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Differential evolution (DE) is a population-based metaheuristic search algorithm that

optimizes a problem by iteratively improving a candidate solution based on an

evolutionary process. Such algorithms make few or no assumptions about the

underlying optimization problem and can quickly explore very large design spaces. DE

is arguably one of the most versatile and stable population-based search algorithms

that exhibits robustness to multi-modal problems. In the field of structural engineering,

most practical optimization problems are associated with one or several behavioral

constraints. Constrained optimization problems are quite challenging to solve due to

their complexity and high nonlinearity. In this work we examine the performance of

several DE variants, namely the standard DE, the composite DE (CODE), the adaptive

DE with optional external archive (JADE) and the self-adaptive DE (JDE and SADE), for

handling constrained structural optimization problems associated with truss structures.

The performance of each DE variant is evaluated by using five well-known benchmark

structures in 2D and 3D. The evaluation is done on the basis of final optimum result and

the rate of convergence. Valuable conclusions are obtained from the statistical analysis

which can help a structural engineer in practice to choose the suitable algorithm for such

kind of problems.

Keywords: structural optimization, differential evolution, DE, CODE, JADE, JDE, SADE

1. INTRODUCTION

The optimization of structures has been a topic of great interest for both scientists and engineering
professionals, especially in recent years. Metaheuristic search algorithms are widely accepted as
efficient approaches for handling difficult optimization problems. Such algorithms are designed for
solving a wide range of optimization problems in an approximate way, without having to adapt
explicitly to every single problem. Moreover, they can be generally applied to problems for which
there exists no satisfactory problem-specific algorithm.

In recent years differential evolution (DE) (Storn and Price, 1997) has gained increasing interest
for solving optimization problems in many scientific and engineering fields. Today, it is considered
one of the most popular optimization algorithms for continuous optimization problems. The
method was originally proposed by Storn and Price (1995) for minimizing non-differentiable
and possibly nonlinear continuous functions. It is worth noting that although DE is an
evolutionary algorithm, it bears no natural paradigm and it is not biologically inspired like most
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other evolutionary algorithms. DE has exhibited very good
performance in a variety of optimization problems from
various scientific fields. It belongs to stochastic population-based
evolutionary methods and like other evolutionary algorithms, it
uses a population of candidate solutions and the search is done in
a stochastic way by applying mutation, crossover, and selection
operators to drive the population toward better solutions in the
design space.

The main advantage of standard DE is the fact that it has
only three control parameters that one needs to adjust. The
performance of DE in a specific optimization problem depends
largely on both the trial vector generation scheme and the
choice of the control parameters. First, one needs to choose the
trial vector generation scheme and then to adjust the control
parameters for the optimization problem in order to achieve
good optimization results. Finding the right values of the control
parameters is not always easy and can become time consuming
and difficult especially for specific hard problems. This has led
the researchers to study and develop new advanced DE variants
that exhibit adaptive and self-adaptive control parameters. In
the case of adaptive parameter control (Eiben et al., 1999), the
parameters are adapted based on feedback received during the
search process.

Shukla et al. (2017) presented a modified mutation vector
generation scheme for the basic DE for solving the stagnation
problem. A new variant of DE was proposed and its
performance was tested on 24 benchmark functions. Abbas
et al. (2015) proposed a tournament-based parent selection
variant of the DE algorithm in an effort to enhance the
searching capability and improve convergence speed of DE.
The paper also describes a statistical comparison of existing
DE mutation variants, categorizing these variants based on
their overall performance. Charalampakis and Tsiatas (2019)
compare variants of Genetic Algorithms, Particle Swarm
Optimization (Plevris and Papadrakakis, 2011), Artificial Bee
Colony, Differential Evolution, and Simulated Annealing in
truss sizing structural optimization problems. The authors
claim that for the examined problems, DE is the most
reliable algorithm, showing robustness, excellent performance
and scalability. Mezura-Montes et al. (2006) present an
empirical comparison of several DE variants in solving global
optimization problems where 13 benchmark problems from
the literature were examined and eight different variants
were implemented.

In the present study, we investigate the performance of
five popular DE variants in dealing with constrained structural
optimization problems. More specific the following five problems
are considered:

• The standard differential evolution (DE) (Storn and Price,
1997)
• The composite differential evolution (CODE) (Wang et al.,

2011)
• The self-adaptive control parameters differential evolution

(JDE) (Brest et al., 2006)
• The adaptive differential evolution with optional external

archive (JADE) (Zhang and Sanderson, 2009)

• The self-adaptive differential evolution (SADE) (Qin et al.,
2009).

We examine the performance of each algorithm in five
structural optimization problems, three plane and two
space truss benchmark structures where the objective is to
minimize the structural weight subject to constraints on stresses
and displacements.

The remainder of the paper is organized as follows.
The second section contains the problem definition and the
constraint handling scheme. Section 3 describes the standard
DE, the most frequently used mutation schemes and the
other four DE variants examined in the study. The numerical
examples, the relevant results and a discussion on them are
presented in section 4. Section 5 discusses the conclusions of
the work.

2. PROBLEM DEFINITION

Many problems in structural engineering involve often
dealing with a large number of design parameters which
can affect the performance of the system. The design
and testing of civil engineering structures requires often
an iterative process with proper adjustment of the
parameters, that can be hard and time consuming. Design
optimization offers solutions to this problem by changing
the design parameters in an organized and automated
manner in an effort to reach an optimal solution. The
target of the optimization is usually the minimization of a
cost function.

In sizing structural optimization problems, the objective is
associated with the minimization of the weight of the structure
under some behavioral constraints that have usually to do with
displacements and stresses. The design parameters have to do
with the dimensions of the cross sections of the structural
members. The present study is focused on 2D and 3D truss
structures and the design variables are continuous representing
the cross-sectional areas of the members of the structure. For
such problems the objective function is usually the weight
(or mass) of the structure and the problem is formulated
as follows:

min
xi

W(x) =

Ne∑

i=1

Lixiρi

s.t. gk(x) ≤ 0, k = {1, . . . ,K}

(1)

where W(x) is the total structural weight, Ne is the number
of structural elements, x = {x1, . . . , xNe} is the vector which
contains the cross-section areas xi of all elements, Li is the
length and ρi is the material density of element i. In addition,
g(x) are the behavioral constraints, K in total. The behavioral
constraints are relationships involving usually stresses and
deflections of the various elements and nodes of the structure,
for example the maximum stress, the maximum deflection,
or the minimum load capacity to satisfy norms requirements.
Many times, for practical purposes and for uniformity, the
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areas of particular members are grouped together so that the
number of design variables can become significantly smaller
than the total number of elements of the structure. This is very
convenient especially for big structures with a large number
of elements. Grouping in optimization is also in line with
actual grouping that is performed in practice due to symmetry
and simplicity.

2.1. Constraint Handling
A common practice for dealing with an optimization
problem that includes inequality constraints is the use of a
penalty function. Such functions can be used to transform
the original constrained problem to an unconstrained
one. This has been a popular approach for dealing
with such problems because it is simple and rather
easy to implement. In the present study, the following
penalty formulation is used to handle the optimization
problem constraints:

F(x) = f (x)+ P(x) = f (x)+ µ

N∑

k=1

Hk(x)g
2
k (x) (2)

where f (x) is the objective function to be minimized, P(x) is the
penalty term, gk(x) is the k-th constraint function in the form
gk(x) ≤ 0, µ ≥ 0 is a penalty factor that should be large enough
(e.g., 106) and the Hk(x) function is defined as follows:

Hi(x) =

{
1, if gi(x) > 0
0, otherwise

(3)

3. OPTIMIZATION ALGORITHMS

3.1. Standard DE
DE is a popular optimization method used for multidimensional
real-valued functions which uses a population of individual
solutions. The method does not require gradient information,
which means that the optimization problem does not need to
be differentiable. The algorithm searches the design space by
maintaining a population of candidate solutions (individuals)
and creating new solutions by combining existing ones
according to a specific process. The candidates with the
best objective values are kept in the next iteration of the
algorithm in a manner that the new objective value of an
individual is improved forming consequently part of the
population, otherwise the new objective value is discarded.
The process repeats itself until a given termination criterion
is satisfied.

Let x ∈ R
D designate a candidate solution in the

current population, where D is the dimensionality of the
problem being optimized and f : R

D −→ R is the objective
function to be minimized. The basic DE algorithm, following
the “DE/rand/1” scheme, can be described schematically
as follows:

TABLE 1 | Characteristics of the five test problems.

Description Type Elements Nodes DOFs Design variables

25-bar space truss 3D 25 10 30 8

10-bar plane truss 2D 10 6 12 10

72-bar space truss 3D 72 20 60 16

17-bar plane truss 2D 17 9 18 17

200-bar plane truss 2D 200 77 154 29

Algorithm 1: Pseudocode of DE.

Data:

NP: population size, F: mutation factor, CR: crossover
probability, MAXFES: maximum number of functions
evaluations
INITIALIZATION G = 0; Initialize all NP individuals with
random positions in the search space;
while FES < MAXFES do

for i← 1 to NP do
GENERATE three individuals xr1, xr1, xr1 from the current
population randomly. These must be distinct from each
other and also from individual xi, i.e. r1 6= r2 6= r3 6= i
MUTATION Form the donor vector using the formula:
vi = xr1 + F(xr2 − xr3 )
CROSSOVER The trial vector ui is developed either from
the elements of the target vector xi or the elements of the
donor vector vi as follows:

ui,j =

{
vi,j, if ri,j ≤ CR or j = jrand
xi,j, otherwise

where i = {1, . . . ,NP}, j = {1, . . . ,D}, ri,j ∼ ∪(0, 1) is a
uniformly distributed random number which is generated
for each j and jrand ∈ {1, . . . ,D} is a random integer used
to ensure that ui 6= xi in all cases
EVALUATE If f (ui) ≤ f (xi) then replace the individual xi
in the population with the trial vector ui
FES = FES+ NP

end

G = G+ 1;
end

In every generation (iteration) G, Differential Evolution uses the
mutation operator for producing the donor vector vi for each
individual xi in the current population. For each target vector
xi = {xi,1, . . . , xi,D} at generation G, the associated mutant
vector vi = {vi,1, . . . , vi,D} can be produced using a specific
mutation scheme. The six most widely used mutation schemes
in differential evolution are described below:

“DE/rand/1” vi = xr1 + F(xr2 − xr3 )

“DE/best/1" vi = xbest + F(xr1 − xr2 )

“DE/rand/2" vi = xr1 + F(xr2 − xr3 )+ F(xr4 − xr5 )

“DE/best/2" vi = xbest + F(xr1 − xr2 )+ F(xr3 − xr4 )

“DE/current-to-best/1" vi = xi + F(xbest − xi)+ F(xr1 − xr2 )
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A B

FIGURE 1 | 25-bar space truss (A) geometry; (B) algorithms’ convergence histories (average of 30 runs).

“DE/current-to-rand/1" vi = xi + rand(xr1 − xi)+ F(xr2 − xr3 )

where the indices r1, r2, r3, r4, r5 are random integers which are
mutually exclusive, within the range [1,NP] and are also different
than index i (r1 6= r2 6= r3 6= r4 6= r5 6= i). These indices are
generated once for each mutant vector. F is the scaling factor, a
positive control parameter for scaling the difference vector, while
xbest is the best individual vector, i.e., the individual with the best
objective value in the population at the current generation G.

The main advantage of DE is the fact that it has only three
control parameters that the user of the algorithm needs to
adjust. These include the population size NP, where NP ≥ 4,
the mutation factor (or differential weight, or scaling factor)
F ∈ [0, 2] and the crossover probability (or crossover control
parameter) CR ∈ [0, 1]. In the standard DE these control
parameters were kept fixed for all the optimization process. The
population size has a significant influence on the ability of the
algorithm to explore. In case of problems with a large number of
dimensions, the population size needs also to be large to make
the algorithm capable of searching in the multi-dimensional
design space. A population size of 30–50 is usually sufficient in
most problems of engineering interest. The mutation factor F
is a positive control parameter for scaling and controlling the
amplification of the difference vector. Small values of F will lead
to smaller mutation step sizes and as a result it will take longer for
the algorithm to converge. Large values of F facilitate exploration,
but can lead to the algorithm overshooting good optima. Thus,
the value has to be small enough to enhance local exploration but
also large enough tomaintain diversity. The crossover probability
CR has an influence on the diversity of DE, as it controls the
number of elements that will change. Larger values ofCRwill lead
to introducing more variation in the new population, therefore
increasing it increases exploration. But again a compromise value
has to be found to ensure both local and global search capabilities.

3.2. CODE
Studies have shown that both the control parameters and the
schemes for the trial vector generation can have a significant

Algorithm 2: Pseudocode of CODE.

Data: NP,MAXFES
INITIALIZATION G = 0; FES = NP;
while FES < MAXFES do
PG+1 = 0
for i← 1 to NP do
GENERATE three trial vectors ui1 ,G, ui2 ,G and ui3 ,G for
the target vector xi,G using the three generation schemes
“rand/1/bin,” “rand/2/bin,” and “current-to-rand/1,” each
with control parameter setting randomly selected from
the parameter candidate pool: [F = 1.0,CR = 0.1],
[F = 1.0,CR = 0.9] and [F = 0.8,CR = 0.2].
EVALUATE the objective function value of the three trial
vectors ui1 ,G, ui2 ,G, and ui3 ,G
CHOOSE the best trial vector u∗i,G from the three trial
vectors
PG+1 = PG+1Uselect(x

∗
i,G, u

∗
i,G)

FES = FES+ 3
end

G = G+ 1;
end

influence on the algorithm’s performance. Different trial vector
generation schemes and control parameters can be therefore
combined to improve the performance of the optimization
process for different kinds of problems. Mallipeddi et al. (2011)
was the first to attempt, trying to combine various schemes for
trial vector generation with different control parameter settings.

Composite DE (CODE) (Wang et al., 2011) is based on
the idea of randomly combining a number of trial vector
generation schemes with several control parameter settings at
each generation, for the creation of new trial vectors. These
combination schemes are based on experimental results from
the literature. In particular, CODE uses three different trial
vector generation schemes and three control parameter settings,
combining them randomly for the generation of trial vectors. The
structure of CODE is rather simple, and the algorithm is easy
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to implement. The three trial vector generation schemes of the
method are the following: (i) “rand/1/bin”; (ii) “rand/2/bin”; (iii)
“current-to-rand/1.” It has to be noted that in the case of the
“current-to-rand/1”scheme, the binominal crossover operator is
not applied. The three control parameter settings used are the
following: (1) F = 1.0 and CR = 0.1; (2) F = 1.0 and CR = 0.9;
(3) F = 0.8 and CR = 0.2.

TABLE 2 | 25-bar space truss: Load cases (loads in kips).

Load case 1 Load case 2

Node Px Py Pz Px Py Pz

1 1.0 10.0 −5.0 0.0 20.0 −5.0

2 0.0 10.0 −5.0 0.0 −20.0 −5.0

3 0.5 0.0 0.0 0.0 0.0 0.0

6 0.5 0.0 0.0 0.0 0.0 0.0

TABLE 3 | 25-bar space truss: allowable stresses for each design group.

Design variable Members Allowable

tension (ksi)

Allowable compression

(ksi)

1 1 40 −35.092

2 2–5 40 −11.590

3 6–9 40 −17.305

4 10,11 40 −35.092

5 12,13 40 −35.092

6 14–17 40 −6.759

7 18–21 40 −6.759

8 22–25 40 −11.082

In each generation, three trial vectors are generated for each
target vector as follows: each of the three trial vector generation
schemes is combined with a control parameter setting from the
relevant pool, in a random manner. If the best one of the three
is better than its target vector, then it enters the next generation.
The pseudocode of the method is presented in Algorithm 2.

3.3. JDE
The standard DE algorithm includes a set of parameters
that are kept fixed throughout the optimization process.
These parameters would need to be adjusted for every single
optimization problem in order to ensure optimal performance.
Some researchers have claimed that the DE parameters are
not so difficult to set manually (Storn and Price, 1997). Yet,
others (Gamperle et al., 2002) claim that the process can be
quite demanding especially for particular optimization problems.
According to Liu and Lampinen (2002), the effectiveness,
efficiency, and robustness of the DE algorithm are very sensitive
to the values of the control parameters, while certain parameters
may work well in a problem but not so well with other problems,
which makes the optimal selection of the parameters a problem-
specific question.

JDE features self-adaptive control parameter settings and has
shown acceptable performance on benchmark problems (Brest
et al., 2006). It uses the idea of the evolution of the evolution,
i.e., it uses an evolution process to fine tune the optimization
algorithm parameters. Although the idea sounds promising, the
proof of convergence of self-adaptation algorithms is a difficult
task in general. In JDE the parameter control technique is based
on the self-adaptation of the parameters F and CR of the DE
evolutionary process, producing a flexible DE which adjusts itself
in order to achieve the best optimization outcome. According
to Storn and Price (1997), DE behavior is more sensitive to the

TABLE 4 | Algorithms’ statistical parameters for the 25-bar space truss problem.

Algorithms

DE CODE JDE JADE SADE

Area [in2] Best design Best design Best design Best design Best design

1 0.0100 0.0100 0.0100 0.0100 0.0100

2 1.9324 1.9324 1.9325 1.9324 1.9325

3 2.9853 2.9853 2.9850 2.9853 2.9850

4 0.0100 0.0100 0.0100 0.0100 0.0100

5 0.0100 0.0100 0.0100 0.0100 0.0100

6 0.6842 0.6842 0.6842 0.6842 0.6843

7 1.7343 1.7343 1.7343 1.7343 1.7343

8 2.6513 2.6513 2.6513 2.6513 2.6512

Weight [lb] Best Worst Best Worst Best Worst Best Worst Best Worst

545.555 545.555 545.555 545.555 545.555 545.606 545.555 545.555 545.555 546.143

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std

545.555 ± 0.000 545.555 ± 0.000 545.559 ± 0.010 545.555 ± 0.000 545.613 ± 0.122

Median COV Median COV Median COV Median COV Median COV

545.555 6.67E-11 545.555 2.12E-16 545.555 1.92E-05 545.555 2.12E-16 545.566 2.24E-04

Frontiers in Built Environment | www.frontiersin.org 5 July 2020 | Volume 6 | Article 102

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Georgioudakis and Plevris Comparative Study of DE Variants

A B

FIGURE 2 | 10-bar plane truss (A) geometry; (B) algorithms’ convergence histories (average of 30 runs).

TABLE 5 | Algorithms’ statistical parameters for the 10-bar plane truss problem.

Algorithms

DE CODE JDE JADE SADE

Area [in2] Best design Best design Best design Best design Best design

1 30.5217 30.5218 30.5092 30.5218 30.6380

2 0.1000 0.1000 0.1000 0.1000 0.1000

3 23.1985 23.1999 23.1746 23.1999 23.2223

4 15.2235 15.2229 15.2324 15.2229 15.1815

5 0.1000 0.1000 0.1000 0.1000 0.1000

6 0.5511 0.5514 0.5494 0.5514 0.5500

7 7.4574 7.4572 7.4623 7.4572 7.4511

8 21.0370 21.0364 21.0647 21.0364 20.9647

9 21.5285 21.5284 21.5166 21.5284 21.5392

10 0.1000 0.1000 0.1000 0.1000 0.1000

Weight [lb] Best Worst Best Worst Best Worst Best Worst Best Worst

5060.854 5060.898 5060.854 5060.854 5060.858 5076.674 5060.854 5061.372 5060.887 5079.279

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std

5060.862 ± 0.012 5060.854 ± 0.000 5061.444 ± 2.877 5060.886 ± 0.102 5064.092 ± 6.151

Median COV Median COV Median COV Median COV Median COV

5060.856 2.47E-06 5060.854 2.12E-11 5060.902 5.68E-04 5060.854 2.02E-05 5061.292 1.21E-03

choice of F than it is to the choice of CR. The study suggests
the values of [0.5, 1] for F, [0.8, 1] for CR and 10D for NP,
whereD is the number of dimensions of the problem. The control
parameters of the JDE algorithm are described as:

Fi,G+1 =

{
Fl + rand1Fu, if rand2 < τ1
Fi,G, otherwise

(4)

CRi,G+1 =

{
rand3, if rand4 < τ2
CRi,G, otherwise

(5)

where randj with j ∈ {1, 2, 3, 4} are uniform random values in
[0, 1] and τ1, τ2 represent probabilities to adjust factors F and

CR with suggested values τ1 = τ2 = 0.10, while Fl = 0.1 and
Fu = 0.9 and as a result the new F takes values in the range
[0.1, 1]. The new CR takes values in [0, 1]. The new control
parameter values take effect before the mutation and as a result
they influence the mutation, crossover and selection operations
of the new trial vector. The idea of JDE is that one does not
need to guess good values of F and CR any more. The rules
for self-adaptation of the two parameters are quite simple and
easy to implement and use and as a result JDE does not increase
significantly the complexity or the computational effort of the
standard DE method. Experimental results have shown that JDE
outperforms both the classic “DE/rand/1” and other schemes (Liu
and Lampinen, 2005). The main contribution of JDE is that the
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A B

FIGURE 3 | 72-bar space truss (A) geometry; (B) algorithms’ convergence histories (average of 30 runs).

TABLE 6 | Algorithms’ statistical parameters for the 72-bar space truss problem.

Algorithms

DE CODE JDE JADE SADE

Area [in2] Best design Best design Best design Best design Best design

1 1.8836 1.8873 1.8920 1.8868 1.8671

2 0.5172 0.5169 0.5172 0.5168 0.5192

3 0.0100 0.0100 0.0100 0.0100 0.0100

4 0.0100 0.0100 0.0100 0.0100 0.0100

5 1.2870 1.2901 1.2867 1.2943 1.2917

6 0.5177 0.5166 0.5174 0.5171 0.5150

7 0.0100 0.0100 0.0100 0.0100 0.0100

8 0.0100 0.0100 0.0100 0.0100 0.0100

9 0.5224 0.5214 0.5236 0.5248 0.5141

10 0.5176 0.5184 0.5176 0.5191 0.5196

11 0.0100 0.0100 0.0100 0.0100 0.0100

12 0.1153 0.1141 0.1174 0.1111 0.0999

13 0.1663 0.1665 0.1661 0.1668 0.1679

14 0.5359 0.5363 0.5355 0.5348 0.5417

15 0.4464 0.4455 0.4452 0.4464 0.4487

16 0.5773 0.5759 0.5724 0.5739 0.5809

Weight [lb] Best Worst Best Worst Best Worst Best Worst Best Worst

363.825 363.893 363.824 363.835 363.826 363.908 363.826 364.026 363.862 365.665

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std

363.839 ± 0.013 363.826 ± 0.003 363.845 ± 0.019 363.859 ± 0.051 364.145 ± 0.378

Median COV Median COV Median COV Median COV Median COV

363.836 3.62E-05 363.825 6.89E-06 363.840 5.24E-05 363.839 1.40E-04 363.987 1.04E-03
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A

B

FIGURE 4 | 17-bar plane truss (A) geometry; (B) algorithms’ convergence

histories (average of 30 runs).

user no longer needs to guess good values of F and CR, which
are problem-dependent.

3.4. JADE
The selection of the values of the mutation factor (F) and
the crossover probability (CR) can significantly affect the
performance of DE. Trial-and-error attempts for fine-tuning
these control parameters can be successful but they require
much time and effort and the result is always problem-specific.
Researchers have suggested various self-adaptive mechanisms
for dealing with this problem (Qin and Suganthan, 2005; Brest
et al., 2006, 2007; Huang et al., 2006; Teo, 2006) in an effort to
dynamically update the control parameters without having any
prior knowledge of the characteristics of the problem.

JADE was proposed to improve the performance of the
standard DE by implementing a new mutation scheme which
updates control parameters in an adaptive way. The method
introduces a new mutation scheme denoted as “DE/current-
to-pbest” with an optional external archive. The algorithm, as
described in Zhang and Sanderson (2009) utilizes not only
the best solution, but a number of 100p%, p ∈ (0, 1] good
solutions. Compared to “DE/rand/k,” greedy schemes such as
the “DE/current-to-best/k” and the “DE/best/k” can benefit from
their fast convergence by incorporating best solution information
in the search procedure. However, this best solution information

can also cause premature convergence problems due to reduced
diversity in the population.

In the “DE/current-to-pbest/1” scheme (without archive), a
mutation vector is generated as follows:

vi,g = xi,g + Fi(x
p

best,g
− xi,g)+ Fi(xr1,g − xr2,g) (6)

Where x
p

best
is chosen randomly as one of the top 100p%

individuals of the current population with p ∈ (0, 1], and Fi is
the mutation factor associated with xi. In JADE, any of the top
100p% solutions can be randomly chosen to play the role of the
single best solution in the standard “DE/current-to-best” scheme.
This is because recently explored solutions that are not the best
can still provide additional information about the desired search
direction. In the “DE/current-to-pbest/1” scheme with archive, a
mutation vector is generated as follows:

vi,g = xi,g + Fi(x
p

best,g
− xi,g)+ Fi(xr1,g − x̃r2,g) (7)

Where xi,g , xr1,g and x
p

best,g
are selected from the current

population P in the usual way, while x̃r2,g is randomly chosen
individual (distinct from xi,g and xr1,g) from the union P ∪ A of
the current population and the set of archived inferior solutions
A. The archive is initiated as empty. Consequently, after each
iteration, the parent solutions that fail in the selection process are
added to the archive. If the size of the archive exceeds a predefined
value, for exampleNP, then some solutions are removed from the
archive randomly. The “DE/current-to-pbest/1” scheme (without
archive) is a special case of the “DE/current-to-pbest/1” scheme
with archive, if we set the archive size equal to zero (i.e.,
empty archive). Numerical results have shown that JADE exhibits
superior or at least comparable performance to other standard or
adaptive DE algorithms (Zhang and Sanderson, 2009).

3.5. SADE
In SADE, both the trial vector generation schemes and their
associated control parameter values can be gradually self-adapted
according to their previous experiences of generating promising
solutions (Qin et al., 2009). The method consists a self-adaptive
DE variant, in which one trial vector generation scheme is
selected from the candidate pool according to the probability
learned from its success rate in generating improved solutions
within a certain number of previous generations LP (learning
period). The selected scheme is then applied to the corresponding
target vector in order to obtain the trial vector. At each
generation, the sum of the probabilities of choosing a scheme
from the candidate pool are equal to 1.

In the beginning, all schemes have an equal probability to be
selected, i.e., the probabilities with respect to each scheme are
initialized as 1/K, where K is the total number of schemes. The
population size NP remains a user-specified parameter because it
has to do with the complexity of the given optimization problem.
The parameter F is approximated by a normal distribution with
mean value 0.5 and a standard deviation of 0.3 which makes
F fall within the range [−0.4, 1.4] with a probability of 0.997.
The control parameter K in the “DE/current-to-rand/1” scheme
is randomly generated within [0,1] while CR is assumed to

Frontiers in Built Environment | www.frontiersin.org 8 July 2020 | Volume 6 | Article 102

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Georgioudakis and Plevris Comparative Study of DE Variants

TABLE 7 | Algorithms’ statistical parameters for the 17-bar plane truss problem.

Algorithms

DE CODE JDE JADE SADE

Area [in2] Best design Best design Best design Best design Best design

1 15.9247 15.9220 15.9334 15.9444 16.0150

2 0.1000 0.1000 0.1000 0.1000 0.1029

3 12.0678 12.0751 12.0650 12.0607 12.1435

4 0.1000 0.1000 0.1000 0.1000 0.1000

5 8.0542 8.0728 8.0616 8.0598 8.2137

6 5.5646 5.5607 5.5598 5.5613 5.2921

7 11.9416 11.9277 11.9116 11.9377 12.0136

8 0.1000 0.1000 0.1000 0.1000 0.1000

9 7.9393 7.9419 7.9789 7.9439 7.9410

10 0.1000 0.1000 0.1000 0.1000 0.1000

11 4.0570 4.0535 4.0585 4.0515 4.0535

12 0.1000 0.1000 0.1000 0.1000 0.1000

13 5.6488 5.6603 5.6558 5.6535 5.6138

14 3.9925 4.0017 3.9987 4.0024 4.0490

15 5.5652 5.5600 5.5523 5.5600 5.5988

16 0.1000 0.1000 0.1000 0.1000 0.1104

17 5.5928 5.5779 5.5819 5.5800 5.5517

Weight [lb] Best Worst Best Worst Best Worst Best Worst Best Worst

2581.893 2581.949 2581.890 2581.898 2581.895 2582.033 2581.890 2582.048 2582.578 2670.458

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std

2581.909 ± 0.013 2581.893 ± 0.002 2581.925 ± 0.030 2581.909 ± 0.030 2605.089 ± 21.226

Median COV Median COV Median COV Median COV Median COV

2581.907 5.06E-06 2581.893 8.12E-07 2581.915 1.16E-05 2581.899 1.17E-05 2600.607 8.15E-03

follow a normal distribution with mean value CRm and standard
deviation Std, where initially it is set CRm = 0.5 and Std = 0.1.
A set of random CR values is generated following the normal
distribution and then applied to those target vectors to which the
k-th scheme is assigned.

To adapt theCR values, memoriesCRMemoryk are established
to store those CR values with respect to the k-th scheme of
successfully trial vectors generation, entering the next generation
within the previous LP generations that keep the success and
failure memories by storing CR values. During the first LP
generations, CR values with respect to the k-th scheme are
drawn from the normal distribution. At each generation after
LP generations, the median value that stored in CRMemoryk
will be calculated to overwrite CRmk. After evaluating the newly
generated trial vectors, CR values in CRMemoryk that correspond
to earlier generations will be replaced by promising CR values
obtained at the current generation with respect to the k-th
scheme. The method is described in detail in Qin et al. (2009).

4. NUMERICAL EXAMPLES

The performance of each of the five optimization algorithms
(the standard DE and the four DE variants) is examined in
five well-known benchmark structural engineering test examples.

The characteristics of each test example is given in Table 1.
All test examples have been previously optimized by many
researchers (Lee and Geem, 2004; Farshi and Alinia-ziazi, 2010;
Gandomi et al., 2013; Talatahari et al., 2013) using various
optimization algorithms.

For all test examples the objective is the minimization
of the structural weight under constraints on stresses and
displacements. The parameters of the optimization algorithms
are the following: population size NP = 30, mutation factor F =
0.6, crossover probability CR= 0.9. More specifically, for the JDE
variant, τ1, and τ2 probabilities are both taken equal to 0.1. JADE
is used with the optional archive, with archive size equal to NP =
30, while p = 0.05. The maximum number of objective function
evaluations is used as the termination criterion for all cases, with
a value of 105. The value of µ used in Equation (2) is equal to
1010. Furthermore, 30 independent runs have been conducted
for each method examined and the convergence history results
presented are the average results of the different runs. Other
statistical quantities and measures are also presented, such as
best, worst, mean, median, standard deviation, and coefficient of
variation (COV).

4.1. 25-Bar Space Truss
The first test example is a 25-member space truss. The geometry
of the structure is shown in Figure 1A where the dimensions a, b
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A B

FIGURE 5 | 200-bar plane truss (A) geometry. Load Cases 1 and 2 are depicted with blue and orange arrows, respectively; (B) algorithms’ convergence histories

(average of 30 runs).

and h are equal to 200, 75, and 100 in, respectively. The density
of the material is ρ = 0.1 lb/in3 and the Young’s modulus is E =
10,000 ksi. There are two load cases, as shown in Table 2. There
are eight groups where the members of the structure belong to.
The cross section areas of each design group, in the range [0.01, 5]
(in2), are the design variables of the problem. The design variable
groups and the stress constraints for each group are shown in
Table 3. The maximum allowable displacement for each node is
dmax = ±0.35 in every direction. The convergence history of the
various DE methods is shown in Figure 1B as the average of 30
independent runs for each optimization algorithm.

Figure 1B shows the convergence history of the five
algorithms. The horizontal dashed line represents the best
solution ever found in the literature for this specific problem,
for comparison purposes. The convergence histories reveal
that all the five algorithms eventually manage to converge
to approximately the same final result. However, the rate of
convergence is different. JADE is the fastest, converging to the
optimum earlier than the other algorithms. JADE, DE, and JDE
appear to be ranked 1st, 2nd, and 3rd as far as the convergence
speed is concerned. Then come SADE and CODE with similar
convergence performance. Table 4 reveals that all algorithms

managed to find the same best solution (545.555). It is worth
noting that three of them managed to find the same best solution
in all 30 runs, as the best value and the worst value are the very
same. Only JDE and SADE failed to deliver the best solution in all
30 runs, but again the difference is very small and the coefficient
of variation has very small values equal to 1.92E-5 and 2.24E-4
for the two methods, respectively.

4.2. 10-Bar Plane Truss
The second test example is the standard benchmark 10-bar
plane truss problem. The geometry of the structure is shown
in Figure 2A. The characteristics of the structure are: Young’s
modulus E = 10,000 ksi, density of the material ρ = 0.1 lb/in3,
L = 360 in, P = 100 kip. There are 10 group members, i.e., each
member of the structure belongs to its own group. The design
variables represent the cross-section areas of each structural
element in the interval [0.1, 35] (in2). The maximum allowable
stress (absolute value) is σallow = 25 ksi in tension or compression
while the maximum allowable displacement in the ±x and ±y
directions for each node is dmax = 2 in. The convergence history
of the various DE methods is shown in Figure 2B as the average
of 30 independent runs for each optimization algorithm.
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Figure 2B shows that all methods converge to the optimum,
but with different convergence rates. Again JADE shows the
best convergence performance. The algorithms are ranked as
JADE–DE–JDE–SADE–CODE from the fastest to the slowest
in reaching the optimum. Table 5 shows that all algorithms
managed to find the optimum solution as their “best” run. DE
and CODE were very successful in achieving the optimum result
even in their “worst” runs. DE and CODE show very consistent
performance in all runs and JADE is also good in that. JDE and
SADE have the most variation in their results with values of COV
equal to 5.68E-4 and 1.21E-3, respectively. It is worth noting that
CODE exhibits the slowest convergence but simultaneously the
most consistent behavior in reaching the same optimum value
in all runs.

4.3. 72-Bar Space Truss
Figure 3A shows the third test example, a space truss with 72
members. The basis of the structure is a rectangle with 2b = 120
in, while the total height is 4b = 240 in. Nodes 1, 2, 3, and 4 are
pinned on the ground while all the other nodes are free to move
in all three directions. Each member has the following material
characteristics: Young’s modulus is E = 10,000 ksi and material
density ρ = 0.1 lb/in3. Two load cases have been considered.
There are 16 groups of structural members. The design variables
represent the cross-section areas of each group. There is no upper
limit, while the lower limit is 0.01 in2 for each design variable.
The constraints are imposed on displacements and stresses. The
maximum allowable stress (as an absolute value) is σallow = 25
ksi, in tension or compression, while the maximum allowable
displacement in the ±x and ±y directions is dmax = 0.25 in, for
each node. The convergence history of the various DE variants
is shown in Figure 3B as the average of 30 independent runs for
each method.

Again, Figure 3B shows that all methods converge to the same
result with JADE being the fastest. The ranking from fastest
to slowest convergence is now JADE–JDE–DE–SADE–CODE.
Once again, CODE is very successful in obtaining almost the
same optimum value in all runs (COV = 6.89E-6) as shown
in Table 6. SADE exhibits the worst performance in terms of
variation of the results (COV = 1.04E-3). In any case, all
algorithms are again quite successful in almost all their 30 runs.

4.4. 17-Bar Plane Truss
The fourth test example is a 17-bar plane truss. The geometry of
the structure is shown in Figure 4A where dimension L is equal
to 100 in. The density of the material is ρ = 0.268 lb/in3 and the
Young’s modulus is E = 30,000 ksi. The structure is subjected to
the concentrated load P at node 9 equal to 100 kip. There is no
grouping of members in this example, i.e., each member belongs
to its own group and there are 17 groups in total. The design
parameters, in the interval [0.1, 35] (in2), are the cross-section
areas of each member group. The maximum allowable stress
(absolute value) is σallow = 50 ksi in tension or compression,
while the maximum allowable displacement in the ±x and ±y
directions is dmax=2 in, for each node. The convergence history
of the various DE methods is shown in Figure 4B as the average
of 30 independent runs for each optimization algorithm.

TABLE 8 | 200-bar space truss: Design variable groups.

Design variable Members

1 1, 2, 3, 4

2 5, 8, 11, 14, 17

3 19, 20, 21, 22, 23, 24

4 18, 25, 56, 63, 94, 101, 132,

139, 170, 177

5 26, 29, 32, 35, 38

6 6, 7, 9, 10, 12, 13, 15, 16, 27,

28, 30, 31, 33, 34, 36, 37

7 39, 40, 41, 42

8 43, 46, 49, 52, 55

9 57, 58, 59, 60, 61, 62

10 64, 67, 70, 73, 76

11 44, 45, 47, 48, 50, 51, 53, 54,

65, 66, 68, 69, 71, 72, 74, 75

12 77, 78, 79, 80

13 81, 84, 87, 90, 93

14 95, 96, 97, 98, 99, 100

15 102, 105, 108, 111, 114

16 82, 83, 85, 86, 88, 89, 91, 92, 103,

104, 106, 107, 109, 110, 112, 113

17 115, 116, 117, 118

18 119, 122, 125, 128, 131

19 133, 134, 135, 136, 137, 138

20 140, 143, 146, 149, 152

21 120, 121, 123, 124, 126, 127, 129, 130,

141, 142, 144, 145, 147, 148, 150, 151

22 153, 154, 155, 156

23 157, 160, 163, 166, 169

24 171, 172, 173, 174, 175, 176

25 178, 181, 184, 187, 190

26 158, 159, 161, 162, 164, 165, 167, 168,

179, 180, 182, 183, 185, 186, 188, 189

27 191, 192, 193, 194

28 195, 197, 198, 200

29 196, 199

JADE is the fastest algorithm to converge, as shown
in Figure 4B, while all algorithms reach the same solution
eventually. Table 7 shows that CODE exhibits the most stable
performance with COV = 8.12E-7 as far as the final optimum
is concerned. SADE has the most variation of the results with
COV = 8.15E-3.

4.5. 200-Bar Plane Truss
The fifth example is a space truss consisting of 200 members.
The geometry of the structure is shown in Figure 5A where
dimensions a, b, and c are equal to 360, 144, and 240 in,
respectively. The density of the material is ρ = 0.283 lb/in3

and the Young’s modulus is E = 30,000 ksi. There are three
independent load cases (LC) as shown in Figure 5A: (i) LC1: 1.0
kip acting in the positive x-direction (blue arrows); (ii) LC2: 10
kips acting in the negative y-direction (orange arrows) and (iii)
LC3: the first two load cases acting together.
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TABLE 9 | Algorithms’ statistical parameters for the 200-bar plane truss problem.

Algorithms

DE CODE JDE JADE SADE

Area [in2] Best design Best design Best design Best design Best design

1 0.1441 0.1521 0.1340 0.1075 0.1306

2 0.9385 0.9443 0.9417 1.0709 0.9241

3 0.1033 0.1003 0.1021 0.100 0.1474

4 0.1001 0.1001 0.1003 0.1000 0.1000

5 1.9385 1.9420 1.9434 1.9700 1.9241

6 0.3006 0.3019 0.2948 0.2712 0.3086

7 0.1272 0.1043 0.1365 0.1275 0.1095

8 3.1152 3.1276 3.1028 3.0277 3.1119

9 0.1033 0.1052 0.1255 0.2896 0.1003

10 4.1154 4.1262 4.1021 4.0299 4.1119

11 0.4231 0.4144 0.4273 0.4731 0.4123

12 0.1442 0.1283 0.1034 0.1014 0.1772

13 5.4695 5.4412 5.4106 5.3787 5.3972

14 0.1055 0.1718 0.1527 0.1992 0.3181

15 6.4696 6.441 6.4171 6.3758 6.3971

16 0.5638 0.5894 0.5622 0.5847 0.6827

17 0.1486 0.1786 0.3149 0.1832 0.2080

18 7.9994 8.018 7.9494 7.9057 8.1121

19 0.1052 0.1419 0.2886 0.1489 0.1481

20 8.9995 9.0167 8.9541 8.9067 9.1119

21 0.7336 0.7937 0.9325 0.7762 0.8681

22 0.8221 0.5624 0.2133 0.4346 0.7341

23 11.1663 11.1755 11.1696 10.8659 11.5626

24 0.1109 0.1405 0.1037 0.1000 0.3027

25 12.1669 12.1750 12.1457 11.8743 12.5632

26 1.3310 1.2286 1.0143 1.0750 1.5131

27 5.5193 5.6929 6.2548 6.2908 4.6757

28 10.1646 10.2696 10.5478 11.2671 9.5501

29 14.4981 14.3823 14.1036 13.8505 15.1318

Weight [lb] Best Worst Best Worst Best Worst Best Worst Best Worst

25505.765 26160.407 25523.011 25919.182 25579.000 26541.229 25659.736 26813.984 25734.695 27636.608

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std

25715.962 ± 185.129 25716.826 ± 120.334 25867.595 ± 191.068 26175.928 ± 301.066 26556.821 ± 518.116

Median COV Median COV Median COV Median COV Median COV

25688.199 7.20E-03 25728.346 4.68E-03 25847.327 7.39E-03 26165.435 1.15E-02 26522.826 1.95E-02

The members of the structure are divided into 29 groups
in total, as shown in Table 8. The cross-section areas of each
member group, in the interval [0.1, 35] (in2), are the design
variables of the problem. The stress of each member, in absolute
terms, needs to be less than σallow = 10 ksi (in tension or
compression). No displacement limit is set for this problem.

The convergence history of the various DE methods is shown
in Figure 5B as the average of 30 independent runs for each
optimization algorithm.

In this problem, JADE is again the fastest algorithm to
converge to the final result, followed by JDE. Table 9 shows that
CODE exhibits themost stable performance withCOV = 4.68E-3

as far as the final optimum is concerned. SADE has the most
variation of the results (worst performance) with COV = 1.95E-
2. The difference between the best and the worst solutions are
396.171 in CADE and 1901.913 in SADE.

5. DISCUSSION

The convergence history plots show that in all problems,
JADE converges faster to the final result, followed by JDE
and DE which exhibit similar performance with each other
in terms of convergence speed. It appears that in the JADE
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FIGURE 6 | Coefficient of variation (COV) values for each problem and

algorithm.

algorithm, the parameter adaptation is beneficial in accelerating
the convergence performance of DE by automatically updating
the control parameters during the optimization search. This
has effect even in the very first iterations of the algorithm,
making JADE clearly stand out from the other variants,
from the beginning of the search process. CODE exhibits the
slowest convergence performance among the five algorithms. All
algorithmsmanage to reach the final result with efficient accuracy
in most of the optimization runs. CODE shows the most robust
performance among all algorithms as it manages to find the same
solution in almost all the optimization runs, with very small
variation of the results among the 30 runs. CODE has the lowest
values of the coefficient of variation (COV) metric in all five test
problems, as shown in Figure 6 (y-values in logarithmic scale).
SADE shows the most variation of the results (highest values
of COV). CODE guarantees very robust final results but at the
expense of slower convergence speed, while JADE manages to
provide satisfactory convergence speed and a good quality of
the final optimum result. The performance of the standard DE
algorithm is also rather good as DEmanages to outperform some
of the other adaptive schemes.

6. CONCLUSIONS

The present study investigates the performance of five
DE variants, DE, CODE, JDE, JADE, and SADE, in
dealing with constrained structural optimization problems.
The structures examined are 2D and 3D trusses under
single or multiple loading conditions. The constraints are
imposed on stresses and displacements while the objective
is to minimize the weight of each structure. Five well-
known benchmark problems of truss structures have been
considered in the comparison. In order to ensure neutrality
and to compare the results of the various algorithms,
30 runs have been conducted for each test problem
and each algorithm and various statistical metrics have
been calculated.

From the statistical analysis that has been conducted, it can be
concluded that the CODE algorithm guarantees robustness but
with slower convergence speed, while JADE manages to provide
a satisfactory compromise between the convergence speed and
the quality of the final optimum result, compared to the other
four competitors. Surprisingly, even in the case of the standard
DE algorithm the performance is rather good as DE manages
to outperform some other adaptive schemes, such as SADE,
in terms of the quality of the final result and the convergence
speed achieved. The same finding has also been reported by
Charalampakis and Tsiatas (2019).

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

MG did the data collection, contributed in the numerical analysis
of the test examples, analyzed and interpreted the data, and wrote
parts of the paper. VP contributed in the conception and design
of the work, analyzed and interpreted the data, wrote parts of
the paper, and supervised the overall research work. All authors
have made a substantial, direct and intellectual contribution to
the work, and approved it for publication.

REFERENCES

Abbas, Q., Ahmad, J., and Jabeen, H. (2015). A novel tournament selection

based differential evolution variant for continuous optimization

problems. Math. Probl. Eng. 2015:205709. doi: 10.1155/2015/

205709

Brest, J., Bokovic, B., Greiner, S., Aumer, V., and Maucec, M. S. (2007).

Performance comparison of self-adaptive and adaptive differential evolution

algorithms. Soft Comput. 11, 617–629. doi: 10.1007/s00500-006-0124-0

Brest, J., Greiner, S., Boskovic, B., Mernik, M., and Zumer, V. (2006). Self-

adapting control parameters in differential evolution: a comparative study

on numerical benchmark problems. IEEE Trans. Evol. Comput. 10, 646–657.

doi: 10.1109/TEVC.2006.872133

Charalampakis, A. E., and Tsiatas, G. C. (2019). Critical evaluation

of metaheuristic algorithms for weight minimization of truss

structures. Front. Built Environ. 5:113. doi: 10.3389/fbuil.2019.

00113

Eiben, A., Hinterding, R., and Michalewicz, Z. (1999). Parameter control

in evolutionary algorithms. IEEE Trans. Evol. Comput. 3, 124–141.

doi: 10.1109/4235.771166

Farshi, B., and Alinia-ziazi, A. (2010). Sizing optimization of truss structures by

method of centers and force formulation. Int. J. Solids Struct. 47, 2508–2524.

doi: 10.1016/j.ijsolstr.2010.05.009

Gamperle, R., Mller, S. D., and Koumoutsakos, P. (2002). A Parameter Study

for Differential Evolution. Technical Report WSEAS NNA-FSFS-EC 2002,

Interlaken.

Gandomi, A. H., Talatahari, S., Yang, X.-S., and Deb, S. (2013). Design

optimization of truss structures using cuckoo search algorithm.

Struct. Design Tall Spec. Build. 22, 1330–1349. doi: 10.1002/ta

l.1033

Frontiers in Built Environment | www.frontiersin.org 13 July 2020 | Volume 6 | Article 102

https://doi.org/10.1155/2015/205709
https://doi.org/10.1007/s00500-006-0124-0
https://doi.org/10.1109/TEVC.2006.872133
https://doi.org/10.3389/fbuil.2019.00113
https://doi.org/10.1109/4235.771166
https://doi.org/10.1016/j.ijsolstr.2010.05.009
https://doi.org/10.1002/tal.1033
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Georgioudakis and Plevris Comparative Study of DE Variants

Huang, V. L., Qin, A. K., and Suganthan, P.N. (2006). “Self-adaptive differential

evolution algorithm for constrained real- parameter optimization,” in 2006

IEEE International Conference on Evolutionary Computation (Vancouver, BC),

17–24. doi: 10.1109/CEC.2006.1688285

Lee, K. S., and Geem, Z. W. (2004). A new structural optimization method

based on the harmony search algorithm. Comput. Struct. 82, 781–798.

doi: 10.1016/j.compstruc.2004.01.002

Liu, J., and Lampinen, J. (2002). “On setting the control parameter of

the differential evolution method,” in Proceedings of MENDEL 2002, 8th

International Conference Soft Computing (Brno), 11–18.

Liu, J., and Lampinen, J. (2005). A fuzzy adaptive differential evolution algorithm.

Soft Comput. 6, 448–462. doi: 10.1007/s00500-004-0363-x

Mallipeddi, R., Suganthan, P. N., Pan, Q. K., and Tasgetiren, M. F. (2011).

Differential evolution algorithm with ensemble of parameters and mutation

strategies. Appl. Soft Comput. 11, 1679–1696. doi: 10.1016/j.asoc.2010.

04.024

Mezura-Montes, E., Velzquez-Reyes, J., and Coello, C. A. C. (2006).

“A comparative study of differential evolution variants for global

optimization,” in GECCO ’06: Proceedings of the 8th Annual Conference

on Genetic and Evolutionary Computation (Seattle, WA), 485–492.

doi: 10.1145/1143997.1144086

Plevris, V. and Papadrakakis, M. (2011). A hybrid particle swarm–gradient

algorithm for global structural optimization. Comput. Aided Civil Infrastruct.

Eng. 26, 48–68. doi: 10.1111/j.1467-8667.2010.00664.x

Qin, A. K., Huang, V. L., and Suganthan, P. N. (2009). Differential evolution

algorithm with strategy adaptation for global numerical optimization.

IEEE Trans. Evol. Comput. 13, 398–417. doi: 10.1109/TEVC.2008.

927706

Qin, A. K., and Suganthan, P. N. (2005). “Self-adaptive differential evolution

algorithm for numerical optimization,” in 2005 IEEE Congress on Evolutionary

Computation (Edinburgh), 1785–1791. doi: 10.1109/CEC.2005.1554904

Shukla, R., Hazela, B., Shukla, S., Prakash, R., and Mishra K. K. (2017). “Variant of

differential evolution algorithm,” in Advances in Computer and Computational

Sciences. Advances in Intelligent Systems and Computing, Vol. 553, eds S.

Bhatia, K. Mishra, S. Tiwari, and V. Singh (Singapore: Springer), 601–608.

doi: 10.1007/978-981-10-3770-2_56

Storn, R., and Price, K. (1995). Differential Evolution—A Simple and Efficient

Adaptive Scheme for Global Optimization Over Continuous Spaces. Technical

Report, Berkeley, CA. Available online at: https://www.icsi.berkeley.edu/ftp/

global/global/pub/techreports/1995/tr-95-012.pdf

Storn, R., and Price, K. (1997). Differential evolution–a simple and efficient

heuristic for global optimization over continuous spaces. J. Glob. Optim. 11,

341–359. doi: 10.1023/A:1008202821328

Talatahari, S., Kheirollahi, M., Farahmandpour, C., and Gandomi, A. H. (2013).

A multi-stage particle swarm for optimum design of truss structures. Neural

Comput. Appl. 23, 1297–1309. doi: 10.1007/s00521-012-1072-5

Teo, J. (2006). Exploring dynamic self-adaptive populations in differential

evolution. Soft Comput. 10, 673–686. doi: 10.1007/s00500-005-0537-1

Wang, Y., Cai, Z., and Zhang, Q. (2011). Differential evolution with composite trial

vector generation strategies and control parameters. IEEE Trans. Evol. Comput.

15, 55–66. doi: 10.1109/TEVC.2010.2087271

Zhang, J., and Sanderson, A. C. (2009). Jade: Adaptive differential evolution

with optional external archive. IEEE Trans. Evol. Comput. 13, 945–958.

doi: 10.1109/TEVC.2009.2014613

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Georgioudakis and Plevris. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Built Environment | www.frontiersin.org 14 July 2020 | Volume 6 | Article 102

https://doi.org/10.1109/CEC.2006.1688285
https://doi.org/10.1016/j.compstruc.2004.01.002
https://doi.org/10.1007/s00500-004-0363-x
https://doi.org/10.1016/j.asoc.2010.04.024
https://doi.org/10.1145/1143997.1144086
https://doi.org/10.1111/j.1467-8667.2010.00664.x
https://doi.org/10.1109/TEVC.2008.927706
https://doi.org/10.1109/CEC.2005.1554904
https://doi.org/10.1007/978-981-10-3770-2_56
https://www.icsi.berkeley.edu/ftp/global/global/pub/techreports/1995/tr-95-012.pdf
https://www.icsi.berkeley.edu/ftp/global/global/pub/techreports/1995/tr-95-012.pdf
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1007/s00521-012-1072-5
https://doi.org/10.1007/s00500-005-0537-1
https://doi.org/10.1109/TEVC.2010.2087271
https://doi.org/10.1109/TEVC.2009.2014613
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

	A Comparative Study of Differential Evolution Variants in Constrained Structural Optimization
	1. Introduction
	2. Problem Definition
	2.1. Constraint Handling

	3. Optimization Algorithms
	3.1. Standard DE
	3.2. CODE
	3.3. JDE
	3.4. JADE
	3.5. SADE

	4. Numerical Examples
	4.1. 25-Bar Space Truss
	4.2. 10-Bar Plane Truss
	4.3. 72-Bar Space Truss
	4.4. 17-Bar Plane Truss
	4.5. 200-Bar Plane Truss

	5. Discussion
	6. Conclusions
	Data Availability Statement
	Author Contributions
	References


