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1 Introduction 

1.1 Background and motivation 

Due to its good formability characteristics, AA6xxx aluminium alloys have become 

popular as a light-weight alternative to steel, for components produced by stamping 

operations for use in the bodywork of cars. The material assessed in this thesis are sheets 

of aluminium alloy AA6016-T4. As the current material is used in non-visible parts in 

the bodywork of cars due to its good formability, enhanced knowledge about the 

behaviour of this material allows for reductions in material use. Weight reduction of 

automobile constructions has obvious benefits to both the environmental and economic 

aspects of the production phase. Also, predictability of the structural material’s behaviour 

allows for enhanced performance of the products concerning fuel consumption and 

crashworthiness. 

When designing forming operations to produce formed metal sheet products, numerical 

simulations by the finite element method (FEM), or finite element analysis (FEA), are 

used to simulate the non-linear procedures. In such processes, accurate material models 

to describe plasticity and forming limits are important to successfully design optimized 

products and production processes without the reliance on trial-and-error research. For 

aluminium alloys used in metal sheet forming, the anisotropic plasticity characteristics 

caused by the directional rolling process has therefore been subject to extensive research 

over the last decades.  

In 1948, Robert Hill presented a modification to the Von Mises yield criterion intending 

to describe the directional differences in stiffness observed in some metals [1]. A higher-

order yield criterion that with different exponents could take on shapes bridging the gap 

between the Von Mises and the Tresca yield criterion, was first presented by Hershey in 

1954 [2]. In 1980 Logan and Hosford [3] proved that this yield function was able to 

closely resemble the yield characteristics of sheet metals with body centred-cubic (BCC) 

and face centred-cubic (FCC) crystallographic structure and isotropic characteristics 

when its exponent was respectively set to 6 and 8. From the late 1980s until the middle 

of the 2000s, Frédéric Barlat with peers published a series of advanced anisotropic 
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constitutive models based on one or more linear transformations on invariants of the 

Cauchy stress tensor [4-7]. The yield functions commonly referred to in the literature as 

Yld89, Yld91, Yld2000-2d, and Yld2004-13p/18p, have different formulations and 

complexity but have all proved to describe the anisotropic plasticity characteristics of 

sheet aluminium with good accuracy [8-11]. 

When implemented into FEA-programs, suiting plasticity models in conjunction with 

criteria describing the onset of local necking – potentially also accompanied by models 

predicting ductile damage and shear damage – can for many aluminium alloys generate 

accurate forming and fracture limits, with and without anisotropy. One approach is to 

generate forming limit curves inspired by the Marciniak-Kuczynski (MK) model [4], 

where initial imperfections are implemented into the FEA model causing strain 

localization to occur as a consequence of imposing force equilibrium. Using the Yld89 

plasticity model by Barlat and Lian [5] along with a non-local detection of through-

thickness strain concentrations (NLIC) the approach was able to capture experimental 

forming limits and their strain path dependency of AA2008-T4 and AA6111-T4 sheets in 

the 2008 article by Reyes et al. [6]. In this study, a through-thickness shear instability 

criterion (TTSIC) based on the work of Bressan and Williams [7] was also used, 

displaying results consistent with the MK-inspired approach and experimental limits. 

Based on early experiments on AA6016-T4, a 2009 article by Lademo et al. [8] presented 

FEA-based forming limit strains using a similar thinning-based method to detect strain 

localizations in a Marciniak-Kuczynski-inspired criterion, in conjunction with the ductile 

fracture criterion presented by Cockcroft and Latham in 1968 [9]. The predicted limit 

strains seemed to accurately reproduce the experimental data it was compared to. 

However, in this study, the anisotropy of the forming limits was not addressed, as the 

FEA-based forming limits were seemingly only compared to experimental limit strains 

where the major strain was in the rolling direction of the sheet. 

In the work on his thesis for the degree of PhD [10], Dmitry Vysochinskiy in 2012 

conducted a relatively extensive experimental program on sheets of rolled aluminium 

alloy AA6016 with temper T4 with the aim to investigate effects of plastic anisotropy in 

the material, and to establish an accurate constitutive model for the alloy. While the 

plastic anisotropy of the material was characterized as rather weak, the presented 
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experimental forming limit diagrams (FLD) constructed from Marciniak-Kuczynski tests 

[4] exhibited a clear anisotropic tendency for both necking- and fracture strains. The 

experimental data was further used to calibrate the advanced anisotropic yield criterion 

Yld2004-18p by Barlat et al. [11] and a two-term Voce hardening rule. To investigate 

whether the weak anisotropy of the plasticity of the material was able to describe the 

severe anisotropy of the forming limits, numerical implementation of the MK-model was 

used to construct the predicted forming limit diagram. The results displayed a weak 

anisotropy of forming limits in the opposite direction of what was observed from 

experiments. From this, a conclusion was drawn that the reduced forming limits in the 

direction traverse to the rolling direction of the sheet was likely an effect of the roping 

phenomenon, which was observed through macroscopic valleys and ridges in the sheet 

surface. The theory was strengthened by the observations of unexpected crack 

orientations and the formations of multiple local necks observed through digital image 

correlation (DIC)-based strain mappings. 

Attempts to understand and describe the occurrence of the roping phenomenon in 

aluminium sheets, based on crystal plasticity has been subject to research by several 

authors [16-19]. However, less attention has been directed towards modelling the 

phenomenological effects of roping on forming limits and crack orientations. To the 

knowledge of the author, no attempts to address the anisotropy of forming limits and the 

occurrence of these “anomalous” crack orientations, as later reported from the extensive 

experimental program of Dimitry Vysochinskiy, has been conducted for AA6016-T4 

sheets subjected to roping. In this thesis, models of anisotropic plasticity, isotropic 

hardening, instability and fracture will be presented, calibrated and tested in FE-analyses, 

along with a model to describe the effects of roping. 

 

1.2 Preliminary work 

Leading up to the work on this thesis on the formability of aluminium alloy AA6016-T4, 

two preliminary written reports [20, 21] concerning non-linear analyses of the mechanics 

of aluminium alloys have been assigned by the author as obligatory assignments during 

the Master’s Programme Structural Engineering and Building Technology at Oslo 
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Metropolitan University. Due to this, some formulations in this report may be recognized 

from previous unpublished but internally distributed work of the author. 

The first project report [12], assigned in May 2019 in the course ‘Structural Analysis and 

Design’, included the assessment of an I-sectioned cantilever beam of aluminium alloy 

AA6082-T6 with a displacement-controlled point load applied at the tip of the beam. 

Here, a literature study, along with a non-linear finite element analysis in the FEA 

software Abaqus/CAE was carried out.  

Like this thesis, the second report [13], assigned in December 2019 in the course 

‘Structural Engineering Specialisation’, was concerning the formability characteristics 

of aluminium alloy AA6016 with temper T4. In addition to addressing some of the key 

theory of metal sheet forming, experimental data from Dimitry Vysochinskiy [10] was 

used to calibrate the quadratic anisotropic yield criterion Hill48 [1] along with isotropic 

two-term Voce hardening, and implemented in Abaqus/CAE. An effort was then made to 

conduct non-linear simulations of tensile tests sampled at 0° and to 90° to the rolling 

direction, using the limited possibilities provided by pre-programmed modules in 

Abaqus/CAE. The results were then presented and discussed through comparisons with 

the isotropic von Mises yield function [14]. While the simulations using the von Mises 

yield function managed to quite accurately reproduce the materials plastic behaviour for 

both directions, the Hill48 description yielded a false additional strength in the orientation 

90° to the rolling direction. Although the plasticity of the material examined in this study 

was proved to rather isotropic characteristics, yield criteria with rotational asymmetry 

seem to be the norm in the literature when dealing with profiles made of extruded 

aluminium. An important reading from this study was therefore that the Hill48 yield 

criterion – although it is known to reduce to von Mises by the right calibration – did not 

produce isotropic yield behaviour when calibrated to an isotopically behaving material. 

This observation is in agreement with results found in the literature [15] and has been 

some of the motivation behind further work on developing yield criteria better suited to 

describe the plasticity of extruded and rolled aluminium alloys.  
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1.3 Objectives and method of research 

The objective of the current work is to gain advanced knowledge in the field of metal 

sheet forming with aluminium alloys and to model the effects of roping observed in 

AA6016-T4 aluminium alloy sheets on forming limits with proportional strain paths. To 

this aim, a literature study will be conducted where theoretical familiarization is to be 

obtained with governing phenomena and state-of-the-art material models for metal sheet 

forming with aluminium alloy. Experimental data from Vysochinskiy [10] will then be 

used to calibrate some of the presented models to the currently assessed material, before 

non-linear analysis in the finite element analysis LS-DYNA will be conducted. 

Ultimately, the described method aims to eventually test the hypothesis that the effects of 

the roping observed in AA6016-T4 aluminium alloy sheets on forming limits from 

proportional strain paths can be described by introducing perturbations to the sheet 

thickness based on the spatial distribution of effective plastic strains observed from 

experiments. 

 

1.4 Outline and scope 

In this thesis some relevant key theory about aluminium and metal sheet forming is first 

presented in Ch. 2  Next, a series of established phenomenological mathematical models 

with application to FEA, which have been used to describe the behaviour of aluminium 

alloys in metal sheet forming processes, are presented in Ch. 3. Here, a model that is used 

in an attempt to model the effects of roping on forming limits, through scaled harmonic 

perturbations to the sheet thickness, is also presented. Followed by this, Ch. 4 presents 

results from the experimental program of Dimitry Vysochinskiy, which is then used to 

calibrate some of the material models described in the previous chapter. In Ch. 5, an 

advanced anisotropic plane stress yield function with two criteria to predict local necking 

and one criterion to predict ductile damage is implemented into an FEA-software along 

with the presented model to simulate the effects of roping. FEA-based FLDs generated 

by the different criteria without and with different amplitudes to the implemented roping 

model is then presented and discussed. Finally, a general discussion and summary of 
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noticeable discoveries made during the work with the study, in Ch. 6, is followed by a 

conclusion and suggestions to further work in Ch. 7. Table 1-1 displays the different yield 

criteria, hardening laws, instability and fracture criteria presented in this report. 

Furthermore, it shows which models have been calibrated and then used in finite element 

analyses. 

 

Table 1-1: Overview of the appearances of material models. 

 Model Theory Calibration FEA 

Yield functions Hill48 [1] x x  

 Yld89 [5] x x x* 

 Yld2000-2d [16] x x  

 Yld2003 [17] x (1) x 

Hardening Power law x (2)  

 Ludwig’s law x x  

 One-term Voce x x  

 Two-term Voce x (2) x 

Local necking/fracture NLIC/NLESDC x x x 

 TTSIC [7] x x x 

 OCLFC [9] x (2) x 

 GISSMO [18] x   

Roping Four-term sine wave x x x 

 

(1) Calibrated automatically in LS-DYNA 

(2) Calibrated by Dimitry Vysochinskiy [10] 

* Unsuccessfully 

 

Disregarding the general theory, the following report can roughly be divided into three 

parts: a theoretical part, a calibration part, and an FEA part. In the theoretical part, several 

material models relevant to metal sheet forming are presented. Many of the material 

models were fitted by the author to data from the experimental program described in the 

Ph.D.-thesis of Dimitry Vysochinskiy [10], while only a few of the models were used to 
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conduct FEA in LS-DYNA. To clarify the scope of this report, an overview is displayed 

in Table 1-1. 
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2 Theory I: General theory 

To establish a theoretical foundation for the following thesis to be built upon, a literature 

study is presented, where an introduction to aluminium and aluminium alloys as a 

material is first given. Followingly, a short introduction to the key theory of continuum 

mechanics and plasticity theory relevant to aluminium sheet forming is given, followed 

by an introduction to the theory of material failure.  

 

2.1 Aluminium 

With the symbol Al and the atomic number 13, aluminium is a solid chemical element 

which can be found on the periodic table among the metallic elements. Aluminium oxides 

found in ancient pottery artefacts from Egypt and Rome reveals that the characteristics of 

the element have been utilized by humans since before the Common Era [19]. While 

scientists earlier believed that the metal was rare and difficultly extracted, we now know 

that the raw material bauxite which contains around 15 to 25 per cent of aluminium is 

found in quantities large enough to make aluminium the third most common element in 

the Earth’s crust.  

 

After the sedimentary rock is extracted from the ground, the production process starts by 

processing the aluminium oxide – also referred to as alumina – from the raw material by 

a refining process called the Bayer process. Secondly, the extracted aluminium oxide, 

which consists of two aluminium atoms and three oxygen atoms, is transformed into pure 

aluminium by breaking the molecule bonds. The breaking of the bonds is performed using 

electrolysis in a very energy-demanding process [20]. The pure aluminium metal obtained 

from the electrolytic reduction carries a little less than half the mass of the aluminium 

oxide it was produced from [21].  

 

For structural purposes, the pure aluminium is classified in the low-end category of metals 

due to its extreme malleability. However, the enhanced properties of various nature which 

can be achieved by adding compounds to the pure metal when in its molten liquid form 
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is what makes aluminium – or more specifically aluminium alloys – the versatile material 

it is known to be. An aluminium alloy is a chemical compound where elements such as 

iron, silicon, zinc, magnesium and manganese have been added to the pure aluminium. 

One or more additives can together contribute to up to 15 per cent of the weight of the 

composition of the alloy, where different composition yields different properties. The 

combination of different compounds affects the alloys strength, workability and density, 

electric conductivity [22], in addition to visual appearance. Thus – whether the material 

is to be used in a marine environment, as a car component, as a welded bicycle frame or 

in an air- or spacecraft – or simply as soda cans or aluminium foil, the aluminium alloy 

can be tailored to its intended use.  

 

Depending on the product, aluminium alloys are on average between 10 and 40 % lighter 

than steel. Combined with good formability characteristics and resistance to corrosion, 

the material has features which are of obvious interest to the automotive industry, where 

lighter weight and furtherly optimized shapes often are synonyms with enhanced 

performance. When the world’s first aluminium-bodied sports car appearing at the Berlin 

International Motor Show in 1899, it took only two years before Carl Benz constructed 

the first aluminium car engine. In other words, the metal has been around in the 

automotive industry for over a decade although more than 60 years had to pass before 

aluminium could be considered a commonly used material. Next to steel, the lightweight 

aluminium alloys is now the second most used material in the automobile industry [19]. 

 

For wrought aluminium alloys, the International Alloy Designation System is the most 

widely accepted naming scheme to identify the different alloys. The designation system, 

which is a four-digit code often with the prefix “AA”, identifies the alloying elements and 

is sometimes accompanied with a designation for the temper.  

 

AAXXXX 

 

The first digit indicates the principal alloying element which has been 

added to the alloy. The digit indicates what is often referred to as the 

aluminium alloy series, running from the 1000 series, up to the 8000 

series. 
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AAXXXX 

 

The second digit indicates the modification of the alloy. If AA6016 is 

the original alloy, AA6316 would be the third modification to the 

original alloy. 

 

AAXXXX 

 

The last two digits are simply the arbitrary numbers assigned to the 

material to separate it from other alloys of the same series [23]. 

 

In the automotive industry, aluminium alloys in the 6000-series of are commonly 

preferred for the use in the bodywork of cars. The series is characterized by a significant 

amount of added magnesium and silicon, to produce a versatile, weldable and heat 

treatable alloy with moderately high strength. Also, the series is known for its excellent 

resistance to corrosion [22].  

 

2.1.1 Anisotropy and roping 

While the lattice arrangement of the aluminium atoms is orderly aligned as face-centred 

cubic, the material is on a microscopical scale divided into crystallites, or grains, which 

may vary in size and orientation.  

 

Sheets of wrought aluminium alloys used for metal forming purposes are produced by 

rolling the material to the desired sheet thickness. This process typically leads to a 

dislocation of the grains in the materials’ microstructure. As the microscopic dislocations 

of grains are due to a directional rolling process, a preferred alignment of the grains can 

occur which causes the material to exhibit anisotropic plasticity characteristics. Alone, 

this can lead rolled sheets to display different forming limit strains in the directions 

parallel and traverse to the rolling direction. 

 

For some aluminium alloys in the 6000-series, the production methods might even cause 

grains with similar orientations to cluster in bands parallel to the rolling direction of the 

sheets. These bandings in the spatial distribution of textural components can have 

enhanced or diminished resistance to thinning [24] when subjected to biaxial stretching. 

The phenomenon, which also is rather common in ferritic stainless steel sheets, is referred 
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to in the literature as ridging or roping and can be visually observed as perturbations in 

the sheet thickness in the form of valleys and ridges [25].  

 

 

 

Figure 2-1: Illustration of the cold rolling process of sheet metals. 

 

Several studies based on crystal plasticity-based finite element analysis was been 

published on the subject of what causes roping to appear in some metal sheets. In such a 

study on AA6111 automotive sheets by Wu et al. [26], the spatial distribution of clusters 

of grain orientations are reported to be the predominant factor for roping, while the effects 

of work hardening and its strain rate sensitivity, crystal elasticity and texture evolution 

were negligible. 

 

In a 2012 article by O. Engler et al. [24], the correlation between microtextural 

characteristics and roping in AA6016 aluminium alloy sheets in T4 temper were studied 

through crystal-plasticity simulations. In Fig. 2-2.a), an optical micrograph rendered with 

permission from author displays how crystallites with similar orientations, illustrated with 

similar colours, are clustered in bands parallel to the diagonal rolling direction. For 

quantitative mapping of the sheets surface topography, sheets prone to roping were 

stretched by 15 % in the traverse direction to further reveal the textures by white-light 

interferometry. As displayed in Fig. 2-2.b), the pseudo-3D plot reveals the manifestation 

of band clusters of grains with similar orientations, as observed in the optical micrograph 

image.  
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a) b) 

 
Figure 2-1: a) Microstructure of an AA6016 sheet in T4 temper. Grains with similar 

orientations are identified by similar colours, evidently clustered in bands parallel to the 
diagonal rolling direction. b) Surface topography of sheet with pronounced roping, where the 

vertical axis represents sheets through-thickness direction. 
Both figures are rendered from the 2012 article “Crystal-plasticity simulation of the 

correlation of microtexture and roping in AA 6xxx Al–Mg–Si sheet alloys for automotive 
applications” by O. Engler et al. [24] with permission from the author.  

© 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved 
 

With the prominent roping in the sheets rolling direction displayed by the alternating 

valleys and ridges, the above figure serves as great illustrations of the roping effect in the 

material assessed in the present study. Rather than to explain the reason and cause of 

plastic anisotropy and roping, the phenomenological effects on forming limits will be 

addressed further in this thesis.  

 

2.1.2 AA6016-T4 aluminium alloy 

The material subjected to assessment in this thesis is 1.5 mm thick sheets of AA6016 

aluminium alloy. All information regarding the characteristics of the sheets as described 

in this section is rendered from the PhD thesis of Dimitry Vysochinskiy [10], where the 

experimental work which the current thesis is built on, is presented.  

 

Due to its good forming properties, the rolled alloy is suited for use in the bodywork of 

cars. Its chemical composition is presented in Table 2-1. 
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Table 2-1: Chemical composition of AA6016 aluminium alloy [10]. Shares of added elements to 
pure aluminium as percentages of the total composition. 

 Si Fe Cu Mn Mg Cr Zn Ti 

AA6016 1.0 - 

1.5 

0.5 0.2 0.2 0.25 - 

0.6 

0.1 0.2 0.15 

 

The metal sheets, produced by Hydro Aluminium Rolled Products GmbH, were rolled to 

their nominal thickness and solution heat-treated before they were stored for six months 

natural ageing process, giving them the temper designation T4. 

 

In advance of the experimental programme which was carried out by Dimitry 

Vysochinskiy at Structural Impact Laboratory (SIMLab) at the Norwegian University of 

Science and Technology, precise measurements of the sheet thicknesses of the sheets as 

received specified the mean thickness of the sheets to be 1.496 mm with a standard 

deviation (SD) of 0.004 mm. Prescribed for use in the non-visible parts of the car’s 

bodywork, no quality requirements for the finished surface after the forming process is 

set. Further presentation of experimental results from this study is presented in Ch. 4.1. 

 

2.2 Continuum mechanics and plasticity 

2.2.1 Cauchy stress tensor 

In continuum mechanics, the triaxial stress state in a three-dimensional material is 

mathematically described by the symmetric second-order Cauchy stress tensor, 𝝈𝒊𝒋. 

Describing the stresses acting on an infinitesimal cube with sides aligned with a cartesian 

coordinate system where 𝑖 = 𝑥, 𝑦, 𝑧 and 𝑗 = 𝑥, 𝑦, 𝑧, the stress tensor is popularly referred 

to on the following notation: 

ൣ𝝈𝒊𝒋൧ = ൥

𝜎௫ 𝜏௫௬ 𝜏௫௭

𝜏௫௬ 𝜎௬ 𝜏௬௭

𝜏௫௭ 𝜏௬௭ 𝜎௭

൩ Eq. 2.2-1 



14 
 

Here, 𝜎௫, 𝜎௬ and 𝜎௭ are the normal stress components, while 𝜏௫௬, 𝜏௬௭ and 𝜏௫௭ are the shear 

stress components. Note that the tensor of nine components can be entirely described by 

six individual components due to its symmetric nature.  

 

 

Figure 2-2:  Graphical representation of the Cauchy stress tensor in cartesian coordinates. 
The figure is a modification of an original image publicly free to distribute and modify 

through Wikimedia Commons [27]. 

 

Another feature worth mentioning about the stress tensor is the exitance of the shear 

stress-vanishing frame of reference. For any physical stress state in an arbitrarily chosen 

frame of reference, a rotational transformation can be made to a principle reference frame 

where the stress tensor can be expressed in terms of the three normal stresses alone, in 

continuum mechanics popularly denoted as 𝜎ଵ, 𝜎ଶ and 𝜎ଷ, where 𝜎ଵ ≥ 𝜎ଶ ≥ 𝜎ଷ. 

The stress tensor can be separated into two parts; the hydrostatic stress tensor, 𝝈𝑯, which 

solely contributes to volumetric strains, and the deviatoric stress tensor, 𝒔𝒊𝒋, which solely 

contributes to distortional strains, and no volumetric strains. 

[𝝈𝑯] = ൥

𝜎௠ 0 0
0 𝜎௠ 0
0 0 𝜎௠

൩ , 𝜎௠ =
1

3
(𝜎ଵ + 𝜎ଶ + 𝜎ଶ) Eq. 2.2-2 

 

ൣ𝒔𝒊𝒋൧ = ൣ𝝈𝒊𝒋൧ − [𝝈𝑯] = ൥

𝜎௫ − 𝜎௠ 𝜏௫௬ 𝜏௫௭

𝜏௫௬ 𝜎௬ − 𝜎௠ 𝜏௬௭

𝜏௫௭ 𝜏௬௭ 𝜎௭ − 𝜎௠

൩ Eq. 2.2-3 
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In metal sheet forming, which is mainly governed by stretching in the plane of the sheet, 

plane stress formulations are often used to simplify the mathematics of the models and 

computational demand. In plane stress, stresses in the though-thickness direction are 

neglected due to their vanishing magnitude. If a cartesian coordinate system with the axis  

x, y and z is introduced so that the z-direction represents the sheet’s normal direction, the 

plane stress-formulation is achieved by setting 𝜎௭ = 𝜏௬௭ = 𝜏௭௫ = 0. Furthermore, the 

matrix describing the Cauchy stress tensor is then contracted to a two-by-two matrix with 

three independent components, namely 𝜎௫, 𝜎௬ and 𝜏௫௬. 

 

2.2.2 Isotropic elasticity 

In isotropic elasticity descriptions, the relationships between triaxial stresses and elastic 

strains can be formulated by two material constants; the Young’s modulus, 𝐸, and the 

Poisson’s ratio, 𝜈, which describes the materials tendency to contract and elongate in the 

traverse directions when subjected to tension and compression, respectively. If a material 

is deformed in the x-directions, the Poisson’s ratio is expressed as 

𝜈 = −
𝜀௬

𝜀௫
= −

𝜀௭

𝜀௫
 

 

Eq. 2.2-4 

where 𝜀௫, 𝜀௬ and 𝜀௭ are the logarithmic strains in the x, y and z-directions of a Cartesian 

coordinate system. By establishing an expression for the shear modulus from the two 

independent material parameters as 𝐺 = 𝐸 2(1 +⁄  𝜈), the relationships between strains 

and stresses in isotropic elasticity is governed by the constitutive law, ൛𝝈𝒊𝒋ൟ = [𝐸]൛𝜺𝒊𝒋ൟ → 

൛𝜺𝒊𝒋ൟ = [𝐸]ିଵ൛𝝈𝒊𝒋ൟ as: 
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⎩
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⎨
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⎢
⎡
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0
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0
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0
0
0

    

0
0
0
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0
0

    

0
0
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0

    

0
0
0
0
0
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⎥
⎥
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⎪
⎨

⎪
⎧

𝜎௫

𝜎௬

𝜎௭
𝜏௫௬

𝜏௬௭

𝜏௫௭ ⎭
⎪
⎬

⎪
⎫

 

 

Eq. 2.2-5 

 

Like the stress tensor, the strain tensor, 𝜺𝒊𝒋, is symmetric with six independent 

components, where 𝜀௫, 𝜀௬ and 𝜀௭ are the normal strains, and 𝛾௫௬, 𝛾௬௭ and 𝛾௫௭ are the shear 

strains. Note that the shear strains, 𝛾௜௝, are the sums of the two symmetrical counterparts 

of the strain tensor, 𝜀௫௬ and 𝜀௬௫, when the tensor is written in matrix form as partial 

derivatives of the displacements. 

In the plane stress formulation – popularly used when describing stresses and strains in 

metal sheet forming – normal strains in the z-direction, 𝜀௭, is still present due to the effect 

of the Poisson’s ratio, although the stress tensor reduces to only three independent 

components. 

 

2.2.3 Yield functions 

To separate stress configurations corresponding to elastic behaviour from configurations 

of plastic behaviour, a yield criterion – or yield function – must be implemented into the 

analysis. Yield criteria are convex functions in stress space which describes a state of the 

material in terms of stress tensor components attempting to describe the stress 

configurations which initiates the onset of yield in the material.  

The uniaxial tensile test is perhaps the simplest experiment to detect the onset of yield, 

with its simple stress state where 𝜎ଵ is the only non-zero component, the test is used to 

relate the yield criterion description of effective stresses, 𝜎௘, to the measured yield stress, 

𝜎௒. The function can be defined as 

𝑓൫𝜎௜௝൯ = 𝜎௘ − 𝜎௒ ≤ 0 

 

Eq. 2.2-6 
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where 𝑓൫𝜎௜௝൯ is the yield function, 𝜎௘ is the equivalent stress and 𝜎௒ is the yield stress 

measured in uniaxial tension. 

The perhaps simplest criterion to determine the onset of yield is the Tresca criterion which 

considers a limit of the maximum shear stresses. Using the notation for principal stresses, 

the maximum shear stress is calculated as the discrepancy of the largest and the smallest 

principle strain 

𝜎ଵ − 𝜎ଷ = 𝜎௒ 

 

Eq. 2.2-7 

 

where 𝜎௒ is the materials yield strength in uniaxial tension.  

Usually, yield functions for metals are based on the experimentally confirmed observation 

that the phenomenon of yielding in solid metals occurs independently of the amount of 

hydrostatic pressure present. From this, the surfaces appear in principle stress space as 

open, usually rounded, cylinders centred around the hydrostatic axis and can be described 

in terms of components of the deviatoric stress tensor alone.  

The isotropic quadratic von Mises yield criterion, named after the Austrian mathematician 

Richard Edler von Mises who first rigorously formulated it in 1913, is a quadratic 

isotropic function which considers the distortion strain energy density of a material to 

determine the onset of yield [14]. When this quantity reaches the limit observed in a 

uniaxial tensile test for a material point in a triaxial stress state, the criterion predicts the 

onset of plastic deformations. In terms of Cartesian stress components, the Von Mises 

yield criterion is expressed as [28]: 

൫𝜎௬ − 𝜎௭൯
ଶ

+ (𝜎௭ − 𝜎௫)ଶ + ൫𝜎௫ − 𝜎௬൯
ଶ

+ 6൫𝜏௬௭
ଶ + 𝜏௭௫

ଶ + 𝜏௫௬
ଶ൯ = 2𝜎௒ Eq. 2.2-8 

 

Because anisotropic materials yield different values of 𝜎௒ depending on which direction 

the material is pulled in, a reference direction is chosen where the yield stress is 

commonly referred to as the reference yield stress, 𝜎଴. Due to this, the notations 𝜎଴ and 

𝜎௒ are used somewhat interchangeably in the literature. In Fig. 2-4.a), a comparison 

between the Tresca and Von Mises yield functions are displayed. Although the yield 
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criteria plotted in this chapter are isotropic, the values on the abscissa and ordinate are 

normalized by the yield stress, 𝜎଴, for the sake of consistency of figures. 

  

a) b) 

 
Figure 2-3: a) Comparison between the Tresca maximum shear stress yield criterion and the 

Von Mises distortion strain energy density criterion in plane stress. b) Hershey non-
quadratic yield function with different values of the exponent, M. 

 
 

A higher-order yield criterion that with different exponents, 𝑀, which could take on 

shapes bridging the gap between the Von Mises and the Tresca yield criterion, was first 

presented by Hershey in 1954 [2], and later by Hosford in 1972 [29]. In 1980 Logan and 

Hosford [3] proved that this yield function was able to closely resemble the yield 

characteristics of sheet metals with body centred-cubic (BCC) and face centred-cubic 

(FCC) crystallographic structure and isotropic characteristics when the exponent was 

respectively set to 6 and 8. The yield function was presented by Hosford in 1972 [29] 

from principal stresses as: 

 

|𝜎ଵ − 𝜎ଷ|ெ + |𝜎ଷ − 𝜎ଶ|ெ + |𝜎ଶ − 𝜎ଵ|ெ = 2(𝜎௒)ெ 

 

 

Eq. 2.2-9 

Fig. 2-4.b) displays the Hershey non-quadratic yield function with different values of the 

exponent, 𝑀. 
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2.2.4 Hardening and the associate flow-rule 

As the stress configuration in a material reaches yield, the behaviour of the material is 

usually characterised by a sudden or gradual drop in stiffness. Nevertheless, the observed 

continuation of increased stresses for correspondingly increased strains in ductile 

materials is the reason why the phenomenon is – somewhat confusingly – referred to in 

the literature as hardening. 

Mainly, the increased stresses may affect the state of the yield loci in two different ways 

– by isotropic or kinematic hardening. As illustrated in Fig. 2-5.a) – for isotropic 

hardening descriptions, the yield surface keeps its initial shape while it uniformly expands 

as the yield stress, or flow stress, is increased by strain hardening. From this description, 

plastic strains would cause the yield stress in tension and the yield stress in compression 

to rise equally. This type of hardening law is suitable when describing problems where 

the strain is predominantly in the same direction throughout the analysis, which is the 

case for uniaxial tension tests. 

  

a) b) 

 
Figure 2-4: a) Conceptual visualization of the effects of kinematic hardening and isotropic 

hardening on the yield surface in-plane stress. b) Graphical representation of the associated 
flow rule on a von Mises yield surface (see Ch. 2.2.3) in-plane stress with zero shear 
component, showing the normality of the strain increment vector on the yield surface. 

 

By kinematic hardening, plastic stains do not affect the shape or size of the yield surface 

– instead, its location in stress space is shifted. For problems where materials are 
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subjected to cyclic loading, the kinematic hardening description is used to capture the 

Bauschinger effect. This material-specific effect where the yield stress is reduced after 

load-reversal has been observed to occur in many metals [30], including aluminium alloy 

AA6016-T4 [31]. 

Whether the nature of the assessed material obeys an isotropic or kinematic hardening or 

a combination of the two, a flow rule which defines the evolution of the plastic strain 

tensor and thus the effective plastic strain during hardening is required. The most common 

one is the associate flow rule, also sometimes referred to in the literature as the normality 

rule. The rule says that the increments of plastic strains are normal to its associated yield 

surface during plastic deformations. Mathematically this is the case when plastic strain 

increment vectors are proportional to the gradient of the yield function: 

𝑑𝜀௜௝ = 𝑑𝜆
𝜕𝑓൫𝜎௜௝൯

𝜕𝜎௜௝
 

 

Eq. 2.2-10 

where 𝑓൫𝜎௜௝൯ is the yield function as defined in Eq. 2.2-6 and  𝑑𝜆 is the incremental plastic 

multiplier which describes the relationship of the plastic increment to the gradient of the 

yield surface.  

In a non-linear analysis, analyses are often path- and time-dependent. Furthermore, the 

differential notation of the strain increment presented in Eq. 2.2-10 does not hold as a 

rigorous formulation. Instead, strain increments should be described in terms of the 

derivatives with respect to time as 

𝜀௜̇௝ = 𝜆̇
𝜕𝑓൫𝜎௜௝൯

𝜕𝜎௜௝
 

 

Eq. 2.2-11 

Because the 𝑓൫𝜎௜௝൯ in the above equations serves as the potential of a vector field 

proportional to the possible strain increments, the yield function is sometimes referred to 

as the plastic potential [28]. The associate flow-rule requires the yield criteria to be able 

to serve as a plastic potential described in terms of derivative of the yield function. 

Because the Tresca criterion, as presented in the previous chapter has corners where the 

curvature of the loci is infinite, yielding undefined normals, the Tresca maximal shear 

stress criterion cannot serve to describe the evolution of plastic strains.  
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In addition to the requirement of being differentiable, the convexity of the yield function 

must be assured to guarantee stable results in non-linear analysis. If a non-convex yield 

function is allowed to develop through hardening by the associate flow rule, unique 

solutions of the function cannot be guaranteed. Therefore, a convexity condition is 

imposed to ensure stable solutions. Proof for a function’s convexity is obtained if the 

Hessian matrix of the function is shown to be positive semi-definite [32]. This is the case 

when the Hessian matrix, defined as 

𝑯𝒊𝒋 =
𝜕𝑓ଶ൫𝜎௜௝൯

𝜕𝜎௜  𝜕𝜎௝
 

 

Eq. 2.2-12 

is identified to have eigenvalues which are all non-negative [33]. 

 

2.2.5 Nominal and logarithmic stresses and strains 

Performing uniaxial tensions tests, the nominal stress-strain curve is obtained by coupling 

the readings of the applied force, with readings of the current length, typically obtained 

from an extensometer. Based on the known geometry of the test specimen – the initial 

cross-section area, 𝐴଴, and an initial gauge length, 𝐿଴ – the engineering strains, 𝑒, and 

engineering stresses, 𝑠, are respectively calculated as 

 

𝑒 =
𝐿 − 𝐿଴

𝐿଴
=  

𝐿

𝐿଴
− 1 Eq. 2.2-13 

and 

𝑠 =
𝐹

𝐴଴
 Eq. 2.2-14 

For modelling of post-yield behaviour in FEA-software, the relationship between stresses 

and strains are typically described in terms of true stresses and logarithmic plastic strains, 

𝜀௣, described later in this chapter.  
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Considering the relationship between infinitesimal current length increments and the 

current length, integrating from 𝐿଴ to 𝐿, the true strains can be expressed as the natural 

logarithm of the relationship between current and original length as 

𝜀 =  
𝐿 − 𝐿଴

𝐿
= න

𝑑𝐿

𝐿

௅

௅బ

= 𝑙𝑛 ൬
𝐿

𝐿଴
൰ 

 

Eq. 2.2-15 

Thus, true strains are often referred to as logarithmic strains. Combining the above 

equation with Eq. 2.2-13, the true strains can be expressed as a function of the nominal 

strains as 

𝜀 = 𝑙𝑛 ൬
𝐿

𝐿଴
൰ = 𝑙𝑛(𝑒 + 1) 

 
Eq. 2.2-16 

To find the true stresses, the well-proven assumption of incompressibility – giving zero 

volumetric true strains, 𝜀௩ – is applied to the entire domain, including the elastic regime. 

By this, 

𝜀௩ = 𝜀௅ + 𝜀ௐ + 𝜀் = 𝑙𝑛 ൬
𝐿

𝐿଴
൰ + 𝑙𝑛 ൬

𝑊

𝑊଴
൰ + 𝑙𝑛 ൬

𝑇

𝑇଴
൰ 

 

𝜀௩ =  𝑙𝑛 ൬
𝐿

𝐿଴
൰ + 𝑙𝑛 ൬

𝐴

𝐴଴
൰ = 0 

 

Eq. 2.2-17 

 

which gives; 

𝜀 = 𝑙𝑛 ൬
𝐿

𝐿଴
൰ = −𝑙𝑛 ൬

𝐴

𝐴଴
൰ = 𝑙𝑛 ൬

𝐴଴

𝐴
൰ 

 

Eq. 2.2-18 

 

An important realization is the limitation of the true strain formulation in terms of the 

current and initial length. Uniaxial tensile tests are usually accompanied by the 

phenomenon of diffuse necking. Reduction in the specimen’s width-direction occurs 

when the nominal stress reaches its maximal value. After this, true strains may not be 

described only in terms of the logarithmic relationship between the current and initial 
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gauge length. Instead, the area-based formulation should be used. Also, with an 

expression of the current area, 

𝐴 = 𝐴௢

𝐿௢

𝐿
 

 

Eq. 2.2-19 

 

the true stress as a function of parameters obtained from the uniaxial tension test can be 

expressed as 

𝜎 =  
𝐹

𝐴
=

𝐹

𝐴଴

𝐿

𝐿଴
 

 
Eq. 2.2-20 

 

Figure 2-5: Schematic illustration showing the logarithmic (true) and nominal (engineering) 
stress vs. strain-curves. The onset of diffuse necking in a uniaxial tensile test occurs when the 

slope of the nominal curve is zero. 

 

From combinations of Eq. 2.2-13 to Eq. 2.2-20 we can summarize the relationships 

between nominal and true stresses and strains as 

𝑒(𝜀) = exp(𝜀) − 1 

Eq. 2.2-21 

𝜀(𝑒) = ln (1 + 𝑒) 

𝑠(𝜀, 𝜎) =
𝜎

exp(𝜀)
 

𝜎(𝑒, 𝑠) = 𝑠(1 + 𝑒) 
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As the true stress in a uniaxial tensile test reaches the materials yield stress, 𝜎௒, the 

material enters the plastic regime of the stress-strain diagram.  

𝜀௣ =  𝜀௧ − 𝜀௘௟ = 𝜀௧ −
𝜎

𝐸
 

 

Eq. 2.2-22 

 

 

Figure 2-6: Schematic representation of the plastic and elastic portion of the total strains. If 
a material experiencing stresses in the plastic regime is unloaded, the reversion of stresses 

and strains follows the dotted line, by the elastic stiffness. 

 

Because the elastic strains are usually very small compared to the plastic strains, the 

elastic strains are often neglected when considering large strains. Due to this, the plastic 

strains, 𝜀௣, and the total strains, 𝜀௧ or simply 𝜀, are sometimes used interchangeably in 

the field of plasticity analysis. Although consistency is strived for in this thesis, depending 

on the context, the notation 𝜀 can refer to both total logarithmic strains and large plastic 

strains. However, in cases where elastic strains make up a considerable share of the total 

strains, the notation presented in Eq. 2.2-22 holds.  

2.2.6 Traverse strain ratios (Lankford constants) 

Traverse strain ratios – often referred to in the literature as Lankford constants, 𝑅ఏ, (also 

in some literature denoted as 𝑟ఏ – not to be confused with the flow stress-ratios presented 

in the next chapter) are defined as the ratio of incremental plastic strains in the width 

direction, 𝑑𝜀௪, to the incremental plastic strains in the through-thickness direction, 𝑑𝜀௧, 

[34] of a uniaxial tensile test performed on a specimen sampled at an angle, 𝜃, to the 

rolling direction of the sheet. Because the ratio of strains in different directions has a 
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constant proportional relationship during uniaxial tensile tests, the Lankford constant is 

equally correctly presented in a similar form in terms of plastic strains.  

𝑅ఏ =
𝑑𝜀௪

𝑑𝜀௧
=

𝜀௪

𝜀௧
 Eq. 2.2-23 

 

Figure 2-7: Tensile test specimen carved from a metal sheet with denoted material 
coordinates. 𝜃 represented the inclination of the specimen’s longitudinal axis to the sheets 

rolling direction, RD. 

 

Measurements of uniaxial tensile tests have traditionally been conducted using 

mechanical extensometers. By monitoring the history of length and width displacements 

of the gauge of the specimen, logarithmic strains in the length and width direction - 𝜀௟ 

and 𝜀௪, can be calculated directly from the equations presented in Ch. 2.2.5. Recently, 

the use of digital image correlation (DIC) [35] where a strain field on the sheet plane of 

specimens is mapped during the tensile test has become an increasingly common method 

for the task. While the strains in the specimen width and length directions are detected 

directly in both methods as a virtual extensometer, thickness strain are calculated from 

the constant volume assumption, 𝜀௟ + 𝜀௪ + 𝜀௧ = 0, due to the difficulties associated with 

accurately determining the thickness evolution of thin specimens. Thus, the traverse strain 

ratio becomes 

𝑅ఏ =
−𝜀௪

𝜀௟ + 𝜀௪
 

 

Eq. 2.2-24 
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2.2.7 Flow-stress ratios 

Another measure used to characterize a materials anisotropic plastic behaviour is the 

flow-stress ratio, 𝑟ఏ. As sheet metals with anisotropic plasticity might experience 

variations in yield stress in different orientations, the coefficient was introduced to 

describe this effect. Although the notations of the traverse strain ratios or Lankford 

constants presented in the previous chapter, and the flow-stress ratios are switched in 

some literature, they must not be confused as they represent different physical quantities. 

While the Lankford constants is a measure of the ratio of the two traverse strains in a 

uniaxial tensile test sample, the flow-stress ratio represents the flow stress measured in a 

uniaxial tensile test specimen carved at an angle, 𝜃, to the sheet’s rolling direction versus 

the flow stress in another specimen carved from a reference direction. Usually, the sheets’ 

rolling direction is used as the reference direction. 

As the coefficient represents a ratio of measurements taken from different specimens, a 

quantity relating flow-stresses from different specimens which describe at which point 

the comparison should be made must be established. For metals where the onset of yield 

is not clearly distinguished by a yield plateau – as is the case for the material considered 

in this thesis – the onset of yield is usually defined as the stress measured at a logaithmic 

strain level of 0.002. Often, these yield stresses are used when calculating the flow-stress 

ratio. With 𝜃 = 0 as the reference directions, the flow-stress ratio can be written as 

𝑟ఏ =
𝜎ఏ

𝜎଴
ฬ

ఌ೗ୀ଴.଴଴ଶ

 

 

Eq. 2.2-25 

 

In a discussion addressing considerations regarding material anisotropy characterization, 

Barlat et al. [16] points out an issue when processing of experimental test results used for 

yield function calibration. In addition to how well the yield function manages to capture 

the material anisotropy, the amount of plastic work – at which experimental data points 

are harvested at might influence the final accuracy of the calibrated plasticity model when 

isotropic hardening is assumed. While flow-stresses captured at the onset of yield 

produces a more accurate description of the separation between elastic and plastic stress 

states, the approach of using flow-stresses at a chosen magnitude of plastic work might 

give a better material description for analyses where the whole plastic range is considered.  
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As the same amount of plastic work might represent different magnitudes of strains in an 

anisotropic material as illustrated in Fig. 2-9, the accurate definition of the flow-stress 

ratio is  

𝑟ఏ =
𝜎ఏ

𝜎଴
ฬ

ௐ೛

 

 

Eq. 2.2-26 

 

where the flow-stresses,𝜎ఏ and 𝜎଴, are captured at the same magnitude of plastic work, 

𝑊௣ =  ∫ 𝜎ఏ𝑑𝜀ఏ
௣.  

 

 

Figure 2-8: Schematic of equivalent plastic work in uniaxial tensile tests with different angles 
to the rolling direction. 

 

For calibrations of anisotropic plasticity models in this thesis, values of 𝑟ఏ for AA6016-

T4 presented by Dimitry Vysochinskiy in his thesis for the degree of PhD in 2014 [10] 

were used. Vysochinskiy reports that the presented values were calculated at the onset of 

yield as described in Eq. 2.2-25. Note that this formulation also obeys the representation 

presented in Eq. 2.2-26, as the elasticity is considered to be isotropic. 
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2.3 Material failure in metal sheet forming 

If a failure model is not incorporated into the finite element analysis code, the finite 

element analysis will run according to the specified elastoplastic constitutive behaviour 

for the entirety of the analysis. Therefore, additional features of the material model must 

be established and incorporated into the finite element code when material failure is to be 

simulated.  

 

2.3.1 Forming limit diagrams 

For rolled sheets and other thinly extruded aluminium components – which mechanics 

can be described in terms of stresses in the plane of the components – material failure is 

generally caused by one of the following mechanisms, or combinations of them; localised 

necking instability, ductile fracture and shear fracture [36].  

In metal sheet forming the state of the material at the occurrence of failure is usually 

described in terms of the current strains at failure, despite the representation’s incapability 

of yielding results in which corresponds to experimental values in many loading histories. 

The forming limit diagram (FLD) has played an important role in the industry as a tool 

for planning and designing forming operations. By performing experiments where 

different biaxial stress configurations are applied while measuring the evolving strain 

fields of the specimens beyond the occurrence of failure, a forming limit curve (FLC) 

which separates safe and unsafe strains combinations can be plotted in biaxial stress 

space. The domain under the FLC which represents safe strain combinations is often 

referred to as the forming window.  
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Figure 3-1: Forming limit diagram displaying the state-of-the-art comprehension of relevant 
failure mechanisms in metal sheet forming. Figure copyrighted to Marciniak et al. [37]. 

 

Although the traditional FLDs describing isotropic failure strains, first presented in 1968 

by Goodwin [38] and Keeler [39], are plotted with the minor and major biaxial principal 

strains respectively on the abscissa and ordinate, a presentation in terms of the in-plane 

material rolling and traverse directional strains is valuable when working with extruded 

metal sheets of anisotropic mechanical behaviour.  

The introduction of ISO 12004-2:2008 [40] provided a standard method to determine 

strains at the onset of failure. Still, the need for further research to address scatter in 

reported FLDs from different research teams and laboratories is pointed out by 

Vysochinskiy et al. [41]. Due to this, considerations should be made regarding the 

accuracy of experimentally obtained forming limit diagrams. However, the evaluation of 

different experimental methods is beyond the scope of this report. 

A weakness of the forming limit diagram is the fact that it only serves as a valid damage 

criterion for processes of proportional strain paths, i.e. when strain increments remain 

constant throughout the forming process. Thus, the traditional method is incapable of 

predicting damage in processes which are non-proportional e.g. due to pre-strains or 

geometric conditions of the formed part. To deal with this issue, various versions of 

stress-based forming limit stress diagrams have been introduced and evaluated in the 

literature [47-50]. The overall conclusion to be drawn is that a much less strain path-
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dependent damage criterion can be obtained by using an appropriate constitutive law to 

map forming limit strains into biaxial stress space, or onto the axis of equivalent plastic 

strains along with ratios of principle stresses [42] or principle strain increments [43].  

The failure strains predicted by the different failure mechanisms depends on multiple 

factors. Intuitively, the characteristics on the material itself – including its homogeneity, 

ductility and plastic symmetry – plays a role. Additionally, geometric imperfections such 

as random or structured variances in the sheet thickness can cause components to be more 

or less favourable to experience failure due to local necking instabilities. Two other 

dependencies – which are neglected throughout the entirety of this thesis due to the 

narrowing on quasi-static loading conditions – are the influences of temperature and strain 

rates. Lastly, the influence of the strain path history and the state of stress has proved to 

have large influences on predicted failure strains, making the task of accurately simulating 

failure by computationally inexpensive macroscopic models an intricate task.  

 

2.3.2 Governing phenomena 

In Fig. 3-1 the state-of-the-art comprehension of the governing failure mechanisms 

relevant for metal sheet forming as presented by Marciniak et al. in 2002 [37] is displayed. 

In the figure, tearing refers to what is often denoted as local necking instability in modern 

literature on the field. 

Localized necking instability, which is the primary phenomenon leading to fracture in 

ductile metal sheets [36], is commonly described to be a natural consequence of the 

equilibrium equations and the constitutive relationship between stresses and strains, 

where strain localizations eventually occurs by the presence of material imperfections, 

typically in forms of random or structured variances in the sheet thickness. Though the 

model only considers isotropic power-law hardening and linear strain paths, the model is 

perhaps best comprehended by studying the work of Marciniak and Kuczynski (MK) et 

al. [53, 42] who described the natural evolution of local strains up until instability at the 

presence of an initial thickness imperfection in a uniaxial tensile test. Furtherly, 

Marciniak in the same work presented an incomplete model to predict the observed 

phenomenon of local necking for metal sheet in biaxial tension – based on the same 
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principles – with the previously stated restrictions, where the initiation of local necking 

is postulated to occur then the major tension reaches its maximum value. The method has 

later been developed into what is commonly known as the MK-model. In another theory, 

Bressan and Williams in a 1982 article [7] suggested that shear instability on critical 

planes could be the underlying phenomenon of instabilities in sheet metals. The theory 

was based on observations that many of the models that up until then had been successful 

in describing forming limits, had the criterion intrinsically built into them. In addition, 

fractures caused by biaxial stretching had been observed in experiments to produce 

fracture planes inclined near the plane of maximum shear stress at 45°. 

At the onset of instability, a thinning neck with a width measuring in the order of the sheet 

thickness forms, immediately causing strain localization which at once is followed by 

rupture of the material. Because the typical shell element size in large scale FE-analysis 

is often several times larger than the width of the local neck, capturing the evolution of 

strains up until a fracture strain is reached is not practically feasible in such cases. 

However, due to the rapidness of the process, the global strains at the onset of instability 

is typically used as a slightly conservative failure criterion in finite element simulation 

when the lengths of the mesh elements are greater than 5 times the sheet thickness [36].  

Another phenomenon which leads to failure in metal sheet forming is ductile damage. 

Ductile fracture is a consequence of damage caused by the onset of void nucleation in the 

material, which further grows before they coalescence, leading to fracture in the material, 

illustrated in Fig. 3-2. 

Any load and/or temperature-induced stress state is associated with some damage. Once 

the damage reaches a material-dependent critical level, the material fails. Especially for 

cast aluminium alloys and high strength steel qualities, which have significantly lower 

ductility compared to wrought alloys, material models which also considers material 

damage has been proved to be important to obtain reliable results for energy absorption 

[54, 55]. In advanced general-purpose finite element analysis programs such as 

Abaqus/CAE and LS-DYNA, coupled damage and failure models for ductile metals 

which can be used in conjunction with the classical metal plasticity models are often 

provided. The models are used by defining one or more damage initiation criteria, as well 

as specifying the evolutions of the respective damage models after initiation, up until a 



32 
 

failure that is induced by removing elements meeting a failure criterion. With strict 

requirements for safety and crashworthiness in the automotive industry, the field of 

damage mechanics for sheet metals and its implementations into FE-codes has in recent 

years been subject to extensive research. However, uncoupled models which nevertheless 

incorporates fracture from ductile damage can be satisfying for may purposes. 

 

 

Figure 3-2: Schematic illustration of nucleation, growth and coalescence of voids, leading to 
failure by ductile fracture. The figure is inspired by the work presented in a 2017 article by 

Gatea Shakir et al. [44]. 

 

To fully comprehend the mechanics of fracture in metals sheets, knowledge of crystal 

plasticity theory is required, but this is considered beyond the scope of what will be 

addressed in this thesis. Instead, a brief introduction to relevant theory about material 

failure in metal sheet forming was given in this chapter. Later in the following chapter 

some models based on macroscopic stresses and strains used to describe instabilities in 

finite element analysis for metal sheet forming – including onset and evolution of damage 

after initiation – will be presented. 
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3 Theory II: Material models 

To describe the several phenomena addressed in the previous theory chapter, multiple 

authors have published articles presenting models to mathematically predict and simulate 

the behaviour of metals, where some has gained more attention than others. In the 

following chapter the theory of some material models which could be more and less suited 

for use in FEA-models to describe the behaviour of AA6016-T4 subjected to the 

phenomenon of, roping will be presented.  

Additionally, a model where a sum of four sine waves is fitted to a sheet’s thickness 

profile obtained from measurements – aiming to attempt to model the effects of roping as 

scaled harmonic perturbations to the sheet thickness – is presented in the final section of 

this chapter. As such a thickness profile was not available in this study, a fictive thickness 

profile based on the actual mean thickness and standard deviations of the sheets sampled 

in the experimental program of Vysochinskiy was used instead. 

 

3.1 Yield functions 

3.1.1 Hill48 

The Hill yield criterion is a generalized version of the Von Mises yield criterion and was 

presented by Rodney Hill in 1948 [1]. The theory assumes symmetry in yield strength for 

compressive and tensile stresses but accounts for anisotropic behaviour assumed to 

appear on three orthogonal axes through six constants, 𝐹, 𝐺, 𝐻 and 𝐿, 𝑀, 𝑁, hereby 

referred to as the normal stress Hill’s constants and the shear stress Hill’s constants, 

respectively. In a Cartesian coordinate system, the Hill48 potential function or yield 

criterion is on the form  

2𝑓൫𝝈𝒊𝒋൯ ≡ 𝐹൫𝜎௬ − 𝜎௭൯
ଶ

+ 𝐺(𝜎௭ − 𝜎௫)ଶ + 𝐻൫𝜎௫ − 𝜎௬൯
ଶ

+ 2൫𝐿𝜏௬௭
ଶ + 𝑀𝜏௭௫

ଶ + 𝑁𝜏௫௬
ଶ൯ 

2𝑓൫𝝈𝒊𝒋൯ = 1 

 

Eq. 3.1-1 
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Isotropy is obtained when 𝐹 = 𝐺 = 𝐻 and 𝐿 = 𝑀 = 𝑁 = 3𝐹, and Eq. 3.1-1 reduces to 

the Von Mises criterion when 2𝐹 = (1/𝜎௒). 

In metal sheet forming, a cartesian coordinate system is conventionally aligned with the 

axis of anisotropy of the undeformed sheet, aligning the 𝑥-, 𝑦- and 𝑧-axis with the rolling, 

traverse and sheet normal directions, respectively. 

Based on the assumption of orthogonal anisotropy, considering yielding from uniaxial 

stresses (when 𝜎௜ = 𝜎௜
௒ and all other components in the stress tensor are zero) in the three 

orthogonal directions, the following three equations are obtained 

(𝜎௫
௒)ଶ(𝐺 + 𝐻) = 1, 

 

൫𝜎௬
௒൯

ଶ
(𝐻 + 𝐹) = 1, 

  

(𝜎௭
௒)ଶ(𝐹 + 𝐺) = 1, 

 

Eq. 3.1-2 

 

allowing to obtain the following expressions for the normal stress Hill’s constants  

𝐹 =
1

2
൭

1

൫𝜎௬
௒൯

ଶ +
1

(𝜎௭
௒)ଶ

−
1

(𝜎௫
௒)ଶ

൱ 
 

𝐺 =
1

2
൭

1

(𝜎௭
௒)ଶ

+
1

(𝜎௫
௒)ଶ

−
1

൫𝜎௬
௒൯

ଶ൱ Eq. 3.1-3 

𝐻 =
1

2
൭

1

(𝜎௫
௒)ଶ

+
1

൫𝜎௬
௒൯

ଶ −
1

(𝜎௭
௒)ଶ

൱ 

 

 

A similar expression for 𝑁 is obtained in the same way as in Eq. 3.1-3 giving: 

𝑁 =
1

2൫𝜏௫௬
௒ ൯

ଶ 

 

Eq. 3.1-4 

As shear strains with relation to the 𝑧-axis, 𝜏௬௭ and 𝜏௭௫, are usually zero in sheet metal 

forming, efforts to obtain the corresponding shear stress Hill’s constants, 𝐿 and 𝑀, can be 

disregarded when working with sheet metal formability. 
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While the yield strengths in the rolling and traverse directions, 𝜎௫
௒ and 𝜎௬

௒, easily can be 

determined  for sheet metals from tensile tests of specimens carved at 0° and 90° angles, 

directly obtaining the yield strength in the sheet normal direction, 𝜎௭
௒ , from tensile tests 

is not achievable for thin metal sheets. 

To address this problem, measurements of traverse strain ratios during uniaxial tensile 

tests (as described in Ch. 2.2.6) are used together with the associate flow rule to determine 

the normal stress Hill’s constants when 𝜎௭
௒ cannot be obtained directly from experiments. 

Expressing the shear stress terms in the yield criterion by means of the symmetric and 

anti-symmetric counterparts from the stress tensor on the form 𝐿൫𝜏௬௭
ଶ + 𝜏௭௬

ଶ൯ +

𝑀(𝜏௭௫
ଶ + 𝜏௫௭

ଶ) + 𝑁൫𝜏௫௬
ଶ + 𝜏௬௫

ଶ൯, the strain increments can be obtained from the 

associate flow rule. Applying Eq. 2.2-9 to the Hill48 criterion the six distinct strain 

increments are [28]: 

𝑑𝜀௫ = 𝑑𝜆ൣ𝐻൫𝜎௫ − 𝜎௬൯ + 𝐺(𝜎௫ − 𝜎௭)൧ 

Eq. 3.1-5 

𝑑𝜀௬ = 𝑑𝜆ൣ𝐹൫𝜎௫ − 𝜎௬൯ + 𝐻(𝜎௫ − 𝜎௭)൧ 

𝑑𝜀௭ = 𝑑𝜆ൣ𝐺൫𝜎௫ − 𝜎௬൯ + 𝐹(𝜎௫ − 𝜎௭)൧ 

𝑑𝜀௬௭ = 𝑑𝜀௭௬ = 𝑑𝜆ൣ𝐿𝜏௬௭൧ 

𝑑𝜀௫௭ = 𝑑𝜀௭௫ = 𝑑𝜆[𝑀𝜏௫௭] 

𝑑𝜀௫௬ = 𝑑𝜀௬௫ = 𝑑𝜆ൣ𝑁𝜏௫௬൧ 

 

Substituting 𝑑𝜀௜ in the above equations with the expressions from Eq. 3.1-3 gives: 

𝑅଴ =
𝐻

𝐺
 

 

, and 

 

𝑅ଽ଴ =
𝐻

𝐹
 

 

Eq. 3.1-6 

From this, the normal stress Hill’s constants can be expressed from quantities obtained 

from the two tensile tests as [45] 

𝐹 =
𝑅଴

𝑅ଽ଴(1 + 𝑅଴)
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𝐺 =
1

(1 + 𝑅଴)
 Eq. 3.1-7 

𝐻 = 1 − 𝐺 = 1 −
1

(1 + 𝑅଴)
 

 

 

Lastly, the relevant shear stress Hill’s constant can be obtained by performing yet another 

tensile test at an angle, 0° < 𝛼 < 90°,  to the rolling direction. To establish a relationship 

between the stresses in material coordinates, 𝝈𝒊𝒋, and the stresses in the specimen 

coordinates, 𝝈′𝒊𝒋, a transformation matrix to perform a clockwise rotation of angle 𝛼 is 

written as  

[𝑇ఈ] = ൥
cos 𝛼 sin 𝛼 0

− sin 𝛼 cos 𝛼 0
0 0 1

൩ 

 

Eq. 3.1-8 

Using the specimen coordinates established earlier as 𝑥ᇱ = 𝑙, 𝑦ᇱ = 𝑤 and 𝑧ᇱ = 𝑡, local 

stresses at yield in the uniaxial tension test at angle 𝛼 are written as 

ൣ𝝈′𝒊𝒋൧ = ቎

𝜎′௫ 𝜏′௫௬ 𝜏′௫௭

𝜏′௫௬ 𝜎′௬ 𝜏′௬௭

𝜏′௫௭ 𝜏′௬௭ 𝜎′௭

቏ = ቎

𝜎′௟ 𝜏′௟௪ 𝜏′௟௧

𝜏′௟௪ 𝜎′௪ 𝜏′௪௧

𝜏′௟௧ 𝜏′௪௧ 𝜎′௧

቏ = ൥
𝜎ఈ

௒ 0 0
0 0 0
0 0 0

൩ 

 

Eq. 3.1-9 

The stress tensor can thus be written in the frame of reference of the material coordinates 

as  

ൣ𝝈𝒊𝒋൧ = [𝑇ఈ]்ൣ𝝈′𝒊𝒋൧[𝑇ఈ] = 𝜎ఈ
௒ ൥

cosଶ 𝛼 cos 𝛼 sin 𝛼 0
cos 𝛼 sin 𝛼 sinଶ 𝛼 0

0 0 0

൩ Eq. 3.1-10 

Substituting from Eq. 3.1-10 into the yield criterion, the shear stress Hill’s constant 𝑁 can 

straightforwardly be solved for. Sampling the diagonal tensile test specimen at an angle 

of 45°, the expression for the last relevant shear stress Hill’s constant is 

𝑁 = 2𝜎ସହ
௒ −  

(𝐹 + 𝐺)

2
 Eq. 3.1-11 
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where 𝜎ସହ
௒  is the yield stress from a uniaxial tensile test where the angle between the 

specimen’s longitudinal axis and the rolling direction in 45°. 

From this, the predicted Lankford constant can be calculated from 

𝑅ସହ
௣௥௘

=
2𝑁 − (𝐹 + 𝐺)

2(𝐹 + 𝐺)
 

 

Eq. 3.1-12 

 

In some cases (as in the FEA-software Abaqus/CAE) the anisotropic yield characteristics 

of metals are specified in terms of anisotropic yield stress ratios, 𝑅𝑖𝑗, where 𝑖 = 1, 2, 3 

and 𝑗 = 1, 2, 3 are referring to orthogonal spatial directions of anisotropy. Unlike the 

continuum mechanics description presented in Ch. 2.2.1, where 1, 2 and 3 maps to 

directions of principal stress where 𝜎ଵ ≥ 𝜎ଶ ≥ 𝜎ଷ, this is not necessarily the case in the 

current description – here, 1, 2 and 3 will be referring to the material directions previously 

established as 𝑥, 𝑦 and 𝑧, where 𝑥 is the rolling direction, 𝑦 is the traverse direction, and 

𝑧 is the through-thickness direction of the sheet metal. 

Choosing the rolling direction, 𝑥, as the reference direction, the four anisotropic yield 

stress ratios relevant for sheet metal forming can be calculated from the Lankford 

constants obtained from uniaxial tensile tests at 0° and 90° angle to the reference rolling 

direction, along with the predicted Lankford constant at 45° as presented in Eq. 3.1-12 

 

𝑅11 =
𝜎௫

௒

𝜎௫
௒

= 1 

Eq. 3.1-13 

𝑅22 =
𝜎௬

௒

𝜎௫
௒

= ඨ
𝑅ଽ଴(𝑅଴ + 1)

𝑅଴(𝑅ଽ଴ + 1)
 

𝑅33 =
𝜎௭

௒

𝜎௫
௒

= ඨ
𝑅ଽ଴(𝑅଴ + 1)

(𝑅଴ + 𝑅ଽ଴)
 

𝑅12 = ඨ
3(𝑅଴ + 1)𝑅ଽ଴

(2 ∙ 𝑅ସହ
௣௥௘

+ 1)(𝑅଴ + 𝑅ଽ଴)
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3.1.2 Yld89 

The plane stress anisotropic yield function introduced by Barlat & Lian in 1989 [5] – 

popularly referred to as Yld89 – is based on introducing modifications to the non-

quadratic isotropic yield function by Hershey [2] which was presented in Ch.  2.2.3. A 

drawback with the original yield function formulation in terms of principle stresses – in 

addition to its isotropic nature – is the lack of interaction between normal stresses and 

shear stresses. In preliminary work leading up to Yld89, Barlat & Richmond [46] in 1987 

presented calculations based on polycrystalline plasticity which suggested that such a 

coupling should exist for models describing isotropic FCC metals. 

 

 From this, a modification to the Hershey yield function starts by expressing the isotropic 

yield function in-plane stress in terms of two stress tensor invariants, 𝐾ଵ and  𝐾ଶ to 

introduce the shear stress coupling. In Cartesian coordinates that are aligned with the 

sheet metal’s axes of anisotropy, the isotropic function then takes the following form 

 

|𝐾ଵ + 𝐾ଶ|ெ + |𝐾ଵ − 𝐾ଶ|ெ + |2𝐾ଶ|ெ = 2(𝜎௒)ெ 

 

Eq. 3.1-14 

𝐾ଵ =
𝜎௫ + 𝜎௬

2
 

 

Eq. 3.1-15 

𝐾ଶ = ඨቀ
𝜎௫ − 𝜎௬

2
ቁ

ଶ

+ 𝜏௫௬
ଶ 

 

In Fig. 3-3, a yield surface is plotted for different values of the shear component 𝜏௫௬. The 

outer contour line illustrates the shape of the yield loci when  𝜏௫௬ = 0, while the inner 

contour represents a higher value of 𝜏௫௬. As the size and shape of the loci changes with 

varying magnitudes of the shear component, a coupling between the shear component and 

the normal stresses exists in the new formulation. 
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Figure 3-3: Schematic illustration of a shear stress-coupled yield surface plotted for different 
values of the shear component 𝜏௫௬. The shape change for different values of 𝜏௫௬ indicates a 

coupling between shear stress and normal stresses. 

 
 

As a next step, three constants 𝑎, 𝑏 and 𝑐 are applied to the yield function to 

characterize the anisotropy: 

 

𝑎|𝐾ଵ + 𝐾ଶ|ெ + 𝑏|𝐾ଵ − 𝐾ଶ|ெ + 𝑐|2𝐾ଶ|ெ = 2(𝜎௒)ெ 

 

Eq. 3.1-16 

To obtain continuity for the derivatives of this function at equibiaxial stresses the 

relationship between the applied constants must according to Barlat and Lian be 

 

𝑎 = 𝑏 = 2 − 𝑐 

 

Eq. 3.1-17 

where 𝑎, 𝑏 and 𝑐 must always be positive to ensure convexity. The resulting function – 

which is proved by Barlat and Lian to obey the convexity condition – is lastly 

complimented with a dilatation to the relationships between the current components of 

the stress tensor. Finally, the Yld89 yield function with the four anisotropy coefficients 

𝑎, 𝑐, ℎ and 𝑝 is presented as a function of the Cauchy stress tensor: 
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𝑓 = 𝑎|𝐾ଵ + 𝐾ଶ|ெ + 𝑎|𝐾ଵ − 𝐾ଶ|ெ + 𝑐|2𝐾ଶ|ெ = 2(𝜎௒)ெ 

 

Eq. 3.1-18 

 

𝐾ଵ =
𝜎௫ + ℎ𝜎௬

2
 

 

𝐾ଶ = ඨቆ
𝜎௫ − ℎ𝜎௬

2
ቇ

ଶ

+ 𝑝ଶ𝜏௫௬
ଶ 

 

As the previous function has been proved to satisfy the convexity requirement, the 

argument still holds for Yld89 as the anisotropy coefficients ℎ and 𝑝 are simply linear 

transformations of the input arguments of the function. For the quadratic form of the 

function, Yld89 reduces to the Hill48 [1] yield function which has been presented in detail 

in the previous chapter. 

As the relationship between 𝑎 and 𝑐 is specified from Eq. 3.1-17 to ensure continuity of 

the yield function, the function only needs to be calibrated for three anisotropy 

coefficients if M is assumed to be known for BCC and FCC structured materials. 

Experimental data to obtain the unknown parameters are suggested in the original article 

to be calibrated in a semi-analytical manner from traverse strain ratios obtained from 

uniaxial tensile tests at three different directions – e.g. 𝑅଴, 𝑅ଵହ and 𝑅ଽ଴.  

Using the associate flow rule along with the constant volume assumption and the Euler’s 

theorem on homogeneous functions, the traverse train ratio for a uniaxial tensile test 

specimen with its longitudinal axis inclined with angle 𝜃 to the rolling direction is 

presented as 

𝑅ఏ =
2𝑀(𝜎௒)ெ

൬
𝜕𝑓
𝜕𝜎௫

+
𝜕𝑓

𝜕𝜎௬
൰ 𝜎

− 1 

 

Eq. 3.1-19 

 

where 𝜎 is the tensile stress in the uniaxial tensile test specimen.  

In the original article by Barlat and Lain, the expressions for the partial derivatives of the 

yield function with respect to the three plane stress components are presented. From the 

experience of the author, the presented expressions seem to not comply with expressions 
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obtained through simple symbolic differentiation in MATLAB or other symbolic 

computer algebra systems and were not able to produce realistic magnitudes of the 

traverse strain ratios. The obtained expressions for the partial derivatives were validated 

by using the anisotropy coefficients presented by Reyes et al. [6] for two different 

aluminium alloys to successfully recreate their associated plots for the traverse strain 

ratio, 𝑅ఏ, vs. the angle to the rolling direction, 𝜃. 

Using the semi-analytical approach presented in the original article, the described 

equations are used to identify the three first anisotropy coefficients 𝑎, 𝑐 and 𝑝 from 𝑅଴ 

and 𝑅ଽ଴ alone as 

𝑎 = 2 − 𝑐 = 2 − 2ඨ
𝑅଴

1 + 𝑅଴

𝑅ଽ଴

1 + 𝑅ଽ଴
 

 Eq. 3.1-20 

 
ℎ = ඨ

𝑅଴

1 + 𝑅଴

1 + 𝑅ଽ଴

𝑅ଽ଴
 

 

The last coefficient of anisotropy, 𝑝, is found numerically when the three other 

coefficients are known. Although a mathematical proof isn’t provided, repeated 

simulations performed at 𝜃 = 45 is said to suggest a monotonic relationship between 𝑝 

and the traverse strain ratio, 𝑅ఏ. Thus, for the Lankford constant, 𝑅ସହ, a unique 

corresponding value of 𝑝 should exist. 

 

3.1.3 Yld2000-2d 

Based on the philosophy of linear transformation-based anisotropic yield criteria, a high 

exponent anisotropic yield criterion for plane stress states was presented by F. Barlat et 

al. in 2003 [16]. A formulation which reduces to an isotropic high-exponent yield criterion 

was used as a framework for the linearly transformed stress tensor. The isotropic criterion 

by Hershey [2], can be presented as the sum of two terms as 

𝜓 =  𝜓ᇱ +  𝜓ᇱᇱ = 2(𝜎௒)ெ 
Eq. 3.1-21 
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where the respective terms are formulated as 

𝜓ᇱ = |𝑠ଵ − 𝑠ଶ|ெ 
Eq. 3.1-22 

 𝜓ᇱᇱ = |2𝑠ଶ + 𝑠ଵ|ெ + |2𝑠ଵ + 𝑠ଶ|ெ 

 

where 𝑠௜ are the principal values of the deviatoric stress tensor 𝒔 in plane stress. 

To address anisotropy, a new function, 𝜙, on the same form as 𝜓 is established, where 

the principle deviatoric stresses in Eq. 3.1-22 are replaced with the principle values of 

two anisotropic stress states, 𝑿ᇱ and 𝑿′′, which are obtained through linear 

transformations on the stress tensors in 𝜓ᇱ and 𝜓ᇱᇱ, respectively. Because the given yield 

function is independent of hydrostatic stresses, the anisotropic stress state can be 

formulated as a transformation acting of the stress deviator, 

𝒔𝒊𝒋, just as well as the Cauchy stress tensor, 𝝈𝒊𝒋. The different mathematical formulations 

might serve different practical purposes – thus, both are presented followingly. 

Using the relationship 

൛𝒔𝒊𝒋ൟ = [𝑻]{𝝈} 

 
Eq. 3.1-23 

where 

[𝑻] = ൥
2/3 −1/3 0

−1/3 2/3 0
0 0 1

൩ 

 

Eq. 3.1-24 

we get 

൛𝑿ᇱ
𝒊𝒋ൟ = [𝑪ᇱ]൛𝒔𝒊𝒋ൟ = [𝑪ᇱ][𝑻]൛𝝈𝒊𝒋ൟ = [𝑳ᇱ]൛𝝈𝒊𝒋ൟ 

 
Eq. 3.1-25 

൛𝑿′ᇱ
𝒊𝒋ൟ = [𝑪′′]൛𝒔𝒊𝒋ൟ = [𝑪′′][𝑻]൛𝝈𝒊𝒋ൟ = [𝑳′′]൛𝝈𝒊𝒋ൟ 

 

Assuming a cartesian coordinate system of 𝑥 and 𝑦, respectively aligned with the RD and 

TD, the two transformations acting on the stress deviator take the forms 
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ቐ

𝑋′௫௫

𝑋′௬௬

𝑋′௫௬

ቑ = ቎

𝐶′ଵଵ 𝐶′ଵଶ 0

𝐶′ଶଵ 𝐶′ଶଶ 0

0 0 𝐶′଺଺

቏ ൝

𝑠௫௫

𝑠௬௬

𝑠௫௬

ൡ 

 Eq. 3.1-26 

 

ቐ

𝑋′′௫௫

𝑋′′௬௬

𝑋′′௫௬

ቑ = ቎

𝐶′′ଵଵ 𝐶′′ଵଶ 0

𝐶′′ଶଵ 𝐶′′ଶଶ 0

0 0 𝐶′′଺଺

቏ ൝

𝑠௫௫

𝑠௬௬

𝑠௫௬

ൡ 

 

Note that the anisotropic stress states, 𝑿′ 𝑎𝑛𝑑 𝑿′′, (and thus the yield criterion) reduce to 

the isotropic form when the transformation tensors 𝑪ᇱ and 𝑪ᇱᇱ takes  the form of the 

identity matrix, i.e. when 𝐶(௞)
ଵଵ =  𝐶(௞)

ଶଶ =  𝐶(௞)
଺଺ = 1 and  𝐶(௞)

ଵଶ = 𝐶(௞)
ଶଵ = 0 for 

𝑘 = 1 and 2. 

An alternative and equivalent formulation of the linearly transformed stresses 𝑿(𝒌) is 

obtained by performing the two linear transformations on the Cauchy stress tensor, 𝝈, 

rather than on the stress deviator, 𝒔, are formulated as  

ቐ

𝑋′௫௫

𝑋′௬௬

𝑋′௫௬

ቑ = ቎

𝐿′ଵଵ 𝐿′ଶଵ 0

𝐿′ଶଵ 𝐿′ଶଶ 0

0 0 𝐿′଺଺

቏ ൝

𝜎௫

𝜎௬

𝜏௫௬

ൡ 

Eq. 3.1-27 

 
ቐ

𝑋′′௫௫

𝑋′′௬௬

𝑋′′௫௬

ቑ = ቎

𝐿′′ଵଵ 𝐿′′ଶଵ 0

𝐿′′ଶଵ 𝐿′′ଶଶ 0

0 0 𝐿′′଺଺

቏ ൝

𝜎௫

𝜎௬

𝜏௫௬

ൡ 

 

where 

⎩
⎪
⎨

⎪
⎧

𝐿′ଵଵ

𝐿′ଵଶ

𝐿′ଶଵ

𝐿′ଶଶ

𝐿′଺଺⎭
⎪
⎬

⎪
⎫

= [𝑪′][𝑻] =

⎣
⎢
⎢
⎢
⎡

2/3
−1/3

0
0
0

0
0

−1/3
2/3

0

0
0
0
0
1⎦

⎥
⎥
⎥
⎤

൝

𝛼ଵ

𝛼ଶ

𝛼଻

ൡ 

Eq. 3.1-28 

⎩
⎪
⎨

⎪
⎧

𝐿′′ଵଵ

𝐿′′ଵଶ

𝐿′′ଶଵ

𝐿′′ଶଶ

𝐿′′଺଺⎭
⎪
⎬

⎪
⎫

= [𝑪′′][𝑻] =
1

9

⎣
⎢
⎢
⎢
⎡
−2
1
4

−2
0

2
−4
−4
8
0

8
−4
−4
2
0

−2
4
1

−2
0

0
0
0
0
9⎦

⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧

𝛼ଷ

𝛼ସ
𝛼ହ

𝛼଺

𝛼଼⎭
⎪
⎬

⎪
⎫
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Through the anisotropic stress states, the Yld2000-2d yield criterion allows the material 

anisotropy to be described in terms of eight independent coefficients, from 𝛼ଵ to 𝛼଼, 

which must be determined through calibration to experiments, as will be described later 

in this chapter. The isotropic states of 𝑿′ and 𝑿′′ are is this in this formulation achieved 

when these coefficients are all of unity magnitude. 

The two principle values of each of the linearly transformed stresses, 𝑿′ and 𝑿′′ are 

calculated as 

𝑋(௞)
ଵ =

1

2
ቆ𝑋(௞)

௫௫ +  𝑋(௞)
௬௬

+ ට൫𝑋(௞)
௫௫ − 𝑋(௞)

௬௬൯
ଶ

+ 4൫𝑋(௞)
௫௬൯

ଶ
ቇ 

Eq. 3.1-29 

𝑋(௞)
ଶ =

1

2
ቆ𝑋(௞)

௫௫ +  𝑋(௞)
௬௬

− ට൫𝑋(௞)
௫௫ − 𝑋(௞)

௬௬൯
ଶ

+ 4൫𝑋(௞)
௫௬൯

ଶ
ቇ 

 

Finally, the Yld200-2d anisotropic yield criterion, 𝜙, is obtained by substituting the 

principle stress deviators, 𝑠௜, by the principle anisotropic values, 𝑋′௜ and 𝑋′′௜, into 𝜓ᇱ and 

𝜓ᇱ′, respectively, to generate the two subfunctions  

𝜙ᇱ = |𝑋ᇱ
ଵ − 𝑋ᇱ

ଶ|ெ 

 Eq. 3.1-30 

 𝜙ᇱᇱ = |2𝑋′′ଶ + 𝑋′′ଵ|ெ + |2𝑋′′ଵ + 𝑋′′ଶ|ெ 

 

This gives: 

𝜙 = 𝜙ᇱ + 𝜙ᇱᇱ =  |𝑋′ଵ − 𝑋′ଶ|ெ + |2𝑋′′ଶ + 𝑋′′ଵ|ெ

+ |2𝑋′′ଵ + 𝑋′′ଶ|ெ = 2(𝜎௒)ெ 

 

Eq. 3.1-31 

With the correct anisotropy coefficients, Eq. 3.1-31 provides the model’s predicted yield 

stresses with various stress states as input. As eight data points must be provided to 

determine the eight anisotropy coefficients, experimentally obtained yield stresses at 



45 
 

eight different stress states would have to be obtained to calibrate the unknowns, 𝛼ଵ to 

𝛼଼. However, to restrict the number of experiments, expressions describing the predicted 

directions of strain increments, and thus, strain ratios, 𝑅, are obtained by the associated 

flow rule. With the irreversible nature of plastic strains, the three strain increments are 

described from the associate flow rule in terms of time increment as 

𝜀௫̇௫ = 𝜆̇ ∙
𝜕𝜙

𝜕𝜎௫
 

 

Eq. 3.1-32 
𝜀௬̇௬ = 𝜆̇ ∙

𝜕𝜙

𝜕𝜎௬
 

 

𝜀௫̇௬ = 𝜆̇ ∙
𝜕𝜙

𝜕𝜏௫௬
 

 

where 𝜆̇ is the proportionality factor.  

The derivatives of the yield function with respect to the Cauchy stress tensor, 𝝈, can be 

expressed as [47] 

𝜕𝜙(௞)

𝜕𝜎௫
=  

𝜕𝜙(௞)

𝜕𝑋௫௫
(௞)

∙ 𝐿ଵଵ
(௞)

+
𝜕𝜙(௞)

𝜕𝑋௬௬
(௞)

∙ 𝐿ଶଵ
(௞) 

 

Eq. 3.1-33 

𝜕𝜙(௞)

𝜕𝜎௬
=

𝜕𝜙(௞)

𝜕𝑋௫௫
(௞)

∙ 𝐿ଵଶ
(௞)

+
𝜕𝜙(௞)

𝜕𝑋௬௬
(௞)

∙ 𝐿ଶଶ
(௞) 

 

𝜕𝜙(௞)

𝜕𝜏௫௬
=

𝜕𝜙(௞)

𝜕𝑋௫௬
(௞)

∙ 𝐿଺଺
(௞) 

 

where the derivatives of 𝜙(௞) with respect to the linearly transformed stresses 𝑿(𝒌) are on 

the form 

𝜕𝜙(௞)

𝜕𝑋
ఈఉ

(௞)
=  

𝜕𝜙(௞)

𝜕𝑋ଵ
(௞)

∙
𝜕𝑋ଵ

(௞)

𝜕𝑋
ఈఉ

(௞)
+

𝜕𝜙(௞)

𝜕𝑋ଶ
(௞)

∙
𝜕𝑋ଶ

(௞)

𝜕𝑋
ఈఉ

(௞)
 Eq. 3.1-34 
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In these calculations singularities which appear when the principle values of the two 

linearly transformed stress vectors equal each other must be addressed. Expressions for 

the terms appearing in the above equation, along with how to handle the singular cases of 

the derivatives are presented in Appendix A1 in the original paper on Yld2000-2d by 

Barlat et al. [16], and will not be addressed in detail here. 

To determine the values of the eight independent coefficients, 𝛼ଵ to 𝛼଼, which fits the 

Yld2000-2d criterion to capture the anisotropic yield characteristics of a material, eight 

data points with information about the modelled materials constitutive behaviour must be 

provided. In the approach described here, six of these data points are obtained through 

measurements from the uniaxial tensile test. From tensile test specimens carved at 0°, 45° 

and 90° to the rolling direction, the yield stresses, 𝜎଴
௒, 𝜎ସହ

௒  and 𝜎ଽ଴
௒ , and the Lankford 

constants, 𝑅଴, 𝑅ସହ and 𝑅ଽ଴ are supplied.  

The last two data points required for calibration of the yield function, are the yield stress 

and strain ratio from biaxial tension in the sheet plane, respectively denoted as 𝜎௕
௒ and 

𝑅௕. The biaxial yield stress, 𝜎௕
௒, is typically obtained by performing a bulge test, where a 

clamped circular freestanding part of the sheet metal is subjected to a pressurized fluid 

on one side, while the resulting bulge on the opposite side is monitored [48]. 

As suggested by Barlat et al., the equibiaxial strain ratio can be determined using three 

different approaches. One approach is to acquire knowledge of the materials 

crystallographic texture, and then to calculate the value based on a polycrystal model. 

Another method is to calculate the value based on another yield function which does not 

require the biaxial strain ratio as input for calibration. The third suggested approach is to 

obtain 𝑅௕ is by measuring it experimentally from a disc compression test as described by 

Barlat in the original article. 

 

3.1.4 Yld2003 

With the relatively complicated mathematical form of the Yld2000-2d, a new yield 

function – clearly inspired by the work of Barlat – surfaced in the 2004 article by Holger 

Artez [17]. The yield function Yld2003 is, like its older brother, based on an eight-term 



47 
 

modification to the high exponent plane stress Hershey yield function in order to add 

anisotropic characteristics to the function.  

What makes Yld2003 interesting is its simple mathematical form. With a similar 

approach as in Yld2000-2d, the Hershey yield function in terms of its principle 

components is divided into two separate functions, where the stress configurations in each 

of the functions are individually linearly transformed to establish enhanced flexibility 

when the function is to be fitted to experimental measurements. However, while the 

Yld2000-2d function uses rather complicated matrix transformations on the stress 

deviator to obtain the linearly transformed stresses, Aretz uses a simpler approach 

inspired by the Yld89 yield function [5] where the Cartesian stress tensor components are 

simply scaled in the expressions for the principal stresses. 

In plane stress, the Hershey yield function in terms of its principle stresses takes the form: 

 

 |𝜎ଵ|ெ + |𝜎ଶ|ெ + |𝜎ଵ − 𝜎ଶ|ெ = 2(𝜎௒)ெ 

 

 

Eq. 3.1-35 

The standard formula for stress transformations from the frame of reference of a Cartesian 

coordinate system to the principle stress frame is  

𝜎ଵ

𝜎ଶ

ൡ =
𝜎௫ + 𝜎௬

2
± ඨቀ

𝜎௫ − 𝜎௬

2
ቁ

ଶ

+ 𝜏௫௬
ଶ 

 

Eq. 3.1-36 

The Hershey yield function is divided into two, where the first and second absolute terms 

are subjected to a transformation from five of the eight anisotropy coefficients 𝑎ଵ to 𝑎଼, 

so that 𝜎ଵ → 𝜎′ଵ and 𝜎ଶ → 𝜎′ଶ: 

𝜎ᇱ
ଵ

𝜎ᇱ
ଶ

ቑ =
𝑎଼ ∙ 𝜎௫ + 𝑎ଵ ∙ 𝜎௬

2
± ඨቀ

𝑎ଶ ∙ 𝜎௫ − 𝑎ଷ ∙ 𝜎௬

2
ቁ

ଶ

+ 𝑎ସ
ଶ ∙ 𝜏௫௬

ଶ 

 

Eq. 3.1-37 

 

Next, the last absolute term of the plane stress Hershey yield function is subjected to a 

resembling transformation from the remaining anisotropy terms, 𝑎ହ, 𝑎଺ and 𝑎଻, so that 

𝜎ଵ → 𝜎′′ଵ and 𝜎ଶ → 𝜎′′ଶ: 
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𝜎ᇱᇱ
ଵ

𝜎′ᇱ
ଶ

ቑ =
𝜎௫ + 𝜎௬

2
± ඨቀ

𝑎ହ ∙ 𝜎௫ − 𝑎଺ ∙ 𝜎௬

2
ቁ

ଶ

+ 𝑎଻
ଶ ∙ 𝜏௫௬

ଶ 

 

 

 

 

Eq. 3.1-38 

Reconstructing the yield function on the form of the Hershey function, the relatively 

simple eight-term anisotropic yield function Yld2003 takes the form: 

 

 |𝜎′ଵ|ெ + |𝜎′ଶ|ெ + |𝜎′′ଵ − 𝜎′′ଶ|ெ = 2(𝜎௒)ெ 

 

 

Eq. 3.1-39 

In the special case when all anisotropy coefficients 𝑎ଵ to 𝑎଼ are taken as unity, and the 

exponent of the function is taken as M = 2, the Yld2003 yield function reduces to the Von 

Mises’ yield criterion for plane stress.  

The function is suggested fitted to the eight experimental datapoints in a minimized sum 

of squared errors-fashion (see Ch. 4.2.1) to obtain the eight anisotropy coefficients. In the 

original article, flow-stress ratios, 𝑟ఏ, and traverse strain ratios, 𝑅ఏ, form uniaxial tensile 

tests with longitudinal direction inclined at 𝜃 = 0°, 45° and 90° to a metal sheet’s rolling 

direction made of six of the data points, while the last two were the corresponding 

quantities taken from equibiaxial tests, 𝑟௕ and 𝑅௕. 

As with the previously presented yield functions, the associate flow rule is used along 

with the constant volume assumption to express the model’s predicted traverse strain 

ratios, 𝑅ఏ, as derivatives of the yield function.  

The same arguments as was used to defend the convexity of the Yld2000-2d function can 

be used for the above function. By performing a simple linear transformation on the input 

of a function which is isotropic to its input, convexity is safely maintained. 

From the understanding of the author, a drawback with Yld2003 by Aretz to its 

predecessor in the Yld2000-2d is that singularities of the yield function are not addressed 

in the original article. In work with the current thesis, an attempt to analytically calculate 

the derivatives of the yield function in the equibiaxial states of the transformed stress 

tensors was made. For the Yld2000-2d yield function, these configurations are known to 

be singular cases and thus the function is undefined in these points. The calculations 
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showed that singularities were seemingly found in the Yld2003 function as well, for stress 

configurations fulfilling these conditions. Without mentioning the matter, a numerical 

differentiation by a forward difference scheme is suggested in the article by Aretz, which 

is likely to avoid these special cases in the calibration.  

 

3.2 Hardening 

As the longitudinal stresses and strains equal the effective stresses and strains in a uniaxial 

tensile test, the uniaxial tensile test directly describes the relationship of effective stresses, 

𝜎௘, to effective plastic strains, 𝜀௘
௣. However, because uniaxial tensile specimens’ 

experiences diffuse necking which leads to expedited rupture, a hardening model which 

extrapolates a material’s observed constitutive behaviour to strains beyond the strain-

domain of the uniaxial tensile test is needed when FEA-simulations of other geometries 

and load cases are to be conducted. 

Regardless of whether the hardening of the material is isotropic or kinematic, several 

functions of the equivalent plastic strains are used to describe the work hardening of 

ductile materials. One of the most established hardening rules for metals is the Power law, 

which is through a hardening coefficient, 𝐾, and a hardening exponent, 𝑛, written on the 

following form: 

𝜎௘ = 𝐾൫𝜀௘
௣

൯
௡

 

 

Eq. 3.2-1 

 

While the Power law predicts zero stress at zero plastic strains, a modification to the 

Power law – often referred to as the Swift law or the Ludwik’s – is equivalent but with 

an additional yield stress term, 𝜎଴. 

𝜎௘ = 𝜎଴ + 𝐾൫𝜀௘
௣

൯
௡

 

 

Eq. 3.2-2 

Another group of work hardening formulas which are popularly used to describe the 

hardening of aluminium alloys is the Voce rule. In addition to a yield stress term, the 

equation comes with a desired number of additional terms, each term containing two 
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parameters, giving increased flexibility to accurately fit the curve to the experimental 

data. The one- and two-term Voce rule takes the following form: 

𝜎௘ = 𝜎଴ + 𝑄ோ ቆ1 − 𝑒𝑥𝑝 ൬−
Θோ

𝑄ோ
𝜀௘

௣൰ቇ 

 

Eq. 3.2-3 

 

𝜎௘ = 𝜎଴ + 𝑄ோଵ ቆ1 − 𝑒𝑥𝑝 ൬−
Θோଵ

𝑄ோଵ
𝜀௘

௣൰ቇ + 𝑄ோଶ ቆ1 − 𝑒𝑥𝑝 ൬−
Θோଶ

𝑄ோଶ
𝜀௘

௣൰ቇ 

 

Eq. 3.2-4 

 

Comparing the Ludwik’s law to the one-term Voce rule – both containing two hardening 

variables, in addition to the yield stress at zero plastic strains – the Voce curve typically 

produces a more moderate hardening evolution for higher plastic strains than the other. 

 

3.3 Local necking, fracture and damage 

3.3.1 Non-local instability-criterion (NLIC) 

When comparing different meshes in finite element simulations, the localization of strains 

as described in the theory chapter on forming limits seems to occur almost randomly. By 

monitoring the state of a material at a larger surrounding area, non-local failure theories 

are successfully used to tackle this issue by reducing the mesh size sensitivity on failure, 

and thus greatly enhancing the prediction of onset of local necking instabilities [49]. 

The typical approach to the non-local criteria is to define an area of interest where an 

average of a quantity at the integration points within that area is used as a non-local 

reference value. In the non-local instability criterion (NLIC) localisations of plastic strain 

in the through-thickness direction of the sheet, 𝜀௭
௣, is under investigation. By monitoring 

the ratio of the increments of local to non-local values of the quantity, local necking 

instabilities – which Marciniak and Kuczynski [4] proved that naturally will occur when 

inducing inhomogeneities in the strength of the material – can be detected.  
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If 𝑅ஐ is a user-defined radius, Ω௘௟ is the area made up of elements with at least one 

integration point within the circle defined by 𝑅ஐ. The relationship between the local and 

the non-local quantity is calculated stepwise for every element throughout the analysis as 

𝛽௜ =
Δ𝜀௭

௣(௜)

Δ𝜀௭
௣,ஐ೐೗

 

 

Eq. 3.3-1 

 

In some cases, a weighting of different elements’ contribution to the non-local value, 

Δ𝜀௭
௣,ஐ೐೗, based on their distance to the local element, might be desirable. However, when 

all elements within the considered radius are treated fairly the non-local value of the 

through-thickness plastic strain increment is defined as 

Δ𝜀௭
௣,ஐ೐೗ =

1

Ω௘௟
න Δ𝜀௭

௣

ஐ೐೗

𝑑Ω௘௟ 

 

, 

 

Eq. 3.3-2 

 

or when the radius, 𝑅ஐ, is defined as large enough to cover the entire model: 

Δ𝜀௭
௣ஐ೐೗ =

1

𝑛௘௟
෍ Δ𝜀௭

௣(௜)

௡೐೗

௜ୀଵ

 

 

Eq. 3.3-3 

 

where 𝑛௘௟ is the number of elements in the entire model. 

Local necking is assumed to occur when the ratio of local to non-local through-thickness 

strain increments exceeds a critical value, 𝛽௖௥. 

 

3.3.2 Non-local extremal thickness strains deviation-criterion (NLETSDC) 

Although the finite element program LS-DYNA provides the possibility to detect 

localized necking instabilities from NLIC through the NONLOCAL-keyword [49], the 

history variable which describes the relationship between the local and non-local through-

thickness strain increment, 𝛽௜, was seemingly not produced as output from the analysis 

as requested. Thus, a simple alternative method tailored to detect the onset of local 

necking from the available history variables was established as a replacement. 
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The method resembles the non-local instability criterion in that the through-thickness 

plastic strains, 𝜀௭
௣, are monitored at all locations throughout the analysis of a model which 

has initial spatially distributed weaknesses. Within a considered area, the minimum and 

the maximum of all values of 𝜀௭
௣(௜) was monitored. From this the relationship of the two 

quantities, a history variable was established as 

𝜉௜ =
𝜀௭

௣,ஐ೘ೌೣ

𝜀௭
௣,ஐ೘೔೙

 

 

Eq. 3.3-4 

 

The onset of local necking is assumed to occur when the history variable 𝜉௜ reaches a 

critical value, 𝜉௖௥ . 

To validate the NLESD-criterion in the current analyses, care was taken to make sure that 

the minimal value of the through-thickness plastic strain was of magnitude comparable 

to the magnitude of a reasonable chunk of the other values at the same instance. 

Additionally, visual inspections were made of the effective plastic strain field plots to 

assure that 𝜉௜ reached the critical value around the time when strain localization occurred. 

Lastly, a sensitivity analysis of the critical value, 𝜉௖௥, was conducted. The result revealed 

that the discrepancy between the forming limit curves produced with 𝜉௖௥ = 2 and with 

𝜉௖௥ = 1.5 was negligible. 

 

3.3.3 Through-thickness shear instability criterion (TTSIC) 

The through-thickness shear instability criterion (TTSIC) for sheet metal forming was 

first introduced by Bressan and Williams in 1982 [7]. Up until then, several different 

criteria had been introduced which suggested that shear instability was the underlying 

common feature in many of them. Supported by the experimental observation that sheet 

metals often exhibited fracture planes with inclination near 45°, which is the maximum 

shear stress plane. 

Assuming that elastic strains are of negligible magnitude compared to plastic strains at 

the occurrence of local necking, necking instability is assumed to occur when the shear 

stress on a plane where an element of material is subjected to no straining in length 
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reaches a critical value, 𝜏௖௥ . The original formulation was initially developed for metal 

sheets which exhibited normal anisotropy where the directions of stresses and plastic 

strains in the principle frame of reference are coinciding. From this, the following 

equation to calculate the inclination, 𝜑, from the critical plane based on plastic strain 

increments is used, with the established coordinate system of x, y and z respectively 

aligned with the rolling, traverse and through-thickness directions: 

cos 2𝜑 = −
𝑑𝜀௬

௣

𝑑𝜀௬
௣

+ 2𝑑𝜀௫
௣ 

 

Eq. 3.3-5 

 

For materials which exhibit orthotropic anisotropy principal stresses and principal plastic 

strains are generally not aligned unless the principal axis of stress coincides with the 

principal axis of anisotropy. In that case, the following relationship was according to 

Reyes et al. [6] presented by Hopperstad et al. in a 2006 report, and later confirmed by 

Brunet and Clerc [50]: 

(𝑠𝑖𝑛ଶ𝜑 𝑐𝑜𝑠ଶ𝜃 − 𝑐𝑜𝑠ଶ𝜑) 𝑑𝜀௬
௣

+ 𝑠𝑖𝑛ଶ𝜑 cos 𝜃 sin 𝜃 𝑑𝛾௫௬
௣

+ (𝑠𝑖𝑛ଶ𝜑 𝑠𝑖𝑛ଶ𝜃 − 𝑐𝑜𝑠ଶ𝜑) 𝑑𝜀௬
௣

= 0 

 

Eq. 3.3-6 

 

The above equation reduces to the Eq. 3.3-5 presented by Bressan and Williams when the 

angle between the rolling direction and the major principle stress, 𝜃, is zero.  

From this, the TTSIC is satisfied when the shear stress on the critical plane, 

𝜏ఝ,  reaches a critical value, 𝜏௖௥. 

𝜏ఝ =
sin (2𝜑)

2
𝜎ଵ ≥ 𝜏௖௥ 

 

Eq. 3.3-7 

 

With this, the assumption of 𝜏௖௥ as an isotropic value in an orthotropic must be considered 

if is justifiable to the assessed material. In the mentioned article by Reyes et al. [6] the 

assumption is justified for the two materials in the study (AA2008-T4 and AA6111-T4), 

based on their moderate planar anisotropic characteristics.  
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3.3.4 Original Cockcroft-Latham fracture criterion (OCLFC) 

Fracture because of strain localisations from local necking instability is perhaps the 

primary phenomenon which causes rupture in aluminium sheet forming. As the presence 

of local necks is unwanted in metal sheet forming products, the necking strains are often 

what constrains the forming limit curve. However, rupture from ductile damage from void 

nucleation, growth and coalescence as described in Ch. 2.3.2 can occur without the 

preliminary local neck, and thus a criterion describing fracture is sometimes required 

implemented into FEA-code to successfully describe the behaviour of the material. 

Introduced by Cockcroft and Latham in 1968 [9], the ductile fracture criterion is assumed 

to be satisfied when a critical amount of plastic work performed by positive values to the 

major principal stress is reached. Thus, unlike the previously introduces local necking 

criteria, which were only reliant on the current state of strains or stresses in a material, 

the Cockcroft-Latham fracture criterion considers the loading history.  

As several modifications to the Cockcroft-Latham fracture criterion exists, the expression 

presented in the following equation will be referred to as the original Cockcroft-Latham 

fracture criterion (OCLFC). The plastic work from the positive values of the major 

principal stress is formulated as 

𝑊ଵ = න max (𝜎ଵ, 0
ఌത

଴

)𝑑𝜀̅  ≥ 𝑊௖௥ 
Eq. 3.3-8 

 

where 𝜀 ̅ is the accumulated plastic strain, and 𝑊௖௥ is a material constant which can be 

adjusted to observations from experiments where strain localization is controlled.  

In the work of Dimitry Vysochinskiy [10], two different plane strain tension tests 

specimen geometries with three parallels each were used to calculate the OCLFC. 

Although the fracture was reportedly provoked by strain concentrations around the 

notched, relatively large scatters were seen in the six measured values of 𝑊௖௥. Averaging 

over the path, the critical plastic work of AA6016-T4 was calculated by Vysochinskiy to 

211.5 MPa. 
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3.3.5 Generalized incremental stress state dependent damage model (GISSMO)  

The non-local instability criteria, along with the through-thickness shear instability 

criterion and the original Cockcroft-Latham criterion for ductile fracture were presented 

as so-called uncoupled damage models. The criteria are either limits to a current state, or 

an accumulation of quantity, which eventually classifies the material as damaged or 

“necked” instantaneously, and the stress state in material points fulfilling these criteria 

are is set to zero. In reality, extensive plastic stains are associated with some form of 

damage which reduces the stiffness of the strained material.  

The purpose of damage coupling is to establish a mathematical phenomenological model 

describing the onset of damage, the accumulation of damage and its effect on the 

constitutive description of the material, up until the occurrence of failure. To provide an 

understanding of modern damage coupling model models, an example, in the generalizes 

incremental stress state dependent damage model (GISSMO), is detailed described in the 

following.  

The damage model – recently introduced by Andrade et al. in 2015 [18] can be viewed as 

a general version of the classical principle of effective stress described by Lemaitre in 

1985 [51] enabling enhanced flexibility by allowing a more accurate description of 

material damage for relatively coarser meshes in FEA-simulations. 

The critical strains, 𝜀௖௥, which determines the onset of damage accumulation, as well as 

the strains at the occurrence of fracture, 𝜀௙(𝜂), is dependent on the stress state, or more 

specifically the stress triaxiality, 𝜂. Thus, we have 

𝜀௖௥ = 𝜀௖௥(𝜂) 

 

Eq. 3.3-9 

 

and 

𝜀௙ = 𝜀௙(𝜂) 

 

Eq. 3.3-10 

 

where the stress triaxiality is the ratio of hydrostatic pressure to effective von Mises 

stresses 
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𝜂 =  
𝜎௠

𝜎௘
 

 

Eq. 3.3-11 

 

The generalizes incremental stress state dependent damage model (GISSMO) does not 

define the shape of the functions 𝜀௖௥௜௧(𝜂) and 𝜀௙(𝜂), and is thus compatible with the 

multiple various functions found in the literature to describe these curves. 

An instability variable, which activates the accumulation of damage when it reaches 

unity, i.e. when 𝜀௣ =  𝜀௖௥௜௧(𝜂), is formulated as 

𝐹 =  ൬
𝜀௣

𝜀௖௥௜௧(𝜂)
൰

௡

≤ 1 

 

Eq. 3.3-12 

 

where 𝑛 is a damage exponent. when the instability variable, 𝐹,  reaches the value of 1, 

the accumulation of damage begins. To express the growth of the instability variable as a 

sum of increments, its derivative with respect to time assuming constant triaxiality is 

𝐹̇ =
𝑛

𝜀௖௥௜௧(𝜂)
𝐹(ଵିଵ ௡⁄ )𝜀̇௣ 

 

Eq. 3.3-13 

 

With the aim to establish a description of the damage evolution, a damage variable on the 

same form as the instability variable is written as 

𝐷 =  ቆ
𝜀௣

𝜀௙(𝜂)
ቇ

௡

 

 

Eq. 3.3-14 

 

where 𝜀௙(𝜂) are the strains at fracture, presented in Eq. 3.3-10 as a function of the 

triaxiality. Again, assuming constant triaxiality, 𝐷 is differentiated with respect to time 

to be  

𝐷̇ =
𝑛

𝜀௙(𝜂)
𝐷(ଵିଵ ௡⁄ )𝜀̇௣ 

 

Eq. 3.3-15 

 

A function representing the damage which takes place at strain localization, 𝐷෩, can then 

be written as a function of the damage variable. If 𝐹 = 1, 
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𝐷෩ = ൬
𝐷 − 𝐷௖௥

1 − 𝐷௖௥
൰

௠

 

 

Eq. 3.3-16 

 

where the 𝐷௖௥ is the value of 𝐷 when 𝐹 reaches 1, while 𝑚 is the fading exponent which 

allows for a non-linear evolution of 𝐷෩. While the general damage variable, 𝐷, starts 

accumulating at the onset of plastic deformations, 𝐷෩ represents the damage evolution 

which is present after the criterion indicating strain localization is satisfied. Thus, for 

plastic strains which gives  𝐹 < 1, 𝐷෩ is zero. 

The current value of 𝐷෩ directly influences the stress tensor as followingly 

𝝈𝒊𝒋 = ൫1 − 𝐷෩൯𝝈ଙଚ෦  

 

Eq. 3.3-17 

 

where 𝝈෥ is the undamaged stress tensor. 

By substituting Eq. 3.3-16 into Eq. 3.3-17 the effects of the damage variable on the stress 

tensor becomes evident 

𝝈𝒊𝒋 = 𝝈ଙଚ෦ ቈ1 − ൬
𝐷 − 𝐷௖௥

1 − 𝐷௖௥
൰

௠

቉ 

 

Eq. 3.3-18 

 

The model reduces to the Lemaitre-formulation when 𝐷௖௥ is set to zero, and the fading 

exponent 𝑚 is set to unity. 

3.4 Roping model 

To attempt to model the effects of roping which was reportedly observed in the AA6016-

T4 sheets subject to tests in the experimental program by Dimitry Vysochinskiy [10], an 

approach to this is followingly presented.  

In the FEA-based software LS-DYNA, a pre-programmed module to model perturbations 

to the thickness of shells as one or more harmonic waves exists in the keyword 

*PERTURBATION_SHELL_THICKNESS. The keyword allows the user to specify the 

amplitude, wavelength and periodic offset of waves though the variables AMPL, WL and 

OFF, respectively. For a shell element with normal direction aligned with the 𝑧-direction, 

the perturbation field of a single harmonic wave takes on the formulation [49] 
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𝑝(𝑥, 𝑦) = 𝐴𝑀𝑃𝐿 ൤𝑠𝑖𝑛 ൬2𝜋
𝑥 + 𝑋𝑂𝐹𝐹

𝑋𝑊𝐿
൰ + 𝑠𝑖𝑛 ൬2𝜋

𝑦 + 𝑌𝑂𝐹𝐹

𝑌𝑊𝐿
൰൨ 

 

Eq. 3.3-19 

 

With this, thickness perturbations due to roping can be modelled to satisfying accuracy 

by adding multiple harmonic perturbations which add together to approximate a measured 

thickness distribution.  

𝑝(𝑥, 𝑦) =  ෍ ൬𝐴𝑀𝑃𝐿௜ ൤𝑠𝑖𝑛 ൬2𝜋
𝑥 + 𝑋𝑂𝐹𝐹௜

𝑋𝑊𝐿௜
൰ + 𝑠𝑖𝑛 ൬2𝜋

𝑦 + 𝑌𝑂𝐹𝐹௜

𝑌𝑊𝐿௜
൰൨൰

௡

௜ୀଵ

 

 

Eq. 3.3-20 

 

The approach is closely related to the approximation by Fourier series, except the 

presence of the phase constant, and the missing presence of an intercept term [52].   

As roping is reported to the manifestation of the orientation of grain’s spatial distribution 

in the sheets’ through-thickness direction [53], the effects which can be observed with 

analogue measurements in terms of thickness perturbations can be assumed to be 

accompanied with variation in material characteristics. Thus, naive of information about 

this variation, the modelled thickness perturbation could be scaled to obtain good 

correlation between the anisotropy predicted by the FE-model’s and the strain limits 

observed in the experimental results. In the MK-model, the fundamental assumption is 

that a band a material which is somehow weaker than the rest. This weakness is often 

thought of and modelled as a reduction in the thickness of the material. When performing 

the analysis, the magnitude of the imperfection is typically calibrated to match 

experimental observations. In the same way, a larger thickness variation that what is 

physically observed can be justified to account for reduced stiffness from spatial 

variations in material characteristic. 
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4 Calibration 

4.1 Experimental program by Dimitry Vysochinskiy 

The material models presented in this thesis are calibrated to measurements obtained in 

the experimental programme of Dimitry Vysochinskiy [10], where several experiments 

were conducted to gain knowledge about the formability of the AA6016-T4 aluminium 

alloy. The measurements were presented in his 2014 thesis for the degree of Ph. D., while 

the experiments were conducted in February and March of 2012. 

On specimens carved from the AA6016-T4 aluminium alloy sheets, uniaxial tensile tests 

and disc compression tests were conducted to calibrate the advanced triaxial yield 

criterion Yld2004-18p by F. Barlat [11]. Marciniak-Kuczynski (MK)-tests and Nakajima 

(NK) tests were performed, and an experimental forming limit diagram was presented 

from the results of the MK-tests. Additionally, plane strain tension tests were performed 

on specimens with two different geometries, referred to as PSTv60 and PSTv50. The 

numbers of parallels performed for each test are presented in Table 4-1.  

 

Table 4-1: Number of parallels in the test programme of Dimitry Vysochinskiy [10]. 

Test Type Specimen orientation  

 0° 15° 30° 45° 60° 75° 90° Total 

Uniaxial tension (UT) 4 2 2 2 2 2 3 17 

Disc compression (DK) 12 - - - - - - 12 

Plane strain tension (PSTv60) 3 - 2 2 - - 2 9 

Plane strain tension (PSTv50) 3 - - 2 - - 2 7 

Marciniak-Kuczynski (MK) 10 - - - - - 6 16 

Nakajima (NK) 13 - - - - - 9 22 

 

Other experiments, such as in-plane shear tests and cyclic shear tests, in addition to 

experiments on AA6016-T4 aluminium alloy sheets pre-strained by rolling, are also 
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presented in the work of Dimitry Vysochinskiy [10]. The material discussed in this thesis 

is labelled as material ID 6, while pre-strained sheets are referred to as material ID 7. 

 

4.1.1 Uniaxial tensile tests 

Uniaxial tensile tests were performed with intervals of 15 degrees angle between the 

longitudinal axes and the rolling direction. The number of parallels performed at each 

angle is viewed in Table 4-1. 

 

 

Figure 4-1: Geometry of the SIMLab UT200 uniaxial tensile test specimen. Figure rendered 
with permission from the PhD-thesis of Dimitry Vysochinskiy [10].  

 

Unlike for the other experimental measurements where the results are simply rendered as 

presented in the thesis of Dimitry Vysochinskiy, the results from the uniaxial tensile tests 

are calculated and displayed by the author based on raw test data provided by 

Vysochinskiy. The test data was obtained through digital image correlation (DIC). By 

monitoring the displacements of two points through a sequence of digital images the strain 

evolution is mapped for the history of the experiment. The virtual extensometer-method, 

which is performed in both the length- and the width-direction of the specimen, is 

described in detail by Vysochinskiy in his PhD-thesis [10]. 

Fig. 4-2 displays the work diagrams from the different uniaxial tensile tests. In addition 

to plots of nominal stresses vs. nominal strains taken directly from the raw data supplied 

by Vysochinskiy, plots of true stresses vs. true strains are calculated and plotted. The 

constant volume assumption to express the logarithmic thickness strains from the strains 
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in the logarithmic strains in the length- and width-directions. From this, the true stresses 

were calculated as the force, 𝐹, divided by the current area, 𝐴, and the logarithmic strains 

were calculated as  𝜀 = 𝑙𝑛(𝐴௢ 𝐴⁄ ), according to the equations presented in Ch. 2.2.5. By 

using the logarithmic relationship of the initial area to the current area, the true diagrams 

are assumed to be valid beyond strains corresponding to the onset of diffuse necking. 

Both the nominal and the true diagrams are plotted up until the point of ultimate true 

stress. The reference system for the individual test uniaxial tensile test specimens is on 

the form 𝑈𝑇𝜃 − #, where 𝜃 is the specimen’s orientation to the sheets rolling direction, 

and # indicates the parallel number. All parallels are plotted for each direction. 

 

  

a.i) a.ii) 

  

b.i) b.ii) 
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c.i) c.ii) 

  

d.i) d.ii) 

  

e.i) e.ii) 
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f.i) f.ii) 

  

g.i) g.ii) 

 

Figure 4-2: Engineering (i) and true (ii) stress-strain diagrams from uniaxial tensile tests 
from the experimental program by Dimitry Vysochinskiy [10]. The uniaxial tensile tests are 
sampled with longitudinal directions at 15 different angles to the sheets rolling direction.  

 

 

Although the traverse strain ratios are usually unchanged and relatively stable throughout 

the plastic evolution, the convention of calculating Lankford coefficients from quantities 

captured at an elongation of 20% is usually practised for the sake of comparison [54]. 

With the virtual extensometer data available, the evolutions of the Lankford constants 

were nevertheless plotted for the sake of curiosity and is displayed in Fig. 4-3 with the 

engineering strains in the specimen’s length-direction plotted on the abscissa.  
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Figure 4-3: Evolution of the Lankford constant as a function of nominal strains in the length 
direction of specimen UT0-1. 

 

Table 3-2: Traverse strain ratios calculated at 20 % elongation based on experimental data 
provided by D. Vysochinskiy. 

Parallel 𝑹𝟎 𝑹𝟏𝟓 𝑹𝟑𝟎 𝑹𝟒𝟓 𝑹𝟔𝟎 𝑹𝟕𝟓 𝑹𝟗𝟎 

1 0.677 0.580 0.440 0.412 0.497 0.785 1.056 

2 0.626 0.577 0.429 0.437 0.529 0.529 1.037 

3 0.730 - - - - - 0.988 

4 0.719 - - - - - - 

 

As discrepancies between the values presented by Vysochinskiy and the calculated 

Lankford constants were discovered, the true strains in the width-direction, 𝜀௪, vs. the 

true strains in the thickness-direction, 𝜀௧, were plotted to compare the two values for the 

same quantity. The plots in Fig. 4-5 shows the width- vs. thickness-strains for parallel 

tensile test, along with the constant ratio calculated from the arithmetic means of the tests, 

captured at 20% elongation, and the equivalent quantities as presented in the thesis of 

Vysochinskiy. It is observed that the values previously presented by Vysochinskiy – 

illustrated by the slope of the plotted lines – are consequently lower than the observed 

values for an unknown reason. As the values calculated from the arithmetic average at 

20% elongation seemingly coincided better with the experimental data for the entire range 

of the analysis, the material models in this study were calibrated to this data. 
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Table 4-3: Average of traverse strain ratios calculated at 20 % elongation based on 
experimental data provided by D. Vysochinskiy, and  

 𝑹𝟎 𝑹𝟏𝟓 𝑹𝟑𝟎 𝑹𝟒𝟓 𝑹𝟔𝟎 𝑹𝟕𝟓 𝑹𝟗𝟎 

Av. 20% elong. 0.688 0.579 0.435 0.425 0.513 0.753 1.030 

Vysochinskiy 0.527 0.516 0.355 0.345 0.422 0.644 0.867 

 

 

 

Figure 4-4: Lankford constants calculated at 20% elongation from experimental data 
provided by Dimitry Vysochinskiy, compared to the calculated values presented by 

Vysochinskiy [10]. 

 

 

  

a) b) 
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c) d) 

  

e) f) 

 

g) 

Figure 4-5: Relationships of traverse strains from measurements, compared to the values 
calculated by Vysochinskiy [10], and the average at 20% calculated by the author.  
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4.1.2 Marciniak-Kuczynski tests 

Table 4-4: Experimental necking strains, fracture strains and crack orientations relative to RD 
as presented in the Ph.D.-thesis by Vysochinskiy [10]. 

Sample Crack orientation Necking strains Fracture strains 

 to RD 𝜺𝑹𝑫 𝜺𝑻𝑫 𝜺𝑹𝑫 𝜺𝑻𝑫 

MK155-0-1 ⊥ 
0.2499 0.0356 0.3215 0.0417 

MK155-0-2 ⊥ 
0.2683 0.0409 0.3690 0.0431 

MK155-90-1 ‖ 
0.0201 0.1426 0.0236 0.2840 

MK155-90-2 ‖ 
0.0228 0.1524 0.0241 0.2981 

MK160-0-1 ⊥ 
0.2778 0.0894 0.4180 0.1320 

MK160-0-2 ⊥ 
0.2856 0.0936 0.3980 0.1320 

MK160-90-1 ‖ 
0.0409 0.1418 0.0605 0.3130 

MK160-90-2 ‖ 
0.0391 0.1376 0.0542 0.2870 

MK165-0-1 ‖ 
0.2523 0.1477 0.2800 0.2220 

MK165-0-2 ‖ 
0.2772 0.1664 0.3240 0.2570 

MK165-90-1 ‖ 
0.0911 0.1768 0.1200 0.2970 

MK165-90-2 ‖ 
0.0737 0.1485 0.1033 0.2470 

MK205-1 ‖ 
0.1930 0.1728 0.2830 0.2190 

MK205-2 ‖ 
0.1741 0.1546 0.2960 0.2170 

MK205-3 ‖ 
0.1584 0.1396 0.3070 0.2190 

MK205-4 ‖ 
0.1899 0.1694 0.3110 0.2390 

 

  

a.i) a.ii) 
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b.i) b.ii) 

  

c.i) c.ii) 

 
Figure 4-6: a) Scatter of experimentally measured strains from MK-test at the onset of local 
necking and fracture. b) Experimental forming limit curve (onset of local necking) from MK-
tests, based on averages of experimental measurements. c) Experimental fracture limit curve 

from MK-tests, based on averages of experimental measurements. 
 

 

4.2 Yield functions 

4.2.1 Calibration methods 

When calibrating the yield function, a number of coefficients determining the shape of 

the yield loci must be fitted for the plastic characteristics of the model to match the 

experimental observations in the best way possible.  
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The essence of the calibration process is to mathematically manipulate the current yield 

function to formulate expressions representing quantities which are practically 

measurable through experiments. Paired with a flow rule and the proper stress tensor 

configuration, ratios of stresses and strains can be expressed through rearranging of the 

yield function and its partial derivatives. 

The number of anisotropy coefficients present in the yield function might affect the 

accuracy of the yield function, as the number of degrees of freedom in a function should 

be paired with an equal number of experimental test data.  

Generally, there are two ways to fit a yield function to experiments. For simpler 

anisotropic yield functions with few anisotropy coefficients, analytical expressions which 

directly relates the anisotropic coefficients to experimental data might be available. For 

the yield functions presented in this paper where such analytical expressions are available, 

these expressions are presented in the respective chapters addressing the yield function.  

For more complex yield functions with a larger number of anisotropy coefficients, such 

analytical expressions might be difficult to obtain mathematically. In such cases, a 

numerical calibration is performed through an optimization where the sum of squared 

differences between experimental data and the corresponding quantity predicted by the 

yield function is minimized. The error function which is subject to minimization can be 

formulated as 

𝑒𝑟𝑟 =  ෍ ቆ
𝑥(𝝈𝒊𝒋, 𝛼௞)௟

௣௥௘
− 𝑥௟

௘௫௣

𝑥௟
௘௫௣ ቇ

ଶ

௟

 Eq. 4.2-1 

 

where 𝜶 is the vector of anisotropy coefficients, and 𝝈𝒊𝒋 is the Cauchy stress tensor, while 

𝑖 represents the different entities used in the calibration. Superscripts 𝑝𝑟𝑒 and 𝑒𝑥𝑝 refer 

to predicted and experimental values of the current entities, respectively.  

To set up Eq. 4.2-1, formulations of the predictions, 𝑥(𝝈𝒊𝒋, 𝛼௞)௟
௣௥௘, must be established 

for the different entities. These initially large mathematical expressions are usually 

greatly reduced when the appropriate stress state of the experiment is implemented as the 

experiments are often of plane stress – leaving many zero-components to the stress tensor, 
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𝝈𝒊𝒋. As the components of the stress tensor is given by the nature of the experiments, the 

anisotropy parameters, 𝛼௞, can be found by minimizing the error function in Eq. 4.2-1. 

The proposed experiments which must be conducted to calibrate a certain yield criterion 

might differ between models. Many of the more complicated yield criteria rely on 

experimental values of yield stresses, 𝜎௒, and Lankford constants (transverse strain 

ratios), 𝑅, to be obtained for several stress states. This might demand uniaxial tensile tests 

at multiple angles to the sheet rolling direction to obtain 𝜎ఏ
௒ and 𝑅ఏ, bulge tests to obtain 

the biaxial yield stress, 𝜎௕
௒, and through-thickness disc compression tests to obtain the 

biaxial strain ratio, 𝑅௕ - to acquire the calibration data. When the calibration is performed 

by minimization of an error function, setting one or more anisotropic coefficients to their 

isotropic value can sometimes be justified in cases where the number of data points 

provided is less than the number of anisotropy coefficients in the yield function. 

Expressions for comparisons to the measured yield stresses are obtained by using the 

yield functions description of effective stresses, while expressions for the predicted 

Lankford constants can be obtained from the given flow rule. This is done for each 

experiment, by using the appropriate configuration of the Cauchy stress tensor, 𝝈, as 

input. For uniaxial tensile tests carved at an angle 𝜃 to the rolling direction, the 

components of the Cauchy stress tensor, 𝝈, in the material frame of reference are 

calculated as 

𝜎௫ =  𝜎ఏ
௒ ∙ cosଶ 𝜃 

Eq. 4.2-2 𝜎௬ =  𝜎ఏ
௒ ∙ sinଶ 𝜃 

𝜏௫௬ = 𝜏௬௫ = 𝜎ఏ
௒ ∙ cos 𝜃 ∙ sin 𝜃 

 

Meanwhile, an equibiaxial tensile test yields the following components: 

𝜎௫ =  𝜎௬ =  𝜎௕
௒ 

Eq. 4.2-3 

𝜏௫௬ = 𝜏௬௫ = 0 
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The predicted normalized yield stresses are calculated from the yield function as 

𝜎ఏ೔

௒,௣௥௘
= 𝜎଴

௒,௘௫௣
𝜎௒(𝝈)ൗ  

Eq. 4.2-4 

𝜎௕
௒,௣௥௘

= 𝜎଴
௒,௘௫௣

𝜎௒(𝝈)ൗ  

where the effective stress, 𝜎௒(𝝈), is calculated as proposed by the current yield function, 

with the appropriate stress states of the Cauchy stress tensor, 𝝈, as inputs.  

Using the associate flow rule which considers the gradient of a yield function predictions 

of Lankford constants obtained from uniaxial tensile tests performed at angle 𝜃 to the 

rolling direction can be expressed as [47] 

𝑅ఏ
௣௥௘

=

sinଶ 𝜃
𝜕𝑓(𝝈)

𝜕𝜎௫
+ cosଶ 𝜃

𝜕𝑓(𝝈)
𝜕𝜎௬

− sin 𝜃 cos 𝜃
𝜕𝑓(𝝈)
𝜕𝜏௫௬

𝜕𝑓(𝝈)
𝜕𝜎௫

+
𝜕𝑓(𝝈)

𝜕𝜎௬

 Eq. 4.2-5 

 

In the experimental data used for calibration in this thesis, the biaxial strain ratio was 

obtained by Dimitry Vysochinskiy from disc compression tests – a method to 

experimentally test the biaxial strain ratio which was first suggested in the article 

presenting the Yld2000-2d yield function by Barlat [16]. If the biaxial strain ratio is 

presented as the relationship between the minor and major traverse strain as, 

𝑅௕ =
𝜀ଶ

𝜀ଵ
=

(𝜕𝑓 𝜕𝜎ଶ⁄ )

(𝜕𝑓 𝜕𝜎ଵ⁄ )
≤ 1 Eq. 4.2-6 

consideration regarding the orientation of the major principal strain direction must be 

made, as the above equation does not contain the information of whether the major strain 

is aligned with the sheets rolling direction, 𝑥, or the sheets traverse direction, 𝑦. Therefore 

– for disc compression tests – the biaxial strain ratio is more appropriately described in 

terms of the coordinated aligned with the axis of anisotropy. 
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𝑅௕
௣௥௘

=
൫డ௙(𝝈) డఙ೤⁄ ൯

(డ௙(𝝈) డఙೣ⁄ )
 ൜

< 1 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑎𝑗𝑜𝑟 𝑠𝑡𝑟𝑎𝑖𝑛 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
> 1 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑎𝑗𝑜𝑟 𝑠𝑡𝑟𝑎𝑖𝑛 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑦 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

 Eq. 4.2-7 

Followingly, the predicted values must be compared to the corresponding experimental 

values  

𝑅௕
௘௫௣

= ൜
𝑅௕ 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑎𝑗𝑜𝑟 𝑠𝑡𝑟𝑎𝑖𝑛 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑥 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑅௕
ିଵ 𝑖𝑓 𝑡ℎ𝑒 𝑚𝑎𝑗𝑜𝑟 𝑠𝑡𝑟𝑎𝑖𝑛 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑦 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

 Eq. 4.2-8 

 

Using ratios of stress and traverse strains from tests of equibiaxial tension as well as 

uniaxial tensile tests at different angles to the rolling direction, the error function as 

presented in Eq. 4.2-1 takes the form 

𝑒𝑟𝑟 =  𝑒𝑟𝑟ఙ + 𝑒𝑟𝑟ோ 

Eq. 4.2-9 

𝑒𝑟𝑟ఙ = ෍ ൭
𝜎ఏ೔

௒,௣௥௘
− 𝜎ఏ೔

௒,௘௫௣

𝜎ఏ೔

௒,௘௫௣ ൱

ଶ

௜

+ ቆ
𝜎௕

௒,௣௥௘
− 𝜎௕

௒,௘௫௣

𝜎௕
௒,௘௫௣ ቇ

ଶ

 

𝑒𝑟𝑟ோ = ෍ ൭
𝑅ఏ೔

௣௥௘
− 𝑅ఏ೔

௘௫௣

𝑅ఏ೔

௘௫௣ ൱

ଶ

௜

+ ቆ
𝑅௕

௣௥௘
− 𝑅௕

௘௫௣

𝑅௕
௘௫௣ ቇ

ଶ

 

where 𝜃௜ is the uniaxial tensile tests direction relative to the sheets rolling direction, and 

the superscripts 𝑝𝑟𝑒 and 𝑒𝑥𝑝 refers to predicted and experimental values of the current 

entities, respectively. It can be useful to express all yield stresses as normalized by the 

yield stress in the reference direction, 𝜎଴
௒,௘௫௣. The error function is minimized by using 

any numerical solver capable of minimizing non-linear functions by changing all 

anisotropy variables simultaneously.  

Three calibration programs were made by the author during the work on this thesis with 

the aim to calibrate the two linear transformation-based anisotropic yield functions 

Yld2000-2d and Yld89. The programs were made in Excel by establishing the 

mathematical description of the yield functions and their derivatives, as well as 

addressing all mathematical singularities. While both functions were calibrated through 

the minimization of the sum of squared errors (MSSE)-method in their respective 



73 
 

programs, the Yld89-function was calibrated in a third program by the semi-analytical 

approach proposed in the original article by Barlat and Lian [5]. 

 

4.2.2 Hill48 calibration 

To calibrate the quadratic anisotropic yield criterion Hill48, experimental values 

presented in the previous chapter based on experiments conducted by Vysochinskiy [10] 

were used. Although several tests were performed in the study of Vysochinskiy, only 

three data points are needed to calibrate the Hill48 yield function, namely the traverse 

strain ratios at 0° and 90° angle to the rolling direction, 𝑅଴ and 𝑅ଽ଴, along with the flow-

stress ratio, 𝑟ఏ,  from the specimen with 𝜃 = 45.  

Using the experimentally obtained data points, the Hill’s constants for plane stress, along 

with the formulations of the anisotropic coefficients as requested for input by the FEA-

software Abaqus/CAE, were calculated as presented in the theory chapter on Hill48. The 

fully analytical method constrains the yield function to the three provided data points. 

Thus, the model perfectly coincides with experimental values for these configurations, 

but for other configurations, the predicted flow-stress ratios and Lankford constants are 

free to deviate from the ones measured in experiments. The anisotropy coefficients are 

presented in the following table, followed by plots which display the characteristics of 

the identified plasticity model. 

 

Table 4-5: Hill48 anisotropy coefficients for AA6016-T4. 

  Hill’s constants  Abaqus/CAE input 

Hill48 𝑭 0.3956 𝑹𝟏𝟏 1.0000 

 𝑮 0.5925 𝑹𝟐𝟐 1.1159 

 𝑯 0.4075 𝑹𝟑𝟑 1.0060 

  𝑵 1.5032 𝑹𝟏𝟐 0.9989 
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a) b) 
 

Figure 4-7: a) Experimental and Hill48-predicted flow-stress ratios for AA6016-T4 as 
functions of the angle to the rolling direction. θ.  b) Experimental and Hill48-predicted 
traverse stress ratios for AA6016-T4 as functions of the angle to the rolling direction. 

 
 

  

a) b) 

 
Figure 4-8: a) Identified Hill48 yield loci for AA6016-T4 plotted in the space of 𝜎௫, 𝜎௬ and 

𝜏௫௬. b) Comparison of identified Hill48 yield surface for AA6016-T4 to the isotropic 

formulation. 

 

Fig. 4-7 displays the plots of flow-stress ratios and Lankford constants predicted by Hill48 

along with the experimental values. The flow-stress ratio at 𝜃 = 0 by definition is equal 
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to the experimental value, and the value for 𝜃 = 45 is constrained to the experimental 

value through the analytical calibration. From this, the model captures the flow-stress 

variation well for the lower angles but overshoot the predicted stresses as 𝜃 approaches 

the traverse direction of the sheet. The predicted Lankford constants, 𝑅ఏ, are constrained 

to the experimental values at 𝜃 = 0 and 90 through the analytical calibration. For the 

angles in between, the model is not at all capable of predicting the experimental values.  

As the Hill48 yield criterion reduces to the von Mises criterion, one could naively imagine 

that a calibration of the anisotropic yield function to a material with isotropic yield 

characteristics would give Hill’s constants which reproduces the isotropic characteristics 

of the material. Instead, the Hill48 yield function calibrated from Lankford constants 

gives severe anisotropic characteristics although calibrated to a material which from 

experiments is shown to have rather symmetrical yield strengths in rotation. This is in 

compliance with what is described in the literature about using similar quadratic yield 

functions to describe the behaviour of metals with face-centred cubic (FCC) crystal 

structure [55]. 

As plenty experimental data for AA6016-T4 is provided through the mentioned 

experimental program by Dimitry Vysochinskiy, the Hill48 yield function could have 

been calibrated in a minimized sum or squared errors-approach as described in the chapter 

Calibration methods. Though this would probably have provided a fairer comparison of 

the Hill48 to the other yield function examined in this thesis, this effort was not made as 

the literature suggests that quadratic yield functions are not suitable to describe the 

plasticity characteristics of aluminium alloys. 

 

4.2.3 Yld89 calibration 

Three different approaches were evaluated when calibrating the Yld89 yield function. 

First, the semi-analytical approach suggested by Barlat and Lien in the original article [5] 

was carried out. The method, described in detail in Ch. 3.1.2, uses only three experimental 

datapoints for calibration, namely the traverse strain ratios from uniaxial tensile tests, 𝑅ఏ, 

with angles to the longitudinal axis 𝜃 at 0, 45 and 90 degrees to the sheets rolling 

direction.  
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The second approach, later referred to as MSSE, was to numerically calibrate through the 

minimization of a function of squared errors as described in the chapter on calibration 

methods. In the original article by Barlat and Lian [5], the relationship 𝑎 = 2 − 𝑐 is 

specified. From the understanding of the author, there is nothing obvious in the article’s 

proof which indicates that a violation of this relationship can yield loss of convexity for 

the function. Thus, a calibration considering all four anisotropy coefficients 𝑎, 𝑐, ℎ and 𝑝 

as free parameters as seen done by Reyes et al. [6] can provide a better fit to experimental 

data. However, because obeying the relationship between 𝑎 and 𝑐 seems to be the normal 

in the literature, the proposed relationship was obeyed and thus only three of the four 

anisotropy the three variables were subjected to calibration. 14 data points – both traverse 

strain ratios, 𝑅ఏ, and flow-stress ratios, 𝑟ఏ, from all seven uniaxial tensile tests – were 

used for the calibration of the three anisotropy coefficients. The yield function exponent 

𝑀 = 8 was used, as is conventional for FCC metals.  

The third calibration approach later referred to as weighted MSSE, was identical the 

previous, except a weighing among the squared errors was added. When considering the 

influence of discrepancies in the results among parallel experimental test on the yield 

function, the traverse strain ratios, 𝑅ఏ, is seen to dominate the calibration. To address this, 

a weighting of the error function is common. The weighting of traverse strain ratios by 

the exponent 1/(𝑤 − 1) , as used by Reyes et al. [6], was therefore adopted. For the 

weighted MSSE, 𝑤 = 𝑀 was used, while 𝑤 = 2 was used for the non-weighted MSSE. 

The error function used to calibrate Yld89 takes on the following form. 

𝑒𝑟𝑟 =  ෍

⎝

⎛൭
𝜎ఏ೔

௒,௣௥௘
− 𝜎ఏ೔

௒,௘௫௣

𝜎ఏ೔

௒,௘௫௣ ൱

ଶ

௜

+ ൮
ቀ𝑅ఏ೔

௣௥௘
ቁ

ଵ/(௪ିଵ)

−  ቀ𝑅ఏ೔

௘௫௣
ቁ

ଵ/(௪ିଵ)

ቀ𝑅ఏ೔

௘௫௣
ቁ
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Eq. 4.2-10 

with  𝜃௜ = 0, 15, 30, 45, 60, 75 and 90.  
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Table 4-6: Yld89 anisotropy coefficients for AA6016-T4 (with M = 8) 

  Semi-analytical MSSE (𝑤 = 2) Weighted MSSE (𝑤 = 𝑀) 

Yld89 𝒂 1.0905 1.1072 1.1996 

 𝒄 0.9095 0.8928 0.8004 

 𝒉 0.8963 0.9433 1.0160 

 𝒑 0.8429 0.8668 0.9655 

 

  

a) b) 

 
Figure 4-9: Experimental and Yld89-predicted flow-stress ratios and traverse stress ratios 

for AA6016-T4 as functions of the angle to the rolling direction, 𝜃. The different lines 
represent the different calibration methods. 

 

The plots in Fig. 4-9 shows the comparisons between experimental values and values 

predicted by the different calibration method of Yld89. As the semi-analytical calibration 

constrains the model to three of the experimental traverse strain ratio-values, the 

description of the experimental values of this quantity is very good – however, artificially 

high ratios of flow-stresses are produced. The plain MSSE-approach also seems to 

capture the nature of the Lankford constant to a respectable good accuracy, but also this 

approach yields a false additional flow-stress when 𝜃 differs from zero. The weighted 

MSSE-approach is less successful in capturing the traverse strain ratios, but with a larger 

contribution of flow-stress ratio in the error function, the calibration yields a plasticity 

model which quite accurately describes the weak anisotropy of aluminium alloy AA6016-

T4.  
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a) b) 

 
Figure 4-10: a) Identified Yld89 yield loci for AA6016-T4 plotted in the space of 𝜎௫, 𝜎௬ and 

𝜏௫௬. b) Comparison of identified Yld89 yield surface for AA6016-T4 to the isotropic 

formulation. 
 

As a concluding remark, the Yld89-model seems to describe the plasticity of aluminium 

alloy AA6016-T4 significantly better than the quadratic Hill48 yield function. However, 

the accuracy in one of the two examined quantity seems to be obtained at the expense of 

the other. Therefore, consideration must be taken of whether a weighting of the two 

quantities should be used on not.  

 

4.2.4 Yld2000-2d calibration 

In the original article by F. Barlat presenting Yld2000-2d [16] the eight independent 

coefficients 𝛼ଵ to 𝛼଼, which fits the Yld2000-2d criterion to capture the anisotropic yield 

characteristics of a material, are suggested to be simultaneously found from a numerical 

procedure. As with Yld89, this was done through minimization of an error function 

describing the sum of squared errors between the experimental and predicted descriptions 

of the same quantities (MSSE). 

From the original article’s suggestion, eight data points in the form of flow-stress ratios, 

𝑟ఏ, and Lankford constants, 𝑅ఏ, are needed for the calibration.  
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Six data points are obtained through measurements from uniaxial tensile test-specimens 

carved at 0°, 45° and 90° to the rolling direction. Because these experimental quantities 

were available for 𝜃 = 0°, 15°, 30°, 45°, 60°, 75° and 90° to the rolling direction, 14 

experimental data points from uniaxial tensile tests were used for the calibration. 

The two additional datapoints are suggested to be the same two quantities obtained from 

equibiaxial tension. In the article, Barlat suggests the traverse strain ratio from equibiaxial 

tension, 𝑅௕, to be obtained from a disc compression test – which is what was conducted 

by Dimitry Vysochinskiy to obtain the value presented in the chapter Experimental 

calibration data. The biaxial flow-stress ratio, 𝑟௕, is typically obtained by performing a 

bulge test, where a clamped circular freestanding part of the sheet metal is subjected to a 

pressurized fluid on one side, while the resulting bulge on the opposite side is monitored 

[48]. As such a measurement wasn’t performed in the experimental program of 

Vysochinskiy, the data point was set to the isotropic value of 1. Thus, a total of 16 data 

points were used to calibrate the eight anisotropy coefficients. The exponent, 𝑀, was set 

to 8, as has proved to be a good fit for FCC metals. 

In the calibration program that was written for this task by the author, two different 

calibrations were performed by the MSSE-method. First, a calibration where all errors 

were treated equivalently was performed. Then – as for the Yld89-calibration – the 

weighting of traverse strain ratios by an exponent of 1/(𝑤 − 1), as used by Reyes et al. 

[6], was used. For the weighted MSSE, 𝑤 = 𝑀 was used, while 𝑤 = 2 was used for the 

un-weighted MSSE. The error function is presented in Eq. 4.2-11, while Table 4-7 

presents the anisotropy coefficients obtained from calibration. 

𝑒𝑟𝑟 =  𝑒𝑟𝑟ఙ + 𝑒𝑟𝑟ோ  
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 Eq. 4.2-11 
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Table 4-7: Yld2000-2d anisotropy coefficients for AA6016-T4 (with M = 8). 

  MSSE  (𝑤 = 2) Weighted MSSE  (𝑤 = 𝑀) 

Yld2000-2d 𝜶𝟏 1.0328 1.0178 

 𝜶𝟐 1.1171 1.1508 

 𝜶𝟑 1.0650 1.0554 

 𝜶𝟒 1.0787 1.0915 

 𝜶𝟓 1.1135 1.1205 

 𝜶𝟔 1.0843 1.1008 

 𝜶𝟕 1.0159 1.0134 

 𝜶𝟖 1.2822 1.2380 

 

  

a) b) 

 
Figure 4-11: Experimental and Yld2000-2d-predicted flow-stress ratios and traverse stress 
ratios for AA6016-T4 as functions of the angle to the rolling direction, 𝜃. The different lines 

represent the different calibration methods. 
 

 

Comparisons between experimental values and values predicted by the two methods used 

to calibrate Yld2000-2d are displayed plots in Fig. 4-11. Compared to the two previously 

addressed yield functions, the Yld2000-2d with its eight anisotropy components manages 

to reproduce the experimental results superiorly. Both the plain MSSE and the weighted 

MSSE yields traverse strain ratios with comparable accuracy to the semi-analytical and 

non-weighted calibrations of Yld89. At the same time, both calibrations described the 
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flow-stress ratios with similar or better precision than the weighted MSSE-calibrated 

Yld89 yield function.  

  

a) b) 

 
Figure 4-12: a) Identified Yld2000-2d yield loci for AA6016-T4 plotted in the space of 𝜎௫, 𝜎௬ 

and 𝜏௫௬. b) Comparison of Identified Yld2000-2d yield surface for AA6016-T4 to the 

isotropic formulation. 

 
 

4.3 Hardening calibration 

Coefficients which calibrates four different hardening functions, namely the Power law, 

the Ludqik’s law and the one- and two-term Voce hardening rule, to AA6016-T4 

aluminium alloy is presented in this chapter. While the parameters for the Power law and 

the two-term Voce rule were presented in the Ph.D.-thesis of Dimitry Vysochinskiy [10], 

the Ludwik’s law and the one-term Voce rule were additionally calibrated by the author 

of this thesis to the very same experimental data.  

The calibrations were performed by numerically minimizing the sum of squared 

discrepancies between the respective work hardening functions and the true stress vs. 

plastic strain curves obtained from the four uniaxial tensile tests with longitudinal axis 

parallel to the reference rolling direction. Only data from strains beyond the onset of yield 

at 𝜀௧ = 0.002 were considered in the fitting. The hardening parameters are presented in 
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Table 4-8, while Fig. 4-13 displays the fitted curves along with the experimental data 

points from one of the uniaxial tensile tests (UT0-1).  

 

Table 4-8: Hardening coefficients for AA6016-T4 

Power law (from Vysochinskiy [10])  

𝑲 𝒏    

[MPa]     

516.3 0.298    

     

Ludwik’s law 

𝝈𝟎 𝑲 𝒏   

[MPa] [MPa]    

95.4 404.45 0.38   

     

One-term Voce rule 

𝝈𝟎 𝑸𝑹𝟏 𝑸𝑹𝟐   

[MPa] [MPa] [MPa]   

142.6 207.15 1927.27   

     

Two-term Voce rule (from Vysochinskiy [10]) 

𝝈𝟎 𝑸𝑹𝟏 𝑸𝑹𝟐 𝚯𝑹𝟏 𝚯𝑹𝟐 

[MPa] [MPa] [MPa] [MPa] [MPa] 

139.0 44.26 171.93 1070.93 1259.17 

 

 

The hardening curves for small values of the effective plastic strain is displayed in Fig. 

4-13.b). The comparison between the different hardening models and the experimental 

results shows that the three hardening models which include the yield stress term, 𝜎଴, all 

manage quite well to replicate the experimental hardening curve, while the Power law 

curve to some extent deviates from the measurements. For effective plastic strains 

exceeding the fracture strain of the uniaxial tensile specimen, the Power law and the 

Ludwik’s law predicts a more aggressive work hardening-evolution than the two Voce-
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models. The two curves begin to deviate at the strain level of the last experimental data 

point, which seems to be placed between the stress values predicted by the two models. 

 

  

a) b) 

Figure 4-13: a) Comparison of the four fitted hardening curves to the experimental data 
points from UT0-1. b) Expanded view of the work hardening models for small strains, 

displaying the discrepancies between models and experiments for small effective plastic 
strains. 

 

Although the Voce hardening rule is established as the favourable model to describe the 

work hardening of aluminium alloys, its saturation at large plastic strains is a known issue. 

In such cases, a modification to the Voce function by a constant stiffness which overrules 

the original function when the Voce stiffness drops below it can be used [8]. Therefore, 

an evaluation of whether such an extension is appropriate or not should be made based 

on the levels of effective plastic strains at fracture for the assessed model. 

 

4.4 Through-thickness shear instability criterion 

The through-thickness shear instability criterion was calibrated to each material model in 

a one-step inverse modelling procedure by performing a Finite Element analysis in LS-

DYNA of one element in the patch-model with dimensions 1.2 mm by 1.2 mm. 
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The model was calibrated using the equations as presented in the chapter addressing the 

theory chapter on the TTSI-criterion. As the major strain directions of the PST tests were 

in the sheets rolling direction so that 𝜃 = 0, the principal axis of stress coincide with the 

principal axis of anisotropy. Thus, the angle of the inclination of the maximum shear 

plane, 𝜑, can be calculated for an isotropic material by the same equation presented by 

Bressan & Williams [7] in the original article anisotropic materials as shown by Brunet 

& Clerc [50]. With fracture strains for the PST test at  𝜀௫̅,௉ௌ்
∗ = 0.6237 and 𝜀௬̅,௉ௌ்

∗ =

−0.1323, the inclination of the maximum shear plane, 𝜑 = 48.41°.  

 

A non-local proportional strain corresponding to the average strain path of the six plane 

strain tension (PST) tests as presented by Vysochinskiy [10] was applied to the element 

in the Finite Element analysis. The time at which the FE-analysis reached the average 

fracture strains from the experimental PST tests was recorded, and the value of the major 

stress component 𝜎ଵ
∗ = 𝜎௫

∗ was read for each individual plasticity model. From this, the 

critical shear stress, 𝜏௖௥, as predicted by the TTSI-model was calculated for the different 

plasticity models using Eq. 3.3-7.  

 

Table 4-9: Critical values of the TTSIC calibrated for Yld2003 and different calibrations of 
Yld89. 

 𝝉𝒄𝒓 

[MPa] 

  

Yld89 – Semi-analytical 180.29   

Yld89 - MSSE 180.53   

Yld89 – Weighted MSSE 179.35   

Yld2003 – LS-DYNA calibration 179.83   

 

 

As the TTSI-criterion is calibrated for use in the LS-DYNA material model which is 

referred to by the program as 135-WTM-STM, the critical shear stress was only calculated 

for the yield functions Yld89 and Yld2003, as these are the only yield functions available 

in this LS-DYNA material model. The critical values are presented in Table 4-9. As 

displayed, the discrepancies between different values are very small. The critical values 
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for Yld2003 lie in the interval of discrepancies between the different calibrations of 

Yld89. 

 

4.5 Roping model calibration 

The fitting of the sum of sine waves in the *PERTURBATION_SHELL_THICKNESS-

keyword is performed using the Sum of Sines Models-tool in MATLAB R2020a. The 

tool allows fitting the sum of up to eight sine waves to a provided set of data describing 

the detailed distribution of thickness variations along one axis. As the roping effect 

mainly produces variation in thickness along the traverse direction, a unidirectional model 

was used. The formulation used in MATLAB takes the following form:  

𝑝(𝑦) =  ෍ 𝑎௜ sin (𝑏௜𝑦 + 𝑐௜)

௡

௜ୀଵ

 𝑓𝑜𝑟 1 ≤ 𝑛 ≤ 8 

 

Eq. 4.2-12 

From this, the fitted parameters 𝑎௜, 𝑏௜ and 𝑐௜, which produces an approximated 

perturbation field from the sum of harmonic perturbations, is related to the input variables 

requested in LS-DYNA as  

𝐴𝑀𝑃𝐿௜ =  𝑎௜ 

Eq. 4.2-13 
𝑌𝑊𝐿௜ =  

2𝜋

𝑏௜
 

𝑌𝑂𝐹𝐹௜ =  
𝑐௜

𝑏௜
 

 

In this study, very limited information was available about the nature of the roping 

phenomenon of the assessed aluminium sheets. Thus, information about the distance 

between valleys formed by roping was taken from visual inspections on the effective 

strain map from DIC for the last image before fracture, presented by Vysochinskiy [10]. 

Using the sample which most clearly showed the localisations of strains, namely the 

sample labelled as MK160-90-2 in Vysochinskiy’s study, (see Fig. 4-14) the 

approximated distance between roping valleys was roughly measured to be 12.5 mm in 
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the last image prior to fracture. With the reported non-local logarithmic fracture strain at 

0.2870 for the sample, the initial distance was calculated to be approximately 8.9 mm. 

 

 

 
Figure 4-14: Effective strain map at the last frame prior to fracture of the sample labelled as 
MK160-90-2 of virgin AA6016-T4 (ID=6). Figure rendered from ‘Formability of aluminium 

alloy subjected to pre-strain by rolling’ by D. Vysochinskiy [10] with permission from the 
author. 

 
 

From this approximated distance between grooves, along with the mean measured 

thickness of 1.496 mm and standard deviation of 0.004 mm from thickness measurements 

performed in the experimental study, a fictive thickness profile was established which 

could be used to fit a four-term sine wave roping perturbation model to. Fig. 4.15 shows 

the fictive perturbation measurements along with the fitted four-term sine wave model, 

while Table 4-10 displays the amplitude, 𝐴𝑀𝑃𝐿௜, wavelength, 𝑌𝑊𝐿௜, and off-set, 𝑌𝑂𝐹𝐹௜, 

for each of the four harmonic functions. 

 

 

 

Table 4-10: Fitted parameters of the four-term sine wave roping perturbation. 

 𝑨𝑴𝑷𝑳𝒊[𝒎𝒎] 𝒀𝑾𝑳𝒊 [𝒎𝒎] 𝒀𝑶𝑭𝑭𝒊 [𝒎𝒎] 

𝑖 = 1 0.001681 4.46249 3.382102 
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𝑖 = 2 0.001298 2.976402 -0.6920891 

𝑖 = 3 0.004363 8.907266 -2.266799 

𝑖 = 4 -5.2460E-6 8.824698 -5.549157 

 

 

Figure 4-15: The scatter of dots represented the fictive thickness profile, which is based on 

the measured mean thickness and standard deviations, along with a visual inspection of 

effective strain plots from DIC. The curve represents the four-term sine wave model fitted to 

the fictive profile. 
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5 Non-linear finite element analysis in LS-DYNA 

Several Finite Element Analysis-software allows for multiple pre-programmed options 

for the program formulation. Some of the key components of the finite element are the 

keywords which describe the different parts of the constitutive behaviour of the material. 

A large number of different models aiming to describe the behaviour of materials for 

different purposes have been presented in the literature throughout the years – some more 

successful than others. Thus, the number of different pre-programmed material models 

available in the various FEA-software differ. For solids such as aluminium, the material 

description might include the following; 

- Elasticity: 

o Elastic stiffness 

o Poisson ratio 

- Plasticity: 

o Yield function 

o Flow rule 

o Hardening  

- Damage and failure: 

o Damage initiation criterion 

o Damage evolution 

o Failure criterion 

In describing these different features of the material model, some pre-programmed 

material models exclude the use of others. 

In addition to the pre-programmed modules, many advanced FEA-programs allows the 

user to interact with the finite element code. This way, material models – or other features 

which are not implemented in the software originally – may be programmed by the user. 

Such operations might require somewhat advanced knowledge about the current 

programming language used, in addition to extended program licenses. As user-

programmed material models were considered beyond the scope of this thesis, only the 

pre-programmed models were used to conduct the analyses.   
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In preliminary work of this study, the multi-purpose finite element-software Abaqus/CAE 

was used to establish a model which could recreate the behaviour of AA6016-T4. 

However, due to the lack of material models suitable for aluminium alloys among the 

commercially available pre-programmed modules in Abaqus/CAE, a switch was made to 

the Livermore Technologies produced FEA-software LS-DYNA, which was used to 

conduct analyses in this study. 

Seeking to explore if the constellations of some of the material models describing 

plasticity, local necking and fracture accompanied with the four-term sine wave roping 

model were able to describe the behaviour of AA6016-T4 observed in the experimental 

program by Dimitry Vysochinskiy [10], a model was established in the finite element 

method program LS-DYNA.  

The plane stress material model referred to in the program as WTM_STM, short for Weak 

Texture Model and Strong Texture Model, was used. The pre-programmed and 

commercially available module is an anisotropic viscoplastic material model which 

adopts two of the anisotropic yield functions previously addressed in this study, namely 

Yld89 by Barlat and Lian [5] (WTM) and Yld2003 (STM) by Aretz [17]. While the WTM 

requires its input of the form of the four Yld89 anisotropy coefficients 𝑎, 𝑐, ℎ and 𝑝, the 

STM allowed input for Yld2003 both as the eight coefficients of anisotropy 𝑎ଵ to  𝑎଼, and 

as direct experimental values of 𝑟଴, 𝑟ସହ, 𝑟ଽ଴, 𝑟௕, 𝑅଴, 𝑅ସହ, 𝑅ଽ଴ and 𝑅௕ – conveniently, as 

Yld2003 was not included in the calibration program in this thesis. 

Fig. 5-1 displays the flow-stress ratios and traverse strain ratios as functions of the angle 

to the rolling direction, θ, predicted by Yld2003 calibrated automatically in LS-DYNA. 

The graph is compared to the predictions by the weighted MSSE-calibrated Yld2000-2d 

yield function, which was considered to be the most suiting of the calibrated model in the 

previous chapter. From visual inspection of the figure, Yld2003 seems to provide a fit to 

experiments comparable to that of Yld2000-2d.  

According to the LS-DYNA material manual [56], files with data to plot of the yield loci 

were supposed to be generated when using the automatic calibration of Yld2003. 

Unfortunately, the generated files contained zero information. As the eight anisotropy 

coefficients are not generated, and no information about the used calibration method is 
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provided, a plot of the automatically calibrated Yld2003 yield surface is missing in this 

thesis. Instead, the input data used is summarized in table 5-1 for verifiability reasons. 

 

  

a) b) 

 
Figure 5-1: Experimental and Yld2003-predicted flow-stress ratios and traverse stress ratios 
for AA6016-T4 as functions of the angle to the rolling direction, 𝜃, calibrated automatically 

in LS-DYNA. 
 

 

Table 5-1: LS-DYNA input values for automatic calibration of the Yld2003 yield function, based 
on experiments conducted by Vysochinskiy [10]. 

 𝒓𝟎 𝒓𝟒𝟓 𝒓𝟗𝟎 𝒓𝒃 𝑹𝟎 𝑹𝟒𝟓 𝑹𝟗𝟎 𝑹𝒃 𝑴 

LS-DYNA 

notation 
S00 S45 S90 SBB R00 R45 R90 RBB 2K 

 1.000 0.9986 0.9910 1.000 0.6880 0.4250 1.030 0.7850 8 

 

In addition to the plasticity models, which are accompanied with the associate flow-rule, 

WTM_STM also incorporates the though-thickness shear instability criterion (TTSIC) for 

the prediction of local necking and the original Cockcroft-Latham criterion (OCLFC) for 

fracture. Accompanied by the material keyword NONLOCAL, a history variable 

describing the state of the non-local instability criterion (NLIC) is supposedly produced 

by the WTM_STM material model [49]. As mentioned in the theory chapters, this history 
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variable describes the relationship between the local and non-local through-thickness 

strain increment, 𝛽௜, was seemingly not produced as output from the analysis as requested. 

Thus, the non-local extremal thickness strain deviation criterion (NLETSDC) – addressed 

in detail in the theory chapters – was established to detect the onset of local necking from 

the available history variables. 

In preliminary runs conducted to validate the FEA-model with the material model 

WTM_STM, the 60 mm by 60 mm patch (further introduced in Ch. 5.2 Forming and 

fracture diagrams from FEA in LS-DYNA) was subjected to equibiaxial strains with the 

two different yield functions available in the model, namely Yld89 (WTM) and Yld2003 

(STM). When displaying the results as colour plots of effective Von Mises stresses, 

unexplainable stress concentrations, structurally aligned in diagonals, were observed 

when using the WTM. Fig. 5-2.a) and b) shows the described stress concentrations with 

50x50 and 70x70 Belytschko-Tsay elements, respectively.  

The two patches were equipped an unperturbed, perfectly even thickness of 1.496 mm. 

As the mysterious interference pattern remained unexplained, a decision to proceed only 

with the Yld2003 yield function as plasticity model. 

 

 

 

 

a) b) 

 
Figure 5-2: Unexplained stress concentrations which emerged when using the weak texture 
model in the WTM_STM material keyword in LS-DYNA with input from the weighted MSSE-

calibration of Yld89. a) 50x50 Belytschko-Tsay shell elements. b) 70x70 Belytschko-Tsay 
shell elements. 
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5.1 Uniaxial tensile tests 

To assure the correct appliance of the WTM_STM material keyword in LS-DYNA, an 

attempt was made to approximately simulate the experimental uniaxial tensile tests 

performed by Vysochinskiy. In the experimental program, uniaxial tensile tests were 

performed at seven different angles to the rolling direction, 𝜃, and the notation UT𝜃 was 

to address the different tests. On seven identical FEM-models, the material model was 

assigned to a local coordinate system which was rotated at the same seven different angles 

to the specimen’s longitudinal direction. 

Modelling the 12.5 mm wide and 70 mm long gauge of the dog-bone type specimen 

(which geometry is presented in the Ch. 4.1.1), 13x70 Belytschko-Tsay shell elements 

with five integrations points in the through-thickness direction was used after 

convergence had been verified in a mesh refinement procedure. The shell thickness was 

set to 1.496 mm which corresponds to the mean of measurements as presented in the 

experimental report. 

As the main aim of the analysis was to validate the finite element model prior to further 

analyses, no attempts were made to model phenomena unique to uniaxial tensile tests. 

While the OCLFC and the TTSIC were implemented for the sake of curiosity, no attempts 

were made to address the phenomenon of diffuse necking. Instead, attention was aimed 

at the anisotropy of the plasticity model and strain hardening.  

 

 

Figure 5-3: Field plots of effective Von Mises stress at five different stages of the analysis of 
the UT0-specimen. 
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Field plots of the effective Von Mises stress from a nodal averaging scheme at five 

different instances for the simulation of the UT0-specimen is illustrated in Fig. 5-3. The 

fourth frame from the top shows the last frame prior elements are deleted due to TTSIC, 

while the fifth frame shows the state of the modelled specimen right after fracture. 

To validate the plasticity model, the effective strains to the effective Von Mises stress 

was plotted for the most centred of the elements which first were deleted from the fracture 

criteria. Fig. 5-4 displays the comparisons of the different simulations.  

 

 

Figure 5-4: Effective stresses vs. effective plastic strains from the FE-analysis of uniaxial 
tensile tests with the longitudinal axis at different angles to the rolling direction. 

 

With the moderate anisotropy of stresses for the AA6016-T4, the global work-hardening 

curves are not suited to validate the FE-model, and directional stress differences at low 

strains were therefore further investigated. With time intervals between result outputs 

being 0.05 seconds, the interpolated values for effective Von Mises stress at effective 

plastic strains of 0.0014 was used to approximately calculate the flow-stress ratios, as can 

be seen in Fig. 5-5. As evident from the figure, the approximate calculations of flow-

stress ratios from the FE-model expectedly coincided with the predictions of the 

underlying model, verifying the correct appliance of the material model in the FEA-

model. 
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a) b) 

 

Figure 5-5: a) Magnification of work hardening plots from UT simulations to display values 
at low plastic strains. b) Flow-stress variation of Yld2003 and values read from LS-DYNA 

simulations of uniaxial tensile tests. The values were calculated from the interpolated value at 
effective plastic strains of 0.0014. 

 

Comparisons of the individual simulations to their corresponding experimental true stress 

to true strain curves are furtherly displayed in Fig. 5-6. The isotropic two-term Voce 

hardening law fitted by Vysochinskiy [10] to the UT0-data seems to somewhat accurately 

describe the work hardening observed in the differently angled specimens. The 

observation made in the calibration chapter that the Voce hardening seems to predict a 

continuation of the hardening curve which is somewhat flatter than what can be imagined 

by visually judging the fit is furtherly confirmed. 

a)  b) 
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c) d) 

e) f) 

 
g) 
 

Figure 5-6: Comparisons between experimental and FEA work diagrams from uniaxial 
tensile tests. 

 



96 
 

5.2 Forming and fracture diagrams from FEA in LS-DYNA 

5.2.1 FEA-model 

To construct the FEA-generated forming and fracture limit diagrams in LS-DYNA, a 60 

mm by 60 mm squared patch of Belytschko-Tsay shell elements was subjected to 15 

different proportional biaxial deformations. The evenly distributed thickness of 1.496 

mm, corresponding to the mean values from measurements, were represented by five 

through-thickness integration points. The four individual edges were constrained in every 

direction except for in the direction of the edges themselves. A controlled displacement 

was then assigned to the right and the top edge in their normal directions to create the 

non-local, proportional, biaxial strain paths. 

Different element sizes were explored to assure the model’s convergence. For this, the 

Yld2003 plasticity model was used along with the TTSIC and the OCLFC. Meshes with 

50x50, 70x70 and 90x90 elements were used to model the 60 mm by 60 mm patch with 

even thickness of 1.496 mm, subjected to plane strain tension in the rolling direction. By 

plotting the effective mises stresses vs. the effective plastic strains for one of the elements 

which were first deleted due to fracture for the three different models, only a negligible 

difference was observed. The three models also experienced element removal from the 

TSSIC at nearly identical strains. Meanwhile, the CPU time of the analysis was increased 

2.5 times when the mesh was refined to 70x70, and 5.4 times for the 90x90 mesh. 
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Figure 5-7: Boundary conditions of the patch model subjected to biaxial strains paths for the 
construction of FEA-generated forming and fracture limit diagrams. The rolling supports 

should be considered continuous along the edges. 

 

Along with the Yld2003 yield function, three different criteria to simulate local necking 

and fracture were implemented to see if the models could recreate experimental limits. 

Through the material keyword WTM_STM, TTSIC and OCLFC were implemented as 

uncoupled criteria where satisfaction of either of the criteria in 3 out of the 5 through-

thickness integration points in an element caused the element to be removed from the 

model. As the NLETSDC was not implemented into the material model, the fulfilment of 

the criterion was detected through manually monitoring the through-thickness strains. 

When either of the criteria was satisfied, the displacements in the two directions were 

recorded, and the non-local strain values were calculated as the necking or fracture strains. 

 

5.2.2 Non-local extremal thickness strain deviation criterion (NLETSDC) 

The non-local extremal thickness strain deviation criterion which was used as a 

replacement for the established NLIC, as LS-DYNA seemingly failed to output the 

requested non-local history variable used in the criterion. The NLETSDC was first 

implemented with the four-term sine wave shell thickness perturbation fitted to the 

artificial thickness section presented in Ch. 4.5, which was generated based on the 

thickness measurements presented by Dimitry Vysochinskiy [10], with a mean thickness, 
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𝑡̅, of 1.496 mm and standard deviation, SD, of 0.004 mm. The thickness perturbation 

serves as an imperfection which naturally triggers strain localizations in the weaker 

sections in the patch when the equilibrium condition is imposed. As neither of the non-

local  

To test the unexplored criterion, a sensitivity analysis of the critical extremal thickness 

strain ratio, 𝜉௖௥. On the unscaled roping perturbation model, forming limit curves were 

plotted with the critical values set to 1.5, 2.0 and 3.0. The different curves, displayed in 

Fig. 5-8.a), shows that variations in critical value yield small differences in forming limits. 

The even and predictable shape of the forming limits produced by the NLETSDC 

indicates that the criterion is capable of producing stable results for the model. For further 

analysis, 𝜉௖௥ = 2.0 was used as the critical value. 

With the four-wave sine wave perturbation model unscaled (Sc. = 1.0), i.e. fitted to the 

artificial measurements with the measured thickness standard deviation presented in Ch. 

4.5, the forming limit diagram exhibited moderate anisotropy in the direction of the 

experimental observations.  The two plane strain configurations exhibited forming limits 

close to the measured values but were clearly overestimated in both the rolling and 

traverse direction as strains approached biaxial symmetry. 

Because roping in the form of ridges and valleys in the sheet surface is the manifestation 

of band clusters of grains with the same orientation, the material itself could be assumed 

to have varying material characteristics which are spatially distributed according to the 

sheet thickness. Thus, naive of information about this distribution of plasticity 

characteristics a scaling of the four-wave sine wave perturbation was performed to 

simulate furtherly reduced stiffness, in order to meet the strong anisotropy of forming 

limits as observed in experiments. The scaling was performed by multiplying the 

amplitude of each curve in the four-term sine wave model with a scalar to amplify the 

effect of roping. 
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a) b) 

 
Figure 5-8: a) Sensitivity analysis of the critical extremal thickness strain ratio in the 

NLETSDC. The analysis was carried out on a model with a four-term sine wave roping 
perturbation fitted to the measured mean thickness and standard deviation of sheets subject 
to experiments. b) Forming limit curves for the NLETSDC with different scales of the four-

term sine wave perturbation. 

 

From Fig. 5-8.b), it is evident that the effect of amplifying the roping perturbation model 

yielded a significant reduction in forming limit strains in the sheet’s traverse direction. 

With an amplification six times the perturbation that was fitted to the artificial 

measurements, results from the FEA coincided superbly with forming limits measured 

for configurations where 𝜀்஽ > 𝜀ோ஽. Nevertheless, the forming limit strains were still 

exaggerated by the FEA-model for its symmetric counterpart.  

With roping modelled from the four harmonic functions, no thickness variations are 

introduced in the sheet’s rolling direction. In the perturbation plot generated from white-

light interferometry images by O. Engler presented in Ch. 2.1.1, the alternating valleys 

and ridges were accompanied by unstructured thickness deviations in the rolling 

directions as well. In an attempt to simulate this a FORTRAN-program, which generated 

random unstructured thicknesses perturbations based on a mean thickness and a standard 

deviation, was provided by Torodd Berstad at Structural Impact Laboratory (SIMLab) at 

the Norwegian University of Science and Technology. Each time the random thickness 

perturbation FORTRAN-program is run, different random thickness perturbations are 

generated. 
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As the random perturbation is added of top of the existing four-term sine wave 

perturbation, a rather moderate standard deviation of 0.002 mm was used along with the 

mean thickness of 1.496 mm. A scaling of six, which had proved to display excellent 

coincidence with the experimental local necking strains where 𝜀்஽ > 𝜀ோ஽, was used for 

the four-term sine wave perturbation. Fig. 5-9 shows the comparison of the measured 

thickness perturbation in a 15 % elongated AA6016-T4 sheet as presented by O. Engler 

et al. [24] in a), to the undeformed described FEA-model in b). 

 
 

 

 

 

 

 

 

 

 

a) b)  

 
Figure 5-9: a) Measured thickness perturbation for 15 % elongated AA6016-T4 rendered 
with permission from the 2012 article “Crystal-plasticity simulation of the correlation of 

microtexture and roping in AA 6xxx Al–Mg–Si sheet alloys for automotive applications” by 
O. Engler et al. [24] with permission from the author. © 2012 Acta Materialia Inc. Published 
by Elsevier Ltd. All rights reserved. b) Thickness variation of the FEA-model with four-term 

sine wave perturbation (Sc. = 6) and random perturbation with SD = 0.002 mm. 
 

 

The FLCs produced by the six times amplified four-term sine wave perturbation, with 

and without the random perturbation with SD = 0.002 mm, are compared in Fig. 5-10. 

When the harmonic perturbation was accompanied by the random perturbation, the 

forming limits for strain paths when 𝜀்஽ > 𝜀ோ஽ remained nearly unchanged, while its 

symmetric counterpart predicted drastically reduced necking strains, just on the 

conservative side of the experimentally detected forming limit strains indicated by the 

scattering of crosses. From this, it can be concluded that by introducing the two 
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perturbation models to the finite element analysis, both the shape and magnitudes of 

the experimentally detected forming limit strains can be simulated to good accuracy. 

 
 

 
 

Figure 5-10: Forming limit curve with roping model (amplified six times), with and without 
additional random thickness perturbation with SD = 0.002 mm. The scatter of crosses and 

stars represents necking and fracture strain, respectively. 

 

While the random thickness perturbation generator that was provided by Torodd Berstad 

generates different perturbations each time it is run, the same generation was used for the 

15 different analysis which makes up the FEA-generated forming limit diagram, the same 

initial random thickness perturbation was used, yielding an even curve in biaxial strain 

space. As pointed out by Reyes et al. [6], who used the same random thickness 

perturbation approach was use, it should be noted that this is only one realization of the 

given input. This issue was investigated in the 2009 article by Fyllingen et al. [57] where 

random fields were used to model the spatial thickness variations in a Monte Carlo-

coupled FEA. By varying the smoothness, effective range and the coefficient of variance 

of the random field, the generated stochastic FLD took the form of a rather wide band in 

biaxial strain space. Although the Monte Carlo-simulation is beyond the scope of the 

current study, further analyses with different perturbations generated from the same 
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random perturbation-program should be conducted before a more reliable FEA-generated 

FLD can be presented. 

 

 

 

Figure 5-11: Logarithmic strains in the through-thickness direction, 𝜀௧, at the onset of local 
necking according to the NLETSDC criterion for the analysis with displacement relationship 

𝐷்஽ 𝐷ோ஽⁄ = 0.7270. The FEA-model is implemented with the Yld2003 yield function with 
four-term sine wave perturbation (Sc. = 6) and random perturbation (SD = 0.002). The plot 

displays strain localizations in the direction parallel to major strain. 
 

Table 5-2 displays the registered necking strains and the crack direction relative to the 

rolling direction for the model with both the four-term sine wave perturbation scales six 

times, and the random perturbation with SD = 0.002 mm. In the analysis with 

displacement relationship D୘ୈ Dୖୈ⁄ = 0.7270 (displayed in Fig. 5-11), the orientation of 

the crack was parallel to the rolling direction, i.e. parallel to the direction of major strain. 

The same phenomenon was observed during experiments, but for at a strain configuration 

where the major strain was furtherly dominant.  
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Table 5-2: FEA-generated necking strains and crack orientations relative to RD from the 
NLETSDC with four-term sine wave perturbation (Sc. = 6) and random perturbation (SD = 

0.002). 

Displacement ratio Crack orientation Necking strains 

 
to RD εୖୈ ε୘ୈ 

D୘ୈ Dୖୈ⁄ =  −0.1667 / 0.2409 -0.0465 

D୘ୈ Dୖୈ⁄ =  −0.0500 / 0.2058 -0.0115 

D୘ୈ Dୖୈ⁄ =  0.0000 ⊥ 0.1881 0.0000 

D୘ୈ Dୖୈ⁄ =  0.1667 ⊥ 0.2326 0.0427 

D୘ୈ Dୖୈ⁄ =  0.3250 ⊥ 0.2697 0.0958 

D୘ୈ Dୖୈ⁄ =  0.5000 Undef. 0.2743 0.1465 

D୘ୈ Dୖୈ⁄ = 0.7270 ‖ 0.2046 0.1527 

D୘ୈ Dୖୈ⁄ =  1.0000 ‖ 0.1531 0.1531 

Dୖୈ D୘ୈ⁄ =  0.7270 ‖ 0.1128 0.1521 

Dୖୈ D୘ୈ⁄ =  0.5000 ‖ 0.0778 0.1501 

Dୖୈ D୘ୈ⁄ =  0.3250 ‖ 0.0505 0.1480 

Dୖୈ D୘ୈ⁄ =  0.1667 ‖ 0.0253 0.1429 

Dୖୈ D୘ୈ⁄ =  0.0000 ‖ 0.0000 0.1301 

Dୖୈ D୘ୈ⁄ =  −0.0500 ‖ -0.0074 0.1377 

Dୖୈ D୘ୈ⁄ =  −0.1667 ‖ -0.0306 0.1663 

 

 

5.2.3 Through-thickness shear instability criterion (TTSIC) 

While the non-local criterions describing necking instabilities required initial 

imperfections in the strength of the analyzed specimens to generate physical results, the 

second local necking prediction model investigated in this study is based on the stress 

state and therefore can be used without the introduction of imperfections. Thus, the first 

FE-analysis with the TTSIC a patch with perfect uniform thickness was first carried out 

to explore the effects of plastic anisotropy on the forming limits. Then, the four-term sine 

wave perturbation was introduced with different scaling to the amplitudes of the four 
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waves, aiming to investigate its effects on anisotropy, and whether the criterion was able 

to recreate the necking strains observed in experimental measurements.  

Curves representing necking instabilities predicted by the described models are displayed 

in Fig. 5-12, along with experimental necking strains and fracture strains, respectively 

indicated by crosses and stars.  

Evidently, the model with perfectly uniform thickness was not able to produce the shape 

nor the magnitude of the forming limits from experiments. The model predicted necking 

strains slightly lower than what was observed in the experimental results for strain paths 

in the vicinity of plane strain with zero strains in the traverse. For strain paths approaching 

the equibiaxial axis and traverse strain-dominated configurations displayed overestimated 

limits. Strain paths with low strains in the rolling direction were also overestimated, but 

only moderately.  

In compliance with the observation of Dimitry Vysochinskiy [10] of FLDs generated 

from the MK-model, where the anisotropy of the plasticity of AA6016-T4 encouraged 

anisotropy of forming limits in the opposite direction of what was observed in 

experiments, the finite element simulation predicted the same effect from through-

thickness shear instability. 

The predicted necking strains for strain paths which were nearly equibiaxial or traverse 

strain-dominated were effectively reduced with the introduction of the harmonic 

perturbation. I addition, the introduction of a roping model managed to accurately recreate 

the shape of the forming limit curve, which for the unperturbed model was deviating from 

the experiments. As the different scaling the roping model’s amplitude only affected the 

strain paths where strains in the traverse directions were considerable, roping was 

observed to distinctly affects the anisotropy of necking strains in the direction of what 

was experimentally observed.  

Although the TTSIC slightly underestimated necking strains for the equibiaxial and 

rolling direction strain-dominated strain paths, the model seems to serve as a good but 

slightly conservative criterion to describe local necking when the roping amplitudes were 

scaled six times what was initially fitted to the artificial thickness profile which was based 

on the mean thickness and standard deviation of measurements as described in Ch. 4.5. 
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Because the TTSIC does not require a random perturbation like the one provided from 

the FORTRAN-based program provided by Torodd Berstad for the NLETSDC, the shear-

instability criterion could serve a useful tool for engineers without knowledge of coding, 

to substitute a non-local instability criterion in the detection of local necking limits. 

 

 

 

Figure 5-12: FEA-generated fracture limits from the through-thickness shear instability 
criterion with perfectly uniform thickness and with different scaling to the four-term sine 

wave roping model. The scatter of crosses and stars represents necking and fracture strain, 
respectively. 

 

Table 5-3 shows the registered necking strains and the crack direction relative to RD for 

the model with both the four-term sine wave perturbation scales six times for the TTSIC 

criterion. For pure tension configurations where the major strain was parallel to RD, the 

model showed no significant necking direction. In the analysis with displacement 

relationship Dୖୈ D୘ୈ⁄ = 0.7270 (displayed in Fig. 5-13), multiple local necks were 

produced. The same phenomenon was reportedly observed in several of the samples in 

the experimental program. 
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Figure 5-13: Logarithmic strains in the through-thickness direction, 𝜀௧, at the first frame 
after element deletion by the TTSIC for the analysis with displacement relationship 

𝐷ோ஽ 𝐷்஽⁄ = 0.7270. The FEA-model is implemented with the Yld2003 yield function with 
four-term sine wave perturbation (Sc. = 6). The plot displays the formation of multiple local 

necks as a result of roping. 
 

 

Table 5-3: FEA-generated necking strains and crack orientations relative to RD from the TTSIC 
with four-term sine wave perturbation (Sc. = 6). 

Displacement ratio Crack orientation Necking strains 

 
to RD εୖୈ ε୘ୈ 

D୘ୈ Dୖୈ⁄ =  −0.1667 ⊥ 0.2476 -0.0480 

D୘ୈ Dୖୈ⁄ =  −0.0500 ⊥ 0.2136 -0.0120 

D୘ୈ Dୖୈ⁄ =  0.0000 ⊥ 0.1961 0.0000 

D୘ୈ Dୖୈ⁄ =  0.1667 Undef. 0.2364 0.0435 

D୘ୈ Dୖୈ⁄ =  0.3250 Undef. 0.2390 0.0841 

D୘ୈ Dୖୈ⁄ =  0.5000 Undef. 0.2334 0.1235 

D୘ୈ Dୖୈ⁄ = 0.7270 Undef. 0.1912 0.1425 

D୘ୈ Dୖୈ⁄ =  1.0000 ‖ 0.1446 0.1446 

Dୖୈ D୘ୈ⁄ =  0.7270 ‖ (multiple) 0.1082 0.1460 

Dୖୈ D୘ୈ⁄ =  0.5000 ‖ 0.0756 0.1459 

Dୖୈ D୘ୈ⁄ =  0.3250 ‖ 0.0498 0.1460 

Dୖୈ D୘ୈ⁄ =  0.1667 ‖ 0.0255 0.1439 

Dୖୈ D୘ୈ⁄ =  0.0000 ‖ 0.0000 0.1335 

Dୖୈ D୘ୈ⁄ =  −0.0500 ‖ -0.0075 0.1398 

Dୖୈ D୘ୈ⁄ =  −0.1667 ‖ -0.0310 0.1683 
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5.2.4 Original Cockcroft-Latham fracture criterion (OCLFC) 

While the NLESD/NLIC is based on relationships of strains and strain rates, and the 

TTSIC is only dependent on the current stress state in the material, the original Cockcroft-

Latham – which unlike the two others is a fracture criterion – works as a limit to the 

plastic work performed by the tensile major principle stress, and thus considers the history 

of loading. For the patches subjected to proportional strain paths in this study, this nature 

of the OCLFC is mainly of theoretical importance. Just like the TTSIC, the limit to the 

positive plastic work of the major principle stress does not need any initial imperfections 

to the strength of the analysed component for the critical limit to be reached. 

Thus, the same procedure as with the TTSCI was followed, starting with a patch perfectly 

uniform in the through-thickness directions, before the four-term sine wave roping model 

was introduced with different scaling. In the forming limit diagram presented in Fig. 5-

14, the FEA-generated curves were plotted along with scatters of necking strains and 

fracture strains represented by crosses and starts respectively. Unlike the two necking 

instability criteria, where comparisons to the necking stains are of greatest interest, the 

OCLFC-generated fracture limit curve should naturally be compared to the experimental 

fracture limits 

Even if the ductile fracture criterion describes a different phenomenon, many of the same 

observations made from the corresponding curves produced with the TTSIC were 

recognized in the analysis with the OCLFC as the fracture limit. For the unperturbed 

patch, were the plasticity model was the only source of anisotropy in the model, the 

fracture limit curve displayed anisotropy of opposite nature compared to what was 

observed in experiments. With the introduction of the harmonic perturbation, fracture 

limits in the traverse direction were effectively reduced with different scaling. The 

magnitudes of the predicted fracture strains were undershot for the strain paths in the 

vicinity to the two plane-strain axes, while strains were within the range of experimental 

scatter or larger when approaching the equibiaxial configurations. Due to this – although 

the introduction of roping helped – the original Cockcroft-Latham fracture criterion was 

not able to satisfyingly recreate the shape of the fracture strains. 
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Figure 5-14: FEA-generated fracture limits from the original Cockcroft-Latham fracture 
criterion with perfectly uniform thickness and with different scaling to the four-term sine 

wave roping model. The scatter of crosses and stars represents necking and fracture strain, 
respectively. 

 

 

Table 5-4 displays the registered necking strains and the crack direction relative to RD 

for the model with both the four-term sine wave perturbation scales six times for the 

OCLFC criterion. The OCLFC managed to produce comparable results to the NLETSDC 

regarding crack orientation. The analysis with displacement relationship Dୖୈ D୘ୈ⁄ =

0.5000 (displayed in Fig. 5-15), which did not yield a single definite crack direction by 

use of the NLETSDC, exhibited multiple cracks parallel to the rolling direction with the 

ductile fracture criterion. With the non-local strain in RD at twice the magnitude of the 

non-local TD strain, the model seems to somewhat predict the unexpected directions of 

cracks in the AA6016-T4 sheets subjected to roping. 
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Figure 5-15: Logarithmic strains in the through-thickness direction, 𝜀௧, at the first frame after 
element deletion by the OCLFC for the analysis with displacement relationship 𝐷ோ஽ 𝐷்஽⁄ =

0.5000. The FEA-model is implemented with the Yld2003 yield function. 

 

 

Table 5-4: FEA-generated necking strains and crack orientations relative to RD from the 
OCLFC with the unscaled four-term sine wave perturbation. 

Displacement ratio Crack orientation Fracture 

 
to RD εୖୈ ε୘ୈ 

D୘ୈ Dୖୈ⁄ =  −0.1667 / 0.2605 -0.0509 

D୘ୈ Dୖୈ⁄ =  −0.0500 / 0.2212 -0.0125 

D୘ୈ Dୖୈ⁄ =  0.0000 ⊥ 0.2019 0.0000 

D୘ୈ Dୖୈ⁄ =  0.1667 ⊥ 0.3279 0.0627 

D୘ୈ Dୖୈ⁄ =  0.3250 ⊥ 0.4107 0.1528 

D୘ୈ Dୖୈ⁄ =  0.5000 ‖ (multiple) 0.3916 0.2149 

D୘ୈ Dୖୈ⁄ = 0.7270 ‖ 0.3316 0.2514 

D୘ୈ Dୖୈ⁄ =  1.0000 ‖ 0.2574 0.2574 

Dୖୈ D୘ୈ⁄ =  0.7270 ‖ 0.1871 0.2491 

Dୖୈ D୘ୈ⁄ =  0.5000 ‖ 0.1266 0.2389 

Dୖୈ D୘ୈ⁄ =  0.3250 ‖ 0.0795 0.2269 

Dୖୈ D୘ୈ⁄ =  0.1667 ‖ 0.0381 0.2097 

Dୖୈ D୘ୈ⁄ =  0.0000 ‖ 0.0000 0.1763 

Dୖୈ D୘ୈ⁄ =  −0.0500 ‖ -0.0104 0.1882 

Dୖୈ D୘ୈ⁄ =  −0.1667 ‖ -0.0480 0.2476 
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6 Discussion 

A substantial share of the hours spent during the work on the current thesis was dedicated 

to becoming familiar with, and to calibrate the linear transformation-based anisotropic 

yield functions. In earlier stages of the project, the plan was to conduct FEA with all the 

presented yield and hardening functions in order to evaluate the different plasticity 

models’ effects on the forming limits. However, in order to implement the presented 

failure models, the WTM_STM-keyword was used, where only the yield functions Yld89 

and Yld2003, in conjunctions with the two-term Voce rule hardening model were 

available through the pre-programmed modules. As the Yld89 model seemingly produced 

unexplainable stress concentrations as displayed in Fig. 5-2, the scope of the non-linear 

FEA was restricted to the Yld2003 plasticity model. Initially, the Yld2003 yield function 

model was not one of the assessed models in this study and had therefore not been 

included in the calibration program, but the material model WTM_STM in LS-DYNA 

provides the possibility to automatically calibrate the eight-term yield function from eight 

experimental data point. However, information about which calibration method LS-

DYNA uses is not described in the software-manual [56], and the initial plan to 

investigate the impact of different calibration methods was discarded. From the 

calibration results, the Yld2000-2d yield functions were able to provide good fits to the 

experimental data for both the weighted and non-weighted calibration, while the Yld89 

functions – which were generally less accurate – were more sensitive to different 

calibration methods. Whether this would have been reflected in FLDs produced by FEA 

remains unanswered. 

In the results presented from the calibrations of the isotropic hardening functions, the 

saturations of the one and two-term Voce hardening rule at high strains were discussed. 

From the comparison between the experimental curve from the uniaxial tensile test 

sample UT0-1 and the two-term Voce curve which was later used in the FE-analyses, the 

fitted curve seemingly displayed somewhat reduced stiffness than what could be 

imagined would be the continuation of the experimental curve, which ended at plastic 

strain value of 0.268. When later conducting FEA of biaxially deformed patches, some 

of the samples reached local effective plastic strain values well beyond twice this 

magnitude. The WTM_STM-keyword which was used to implement the plasticity model 
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in LS-DYNA provides the possibility to specify a lower limit to the isotropic hardening 

rate [56], where a linear hardening model with the constant term 𝐸௠௜௡ takes over when 

the slope of the Voce function falls below the slope specified by the linear stiffness 

modulus. Unfortunately, this extension of the two-term Voce rule in the WTM_STM-

keyword was not discovered until after the analyses were conducted. 

Along with the Yld2003 yield function, the unidirectional harmonic perturbation with the 

proper scaling managed to reproduce local necking instability limits to good accuracy by 

the TTSIC. However, the NLETSDC – which is a criterion to detect local necking by 

strain locations which occur as a consequence of material imperfections, inspired by the 

work of Marciniak and Kuczynski [4] – overestimated the magnitudes of strains at 

necking with the roping model alone, as the model does not introduce imperfections in 

the sheet’s rolling direction. Therefore, an extension to the unidirectional harmonic 

perturbation was provided by Dr Torodd Berstad at SIMLab at NTNU in the form of a 

FORTRAN-program which generated a field of random perturbation, using a mean 

thickness and a standard deviation as input. By adding the random perturbation with a 

standard deviation of 0.002 mm to the unidirectional harmonic roping model, the FEA-

generated FLC took on a shape which coincided excellently with the band of experimental 

values, with slightly conservative values for necking strains in the rolling direction. 

Nevertheless, a reminder of the issue addressed in the discussion following the presented 

FLC in Ch. 5.2.2 about the scattering results which may be produced with such random 

perturbation programs is appropriate. The random perturbation used in the presented 

results is only one of infinitely any realization of the given input. Beyond the statistical 

boundary condition of the specified standard deviation, the analyst has no control over 

the shell thickness generated at each node, unless the generated thicknesses are checked 

prior to conducting the analysis. Although non-physical conditions are unlikely to occur, 

differences in smoothness and effective range were reported in the 2009 article by 

Fyllingen et al. [57] to cause relatively large scatters in forming limits.  

As displayed in Fig. 5-10 in Ch. 5.2.2, the thickness field which was generated with the 

unidirectional four-term sine wave model accompanied with the random perturbation-

extension displayed a better visual resemblance to the measured topography of 15 % 

elongated AA6016-T4 sheets presented by Engler et al. [24], where thickness-deviations 
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were observed along the valleys and ridges from roping. However, with access to such 

measurement data in a future study, the demand for a random perturbation could be 

eliminated. Instead of relying on a randomly distributed perturbation to simulate the 

uneven nature of valleys and ridges in the rolling direction, a two-dimensional harmonic 

perturbation-model, as presented in Eq. 3.3-20, could instead be fitted directly to the two-

dimensional data to serve the same purpose. 

With the FLCs sensitivity to scaling of the roping model, multiple analysis where the 

amplitudes of the four harmonic functions were magnified by the same scalar in order to 

target the experimentally observed forming limits. This procedure was carried out for the 

three different failure criteria. When multiple analyses are conducted in a trial-and-error 

fashion, discretely changing variables to target a good fit, a tool to handle the masses of 

information of more and less obvious correlations among the many history variables is 

called for. With the rapid development in the increasingly recognized field of machine 

learning (ML), the implementation of such algorithms to streamline trail-and-error tasks 

and to recognize inconspicuous correlations in FEA-results could be a very interesting 

next step in the field of metal sheet forming.  
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7 Summary and concluding remarks 

In this thesis, a short introduction to aluminium alloys as a material, along with a general 

presentation to key theory relevant to aluminium sheet forming was given. 

Then, a number of material models which are used to describe the plasticity, work 

hardening and failure for aluminium alloys were presented, including four anisotropic 

yield functions, four models to describe isotropic work hardening and five models to 

describe failure. Here, one of the presented failure models was proposed by the author to 

replace the non-local instability criterion (NLIC) due to difficulties which were met 

during later implementation in the FEA-software LS-DYNA. Additionally, a method to 

model the effects roping – a phenomenon sometimes observed in aluminium alloy sheets 

– by thickness perturbations described as a sum of multiple harmonic functions, was 

presented. 

Furthermore, several of the presented material models were calibrated to data from 

experiments conducted by Dimitry Vysochinskiy [10] on sheets of aluminium alloys 

AA6016-T4 where the phenomenon of roping was observed to strongly affect the 

anisotropy of necking and fracture strains. In this work, programs to calibrate the linear 

transformation-based anisotropic yield functions Yld89 [5] and Yld2000-2d [16] were 

written in Microsoft-Excel, for future in-house use. From the results of the calibrations of 

the anisotropic yield functions, the quadratic Hill48 yield function with four plane stress 

anisotropy coefficients was considered unsuited to describe the plasticity of the alloy, 

further confirming the established fact that such quadratic yield functions are inadequate 

to simulate the behaviour of metals with FCC crystal structure [55]. The non-quadratic 

yield function Yld89 was more successful in the task with the same number of 

coefficients, although an accurate fit to the experimental data could not be obtained 

simultaneously for both the flow-stresses and the traverse strain ratios. The eight-term 

non-quadratic yield functions Yld2000-2d were both able to closely resemble the 

experimentally measured quantities of the AA6016-T4 aluminium alloy. The same was 

observed for the Yld2003 yield function, which was later calibrated automatically in the 

FEA-software LS-DYNA. Different methods were used to calibrate the two yield 
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functions Yld89 and Yld2000-2d, where a weighted MSSE-approach was preferred for 

enhanced flexibility.  

In Ch. 5, an attempt was made to produce FEA-based forming limit diagrams (FLD) for 

aluminium alloy AA6016-T4 subjected to the roping. On a 60 mm by 60 mm patch of 

50x50 Belytschko-Tsay shell elements with five integration points in the though-

thickness direction, the effect of roping was simulated by a unidirectional four-term sine 

wave perturbation model, which was fitted to a fictive thickness profile generated based 

on the available information in the PhD-thesis of Dimitry Vysochinskiy [10]. 15 non-

local proportional strain paths were run to construct the diagrams. 

The non-quadratic anisotropic yield function Yld2003 by H. Aretz [17] was used along 

with the associate flow rule and isotropic two-term Voce hardening. Accompanied with 

a FORTRAN-generated random thickness perturbation, the model excellently 

reconstructed experimental local necking strains from MK-tests by a non-local extremal 

thickness strain deviation criterion (NLETSDC) when the amplitude of the harmonic 

roping perturbation was scaled six times. Also, a through-thickness shear instability 

criterion (TTSIC) [7] generated very similar results without the extension of the 

FORTRAN-generated random perturbation to the roping model, although strains in the 

sheets rolling direction were somewhat conservative. The original Cockcroft-Latham 

ductile fracture criterion (OCLFC) [9] was also tested with the four-term harmonic 

perturbation to see if the model would recreate fracture strains observed in the same 

experiments. While the model did manage to predict somewhat accurate fracture strains 

for strain paths in the vicinity of equibiaxial strains, the model underestimated fracture 

strains for the plane strain configurations and was not considered suited to fulfil its 

purpose. 

When the models were run without the introduction of the harmonic roping model, all 

three criteria produced FLDs with anisotropic characteristics opposite to what was 

observed in experiments. From this, the conclusion drawn by Dimitry Vysochinskiy [10], 

that the plasticity’s effect on the forming limits were overruled by the effect of roping, 

was furtherly confirmed. The predicted forming and fracture limits in the traverse 

direction from the three models were all sensitive to the introduction of the harmonic 

perturbation model. The best fit to experiments was achieved when the four-term sine 
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wave perturbation, which was initially fitted to the amplitudes of measured thickness 

deviations, was scaled to a factor of 6. This was justified by the assumption that the spatial 

distribution of macroscopic valleys and ridges in the surface of sheets due to roping, also 

represents a spatial distribution of varying plasticity characteristics.  

From this, it can be concluded that the method of introducing thickness perturbations in 

a shell-based FEA described as a sum of harmonic functions based on the spatial 

distribution of macroscopic valleys and ridges in the sheet surface, was successful in 

describing the effects of roping of forming limits from proportional strain paths in 

AA6016-T4 aluminium alloy sheets.  

As discussed in the Ch. 2.3.1 a weakness of the FLD is that it only serves as a valid 

damage criterion for processes of proportional strain paths. As the strain path in a piece 

of material during metal sheet forming might very well expect a varying history of strain 

ratios, a natural next step in further research would be to conduct similar analyses with 

the introduction of non-proportional strain paths, to see if the applied method is capable 

of generating similarly accurate descriptions is such cases. Another question which 

remains unanswered for further research is whether the effects of different yield functions 

and calibration methods would have been reflected in the FEA-generated FLDs with the 

use of the implemented roping model.  

Additionally, utilization of the rapidly evolving field of machine learning to streamline 

trail-and-error tasks and to recognize inconspicuous correlations in FEA-results is also 

suggested as a direction for further research in the field of metal sheet forming. 
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