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a b s t r a c t

Obesity is associated with comorbidities of which pharmacological treatment is needed. Physiological
changes associated with obesity may influence the pharmacokinetics of drugs, but the effect of body
weight on drug metabolism capacity remains uncertain. The aim of this study was to investigate ex vivo
activities of hepatic drug metabolizing CYP enzymes in patients covering a wide range of body weight.
Liver biopsies from 36 individuals with a body mass index (BMI) ranging from 18 to 63 kg/m2 were
obtained. Individual hepatic microsomes were prepared and activities of CYP3A, CYP2B6, CYP2C8,
CYP2D6, CYP2C9, CYP2C19 and CYP1A2 were determined. The unbound intrinsic clearance (CLint,u)
values for CYP3A correlated negatively with body weight (r ¼ �0.43, p < 0.01), waist circumference
(r ¼ �0.47, p < 0.01), hip circumference (r ¼ �0.51, p < 0.01), fat percent (r ¼ �0.41, p < 0.05), fat mass
(r ¼ �0.48, p < 0.01) and BMI (r ¼ �0.46, p < 0.01). Linear regression analysis showed that CLint,u values
for CYP3A decreased with 5% with each 10% increase in body weight (r2 ¼ 0.12, b ¼ �0.558, p < 0.05).
There were no correlations between body weight measures and CLint,u values for the other CYP enzymes
investigated. These results indicate reduced hepatic metabolizing capacity of CYP3A substrates in pa-
tients with increasing body weight.
© 2020 The Authors. Published by Elsevier Inc. on behalf of the American Pharmacists Association®. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction increased risk for developing comorbidities, such as cardiovascular
Obesity, defined by a body mass index (BMI) of 30 kg/m2 or
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obesity-related physiological changes may alter drug disposition,
including increased amounts of adipose tissue and lean body mass,
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obesity compared with non-obese controls.5e9 Such changes in
pharmacokinetics may be secondary to physiological changes like
increased blood flow to the eliminating organ, or directly due to
changed CYP enzyme activity.

The CYP enzymes are involved in the metabolism of 70e80% of
all drugs.10 Of these, up to 50% are metabolized by the CYP3A
subfamily, consisting mainly of the polymorphic enzymes CYP3A4
and the CYP3A5.10,11 Brill et al. reported overall trends towards
decreased clearance of CYP3A substrates and increased clearance
for substrates of CYP1A2, CYP2C9, CYP2C19 and CYP2D6 in patients
with obesity.5 The liver is the main drug metabolizing organ and
expresses a wide range of CYP isoforms,12 but little data exist on the
association between body weight/composition and hepatic activity
of CYP enzymes. However, increasing BMI was associated with
decreased protein expression of CYP3A4 in a study including liver
samples from patients with obesity.13 Knowledge about the effect
of body weight and composition on hepatic CYP activities is rele-
vant for increased insight into the variability in pharmacokinetics
between individuals in need of pharmacological treatment.

The aim of this study was to investigate the correlation between
body weight/composition and hepatic intrinsic clearance (CLint) of
CYP3A, CYP2B6, CYP2C8, CYP2D6, CYP2C9, CYP2C19 and CYP1A2 in
patients covering a wide range of body weight.

Materials and Methods

Chemicals

Tris base, protease inhibitor cocktail tablets (Complete, Mini),
HEPES buffer and reduced b-nicotinamide adenine dinucleotide
phosphate (NADPH) were purchased from Sigma-Aldrich (St. Louis,
MO). Sucrose and methanol were obtained from Merck (Kenil-
worth, NJ). Acetonitrile (ACN) was from Fisher Scientific (Waltham,
MA). Ethylenediaminetetraacetic acid (EDTA) was purchased from
Ferak (Berlin, Germany). Phosphate buffer was prepared from
dipotassium hydrogen phosphate and potassium dihydrogen
phosphate from Sigma-Aldrich. CYP probe substrates, metabolites
and internal standard (5,5-diethyl-1,3-diphenyl-2-iminobarbituric
acid) were prepared in-house or obtained from Sigma-Aldrich.
High purity water was prepared with a Milli-Q® Water Purifica-
tion System (Merck).

Patients

Thirty-six patients enrolled in the COCKTAIL study (trial regis-
tration number NCT02386917) were included in the present anal-
ysis.14 Liver biopsies were obtained during Roux-en-Y gastric bypass
(RYGB) surgery (20 patients) or cholecystectomy (16 patients). He-
patic CYP activities from the RYGB patients have been described in
previous work.15 Anthropometric measurements and blood samples
for clinical chemistry analyses were collected at the day before
surgery and biopsy obtainment. Body weight and body composition
were determined using the Inbody 720, Body Composition Analyzer
(Biospace, Korea). Height wasmeasured to the nearest 1 cm and BMI
was calculated as weight in kilograms divided by the square of
height in metres. Waist circumference and hip circumference were
measured with a stretch-resistant tape parallel to the floor and
midway between the 12th rib and the iliac crest, and around the
widest portion of the buttocks, respectively. Patients undergoing
RYGB were subjected to a three-week low energy diet (<1200 kcal/
day) before surgery, while the cholecystectomy patients were not
subjected to any defined diet. None of the patients received drugs
known to alter the activities of the CYP enzymes investigated in the
current study. This study complied with the Declaration of Helsinki.
The study protocol was approved by the Regional Committee for
Medical and Health Research Ethics (2013/2379/REK sørøst A), and
all patients signed a written informed consent.

Blood Sample Analyses

Clinical chemistry analyses were performed at Department of
Laboratory Medicine, Vestfold Hospital Trust. Plasma concentra-
tions of C-reactive protein (CRP) and high-sensitivity C-reactive
Protein (hs-CRP) were measured with use of immunoturbidimetry
(Advia Chemistry XPT systems, Siemens) at Fürst Medical Labora-
tory (Oslo, Norway). Plasma concentration of markers for inflam-
mation representing various types of immune responses, i.e. C-C
motif chemokine ligand (CCL)2 (monocyte chemo-attractant pro-
tein 1), CCL4 (macrophage inflammatory protein 1b), CCL11
(eotaxin), C-X-C motif chemokine 10 (CXCL)10 (interferon (IFN)-g
induced protein 10), granulocyte colony-stimulating factor (G-CSF),
intracellular adhesion molecule 1 (ICAM-1), IFN-g, interleukin (IL)-
1b, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-17, IL-18, IL-21, leptin,
resistin, soluble CD40 ligand (sCD40L), soluble tumour vascular
endothelial growth factor A (necrosis factor (TNF) receptor 1
(sTNFR1), TNF-a, VEGF-A) were analysed as a multiplex bead-based
immunoassays (Bio-Techne, UK) based on xMAP technology
(Luminex, Austin, TX) at the Department of Medical Biochemistry,
Diakonhjemmet Hospital, Oslo. The manufacturer's analytical pro-
tocol was followed. Values below the lower limit of quantification
were estimated to 10% of the lowest standard curve point.

Liver Biopsies

Liver tissue was obtained from parenchyma, by cutting a sample
close to the edge of the right liver lobe with cold scissors. The tissue
sample was split in four and immediately transferred into individual
cryo tubes, snap frozen in liquid nitrogen and stored at �80 �C until
analysis.

Preparation of Microsomes and Ex Vivo CYP Activity Assay

CYP activities were analysed with methods described in detail in
previous work.15 In short, liver homogenates were prepared with a
Potter-Elvehjem homogenizator and microsomal fractions were iso-
lated by differential centrifugation. Specific probe substrates in
combined incubations were used for studying enzyme activities;
midazolam (CYP3A), bupropion (CYP2B6), amodiaquine (CYP2C8),
bufuralol (CYP2D6), diclofenac (CYP2C9), S-mephenytoin (CYP2C19)
and phenacetin (CYP1A2). Incubations were carried out at 37 �C for
20 min, and each probe substrate was added in eight different con-
centrations. Reactionswere terminated using ice-cold ACN containing
internal standard. Metabolite concentrations (1-OH-midazolam, OH-
bupropion, N-desethylamodiaquine, 1-OH-bufuralol, 4-OH-diclofe-
nac, 4-OH-mephenytoin and paracetamol) were quantified against
calibrators with liquid chromatography tandem mass spectrometry.

CYP Genotyping

Analysis of CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5 and
CYP1A2 variant alleles were performed using Taqman-based real-
time polymerase chain reaction assays implemented for routine
pharmacogenetic analyses at the Center for Psychopharmacology,
Diakonhjemmet Hospital. The following variant alleles were
included in this study: CYP2C9: the reduced-function alleles *2
(rs1799853) and *3 (rs1057910); CYP2C19: the null alleles *2
(rs4244285), *3 (rs4986893) and *4 (rs28399504) and the gain-of-
function allele *17 (rs12248560); CYP2D6: the null alleles *3
(rs35742686), *4 (rs3892097), *5 (whole gene deletion) and *6
(rs5030655), the reduced-function alleles *9 (rs5030656), *10



Table 2
Distribution of CYP3A4, CYP3A5, CYPD26, CYP2C9, CYP2C19 and CYP1A2 Diplotypes
and Likely Phenotypes.

Enzyme Diplotype Likely Phenotype n Reference

CYP3A4 *1/*1 NM 34 35

*1/*22 IM 2
CYP3A5 *1/*3 IM 2 36

*3/*3 PM 34
CYP2D6 *1/*1 NM 10 37

*1/*9 NM 6
*1/*10 NM 1
*1/*41 NM 5
*1/*4 IM 9
*4/*9 IM 1
*4/*10 IM 1
*4/*5 PM 1
*4/*6 PM 1
*5/*5 PM 1

CYP2C9 *1/*1 NM 25 38

*1/*2 IM 10
*3/*3 PM 1

CYP2C19 *17/*17 UM 2 39

*1/*17 RM 11
*1/*1 NM 12
*1/*2 IM 8
*2/*17 IM 2
*2/*2 PM 1

CYP1A2 *1/*1 NM 2 40,41

*1/*1F Hyperinducer 18
*1F/*1F Hyperinducer 16

NM, normal metabolizer; IM, intermediate metabolizer; PM, poor metabolizer; RM,
rapid metabolizer; UM, ultrarapid metabolizer.
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(rs1065852) and *41 (rs28371725), as well as the increased-
function allele (whole gene duplication); CYP3A4: the reduced-
function allele *22 (rs35599367); CYP3A5: the null allele *3
(rs776746); CYP1A2: the increased induction allele *1F (rs762551).

Data Analysis

Enzyme Kinetics
Enzyme kinetic parameters were determined using untrans-

formed data and GraphPad Prism 7® by fitting the reaction velocity
versus substrate concentration data to the Michaelis-Menten model
(equation (1)) or the substrate inhibition model (equation (2)):

v¼Vmax � S
Km þ S

Eq 1

v¼ Vmax � S

Km þ S
�
1þ S

Ki

� Eq 2

where v is the velocity of the reaction, S is the substrate concen-
tration, Vmax is the maximum velocity, Km is the Michaelis constant
and Ki is the inhibitor constant.

As the incubations were performed with varying concentrations
of microsomal protein, Km values were adjusted for fraction of un-
bound drug (fumic). The fumic values were predicted from physico-
chemical properties of the substrates and microsomal protein
concentration using the Simcyp prediction tool.16 Unbound intrinsic
clearance (CLint,u) was calculated from the ratio of Vmax to Km,u.

Statistics
The relationship between variables was investigated using

Spearman rank order correlation analysis. Simple linear regression
analysis was performed to elucidate the relationship between body
weight and CYP3A activity using log-transformed data. GraphPad
Prism 7 and IBM SPSS Statistics, Version 25 (IBM Corp, USA) soft-
ware were used.
Table 1
Patient Characteristics at the Day Before Surgery and Biopsy Obtainment.

Characteristic n ¼ 36

Sex (M/F) 9/27
Age (years) 48 (20e62)
Body weight (kg) 97 (47e166)
Body mass index (kg/m2) 36 (18e63)
Fat percent (%) 43 (10e58)
Fat mass (kg) 44 (8e96)
Waist circumference (cm) 109 (34e142)
Hip circumference (cm) 117 (41e179)
Waist-hip ratio 0.90 (0.78e1.11)
Fat free mass (kg) 58 (36e82)
Muscle mass (kg) 32 (19e47)
Systolic blood pressure (mmHg) 120 (103e172)
Diastolic blood pressure (mmHg) 78 (65e106)
ASAT (U/L) 26 (13e58)
ALAT (U/L) 29 (0e89)
ALP (U/L) 70 (27e110)
Albumin (g/L) 40 (16e45)
Comorbidity
Type 2 diabetes 3
Hypertension 10
Obstructive sleep apnea 13
Asthma 6
Cholelithiasis 20

Present smokers 5

Data presented as median and range or absolute numbers.
ASAT, aspartate aminotransferase; ALAT, alanine aminotransferase; ALP, alkaline
phosphatase.
Results

Patient characteristics and diplotype/likely phenotype distri-
bution for CYP3A4, CYP3A5, CYP2D6, CYP2C9, CYP2C19 and CYP1A2
are given in Tables 1 and 2, respectively.

Enzyme kinetic parameters for the hepatic CYP-mediated re-
actions are presented in Table 3. For CYP2B6, CYP2C8, CYP2D6,
CYP2C19 and CYP1A2, enzyme activities were not quantifiable in all
samples due to low tissue amounts and/or low activities (Table 3).
Table 3
Enzyme Kinetic Parameters (Given as Median and Range) for Metabolite Formation
Representative of CYP3A, CYP2B6, CYP2C8, CYP2D6, CYP2C9, CYP2C19 and CYP1A2
Activities in Liver Microsomes.

Enzyme n Parameter Median (range)

CYP3A 36 Vmax 0.175 (0.073e0.534)
Km,u 4 (3e10)
CLint,u 43 (11e126)

CYP2B6 35 Vmax 0.068 (0.016e0.445)
Km,u 51 (20e189)
CLint,u 1.2 (0.2e11.9)

CYP2C8 35 Vmax 0.462 (0.123e0.963)
Km,u 3 (1e13)
CLint,u 124 (31e604)

CYP2D6 35 Vmax 0.013 (0.005e0.038)
Km,u 28 (10e56)
CLint,u 0.5 (0.1e1.6)

CYP2C9 36 Vmax 1.008 (0.058e1.865)
Km,u 23 (10e68)
CLint,u 40 (6e140)

CYP2C19 26 Vmax 0.041 (0.010e0.117)
Km,u 32 (8e107)
CLint,u 1.3 (0.2e2.9)

CYP1A2 35 Vmax 0.177 (0.048e0.335)
Km,u 50 (17e575)
CLint,u 2.6 (0.6e9.3)

Vmax, maximum velocity (nmol/min/mg protein); Km,u, unbound Michaelis constant
(mM); CLint,u, unbound intrinsic clearance (mL/min/mg protein).



Table 4
Correlation Coefficients (Spearman's rho) Between Body Weight/Composition and CLint,u (Unbound Intrinsic Clearance) for Reactions Mediated by CYP3A, CYP2B6, CYP2C8,
CYP2D6, CYP2C9, CYP2C19 and CYP1A2.

Body Weight/Composition CLint,u in HLM

CYP3A n ¼ 36 CYP2B6 n ¼ 35 CYP2C8 n ¼ 35 CYP2D6 n ¼ 35 CYP2C9 n ¼ 36 CYP2C19 n ¼ 26 CYP1A2 n ¼ 35

Body weight ¡0.43b �0.01 �0.15 �0.05 �0.03 0.05 �0.27
Waist circumference ¡0.47b �0.05 �0.23 �0.07 �0.03 0.00 �0.32
Hip circumference ¡0.51b �0.07 �0.22 �0.14 �0.00 0.04 �0.31
Waist/hip ratio �0.23 0.14 �0.21 0.02 �0.06 �0.10 �0.16
Fat percent ¡0.41a �0.06 �0.24 �0.16 �0.01 0.15 �0.31
Fat mass ¡0.48b �0.05 �0.26 �0.13 �0.03 0.12 �0.33
Fat free mass �0.22 �0.01 �0.02 �0.03 �0.02 �0.07 �0.19
Muscle mass �0.19 0.02 �0.03 0.00 �0.02 �0.05 �0.19
Body mass index ¡0.46b �0.07 �0.20 �0.08 0.03 0.13 �0.31

a p < 0.05.
b p < 0.01.
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Activity of CYP3A in the liver samples showed significant cor-
relations with parameters defining body weight and composition.
The CLint,u values for the CYP3A-mediated reaction were negatively
correlated with body weight, waist- and hip-circumference, fat
percent, fat mass and BMI (Table 4). In line with this, a negative
correlation between body weight and Vmax values (r ¼ �0.36,
p < 0.05) and a positive correlation between BMI and Km values
(r¼ 0.41, p < 0.05) were observed. A linear regression analysis using
log-transformed data showed that with a 10% increase in body
weight, hepatic CLint,u values for CYP3A decreased with 5%
(r2 ¼ 0.12, b ¼ �0.558, p < 0.05, Fig. 1). To further study whether
this decrease in hepatic CYP3A activity could be related to inflam-
mation status, correlations between CLint,u and systemic levels of
immunological markers were assessed. The CLint,u values for the
CYP3A-mediated reaction were negatively correlated with plasma
concentrations of IL-6 (r ¼ �0.34, p < 0.05) (Fig. 2). It should be
noted that while plasma levels of IL-6 were below 7 pg/mL in the
majority of study subjects, considerably higher levels (>100 pg/mL)
were detected in three individuals. The same individuals also
deviated from the other patients with respect to elevated levels of
CCL4, CCL11, CD40L, IFN-g, IL-1b, IL-2, IL-4, IL-5, IL-8, IL-10, IL-12, IL-
17, IL-18, IL-21, TNF-a and VEGF-A. A stronger correlation between
CYP3A activities and IL-6 levels was found when excluding these
three patients from the analysis (r ¼ �0.54, p < 0.01) (Fig. 2). Also,
CRP levels in three other patients were >10 mg/L and too high for
quantification with the hs-CRP assay. When excluding these from
the analysis, hepatic CYP3A activities correlated negatively with
plasma levels of hs-CRP (r ¼ �48, p < 0.01) (Fig. 3). There were also
positive correlations between body weight and systemic levels of
Fig. 1. Linear regression model showing the relationship between CLint,u (unbound
intrinsic clearance) for CYP3A (Y) and body weight (X) using log transformed data
(r2 ¼ 0.12, b ¼ �0.558, p < 0.05).
IL-6 (r¼ 0.45, p < 0.01) and hs-CRP (r¼ 0.57, p < 0.001). The hepatic
activity of CYP3A did not correlate with other circulating inflam-
matory markers (Supplementary Table 1).

The hepatic CLint,u values for reactions mediated by CYP2B6,
CYP2C8, CYP2D6, CYP2C9, CYP2C19 and CYP1A2 were not signifi-
cantly correlated with body weight or composition variables
(Table 4).

No further significant correlations between CLint,u values and
body weight and composition variables were found when
repeating the correlation analyses after dividing the individuals
into subgroups based on genotypes or likely phenotypes, or when
excluding smokers (CYP1A2) (data not shown).

Discussion

The main findings of this study were that hepatic CLint,u values
for CYP3A decreased with increasing body weight, and that the
CLint,u values were most strongly correlated with waist/hip
circumference and fat mass, indicative of excessive fat accumula-
tion, rather thanwith fat freemass or muscle mass. The former is in
line with the negative correlation between BMI and hepatic CYP3A
protein expression in patients with obesity (BMI from 34 to 64 kg/
m2) found in a previous study.13 An obvious strength of the present
study, however, is that liver tissue was obtained from patients with
a wide range of BMI (18e63 kg/m2), i.e. patients with normal
weight, overweight, or mild to severe obesity.

In agreement with our finding, in vivo studies have shown
reduced oral clearance of CYP3A substrates in patients with obesity
compared with non-obese individuals, suggesting reduced CYP3A
Fig. 2. Correlation between systemic concentrations of IL-6 (interleukin-6) and CLint,u
(unbound intrinsic clearance) for CYP3A (r ¼ �0.34, p < 0.05). A stronger correlation
was found when removing the three outliers with IL-6 concentrations >100 pg/mL
(r ¼ �0.54, p < 0.01).



Fig. 3. Correlation between systemic concentrations of hs-CRP (high-sensitivity C-
reactive protein) and CLint,u (unbound intrinsic clearance) for CYP3A (r ¼ �0.32,
p > 0.05). A stronger correlation was found when removing three individuals with CRP
concentrations >10 mg/L measured with a separate assay (r ¼ �0.48, p < 0.01).
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activity.5,7,17,18 Further substantiating the correlation between body
weight and CYP3A activity, increased clearance of midazolam was
reported in patients one year after bariatric surgery, indicative of
recovery of hepatic CYP3A activity after weight loss.19,20 However,
many other factors associated with obesity, like increased liver
volume and increased hepatic blood flow, may also affect drug
clearance in these patients. This was suggested to explain the lack
of a significant difference in midazolam clearance in a study
comparing patients with severe obesity and normal weight vol-
unteers.6 The effect of obesity on elimination of CYP3A substrates is
thus likely to depend on the specific drug in use. Furthermore, as
observed in the present study, it should be highlighted that the
interindividual variability in CYP3A capacity is considerable, and
many other factors like sex, diet, genetics and diseases may also
influence the overall CYP3A activity. Nevertheless, the finding in
liver tissue from individual patients in the present study, support
the hypothesis of obesity-induced suppression of hepatic CYP3A
activity.

The CLint,u values obtained for the other CYP enzymes investi-
gated in the present study did not show significant correlations
with body weight or body composition variables, suggesting that
hepatic activities of these isoforms are not altered to any relevant
degree by changes in body weight and altered body composition. In
line with this, a limited number of in vivo studies have so far not
provided conclusive evidence for altered pharmacokinetics of
CYP1A2, CYP2D6, CYP2C9 and CYP2C19 substrates in patients with
obesity.5 For some of the CYP isoforms this may in part be due to
activities being largely determined by genetic variability, possibly
making them less susceptible to environmental and disease-related
factors.

The mechanisms behind the correlations between increased
body weight/composition variables and enzyme kinetic parameters
found in the present study are not clear and likely to be multifac-
torial. Obesity is associated with chronic low grade inflammation,
and the levels of circulating inflammatory cytokines, such as TNF-a,
IL-6 and IL-1b, and acute phase reactants, like CRP, are increased
compared with non-obese individuals.21,22 In the present study,
hepatic activity of CYP3A was negatively correlated with systemic
IL-6 levels. In agreement with this, treatment with IL-6 has been
shown to suppress the expression and activity of CYP3A in primary
human hepatocytes and a liver cell model in vitro.23e27 Further-
more, IL-6 was recently found to be negatively correlated with 4-b-
hydroxycholesterol, an endogenous marker of CYP3A activity
in vivo, in patients with rheumatoid arthritis.28 Although possibly
confounded by the existing positive correlation between IL-6 and
body weight, the present study supports the speculation that in-
flammatory status, e.g. increased IL-6 levels, may partly mediate
the obesity-induced hepatic CYP3A suppression. Another possible
contributor to the decreased CYP3A activity is intrahepatic fat
accumulation. Altered expression and activity of CYP enzymes have
been reported in patients with non-alcoholic fatty liver disease
(NAFLD),29e32 a condition strongly associated with obesity.33

Recently, 2.7- and 4.1-fold lower CLint values for the 1-
hydroxylation of midazolam (CYP3A) were reported in human
liver microsomes from deceased organ donors with non-alcoholic
fatty liver and non-alcoholic steatohepatitis.32 As we did not
investigate liver tissue samples histologically in the present study,
we could not determine the prevalence of NAFLD in this patient
population. However, the patients with severe obesity were subject
to a three-week low energy diet prior to surgery and biopsy
obtainment, which has been shown to significantly reduce liver
volume and hepatic fat content.34 It is therefore possible that the
magnitude of reduction in hepatic CYP3A activity with increasing
body weight was underestimated in the present study due to a
potential recovery in CYP3A activity during the period on diet.

In conclusion, this study showed that hepatic CYP3A activity
decreased with increasing body weight, while the activities of
CYP2B6, CYP2C8, CYP2D6, CYP2C9, CYP2C19 and CYP1A2 in the
liver were not associated with varying BMI.
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