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Abstract 

Near-infrared spectroscopy (NIRS) is a cutting-edge and optical Brain-Computer 

Interfaces (BCIs) that measures the concentration changes of oxygenated (Oxy-

Hb) and deoxygenated hemoglobin (deoxy-Hb) in the cerebral blood flow. 

The use of fNIRS as a neuroimaging technique has a rapid growth over the last 20 

years due to the significant advantages, including non-invasively, portability, and 

safe procedure. However, fNIRS signals are influenced by multiple factors that 

create an ongoing challenge for the quality signal distinction among the studies. 

The effective factors on the fNIRS signal quality contain the number and 

placement of the optodes, motion artifacts, heartbeat, and respiration. Besides, 

the effect of applied optode pressure on the fNIRS signal quality by the 

preservation of user convenience remains largely unanswered. 

The presented research contains two phases. The first phase of this master study 

aims to find some of the efficient metrics for the fNIRS signal quality through the 

reliable open-access database. Furthermore, the impact of optode pressure 

variation on the signal quality is distinguished through the user experiments in 

the second phase. Three pressure levels were applied to the fNIRS optode, and 

two pressure metrics of Partial Pressure of CO2 (pCO2), and Laser Doppler 

flowmeter (LDF) were used in the experiments. The user experiments contained 

four healthy subjects that were asked to do the mathematical calculation task for 

120 seconds with 60 seconds of initial baseline.  

The main conclusions, drawn from the quality metrics analyzed through the 

reliable datasets indicate four metrics, including Running Correlation (RC) 

between oxy-Hb and deoxy-Hb, visual checking of the time series, heartbeat 

extraction, and Moving Variance per channel. Among the founded metrics, RC 

has been chosen as a quality metric for the second phase due to the stability and 
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quantitative variable. The results indicate a negative correlation between RC and 

signal quality. 

The results from the user experiments in the second phase represented that 

increasing the optode pressure impacts negatively on the signal quality at first 

and then improves the quality on the maximum pressure level. However, 

enhancement of the optode pressure to the maximum level creates 

inconvenience for the subjects and is not an efficient solution to increase the 

fNIRS signal quality. 

The study advances future studies especially for investigations of the influential 

pressure metrics in the fNIRS experiments.  
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Chapter 1: Introduction 
How to provide a direct communication pathway between a human brain 

and an external device? This question has been a main motivation for 

researchers to investigate the brain structure to find out the relation 

between brain activities and human attributes. Brain imaging or 

neuroimaging refers to the process of using images to discover the 

structure and function of the nervous system. Neuroimaging divided into 

two categories of structural imaging and functional imaging.  The structural 

imaging is concerned with diagnosing intracranial disease and brain injuries 

such as tumors and injury (Tool Module: Brain Imaging, n.d.). Computerized 

Tomography (CT) and Magnetic Resonance Imaging (MRI) are instances of 

structural imaging methods. On the other hand, functional imaging aims to 

measure the activity of the specific part of the brain and diagnose 

metabolic diseases such as epilepsy seizures and Alzheimer's disease (Filler, 

2009). Examples of the functional imaging methods include 

Electroencephalography (EEG), Functional Magnetic Resonance Imaging 

(fMRI), Positron Emission Tomography (PET), and Functional Near-Infrared 

Spectroscopy (fNIRS) (Hirsch et al., 2015). 

As the power of advanced technology grows over the last decades, 

researchers try to discover the communication between brain activities and 

computer devices. Brain-computer interfaces (BCIs) refer to the systems 

that enable the interaction between the brain signals and computer. BCIs 

analyze and translate brain signals to the commands, and the interpreted 

commands are sent to the output devices to perform the desired human 

action (Yanagisawa et al., 2012). 
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The main intention of BCIs is to recover or replace neuromuscular 

disabilities like cerebral palsy, motor impairment, or permanent maim. 

Further, BCIs effectively help the rehabilitation process after stroke and 

other physical disorders (Shih et al., 2012). 

BCIs have become one of the most investigated research areas at the 

intersection between computer science and neuroscience. Although BCIs 

monitoring devices were expensive and required a controlled environment, 

they have become less costly and portable lately (Ekandem et al., 2012). 

Currently, BCI has applications in broad aspects of human life, including 

medicine, rehabilitation, marketing, education, games & entertainment. 

One of the examples of BCIs is brain remote-controlling that refers to 

controlling a video game or a physical activity by thoughts. Brain-controlled 

activities promote independence among people with disabilities and 

improve the quality of their life significantly (Grabianowski, 2007). 

fNIRS is a non-invasive, portable, and wearable functional imaging 

technique that tracks brain tissue changes of oxygenated hemoglobin (oxy-

Hb) and deoxygenated hemoglobin (deoxy-Hb). The tissue hemoglobin 

changes are received through the optodes attached to the scalp. The use of 

fNIRS has increased during the last years due to multiple advantages of this 

technique amongst other BCIs. Specifically, fNIRS is harmless, portable, and 

usable for extensive age ranges (Pinti et al., 2018).  

Although, fNIRS has several valuable features; the user comfortability and 

producing constant signal quality in the experiments are still ongoing 

studies. Multiple factors affect the quality of fNIRS signals, including motion 
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artifacts, heartbeat, respiration, and unacceptable environmental 

conditions. The universal design of fNIRS elements considering the user 

comfort has been discussed widely among the researchers. In the first 

phase of this master thesis, numbers of the computable metrics are 

discussed to estimate the fNIRS signal quality. In the second phase, the 

fNIRS user experiments are conducted to investigate the impact of optode 

pressure and user comfortability on the signal quality. This master thesis 

proposes and evaluates several metrics to estimate the fNIRS signal quality. 

Furthermore, the impact of fNIRS optode pressure on the head is discussed 

to find out the optimal pressure considering the user comfort. 
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1.1 Problem statement 

Information retrieval from the human brain is a challenging process in 

neuroscience research. This process is a crucial part of BCIs. BCI plays a 

significant role in fostering and advancement of medical sciences, and it is 

used to address some of the challenges in rehabilitation processes, brain 

disorders, and daily life experiences. There are several BCI technologies 

with different advantages and disadvantages. Nowadays, the correlation 

between new computer solutions and BCI technologies brings a significant 

opportunity to increase BCI efficiency. The fNIRS technology is a non-

invasive BCI technique that has become an active research topic among 

neuroscience researchers. Although many studies have been carried about 

the usability of the fNIRS method, there are various unsolved issues related 

to increasing the quality of the fNIRS signal. The involved factors are 

interrelated and might lead to unreliable results. One of the existing 

challenges of fNIRS design concentrates on enhancing the user 

comfortably. The optode pressure and their location on the head have a 

significant impact on the quality of fNIRS signals. Indeed, ergonomics and 

quality of the signal are two contradictory objectives in fNIRS applications. 

To get a good signal, we need to exercise high pressure and increase the 

number of electrodes. The ergonomics of these sensors, as well as the 

signal quality, is a function of sensor type, number, placement, pressure 

amount, pigmented elements of the object (e.g. hair and skin), etc. Since 

human brain signals carry on various unnecessary information as noises, 

removing noises from the signals is a barrier in the fNIRS procedure. 
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To improve the quality of the fNIRS signals, a standard for collecting fNIRS 

data that takes into account different factors affecting the quality needs to 

be developed. In addition, a higher amount of optode pressure on the scalp 

during long experiments cause inconvenience for the users. Currently, 

limited studies are available to investigate the effect of optode pressure on 

the fNIRS experiment outcomes. Some of the elements affecting the quality 

of the fNIRS signal include: 

 Environmental conditions and instrumentation 

 Mechanical feature including the placement of the sensors on the 

scalp, pressure amount from the optodes, and laser heating time 

 Demographic variation and psychological behaviors for instance age, 

gender, stress, and heartbeat 

 Physiological features like head shape, pigmented components of 

hair and skin 

 Interspersion algorithms and data analysis  (Ekandem et al., 2012; 

Loup-Escande et al., 2017; Orihuela-Espina et al., 2010). 

One of the existing challenges of the fNIRS technique is the impact of 

motion artifacts on the signal quality. Motion artifacts like head movement 

cause the relocation of optodes on the head and produce noises. One of 

the solutions to overcome the effect of head and facial movements is to 

increase the optode pressure and provide a stable experimental 

environment. On the other hand, increasing the optode pressure, increase 

the user's inconvenience during using the head cap. The purpose of this 

study is to determine some measurable fNIRS signal quality metrics and 
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suggest the optimal optode pressure preserving signal quality and user 

convenience. 

1.2 Research questions 

At this juncture, the considered research question relied on the problem 

statements is explained: 

 What are the main metrics to measure the fNIRS signal quality? 

 What are the impacts of optode pressure on the fNIRS data quality? 

 What is the optimal pressure of fNIRS optodes, considering user 

convenience and signal quality? 

(Kopton & Kenning, 2014; Krampe et al., 2018; Soltanlou et al., 2018) 
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1.3 Toward universal design standard 

Based on the sixth principle of universal design, “the design product or 

environment should be used efficiently and comfortably and with a 

minimum of fatigue. The product needs to have the following features: 

6a. Allow users to maintain a neutral body position. 

6b. Use reasonable operating forces. 

6c. Minimize repetitive actions. 

6d. Minimize sustained physical effort” (The 7 Principles | Centre for 

Excellence in Universal Design, n.d.)  

The quality of obtained fNIRS signals depends on biological and 

environmental conditions. One of the influential factors on the fNIRS signal 

quality is the pressure of optodes on the scalp. However, the optode 

pressure may impose inconveniently on the user during the experimental 

process. The purpose of this master thesis is (I) finding the quality metrics 

to evaluate the fNIRS signal. The next phase (II) is to determine the 

correlation between optode pressure and the fNIRS signal quality. Indeed, 

the study aims to estimate the optimal optode pressure, considering users 

comfortably and acceptable signal quality. 
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1.4 Human brain anatomy 

The placement of the fNIRS optodes on the scalp corresponding to the 

desired brain activity is one of the effective criteria to obtain the valuable 

results. Since BCIs focused on receiving signals from the activated brain 

area, it is essential to study the relation of the active region and the type of 

brain activities. 

The human brain weighs about three pounds and involves 100 billion nerve 

cells. The brain is the main organ that is responsible for sending and 

receiving the neural signals from body sensors such as smell, hearing, taste, 

pain, and sight. Brain neurons control several processes as multiple 

procedures of speech, thoughts, emotions, decision making.  The human 

nervous system includes the central nervous system (CNS) and peripheral 

nervous system (PNS) that connect the body organs to the brain.  The brain 

involves three main organs called the cerebral cortex (cerebrum), 

cerebellum, and brain stem. The brain and spinal cord are the two main 

elements of CNS. BCI techniques detect the brain signals from the cerebral 

cortex (Bansal & Mahajan, 2019). 

 The cerebral cortex includes four lobes of frontal, temporal, occipital, and 

parietal—each element of the cerebral cortex involved with specific brain 

functions. The front part of the brain called the frontal cortex is responsible 

for emotions, cognitive functions, and decision making. The parietal lobe is 

located behind the frontal cortex and is associated with the sensation of 

pain, pressure, and touch. The occipital lobe is located on the backside of 

the brain and is responsible for visual detection and simulation. The 
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occipital cortex lobe is divided into two primary and secondary visual areas. 

The primary area receives the signals from visual objects, and the 

secondary area decodes the detected signals to the information by 

comparing it with past knowledge. A severe injury to the primary visual 

area causes blindness or significant visual impairments. Besides, any 

damage to the secondary visual area may have an impact on relating the 

received visual signals with meaningful information. For instance, it causes 

complexity in reminding names and memory disorders like Alzheimer's. The 

temporal cortex lobe is located anterior to the occipital lobe and is 

responsible for language processing and speech production.  Similar to the 

occipital lobe, the temporal lobe includes a primary and secondary auditory 

area that receives and analyzes the detected auditory signals (Bansal & 

Mahajan, 2019; Rao et al., 2012). 

The cerebellum is a vital part of the brain and located underside of occipital 

and temporal lobes. The cerebellum transmits the information from the 

cerebral cortex to body muscles and is responsible for body balance and 

body motion control. Any damage to the cerebellum of the brain causes 

motion defects or motor impairments (Looney et al., 2014). 

Although identifying the pattern of brain activities according to the 

activated region is a complex process that depends on multiple factors, 

recently developed computer technologies such as machine learning, data 

analysis, and imaging techniques provide facilitated solutions in human 

brain activity detection (Bansal & Mahajan, 2019). 
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Chapter 2: Background and literature review 

In the following chapter the BCI components, comparison of different BCI 

techniques, and the chronological investigations on fNIRS are discussed. 

2.1 BCIs components 

BCI is a direct communication method between the human brain and 

external devices. The output devices of BCIs are robotic arms, wheelchairs, 

cursor controllers, or other types of exoskeletons. Figure 2-1 shows the 

basic components of BCIs (Ponce et al., 2014). 

 

Figure 2-1. Basic components of the BCI data processing unit (McFarland & Wolpaw, 2008) 

Similar to other communication systems, BCI components contain input, 

data processing unit, and output. BCI data processing unit is considered as a 

heart of the system that includes five phases of signal acquisition, signal 

preprocessing, feature extraction, classification, and translation algorithm 

(McFarland & Wolpaw, 2008).  
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The signal-acquisition phase refers to amplifying and measuring the brain 

signals that carry out the user’s intent. The preprocessing phase removes 

the noisy components of the signals that are called motion artifacts. The 

brain's signals might contain motion artifact noises mainly due to low 

contact of electrodes to the scalp, head movement, heartbeat, and 

respiration. Three powerful de-noising techniques are Principal Component 

Analysis, Independent Component Analysis, and Wavelet de-noising. In the 

feature extraction part, the preprocessed signals are converted to the set of 

vectors where each vector is related to a specific group of features. The 

feature extraction phase aims to minimize losing useful information in 

order to precise the translation of the human activity to the data 

commands. Examples of feature extraction approaches are variance, mean, 

maximum & minimum of the signal, median, and standard deviation. In the 

classification phase, the signal features are classified into the categories 

during the data mining process. The purpose of the data classification is to 

specify the label of each class and connect the statistical signal features to 

the corresponding classes. Some of the classification techniques include 

Probabilistic Neural Network, Linear Discriminant Analysis, and Fuzzy 

inference system. The last phase, named translation interpreted the 

classified data to the device commands through the translation algorithm 

(McFarland & Wolpaw, 2008). 
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2.2 BCIs recording techniques 

According to the placement of the electrodes on the scalp or inside the 

skull, BCI techniques fall into three main categories namely invasive, semi-

invasive, and non-invasive. The following figure illustrates the human brain 

layers (Leuthardt et al., 2009). 

 

Figure 2-2 Different layers of human (Leuthardt et al., 2009) 

Invasive BCI is a high-risk technique that requires neurosurgery to imbed 

the electrodes directly inside the cortex layer of the brain (Waldert, 2016). 

Although the received signals have high quality while the invasive 

technique is used, several serious barriers limit the implementation of this 

method widely. Detection of the signals from the small area of the brain is 

one of the disadvantages of this technique. Besides, the neurosurgery 

might cause serious health risks due to the body reaction to the electrodes 

in the skull. The scars around the electrodes might reduce the received 

signal quality over time. Due to the mentioned reasons, the invasive BCI 

technique involves significant barriers in the long term applications. In 
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consequence, invasive applications are limited to rare cases of blind people 

or patients with profound disabilities (Panoulas et al., 2010). 

In the semi-invasive technique, part of the electrodes is imbedded above 

the cortex in the dura or arachnoid layer, and the rest of them are located 

outside of the brain. In this technique, the implementation of the 

electrodes requires neurosurgery and might cause health issues due to 

cutting the brain membranes during the surgery. Although the semi-

invasive signals have lower quality than invasive techniques, obtain better 

results compared to the non-invasive methods. Furthermore, the risk of 

creating the scar tissue in the dura or arachnoid layer is less than the 

corresponding risk in the cortex layer associated with the invasive method 

(Panoulas et al., 2010). Electrocorticography (ECoG) is an example of a 

semi-invasive technique.  

The non-invasive technique includes the simply attached electrodes on the 

scalp. Generally, the electrodes are embarked inside a head cap or 

headband. Although this method is non-intrusive and safe, the signals have 

lower quality and carry more noises compared to previous techniques 

(Babiloni et al., 2009). Currently, the non-invasive BCIs have been used 

successfully in several types of research and medical purposes such as BCI 

gaming, control wheelchairs, and rehabilitation process. fNIRS and EEG are 

instances of the non-invasive BCI technique. Figure 2-3 shows the 

implementation of the BCI electrode in three BCI recording techniques. 
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Figure 2-3 Exemplification of BCI electrode implementation. (a) Non-invasive BCI (EEG or fNIRS), (b) semi-invasive BCI 
(ECoG), (c) invasive (Single-neuron recording) (Ponce et al., 2014) 

2.2.1 Functional near-infrared spectroscopy (fNIRS)  

The fNIRS is one of the non-invasive BCIs that has considerable advantages 

compared to other techniques including portability, low price, user 

convenience, and higher special resolution. In the fNIRS technique, changes 

in blood hemoglobin are detected by radiation of near-infrared light to the 

skull through the optodes attached to the head. The measurements result 

in the estimation of oxygenated hemoglobin (oxy-Hb) and deoxygenated 

hemoglobin (deoxy-Hb) in the brain region of interest (Di et al., 2015). 

During brain activities, the amount of oxy-Hb increase and deoxy-Hb 

decrease. Figure 2-4 shows the negative correlation of Oxy-Hb and deoxy-

Hb while the brain is active by a task (Gagnon et al., 2011). The 

hemodynamic response function of deoxy-Hb is less than Oxy-Hb and has a 

bit of a delay (Lee et al., 2018). 
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Figure 2-4 The hemodynamic response functions of Oxy-Hb and deoxy-Hb (Gagnon et al., 2011) 

In the fNIRS technique, the infrared light with the wavelength from 650nm 

to 950nm passes from the source electrodes through the brain. Then the 

scattered light is received by detectors. The reflected light depends on the 

amount of available oxygen in the blood hemoglobin. Since the absorption 

and diffusion of light from Oxy-Hb and deoxy-Hb are different, brain activity 

is recognizable (Chaddad et al., 2013).  

 

Each pair of fNIRS sources and detectors creates a channel. The maximum 

distance between source and detector is 30-40 mm for adults and 20-25 

mm among infants due to their thinner skull. The mentioned distance 

allows the light to penetrate up to 35 mm through the skull. Although 

reduction of the source-detector distance leads to deeper light penetration 

through the brain, it causes more noises in the signal. In other words, the 

detected signals from optodes with higher distance have less Signal to 
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Noise Ratio (SNR) whereby it decreases the signal quality (Tessari et al., 

2015). Figure 2-5 represents a pair of source-detector. 

  

Figure 2-5 A pair of fNIRS source-detector (Tessari et al., 2015) 

 

fNIRS head caps are headsets with the holes on specific areas that are used 

to implement the fNIRS optodes on the head. Figure 2-6 shows one of the 

fNIRS head caps.  

 

Figure 2-6 fNIRS head cap with attached optodes (Tessari et al. 2015) 

However, the ergonomic design of fNIRS head caps that provide more 

convenience for subjects is an ongoing challenge. As previously mentioned, 

biological features affect the quality of fNIRS signals including respiration, 

heartbeat, and motion artifacts. In addition to biological conditions, users’ 
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physical attributes such as head shape, hair intensity, and hair color may 

change the obtained fNIRS data. 

2.2.2 Electrocorticographic (ECoG) 

ECoG is a semi-invasive BCIs technique that detects the brain signals from 

the electrodes into the skull. ECoG signals received directly from the cortex 

thus carry fewer noises compared to non-invasive techniques. In addition, 

ECoG signals are characterized by better spatial resolution compared to 

non-invasive signals (Chong et al., 2010). The ECoG technique has been 

tried on humans for the first time in 2004 at Washington University 

(Panoulas et al., 2010). 

The successful applications have been implemented by ECoG to perform 

motor activities over the last two decades. Leuthardt et al. proposed a 

procedure to control the mouse cursor by ECoG signals (Leuthardt et al., 

2009). In semi-invasive methods, the electrodes do not interpenetrate the 

brain, and therefore, the neurons are kept intact. However, the lifetime of 

this technique is still not explicit, as there is no study to investigate how the 

signals degrade over the years (Panoulas et al., 2010). 

2.2.3 Functional magnetic resonance imaging or functional MRI 

(fMRI) 

The fMRI technique measures brain activities based on the variation of the 

brain blood flow. During the brain activity, the brain cells consume more 

oxygen that causes the enhancement of the blood flow (Babiloni et al., 

2009). The fMRI identifies the associated active brain by color mapping. The 
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most common use of fMRI is among the clinical processes such as 

psychiatric disorders, neurologic disorders, and substance abuse. 

Since the 1990s, fMRI has become one of the brain mapping techniques as 

it does not either need any neurosurgery or impose any harmful ionizing 

radiation on the user. Currently, the standard technique is Blood 

Oxygenation Level-Dependent (BOLD) of fMRI signals, which measures the 

changes in the vascular system correlated by neural activity. The  fMRI is 

more sensitive to noises compared to other technologies, because of the 

random variation of BOLD signals. A combination of fMRI with other 

modalities, such as EEG, is considered a valuable technique in medical brain 

neuroimaging (Babiloni et al., 2009). 

2.2.4 Magnetoencephalography (MEG) 

 MEG is a functional neuroimaging technique that simulates magnetic brain 

activity from arrays of sensors positioning over the skull. MEG produces a 

direct and real-time measurement of neural activities (Stam, 2010). 

Although MEG is not a new technique and was introduced in the 1960s, the 

full potential of MEG was implemented in the early 1990s with 200 

detecting sensors over the whole head. The use of MEG in medical 

neuroimaging has grown up over the last two decades. In order to 

determine the great attraction of MEG Hansen et al.  discussed an example 

of human reaction while facing an unexpected event. They presented that 

during the car driving, if you notice that the car in an opposite line is 

swerving to your line, the procedure of decision making, motor events, and 

unconscious reactions happen in a time window of 750 ms or less.  
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Interestingly, MEG tracks at least 750 brain snapshots from the 

implemented sensors and creates real-time three-dimensional plots of the 

current brain activities.  While the brain measurement in fMRI is based on 

the local variation of the oxygenated blood cells, it detects non-real-time 

brain signals that make it a low inefficient BCI solution for fast decision 

making reactions (Stam, 2010; Hansen et al., 2010). 

2.2.5 Electroencephalogram (EEG) 

EEG refers to recording the electrical activity of the brain from attached 

electrodes on the scalp. The human brain generates impulse signals during 

the activity period. The recorded waveforms are weak and measured in 

microvolts (μV). Each brain activity produces specific EEG that is used to 

distinguish the type of activities. For instance, the brain, electrical 

waveforms are more stable in sleeping times. Therefore EEG is mostly used 

to detect unusual brain activities such as epilepsy, seizure, or brain death 

(Nageshwar V. et al., 2015). 

The EEG signal processing is real-time, which includes amplifying and noise 

reduction and decoding signals to the corresponding brain activities (Barros 

et al., 2015). EEG signals have low spatial resolution and are sensitive to 

electrical noises (Yanagisawa et al., 2012). 

Multiple factors affect the quality of EEG signals. Nageshwar V. et al. 

enumerated that signal conversion algorithms, data filtering, and 

environmental conditions are useful elements of the EEG signal quality 

(Nageshwar V. et al., 2015). 
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Usakli studied techniques to overcome the electrical noises on the EEG 

signal and investigated the effect of numbers and placement of the 

electrodes on the EEG signal quality (Usakli, 2010). 

In addition to the detection of brain disorders such as epilepsy, EEG has 

been used in various medical processes such as rehabilitation for motor 

impairment patients and human emotion detection. 

As in for the case of MEG, EEG detects real-time information from the 

neural activities of the brain. However, EEG signals are more influenced by 

electrical changes between the brain, skull, and scalp that cause more 

noises in the signals. Both MEG and EEG estimate activities from the center 

of the detected active area. In other words, the shape of information is not 

recognizable from the signals and needs related analysis processing 

methods (Stam, 2010; Hansen et al., 2010). 

2.2.6 Single-photon emission computed tomography (SPECT) 

SPECT is a nuclear imaging technique that uses gamma rays and provides 

three-dimensional images. It requires gamma-emitting, generally by 

injection into the patients’ bloodstream. During the SPECT procedure, the 

gamma-ray camera rotates 180 or 360 degrees around the patient and 

takes several two-dimensional images. Afterward, the algorithms are used 

to analyze the data and provide three-dimensional images. The spatial 

resolution of SPECT is about 1 cm. During the gamma-ray injection, the 

system can detect the cerebral blood flow that is corresponded to brain 

activities (Babiloni et al., 2009; Castermans et al., 2013) 
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2.2.7 Positron emission tomography (PET) 

PET is a nuclear function imaging technique that uses gamma rays to detect 

the patient’s disorders. PET requires an injection of radioactive materials 

(radiotracers) in the blood and produces three-dimensional images from 

the injected part of the body (Maisey, 2005). 

PET is a costly procedure compared to SPECT that counts as a downside of 

the PET technique (Neil R. Carlson, 2013). 

Fornell stated that in addition to the high costs, PET tracers have only 75 

seconds half-live while it is about six hours for SPECT. Therefore, SPECT 

provides longer available time to take neuro-images (Fornell, 2008) 

2.3 fNIRS optode Pressure 

Few studies have critically investigated the impact of extra pressure of 

cerebral tissue on the blood flow signals. Vrena et al, (2016) implemented 

the pressure simulation experiments on the lower back of 12 chronic lower 

back pain patients and 20 healthy subjects by using fNIRS. Their study 

aimed to find out whether the pressure simulation makes any changes of 

Oxy-HB in the supplementary motor area (SMA) and the primary 

somatosensory cortex (S1). They performed the experiments through three 

levels of pressure force, including a painful level (based on the individual 

pressure-pain-threshold), non-painful level, and mean level by using a 

tactile brushing stimulus. Their investigated results showed changes of Oxy-

Hb in right S1 among patients, while Oxy-Hb has a significant response in 

the healthy group in both SMA and S1. On the other hand, the group 

comparison of the experiment did not show significant hemodynamic 
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changes between patients and healthy subjects. The substantial achieved 

result from this study indicates the importance of health feature similarity 

such as clinically relevant measurements among the subjects (Vrana et al., 

2016).  
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Chapter 3: Methodology 

The research methodology that has been used in this study falls in 

quantitative and qualitative research. The aspect of the phenomenon has 

been considered through classification features and statistical analysis. The 

correlation analysis has been used during this study, which is a statistical 

method to find the relationship between quantitative variables. If the 

variables have a strong relationship, they are highly correlated, while a 

weak correlation means that they are not so connected to each other 

(Franzese & Iuliano, 2019). The correlation between variables can be 

positive and presents that the variation of the variables is unidirectional. 

On the other hand, the negative correlation describes the inverse 

relationship between variables. 

The procedure of this master thesis contains two phases, including fNIRS 

signal quality metrics and the impact of optode pressure on the quality of 

the signals. 

The purpose of the first phase of this study is to find out the measurable 

fNIRS signal quality metrics. In order to reach to the reliable result, data 

obtained from an accurate open-access database that is provided by the 

Technical University of Berlin. 

Forasmuch as the open-access database did not contain the data from the 

different levels of optode pressure, the user experiments have been 

conducted in the second phase. The goal of this step is to discover the 

impact of optode pressure on signal quality through the adequate quality 

metric obtained in the first phase. The users’ comfort feedback on the 
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applied pressure level were collected during the experiment as a qualitative 

variable. As specifying the optimal amount of optode pressure requires 

quantitative analysis, two calculated metrics for measuring the pressure 

level were used in the second phase of the study. The pressure level 

metrics include partial pressure of carbon dioxide (pCO2) and Laser Doppler 

flowmetry (LDF). PCO2 is the measurement of carbon dioxide (CO2) in the 

bloodstream that obtained by skin sensors attached to the skin (Nassar and 

Schmidt 2017). LDF offers the detection of tissue blood flow changes 

through the prob that is placed close to the intended fNIRS optode 

(NaderPouratian, 2002).  

3.1 Hypotheses 

The hypotheses of this study are stated in the following content. 

Hypothesis 1: If the users’ feedback and pressure level metrics are 

correlated, accordingly pressure level metrics substitute the users’ 

feedback. In this case, the relation between pressure level metrics and 

signal quality metric will be evaluated and if they are correlated, then the 

optimal amount of the optode pressure will be estimated. 

Hypothesis 2: If the users’ feedback and pressure level metrics are not 

correlated, the results are provided from a qualitative methodology. 

Therefore the relationship between users’ feedback and signal quality 

metrics will be measured and if they are correlated, then the effect of 

optode pressure level on the signal quality will be discussed. 
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Hypothesis 3: Although the Users’ feedback and pressure level metrics are 

related, there is no correlation between signal quality and pressure level 

metrics. 

Null hypothesis: There is no relationship between users’ feedback and 

pressure level metrics. In addition, if increasing the optode pressure does 

not affect the quality of the fNIRS signal, there is no relationship between 

fNIRS signal quality and optode pressure based on this research.  

The following flow chart illustrates the methodology procedure in this 

study. 
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Figure 3-1 Flow chart of methodology process 

Implementation of user experiments and produce data for user 

feedback and pressure level metrics 

Detection of signal quality metrics 

Analyze signal quality using detected quality metrics during the 

tasks having different optode pressure level. 
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feedback and 

pressure 
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related? 

Find the relationship 

between pressure 

level metrics and the 

signal quality metric. 
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feedback. 
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3.2 Ethical consideration  

No personal information, including name, address, personnel number, and 

email was collected in the applied database and user experiments. The 

subjects were identified by the subject numbers. All the participants were 

aware of the experimental procedure and they consent the form before the 

test. The volunteers did not experience any physical harm or discomfort 

and participation was voluntary. 

3.3 Phase 1: Signal quality metrics 

3.3.1 Data Acquisition 

In this phase, the data are obtained from an open-access dataset for 

simultaneous EEG and NIRS BCI (Shin et al., 2017). The aforementioned 

database is published by J. Shin et al, members of the Computer Science 

Department in the Institute of Technology in Berlin, Germany in October 

2017. Over the last years, BCI technology has been used in various medical 

and commercial applications. Furthermore, BCI experimental data 

collection needs a multitude of reproducibility investigations. Since the 

measured datasets during the studies are not often published, J. Shin et al 

have published an open-access experimental BCI database to be used for 

validation purposes through future studies. Furthermore, achieving reliable 

BCI data sets is a time-consuming process. Therefore the open-access 

database has been used in this study to statistically analyze data 

concentrated on valid data and achieve reliable results. The database 

collection was conducted according to the declaration of Helsinki and was 

approved by the Ethics Committee of the Institute of Psychology and 
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Ergonomics, Technical University of Berlin (approval number: 

SH_01_20150330) (Shin et al., 2017). 

In this phase of the master thesis, Matlab R2019r has been used to conduct 

statistical data analysis. 

3.3.2 Subjects 

In the abovementioned open-access database, 29 subjects (14 males and 

15 females) with an average age of 28.5, participated in the experiments. 

All subjects were healthy, and none of them declared any physical or brain 

impairments. The participation was voluntary, and the experimental tests 

were conducted in a comfortable condition (Shin et al., 2017). 

The research sampling during the study is random sampling which the 

entire target population has an equal and independent chance of being 

selected to meet the assumptions of many statistical procedures. 

3.3.3 Experimental procedure 

NIRS data were collected by NIRScout (NIRx GmbH, Berlin, Germany) at a 

12.5 Hz sampling rate. In this experiment, fourteen sources and sixteen 

detectors have been used that created 36 NIRS channels. Nine channels 

were placed at the frontal head, twelve channels in the right and left (total 

24 channels), which are related to motor activities, and three channels 

were located in the backside of the head that represent visual activities. 

The optode distance was 30 mm (Shin et al., 2017). Figure 3-2 represents 

the structure of the optodes in the fNIRS head cap. 
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Figure 3-2 Structure of fNIRS optodes in phase 1: sources are presented by Stripes circles, detectors by filled circles, 
and channels by lines. 

The subjects had a comfortable condition during the experiment. They sat 

in front of a 50-inch screen at a distance of 1.6 m. They were asked not to 

move any part of their body during the test conduction. The mentioned 

database contains mental functions, including motor imagery (i.e. imagining 

of opening and closing hand while holding a ball) and mental arithmetic 

(mathematical process on digit numbers). In addition to mental tasks, five 

motion artifacts are recorded independently in the database. The motion 

artifacts datasets, including blinking eyes, moving eyes, moving head, 
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clenching teeth, and opening mouth. In this thesis, the opening mouth 

datasets have been used. During the test process, the objects heard a beep 

sound then opened their mouth for 2 seconds. After each trial, they had 

rest time. This sets repeated ten times at 5 seconds intervals (Shin et al., 

2017). 

  



 

31 
 

3.4 Phase 2: Impact of optode pressure on signal quality 

The fNIRS signal quality is affected by the pressure of optodes on the scalp. 

Optode pressure may create inconvenience for the users, especially for 

long experiments. The enhancement of optode pressure impacts on 

cerebral blood flow and cause changes in the amount of Carbon Dioxide 

(CO2) and tissue blood flow (Kiaer et al. 1990).  

The second phase of this study is to perform the fNIRS experiment with 

different levels of optode pressure and investigate the user's comfort 

levels. 

 

3.4.1 Experimental design 

The experimental design aimed to find out the relation between fNIRS 

signal quality and user comfortability is sketched in figure 3-3. In order to 

distinguish the optimal optode pressure, two quantitative measurements 

were considered for posterior comparison including pCO2 and LDF. The 

aforementioned indexes were measured by Sentec monitor and MoorVMS-

LDF laser Doppler in Motion Analysis Lab. A higher optode pressure is 

associated with lower comfort, a relation that is investigated in the analysis 

of the data collected during the experiment. The subject’s feedbacks 

concerning the comfort level were collected upon the Visual Analog Pain 

Scale (VAS), which was applied through a brief questionnaire after 

mounting the fNIRS sensors. VAS is a validated pain scale based on the self-

reported measures the rate from a 10 cm line between no pain and worst 

pain (Delgado et al., 2018). 
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Both the optode pressure and the VAS will be compared with each other, 

and each one with the quality index, which quantifies the quality of the 

fNIRS data extracted during one specific trial. 

 

 

Figure 3-3 The Goal of experimental design 

3.4.2 Data Acquisition 

The user experiments have been conducted at the Motion Analysis Lab at 

Oslo Metropolitan University to collect the data that includes multiple 

optode pressures. 

The following context describes the necessary equipment that has been 

used during the fNIRS experiment and data analysis: 

• The NIRScout is a precise fNIRS neuroimaging system that measures 

hemodynamic responses to neuro activities by oxygenated, deoxy 

Discomfort

(VAS)

Pressure level 
metrics

(pCO2, LDF)

Signal quality
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oxygenated, and total hemoglobin changes in the cerebral cortex (NIRScout 

fNIRS Neuroimaging, n.d.). 

 

Figure 3-4 The NIRScout system (NIRScout fNIRS Neuroimaging, n.d.) 

• NIRS cap contains optodes location and is implemented on the 

subject’s head during the experiment (NIRS Caps & Probes, n.d.). 
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Figure 3-5 fNIRS cap with the implemented optodes (NIRS Caps & Probes, n.d.) 

• Dual tip NIRS optodes are the fiber optic laser sources and detectors. 

Dual tip optodes are a preferred choice for sensitive subjects because of 

the spread of the optode pressure into two points (NIRS Caps & Probes, 

n.d.). 

 

Figure 3-6 Dual tip NIRS optode (NIRS Caps & Probes, n.d.) 

• A spring-loaded grommet was used to improve the fNIRS signal 

quality, as the spring inside the grommet tops gently pushes the optodes 

through the hair, allowing for better contact with the scalp. Besides, the 

grommet with the screw was used to implement the multiple pressures on 

the optode (NIRS Caps & Probes, n.d.) 
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• The SenTec Digital Monitoring System to measure the Partial 

Pressure of CO2 (pCO2) produced by the skin tissue under the fNIRS 

optodes (SenTec Digital Monitor - SenTec, n.d.). 

 

Figure 3-7 SenTec Digital Monitoring System (SDMS) for PCO2 measurement (SenTec Digital Monitor - SenTec, n.d.) 

• The moorVMS-LDF laser Doppler monitor to measure the 

subcutaneous tissue blood flow (MoorVMS-LDF Laser Doppler Monitor for 

Blood Flow, n.d.). 

 

Figure 3-8 MoorVMS-LDF laser Doppler (MoorVMS-LDF Laser Doppler Monitor for Blood Flow, n.d.) 

• NIRStar software is a multiplatform instrument controlling 

environment that is designed to control, interact, and real-time display of 

fNIRS data. 
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• NirsLAB is a comprehensive Data Visualization that is developed for 

analyzing the collected data and visualizing the time series. 

• Visual Analog Pain Scale (VAS) 

 

Figure 3-9 Visual Analog Pain Scale (Al–Saffar et al., 2013) 

3.4.3 Subjects 

The fNIRS user experiments include 4 participants with the age range of 25-

35. All the subjects were healthy and without intracranial or metabolic 

brain disease. The subjects were chosen among the male gender to avoid 

the gender-related differences in the signal quality and focus on the 

outcome of the multiple optode pressures.  

3.4.4 Experimental procedure 

The experiments were conducted in a quiet and adequate lighting 

condition. The subject was seated in front of a laptop on a comfortable 

chair.  Fifteen fNIRS optodes (eight sources and seven detectors) were 

placed on the prefrontal area. The optodes provide 20 channels, shown in 
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figure 3-10. Detector 4 was implemented by a screw in the spring-loaded 

grommets to apply the multiple optode pressures shown by a plaid red 

circle. Detector 4 was surrounded by four source optodes and provided 

four channels under the influence of pressure that numbered with channels 

7, 9, 12, and 14. PCO2 and LDF sensors were placed close to D4 to measure 

the Partial Pressure of carbon dioxide, and tissue blood flow in the skin. 

 

 

Figure 3-10  fNIRS sources and detectors structure for the user experiments in phase 2. Sources are presented by 
Stripes circles, detectors by filled circles, and channels by lines. Detector 4 shows by a plaid red circle. 
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Figure 3-11 Detector 4 with the Spring-loaded grommet and a screw 

 

Figure 3-12 fNIRS experimental setup and subject position in front of the laptop 

The experimental task contained 20 seconds of mathematical calculation 

task and 20 seconds of rest afterward. The task was repeated three times, 

and the optode pressure of D4 increased for each task. The first task was 
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conducted by the least pressure, the second task had medium, and the 

third task was carried out by the high level of optode pressure. The subjects 

were asked to subtract from 100 minus 7 in the first task, minus 5 for the 

second task, and minus 3 in the last task. The subjects expressed their 

feedback on the felt comfort level upon the Visual Analog Pain Scale (VAS). 

The initial baseline was 60 seconds and the task took 120 seconds. Overall, 

the experiments took 180 seconds 
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Chapter 4: Results 
4.1 Phase 1: Signal quality metrics 

In the following content, four fNIRS metrics are discussed to investigate the 

quality of the fNIRS signals through the open-access database. 

4.1.1 Running Correlation between oxy-Hb and deoxy-Hb 

According to NIRS functionality, during brain activities, while the amount of 

oxy-Hb increased, the deoxy-Hb decreased. In other words, the change 

ratio of oxy-Hb and deoxy-Hb has an inverse pattern; thus, they are 

supposed to have a negative correlation. If the correlation between oxy-Hb 

and deoxy-Hb is positive, the signal presumably carries noise (Cui et al., 

2010). In this study, the Running Correlation (RC) is used to explore the 

relation between two variables that vary in time. RC is a useful method to 

extract “the global information” of the signal by sliding windows. Indeed, 

the correlation is calculated in a window of the first observations, then the 

window is moved by one position, and the correlation is recalculated for 

the whole data series. RC helps to distinguish the signal noises in the scope 

of subjects. 

The following figures compared the RC of all channels between two 

subjects with the same task. Each column is one channel and each row 

represents a data point. The color bar on the right side shows Pearson 

Correlation values from 1 (red color) to −1 (blue color). Figure 4-1 presents 

the first subject and the RC of oxy-Hb and deoxy-Hb are strongly negative 

shown in blue color. Whereas, the RC of the second subject in figure 4-2 is 

mainly positive among the channels that are presented in red color. Thus it 
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is assumable that the brain signals of the second subject carry noises. The 

noises may be caused by motion artifacts like head or facial movements. 

 

Figure 4-1 Running correlation of all channels during a task-Subject1. RC in most of the channels are negative, shown 
in blue color, which represented fewer noises during the experiment 

  

Figure 4-2 Running correlation of all channels during a task- subject2. Positive RC is shown in red color. The signals 
carried some noises during the experiment. 
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4.1.2 Visual check of the time series 

A visual overview of the oxy-Hb variations of the fNIRS signals gives 

important information about the signal quality. The noisy channels are 

specified by the considerable differences in the oxy-Hb time series 

compared to other channels. The following figure presents the oxy-Hb 

changes in all channels in one subject. As can be seen, the oxy-Hb variations 

in the three channels of 14, 22, and 23 are differentiable. Therefore those 

channels could contain noise. 

 

Figure 4-3 fNIRS oxy-Hb variations of all channels in one subject 

Additionally to the signal visual checking, the variance of the oxy-Hb time 

series verifies the obtained noisy channels. Figure 4-4 shows the 

comparison between the variance of the oxy-Hb among thirty-six channels 

in one subject. The spikes in three channels of 14, 22, and 23 represent high 
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noisy channels. Comparing the variance of channels leads us to specify 

noises in the scope of channels (Cui et al., 2010). 

 

Figure 4-4 Comparison of the variance of channels in one subject  

4.1.3 Extract heartbeat among signals 

The heartbeat has an effect on the obtained fNIRS brain signals. The 

wavelength of the heartbeat is approximately stable of ~1 Hz. Thus the 

heartbeat in the accurate signal is differentiable and can be extracted from 

fNIRS signals. The wavelet transform toolbox is a method to extract the 

heartbeat from the fNIRS signal. In this method, the heartbeat is 

recognizable by the light band in the Wavelet transformation plot (Nozawa 

et al., 2016). Wavelet transform coherence (WTC) is a method for analyzing 

the coherence and phase lag of series as a function of both time and 

frequency domain (Chang & Glover, 2010).  

The following plot shows the heartbeat recognition between two channels 

in the same subject. The bright band of the heartbeat in yellow color is 

differentiable in figure 4-5 that presents the channel with less noise. Figure 
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4-6 shows the noisy channel that the heartbeat band is unclear. However, 

an indistinctive heartbeat band does not mean that the signal is trash and 

therefore the estimation of the signal quality requires more cautions. 

 

Figure 4-5 Wavelet transform of oxy-Hb in one channel of the fNIRS signal. The bright yellow band clarifies the 
heartbeat 

 

Figure 4-6 Wavelet transform of oxy-Hb in one channel of the fNIRS signal. The heartbeat is not recognizable in the 
signal. 
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4.1.4 Moving variance per channel 

Variance, which is the standard deviation squared, measures the separation 

of the variables from the average value ( Salonen, 2014). The Moving 

Variance, computes the variance over the sliding window. In the sliding 

window method, a window with a specific length moves block by block over 

the data. Oxy-Hb Moving Variance per channel is one of the suggested 

metrics to distinguish the noisy blocks in one fNIRS channel. In other words, 

Moving variance specifies the time occurrence of noise in a channel. 

Figure 4-7 shows oxy-Hb Moving Variance in one channel by time window 

length of 200 frames. The high spikes in the graph present the occurrence 

periods of noises. 

 

Figure 4-7 Oxy-Hb moving variance in one channel by the time window length of 200. Spikes of Moving Variance 
between 400-600 and 800-1000 presents the time occurrence of noises. 

  



 

46 
 

Phase 2: Impact of optode pressure 

According to the definition of the Human-Centered Design (HCD), focusing 

on the users and their requirements enhances the efficiency and usability 

of the system. Besides the significant advantages of fNIRS as the new 

portable BCI technique, the user experiment processes are inconvenienced. 

The pressure of the fNIRS optodes during the ongoing experiments causes 

discomfort and reduces user satisfaction.   

The second phase of this master thesis aims to clarify the effect of fNIRS 

optode pressure on the quality of the signal. Despite the quantitative 

pressure metrics (pCO2, and LDF), the user feedback is a qualitative metric 

that is affected by the user’s attributes, including gender, age, stress, and 

pain tolerance. Therefore, the goal is to specify the correlation of pressure 

metrics with the user feedbacks and replace the quantitative metrics with 

the user’s feedback. 

4.1.5 Estimation of signal quality in consideration of pressure 

indexes  

At this junk, the obtained result from the fNIRS user experiment is 

discussed. 

Table 4-1 shows the mean of the pCO2 variation with different optode 

pressures. The pCO2 ratio slightly growth in two subjects remained steady 

in one subject and decreased in the last subject of the user experiment. 

 



 

47 
 

Table 4-1 PCO2 (kPa)* affected by different optode pressure levels 

Pressure Level Subject1 Subject2 Subject3 Subject4 

1 (Minimum) 9.59 (kPa) 8.18 (kPa) 7.41 (kPa) 13.17 (kPa) 

2 (Medium) 9.67 (kPa) 8.42 (kPa) 7.59 (kPa) 13.06 (kPa) 

3 (Maximum) 9.47 (kPa) 8.42 (kPa) 7.82 (kPa) 12.16 (kPa) 

 *kPa: kilopascal 

 

Figure 4-8 PCO2 variation affected different optode pressures 

Table 4-2 presents the change of LDF by the enhancement of the optode 

pressure during the user experiment. LDF ratio slightly changed in subject 

1, dropped dramatically in subjects 2 and 4, and went up in subject 3. It is 

considerable that the changes from pressure levels 2 and 3 did not change 

significantly.  

  



 

48 
 

Table 4-2 LDF (PU)* variation affected different optode pressures 

Pressure level Subject1 Subject2 Subject3 Subject4 

1 (Minumum) 25.005 (PU) 273.09 (PU) 35.77 (PU) 130.97 (PU) 

2 (Medium) 40.72 (PU) 129.48 (PU) 122.3637 (PU) 128.21 (PU) 

3 (Maximum) 32.09 (PU) 125.19 (PU) 116.7844 97.63 (PU) 

 *PU: Perfusion Unit

 

Figure 4-9 LDF variation affected different optode pressures 

Overall, the analysis of the pCO2 and LDF variation changes slightly by 

applying different optode pressure levels.   

The experiment data obtained from NIRScout was interpreted to fNIRS 

signals by NIRStar software. Then the signals filtered and analyzed by 

NirsLAB software. The signals are filtered by the bandpass filtering to 

comprise physiological noise such as heartbeat.  

Among the discussed metrics in phase 1, the Running Correlation between 

oxy-Hb and deoxy-Hb was considered as a quality criterion. The variation of 
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RC between oxy-Hb and deoxy-Hb investigates the accuracy of the brain 

activity during the task in one subject. Accordingly, the negative RC 

indicates the reverse changes of oxy-Hb and deoxy-Hb that represent the 

higher signal quality.  

In consideration of distinct attributes and health conditions, the signal 

quality was investigated independently for each subject. 

The following graphs show the mean RC changes focused on four affected 

channels by the pressed optode. Pressure level 1 indicates minimum and 3 

is the highest applied pressure. The corresponded tables explicit the 

obtained data in detail. 
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Table 4-3  Mean of RC change in four affected channels in Subject 1 

Pressure Level Channel7 Channel9 Channel12 Channel14 

1 (Minimum) -0.5818 -0.506 -0.5201 -0.6144 

2 (Medium) 0.2918 -0.5126 0.5335 0.4032 

3 (Maximum) -0.5221 -0.3152 -0.3878 -0.5422 

 

 

Figure 4-10 Comparison of Mean of RC over the Task period for four affected channels by the pressed optode in 
Subject 1 
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Table 4-4  Mean of RC change in four affected channels in Subject 2 

Pressure Level Channel7 Channel9 Channel12 Channel14 

1 (Minimum) -0.9942 -0.9876 -0.875 -0.9159 

2 (Medium) -0.9924 -0.974 -0.8867 -0.9047 

3 (Maximum) -0.9896 -0.9502 -0.881 -0.8602 

 

 

Figure 4-11 Comparison of Mean of RC over the Task period for four affected channels by the pressed optode in 
Subject 2 
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Table 4-5  Mean of RC change in four affected channels in Subject 3 

Pressure Level Channel7 Channel9 Channel12 Channel14 

1 (Minimum) -0.4826 -0.2427 -0.2457 -0.4191 

2 (Medium) 0.8644 -0.0365 0.5101 0.9603 

3 (Maximum) 0.2231 -0.1836 0.381 0.0415 

 

 

Figure 4-12 Comparison of Mean of RC over the Task period for four affected channels by the pressed optode in 
Subject 3 
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Table 4-6   Mean of RC change in four affected channels in Subject 4 

Pressure Level Channel7 Channel9 Channel12 Channel14 

1 (Minimum) -0.7688 -0.8135 -0.714 -0.52 

2 (Medium) -0.5124 -0.6567 -0.4526 -0.3196 

3 (Maximum) -0.8312 -0.8008 -0.8147 -0.8044 

 

 

Figure 4-13 Comparison of Mean of RC over the Task period for four affected channels by the pressed optode in 
Subject 4 
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According to the investigated experiment data, the RC increased in the 

majority of the subjects. Then it dropped sharply by applying more pressure 

up to level 3. However, enhancing the optode pressure to level 3 cannot be 

applied for the longer experimental period and cause user inconvenience 

and skin damage. 

4.1.6 Corresponding user feedback to the pressure level 

The subjects were asked to express their comfort status based on the Visual 

Analog Pain Scale (VAS) by enhancing the optode pressure during the task. 

Table 4-3 presents the corresponding scale to each subject by variation of 

the pressure.  

Table 4-7 Corresponding subjects’ feedback to the optode pressure levels (VAS) 

Pressure Level Subject1 Subject2 Subject3 Subject4 

1 (Minimum) 3 2 2 3 

2 (Medium) 5 4 5 5 

3 (Maximum) 8 6 8 7 

 

As a result of subjects’ feedback to the applied pressure level during the 

task, Subjects 1 and 3 reported more pressure on their skin. The 

Comparison of RC changes and subjects’ feedback led us to conclude that 

producing significant changes in RC, requires applying major optode 

pressure on the skin. Although enhancement of the optode pressure can 

increase the signal quality, is not an efficient solution to longer tasks du to 

user inconvenience. 
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Chapter 5: Discussion 

5.1 Summary of key findings 

Estimation of fNIRS signal quality is one of the main precision factors of the 

experiment's validity. As the biometric features vary, the quality of fNIRS 

signals differs among the subjects. 

The purpose of this study is to detect an efficient quantitative signal quality 

metric in the first phase and use the metric for further analysis considering 

optode pressure in the second phase. To find the signal quality metrics, we 

discussed qualitative and qualitative measurements and analyzed them by 

the precise open-access database. Our findings noted that the running 

correlation between oxy-Hb and deoxy-Hb gives us the whole comparison 

of fNIRS signal quality changes among users. The extraction of the 

heartbeat band is another discussed metric that is influenced by the 

physical and mental conditions of the subject. Therefore detection of 

heartbeat is not considered as a quantitative factor in the second phase of 

this study.  Moving variance per channel distinguishes the high or low-

quality channels in one subject during the task period. Since the second 

purpose of the current study is to compare the data of different pressure 

variables that conducted in different time scope, moving variance per 

channel is not used in the second phase.  

The second phase of the study aims to find out the influence of different 

levels of optode pressure on the fNIRS signal quality. Since the subject’s 

feedback is a qualitative response and is affected by body condition, 

quantitative variables are considered as substitute metrics. We used two 
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pressure level metrics including PCO2 and LDF, to measure the different 

levels of fNIRS optode pressure. The results indicate that PCO2 and LDF 

cannot be used as a substitute measurement for the pressure level and 

they do not have a direct correlation with the applied pressure. 

5.2 Interpretation of findings 

The results support the claim of Ortiz-Prado et al. about the Partial pressure 

of oxygen in the brain. Ortiz-Prado et al. declared that changes in tissue 

brain partial pressure of oxygen and dioxygen depend on various factors, 

including cerebral blood flow (CBF), hypoxia, exercise, stress, and 

physiological conditions (Ortiz-Prado et al., 2019). Accordingly, PCO2 and 

LDF were influenced by the abovementioned factors during the fNIRS 

experiment. Contrary to the hypothesized one association to estimate the 

optimal optode pressure by considering the user comfort and fNIRS signal 

quality, the expected correlation between quantitative metrics did not 

obtain from the data. Therefore the optimal measurable amount of optode 

pressure cannot be evaluated.  

Interpretation of the users’ feedback indicates a relation between the level 

of pressure and signal quality metric (RC) during the tasks. The results from 

users’ feedback explicit that creating a significant influence on the signal 

quality requires a significant enhancement of the optode pressure on the 

scalp. In other words, small growth in the optode pressure creates 

negligible changes in the signal quality. 
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5.3 Discussion of implication 

The experiment provides new insight into the relationship between the 

signal quality and applied fNIRS optode pressure during the experiment 

based on subjects’ feedback.  

As the user inconvenience is one of the existing obstacles of the use of 

fNIRS in the long period tasks, the obtained results are valued in the 

enhancement of user comfort during the fNIRS experiments. The study 

claims that a major amount of optode pressure is required to achieve a 

significant improvement in signal quality. Therefore it is not efficient to 

ignore the user comfort and obtain the qualified signals during the 

experiments. 

5.4 Limitation of the research 

The generalizability of the results is limited by the male gender with the age 

range of 25-35. The limited selection was due to physical and pain 

tolerance variety between male and female subjects. 

It is beyond the scope of this study to estimate and suggest an efficient 

measurable amount for the optode pressure in the fNIRS experiments 

because of the uncorrelated quantitative variables obtained from the 

results. 
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Chapter 6: Conclusion 

As interest for fNIRS as a novel brain-computer interface increases in the 

computer interaction community, the mater of signal quality has been 

discussed in several studies. Due to ease of use, portability, and fast set up 

time, fNIRS becomes an efficacious BCI technique recently. However 

unacceptable environmental conditions and unique features of human 

physiology have caused a challenging process in the detection of the fNIRS 

signal quality. 

In addition, the mater of user physical comfort in the fNIRS experiments 

opens up the new study focusing on the human convenience during the 

implementation procedure. 

This research aimed to identify the efficient measurable metrics of fNIRS 

signal quality. Furthermore, the effect of optode pressure on signal quality 

was discussed. Through this thesis, I tried to distinguish that how increasing 

the fNIRS optode pressure affects the signal quality and the user comfort. 

The ultimate goal of my study was to estimate the optimal optode pressure 

while the user is not undergoing inconvenience. 

 Based on the collected metrics, the moving variance between oxy-HB and 

deoxy-Hb was chosen to distinguish the signal quality rate while applying 

unequal optode pressure levels. In the second phase, the user experiment 

was conducted to obtain the fNIRS data that affected unequal optode 

pressure. The experiments contained 3 tasks with different pressure levels 

including minimum (task 1), medium (task 2), and maximum (task 3). In 

order to reach an optimal optode pressure, the relation between two 
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quantitative pressure metrics (PCO2 and LDF) and user’s feedback was 

studied. The results contradict the first hypothesis that indicates that 

pressure metrics and user feedback do not have a steady correlation. 

Therefore, quantitative metrics could not replace user feedback. Following 

the second hypothesis that focused on qualitative data analyzing, the 

results show the relationship between user’s feedback and signal quality. 

Based on the conducted data from the user experiments, the signal quality 

did not increase by pressure enhancement to medium level. The expected 

enhancement of the signal quality happened on the third task with the 

maximum pressure level. Accordingly, by applying major optode pressure 

on the scalp, the quality of the signal increases. However, the applied 

pressure in task 3 does not seem an efficient solution for longer tasks and 

may cause inconvenience for the users.  

6.1 Future research 

Further research is required to establish whether any quantitative pressure 

metrics can apply following the analyses of this study. 

 Future studies should take into account gender and age variety. The reason 

for the limitation of subjects during this study is to deduct the variety of 

effective variables and increase the validation of the study. It is worth 

mentioning that subgrouping in the chosen subjects is an essential process 

in the fNIRS experiments, because the analysis of the data and achieved 

results highly depend on the individual attributes and cannot compare the 

groups with a variety of conditions. Despite new efforts to improve the 
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fNIRS performance, more research is needed to improve the usability and 

user comfort in the fNIRS experiments. 
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Chapter 8: Appendices 

Information statement 

 

For the Master Thesis Project in Universal Design ICT 

“The relationship between optode pressure and quality of fNIRS signal” 

 

By Shokooh Alinaghizadeh Khezri  

Supervisors: Anis Yazidi, Pedro Lind, and Peyman Mirtaheri 

 

You are being invited to participate in a research study about the fNIRS, conducted by 
Shokooh Alinaghizadeh Khezri, under the supervision of Anis Yazidi, Pedro Lind, and 
Peyman Mirtaheri at the Motion Analysis Lab of Oslo Metropolitan University.  

The objective of this research project is to access the relation between the user’s 
comfortability and the quality of the fNIRS signals. After the non-invasive implementation 
of the fNIRS equipment on the head, you asked to report the comfort level that you feel 
during the experiment for 3 times. The task contains 2 minutes of number calculation. 

Your participation in this study is voluntary. In case you accept to participate in this 
research study, there are no risks for you of any kind. The collected information may not 
benefit you directly, but it will provide general benefits to researchers and future studies. 
All data that identifies you will be kept confidential.  

 

If you have any concerns about your rights in this study, please contact us with email 

Shokooha@oslomet.no. 
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Consent Form 

 

For the Master Thesis Project in Universal Design ICT 

“The relationship between optode pressure and quality of fNIRS signal” 

by Shokooh Alinaghizadeh Khezri  

Supervisors: Anis Yazidi, Pedro Lind, and Peyman Mirtaheri 

February 2020 

I agree to participate in the research project titled “The relationship between optode 

pressure and quality of fNIRS signal”, conducted by Shokooh Alinaghizadeh Khezri who 

has discussed the research project with me. 

I have received, read, and kept a copy of the Information Statement. I have had the 

opportunity to ask questions about this research and I have received satisfactory answers. 

I understand the general purposes and methods of this research. 

I consent to participate in the research project and the following has been explained to 

me: 

 The research may not be of direct benefit to me 

 My participation is completely voluntary 

 My right to withdraw from the study at any time without any implications 

to me 

 The steps that have been taken to minimize any possible risks 

 What I am expected and required to do 

 Security and confidentiality of my personal information. 

In addition, I consent to: 

 Publication of results from this study under the condition that my identity 

will neither be revealed nor recovered from the published data. 

 

Participant name:  

Signature: 

Date: 

 


