement weight, will reduce
short-term and long-term shrinkage, and will be more effective when the internal moisture content
and porosity of concrete are higher. Increasing the dosage of SRA in self-compacting concrete does
not decrease workability [5]. In addition to reducing the pore solution, SRA with a highly retained
moisture content leads to better internal curing [6]. The application of SRA has been found to increase
the retention time of concrete and extend the initial and final setting time of concrete compared to a
control specimen [7–9].

In addition to shrinkage reducing agents, the use of poly vinyl alcohol (PVA) fiber and volcanic
ash are also effective in reducing shrinkage. These additives can increase the compressive strength
of concrete, while reducing the surface stresses and strains associated with shrinkage. It should be
noted that SRA reduces the tensile strength of concrete, its versatility and its compressive strength,
which can be compensated for by using fiber [10,11]. Typically, SRA delays the hydration reaction at
the start of concrete setting due to the presence of organic molecules. SRA molecules decrease the
polarity of concrete mortar and increase specific surfaces, which result in an increase in the amount of
water needed for hydration. This in turn leads to an improvement of hydration at higher ages [10,11].
SRA generally reduces the large pores of the cement matrix, delays crack initiation time, significantly
reduces crack width, and is more effective than geopolymer materials [11,12].

Today, the use of soft computing in civil engineering to predict experimental results has been
extended due to its high accuracy. Many researchers in the field of concrete technology have used soft
computing and artificial neural networks (ANN) in particular to predict concrete properties based on
experimental results. Mechanical properties of different types of concrete such as compressive strength,
tensile strength, elastic modulus, and flexural strength can be predicted using soft computing methods.

The most important studies using artificial neural networks predict compressive strength in
different concretes such as self-compacting concrete [13–17]; high-performance concrete [13,18];
recycled aggregate concrete [19–22]; cement mortars [23]; cement mortars containing nano and micro
silica [24]; concrete containing rice husk ash as a partial replacement for cement and reclaimed asphalt
pavement as a replacement for aggregates [25]; concrete under different temperatures [15,26,27] and
relative humidity [15]; heavy weight concrete [28]; laterized concrete [29]; polymer concrete with
various percentages of fly ash [30]; silica fume concrete [31]; high-strength concrete [32]; rubberized
concrete [33]; clinker mortars [34]; lightweight concrete [27]; and self-consolidating high-strength
concrete containing palm oil fuel ash [35].

In a study conducted by Bui et al. [18], the tensile strength of high-performance concrete (HPC)
was predicted using a combination of ANN and firefly algorithm. The firefly algorithm was used to
optimize biases and weights of ANN. The input parameters were curing age and cubic compressive
strength, while the compressive strength of HPC was the output. The accuracy of the model was
compared to other models and showed faster and better prediction [18]. The flexural strength of
cement mortars containing nano and micro silica was predicted using ANN and genetic expression
programming (GEP) [24]. The prediction of elastic modulus of concrete [36] and recycled aggregate
concrete [37,38] was conducted by elephant herding optimization and ANN, respectively. An estimation
of the compressive strength of concrete obtained by mechanical wave velocities was conducted using
the ANN method [39,40]. The results of the ASTM C1012-95 testing method on sulfate attack of
concretes, which were made with different cement types and pozzolanic additives, were predicted by
ANN [40]. ANN was also applied to investigate the impermeability of concrete made with lightweight
aggregate [41]. Hybrid artificial intelligence was used to predict foamed cellular lightweight concrete
compressive strength using 418 experimental datasets. An equation was proposed based on a water
cycle algorithm and its predictions were compared to other methods such as support vector regression,
multiple linear regression, and artificial neural network [42]. An ANN model was also presented to
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estimate the autogenous shrinkage of concrete. The model was developed on the basis of 77 datasets,
including specimens of traditional concrete as well as modern concrete [43].

Given that the effect of SRA on concrete shrinkage has not been extensively investigated in low,
medium, and high water-cement (w/c) ratios, this study was conducted to investigate the effect of
different w/c ratios on concrete containing SRA. For this purpose, six mix designs were considered and
the effect of SRA on parameters such as free shrinkage, tensile compressive strength, Young’s modulus,
electrical resistance, water absorption, and depth of penetration were investigated. Furthermore,
an artificial neural network was applied to predict dry shrinkage of concrete based on the experimental
results conducted in the study.

2. Experimental Program

2.1. Materials

The cement used in this study was Portland Cement Type II—in accordance with the ASTM
C150 [44]—with a specific gravity of 3.15 N/m3. The chemical composition of the constitutive elements
of the cement used in the study is presented in Table 1 below. Propylene glycol ether is a colorless
liquid whose etheric property means that it is counted as an SRA material. Table 2 shows the properties
of fine and coarse aggregates in accordance with the ASTM C33 [45], which were used to make the
concrete. The superplasticizer used in this study was based on polycarboxylate ether and has a specific
gravity of 1.1 N/m3. The size distribution of coarse and fine aggregate sand was in accordance with the
standards ASTM C136 and ASTM C33 [45].

Table 1. Percentages of the cement constituents.

Composition CaO SiO2 Al2O3 Fe2O3 MgO K2O Na2O C3S C2S C3A C4AF

% 64.3 21.8 4.5 3.9 1.5 0.54 0.17 56 20 5 12

Table 2. Physical properties of the fine and coarse aggregate.

Properties Coarse Aggregate Fine Aggregate

Specific gravity (saturated surface dry) (N/m3) 2.56 2.55
Water absorption (%) 1.7 2.7

Physical shape Crushed Well-rounded

2.2. Specimen Preparation

In order to achieve the objectives of this study and obtain the mechanical properties of the intended
mix designs, the concrete was manufactured with the desired mixing design. There are various tests
to determine the properties of fresh and hardened concrete, some of which have been used in this
study. For fresh concrete slump and air content and for hardened concrete compressive and tensile
strengths, electrical resistance, modulus of elasticity, restrained drying, and water absorption, were
obtained on the basis of different standards. Table 3 displays the types of experimental tests, geometry,
and dimensions of the specimens based on the related standards.



Materials 2020, 13, 5721 4 of 16

Table 3. Type and number of specimens prepared, and standards used.

Test Specimen Dimensions (mm) Number Samples
for Each Test Standard

Air content - - 1 ASTM C231
Slump - - 1 ASTM C143

Compressive strength Cubic 150 × 150 × 150 3 EN 12390-3
Tensile strength Cylinder 150 × 300 2 ASTM C496

Unrestrained drying shrinkage Prism 75 × 75 × 285 3 ASTM C157
Electrical resistance Cubic 100 × 100 × 100 3 ASSHTO T358

Modulus of elasticity Cylinder 100 × 200 3 ASTM C469
Water absorption Cubic 750 × 750 × 750 3 BS 1881: Part 122

As mentioned, the aim of this study is to investigate the effect of SRA on the drying-induced
shrinkage of concrete in different w/c ratios. For this purpose, specimens in three low, medium,
and high w/c ratios as well as control specimens were made. The concrete manufacturing process was
as follows: Pouring sand into the mixer, adding gravel to the sand, adding cement to the aggregate,
adding water to the mixture, adding SRA together with mix water which was kept from the previous
steps, and, finally, adding superplasticizer with mix design water to the mixture. The concrete poured
into the mold was kept for 24 h and then immersed in lime-saturated water at 23 ± 2 ◦C.

2.3. Mixture Proportion

The impact of SRA on the properties of fresh and hardened concrete was investigated in six mix
designs classified in three groups. Table 4 illustrates the concrete’s composition in various mix designs.
The dosage of superplasticizer was designed to achieve a slump of 15 ± 5 cm for mix designs with w/c
ratios of 0.4 and 0.5. Since the slumps of the specimens with w/c ratio of 0.6 were in acceptable range,
these specimens were designed without superplasticizer.

Table 4. Concrete components in various mix designs.

Group Specimen
Name

Cement
(kg/m3)

Water
(kg/m3) w/c

Fine
Aggregate

(kg/m3)

Coarse
Aggregate

(kg/m3)

SRA %
(Weight of
Cement)

Superplasticizer
% (Weight of

Cement)

1
Plain-0.6 350 210 0.6 1151 619 - -
SRA-0.6 350 210 0.6 1151 619 1.5 -

2
Plain-0.5 350 175 0.5 1173 632 - 0.5
SRA-0.5 350 175 0.5 1173 632 1.5 0.5

3
Plain-0.4 350 140 0.4 1196 644 - 0.9
SRA-0.4 350 140 0.4 1196 644 1.5 0.9

3. Results and Discussion

After fabricating the concrete with the intended mix design, the tests for fresh and hardened
concrete were carried out. The results of the specimens and comparisons between them are presented
in this section.

3.1. Fresh Concrete

In this study, two slump and air content tests were conducted based on the ASTM C143 and ASTM
C231 standards in order to determine the effect of different percentages of SRA on the workability and
air content of the manufactured concretes.

As shown in Table 5 below, the air content is about 2%–3% for fresh concrete when
shrinkage-reducing admixtures are added to the concrete paste. Based on the results of previous
studies, the impact of different types of commercial SRA materials on concrete workability is slightly
different, but, overall, the impact of the SRA material on fresh concrete workability is negligible [46,47].
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Table 5 shows that the SRA material increased the percentage of air and decreased the workability of
fresh concrete. The same results are reported by Hamedanimojarrad [46].

Table 5. Properties of fresh concrete specimens.

Group w/c Specimen Name Slump (cm) Air Content (%)

1
0.6 Plain-0.6 21 1.6
0.6 SRA-0.6 18 2.1

2
0.5 Plain-0.5 15 2
0.5 SRA-0.5 12 2.4

3
0.4 Plain-0.4 15 2.6
0.4 SRA-0.4 11 3

3.2. Hardened Concrete

3.2.1. Compressive Strength

A compressive strength test was performed on cubic specimens of 150 by 150 mm in accordance
with EN 12390-3 [47] at the age of 28 days. Figure 1 shows the effect of SRA on compressive strength.
The average of the three compressive strengths was recorded for each mix design. SRA reduces the
rate of cement hydration reactions, which consequently influences compressive strength. The mix
design containing SRA reduced the compressive strength of concrete and this reduction was less with
the reduction of the w/c ratio [48]. As shown in Figure 1, the SRA material in higher w/c ratios further
reduces the compressive strength, which in the w/c ratio of 0.6, caused around a 14% decrease in
compressive strength.

Figure 1. Compressive strength in specimens with three different water-cement (w/c) ratios with and
without shrinkage reducing admixtures (SRA) after 28 days.

3.2.2. Tensile Strength

The tensile strength test was performed on cylindrical specimens measuring 300 by 150 mm in
accordance with the ASTM C496 [49] standard at 28 days, and was reported as the mean tensile strength
for each specimen. Figure 2 shows the effect of SRA on tensile strength. In general, the specimen
containing SRA has less tensile strength, which changes with compressive strength. The average
reductions in tensile strength by adding SRA to concrete were 10.33% and 7.18% for 7 and 28 days,
respectively, in which the amount of reduction decreased by increasing the w/c ratio and the number
of days. In other words, SRA has a greater effect on reducing tensile strength at early ages.
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3.2.3. Electrical Resistivity

The electrical resistivity test was performed on 100 by 100 by 100 mm specimens according
to ASSHTO T358 [48]. Figure 3 provides information on the effect of SRA on electrical resistivity.
Here it can be seen that adding SRA to concrete, as well as decreasing the w/c ratio, caused an
increment in electrical resistivity. However, the effect of changes to the w/c ratio was greater than the
addition of SRA. The average increase in electrical resistivity from decreasing the w/c ratio was 14.26%,
while this increment was 3.18% when adding SRA. Adding SRA to concrete reduces interlayer water
(hydration-induced water) in the mixture, thereby reducing electrical resistivity.

Figure 2. Tensile strength in specimens with three different w/c ratios with and without SRA after 7
and 28 days.

Figure 3. Electrical resistivity of specimens for three different w/c ratios with and without SRA after
28 days.
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3.2.4. Dynamic Elastic Modulus

Young’s modulus testing was performed on specimens of 200 by 100 mm according to ASTM
C469 at 28 days. Figure 4 illustrates the elastic modulus test instrument. Figure 5 shows that the w/c
ratio had a greater effect on the modulus of elasticity compared to adding SRA. The highest modulus
of elasticity observed in the specimens with lower w/c ratio. The specimens with SRA reduced the
Young’s modulus compared to the similar specimens without SRA. These results are consistent with
the results found by Haitao in 2013 [50].

Figure 4. Elastic modulus measuring device.

Figure 5. Modulus of elasticity in specimens with different w/c ratios in plain concrete and concrete
containing SRA.

3.2.5. Free Drying Shrinkage

A free-drying shrinkage test was performed in line with ASTM C157, according to which the
specimens were stored in a chamber with a relative humidity of 50 ± 5 and 23 ± 2. Length of the
specimens was also read at intervals of 1, 4, 7, 14, and 28 days, and of 8, 16, 32, and 64 weeks [51].
Figure 6 shows the specimen in the chamber with standard conditions. The drying-induced free
shrinkage test was performed on all the specimens, as shown in Figure 7. This figure shows that the
free shrinkage of the mixture had a 1.5% SRA weight in a w/c ratio of 0.4, which is approximately
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similar to the drying-induced free shrinkage of the mixture without the SRA material in a w/c ratio of
0.5. This was due to the effect of SRA on drying-induced free shrinkage. Generally, SRA at the age
of 224 days compensated for drying shrinkage by about 27%, 30%, and 50%, in the w/c ratios of 0.6,
0.5, and 0.4, respectively. Shrinkage due to a loss of excess water caused by internal stresses results in
cracking. SRA reduced shrinkage stresses. It should be noted that the higher the w/c ratio, the greater
the effect of the SRA material and the greater the effect on compensating for the drying shrinkage.
The results indicate that reducing drying-induced shrinkage does not necessarily require a reduction
in the w/c ratio and can be achieved by using SRA.

Figure 6. (a) Measurement of dry shrinkage and (b) specimens in the standard room.

Figure 7. Free drying shrinkage over time for three different w/c ratios with and without SRA.

3.2.6. Water Absorption

The water absorption test for concrete specimens was performed according to BS 188: Part 122 [52].
Figure 8 shows the results of the comparison of changes in the mixtures’ water absorption percentage
over time. As the immersion time increased, the percentage of the concrete’s water absorption increased,
where the 24-h water absorption was about 2.57 times that of the half-hour water absorption. The use
of SRA reduced the water absorption of the concrete. However, it is worth noting that as the immersion
time increases, the impact of SRA on reducing the concrete’s water absorption increases. This may
be due to the higher volume of filled pores with increased immersion time. The use of SRA reduces
the surface tension stress of water with the wall of capillary pores, thereby reducing capillary suction
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of water into cavities, and decreasing the water absorption of concrete [53]. As the immersion time
increases, more concrete pores contribute to the water absorption process. Therefore, due to the effect
of SRA, the difference in water absorption percentage increases with a longer immersion time. As the
w/c ratio decreases, the water absorption rate of concrete decreases. The results indicate that the effect
of a w/c ratio reduction on the decrease of water absorption rate in the mixture containing SRA was
approximately similar to the control design, namely the design without SRA. Furthermore, by adding
SRA and increasing the w/c ratio, water penetration depth (calculated according to BS EN 12390-8 [52])
in 28 days specimens decreased, see Figure 9. The decrease in the water penetration depth is due to the
effect of the SRA on the pores system of concrete.

Figure 8. Water absorption in different mix designs after 0.5, 1, and 24 h.

Figure 9. Water penetration depth in different mix designs.
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3.3. Artificial Neural Networks

Many researchers have proposed models in various fields of study using soft computing
methods [54–59], especially by employing artificial neural networks [28,60–63]. Artificial neural
network is an artificial intelligence (AI) based method that simulates human brain to learn machines.
ANN can solve new problems using past experiences like human brain. One of the most basic neural
models available is multi-layer perceptron (MLP) model, which simulates the transfer function of the
human brain. An artificial neural network consists of three layers: Input, output, and processing.
Each layer contains a group of neurons that are generally associated with all the neurons in the other
layers. After receiving the input, each neuron processes it and transmits the result to another cell.
This behavior continues until a definite result is reached, which eventually leads to a decision, process,
thought, or move. This is to compare the output of a network with the output that is desired and
expected. The difference between the two outputs is used to change and modify the connection weights
between the network units. Learning neural networks using a feedback process are called feedforward
networks. Feedforward networks proceed by decreasing the difference between the actual output and
the desired output until the two outputs become the same.

In this study, ANN is performed to propose a model to predict the dry shrinkage of the tested
specimens. To create a network, a total of eight parameters, including the w/c ratio, type of admixture,
weight of sand, gravel, and superplasticizer, were considered as input. The dry shrinkage of concrete
specimens was considered to be the output parameter. The network properties used in this model are
described in Table 6 below.

Table 6. Network properties used in this model.

Network Type Feed-Forward Backprop

Training function TRAINLM
Adaption learning function LEARNGDM

Performance function MSE
Number of layers 2

Transfer function (layer 1) TANSIG
Transfer function (layer 2) PURELIN

Different hidden nodes were examined (1 to 10) and their mean square error (MSE) value and the
regression value for training, testing, validation, and the whole dataset, were obtained. The criterion
for choosing the best network was having at least MSE (in this study the minimum MSE was equal to
0.00047), with the regression values being as close as possible to one. According to this criterion, in this
study, the two-layer network was selected as the optimal network. The validation performance and
training state and the values of the regressions are presented in Figures 10 and 11, respectively.
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Figure 11. Values of regression for training, validation, testing, and the whole dataset for the selected
network to predict shrinkage.

The values predicted by the optimal network and its prediction errors are given in Table 7 below.
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Table 7. Predicted shrinkages by artificial neural network along with its error.

Mix
Design w/c SRA

(%)

Fine
Aggregate

(kg/m3)

Coarse
Aggregate

(kg/m3)

Superplasticizer %
(Weight of Cement)

Exp.
Shrinkage

Predicted
Shrinkage Error (%)

Plain-0.6 0.6 0 1099 593 0 0.63 0.63 0.88
SRA-0.6 0.6 1.5 1099 593 0 0.30 0.3 0.23
SCA-0.6 0.6 0 1099 593 0 0.27 0.27 0.31
PRA-0.6 0.6 0 1099 593 0 0.28 0.28 0.02
Plain-0.5 0.5 0 1159 610 0.7 0.43 0.43 0.37
SRA-0.5 0.5 1.5 1159 610 0.7 0.28 0.28 0.06
SCA-0.5 0.5 0 1159 610 0.7 0.22 0.22 0.74
PRA-0.5 0.5 0 1159 610 0.7 0.25 0.25 0.347
Plain-0.4 0.4 0 1189 639 3.15 0.38 0.36 4.62
SRA-0.4 0.4 1.5 1189 639 3.15 0.24 0.29 18.61
SCA-0.4 0.4 0 1189 639 3.15 0.18 0.13 29.77
PRA-0.4 0.4 0 1189 639 3.15 0.21 0.21 0.36

The network is selected in a way that the error values for training, validation, test, and all
data are the minimum values. The other networks had shown a higher number of errors than this
network. The purpose of using neural network in this study is to investigate the predicted results for
shrinkage using limited available experimental data. As shown in Table 7, the maximum and minimum
errors of the predicted values by artificial neural network are 0.02% and 29.77%, respectively, and the
average error is 4.69%, which show the acceptable accuracy of ANN in predicting the dry shrinkage of
specimens despite the low numbers of data. The highest errors have been observed in the specimen
with w/c ratio of 0.4; it means that this network did not perform well in predicting the shrinkage of
specimens with w/c ratio equal to 0.4. To improve the network in this case, more experimental data
are required.

4. Conclusions

The present study investigates the effect of liquid propylene glycol ether on mechanical properties
and free shrinkage induced by drying at different water-cement ratios. Furthermore, the effect of
shrinkage-reducing admixtures on the properties of hardened concrete such as compressive and tensile
strength, electrical resistivity, modulus of elasticity, free drying shrinkage, water absorption, and depth
of water penetration was investigated. Based on the experiments, the following conclusions regarding
the effect of SRA on different properties of concrete in low, medium, and high w/c ratios are drawn.

• The use of SRA reduced the slump compared to the control specimen, and the higher the w/c ratio,
the greater the decrease of the slump.

• The use of SRA reduced compressive strength and tensile strength as compared to the control
specimen. The higher the ratio of water to cement is, the greater the reduction in compressive
strength. Using SRA caused a decrease in the Young’s modulus of the concrete and had a greater
effect in a w/c ratio of 0.4.

• The use of SRA increased the electrical resistivity of the concrete, which has the same effect on the
electrical resistivity of concrete in low, medium and high w/c ratios.

• Using SRA caused a decrease in the depth of penetration of water under pressure. It decreased
less in a low w/c ratio compared to other ratios.

• Using SRA caused a decrease in the water absorption rate of concrete. It was observed that the
effect of SRA on the reduction of water absorption of concrete is dependent on the immersion
time of the concrete in water.

• The use of SRA caused a 50% decrease in free shrinkage induced by drying.
• Prediction of the dry shrinkage of specimens was performed using an artificial neural network,

with low and acceptable mean error, indicating the high accuracy of ANN in predicting dry
shrinkage based on experimental results.
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