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Abstract

This master thesis is written on behalf of Statnett SF, which is the system operator of the

Norwegian power system. Statnett, among other things, builds and maintains the overhead

power lines. The power lines are usually supported by steel lattice towers. Further, the

towers are mounted on concrete foundations. Transporting concrete foundations to remote

sites, especially in the winter period, can be very costly and challenging to maintain the

quality of the concrete. For this reason, Statnett has developed a new type of foundation

referred to as a tubular steel foundation, which requires less time to assemble and is more

convenient to transport than a typical concrete foundation.

The foundation consists of a tubular section mounted on top of a steel pad. In soils with

high water content, it is assumed that water fills the tubular section and freezes inside

when the temperature drops below 0 (°C). The thesis investigates if the water that freezes

inside the tubular section of the foundation has a damaging effect. The theory of heat

transfer, the behavior and the properties of ice were studied. Based on the theory, a set

of analyses and calculations were conducted. The thermal analysis revealed the amount

of water that can freeze inside the tubular section. Based on the results, three scenarios

were considered critical and were further studied.

Scenario 1: Formation of an ice plug inside the tubular section

Scenario 2: Thermal expansion of the ice plug

Scenario 3: Formation of two ice plugs with water confined between them

Each scenario was further investigated from a structural perspective. Because of the

foundation’s geometry, the first scenario was found not to be dangerous for the foundation.

For the second scenario, a model was created in the finite element analysis software Abaqus

CAE to investigate the pressure resulting from the thermal expansion of ice. In the third

scenario, the strength capacity of the pipe was calculated with respect to the formation of

two ice plugs by hand calculations and simulation in Abaqus CAE.

The conclusion based on the research and the analysis results indicates that the force

exerted by ice is within the strength capacity of the foundation.

Keywords – Steel foundation, Frost depth, Resistance to ice formation
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1 Introduction

Statnett SF is a public enterprise owned by the Norwegian State and has three main goals:

Securing a stable supply of electricity

Facilitating the realization of Norway’s climate targets

Paving the way for value creation, for society and customers alike

Securing a stable supply of electricity requires not only the maintenance of the existing

transmissions lines but also the building of new ones. A typical transmission line consists

mainly of the overhead power line, lattice towers, and foundations for the towers. One

of the new transmission lines that are under construction is called Balsfjord - Skaidi.

The Balsfjord - Skaidi transmission line is approximately 300 km long and runs through

some of the most remote parts of Northern Norway. The transmission line consists of

traditional, steel, lattice towers supported by buried foundations at each of the four legs.

The buried foundations are mainly of two types, concrete and steel foundations. A typical

lattice tower and the concrete foundations are shown in figure 1.1.

Figure 1.1: Typical transmission tower
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The foundations may be subjected to compressive forces, uplift and shear forces, or a

combination of those. The concrete foundations are made on-site from concrete poured

into temporary forms. In general, the concrete is transported by a helicopter to the site. In

winter, the freezing temperatures in some areas present a challenge for the safe transport

of concrete. Mainly, for this reason, Statnett has developed a new type of foundation made

of steel. Compared to the traditional mass concrete foundations, the steel foundations

are a more efficient and transport friendly solutions. The steel foundation, which is the

subject of this thesis, consists of a hollow steel section connected to a steel plate, figure

1.2.

Figure 1.2: Steel foundation
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The entire foundation will be buried, relying on the deadweight of the overburden soil to

provide the necessary uplift resistance. The foundation buried depth is approximately

three meters below ground level. The vertical hollow section that can be seen in figure

1.2 is open at the bottom, which means that in soils with high groundwater level, water

enters freely inside. An uncertainty has been raised regarding the impact water has when

it freezes in the hollow steel section of the foundation. The focus of this thesis is to

investigate the effect freezing water has on the foundation.

1.1 Aim and objective

Some of the steel foundations on which the transmission towers are mounted may be

situated in terrain with high groundwater levels, such as marsh areas. The steel foundations

are primary intended for use, in the North of Norway, including the furthest - up to 70

degrees north. Up north temperatures can reach far below zero degrees Celsius, thus

freezing of the groundwater is expected. As frost bursting of pipes is not uncommon,

Statnett has considered this a risk that needs to be evaluated more carefully. This thesis

aims to investigate the potential for the tubular section of the foundation to be damaged

as a result of the water freezing.

The main objectives of the thesis are summarized below:

• Perform a set of thermal analysis to evaluate the amount of water that can freeze

inside the hollow steel section of the steel foundation

• Based on thermal analysis assess if the amount of frozen water is damaging for the

foundation

1.2 Scope and limitations

The scope of the thesis is confined to evaluate the effect groundwater has when it enters and

freezes inside the tubular section of the steel foundation. The soil around the foundation

is also taken into consideration and modeled accordingly. However, the forces created by

the heaving of soil when it freezes is not in the scope of this thesis.
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Chapter 1
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Theory on heat

transfer
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Figure 1.3: Thesis layout

Chapter 1 gives an overview of this thesis work. Chapter 2 studies the theory of the

heat transfer mechanism. In chapter 3, the first two simulations are presented, which set

the basis for the thermal analysis of the steel foundation. Further, chapter 4 studies the

behavior of ice. With the results from chapter 3 and the theory studied in chapter 4, the

foundation’s structural behavior is analyzed. Chapter 6 gives the final conclusions of this

thesis work.
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2 Theory on heat transfer

In this chapter, the theory behind the mechanism of heat transfer in a hollow steel

foundation and the propagation of temperature throughout soil and water are described.

The chapter serves as a foundation for the thermal simulations, which are dealt with in a

later chapter.

2.1 Heat transfer

A problem classified as being in a steady-state implies no change in temperature with

time at any point within the structure. Simply put, the temperature is not dependent on

time. A structure or a system in which temperature varies with time falls in the transient

heat transfer category. The figure 2.1 and 2.2 show the difference between the two states

described above. The steel foundation analyzed in this thesis is subjected to transient

heat transfer.

Figure 2.1: Steady state heat transfer (Cengel, 2014)

Figure 2.2: Transient state heat transfer (Cengel, 2014)

Steady-state heat transfer is illustrated in figure 2.1. Heat is transferred from the surface

with a higher temperature to the surface with a lower temperature, as shown. As can be
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seen, there is no change in temperature with time.

While in figure 2.2, the temperature changes over time, notice the temperature difference

at 2 PM and, later, at 5 PM. Transient heat transfer implies variation with time.

Further heat transfer mechanisms are classified into three types: conduction, convection,

and radiation. All three transfer methods are based on a temperature difference, and in

all methods, the heat moves from the a high-temperature system to a low-temperature

system.

The heat movement in the case of the steel foundation is only due to conduction and

convection. Below a detailed study of the processes of conduction and convection is

presented.

2.2 Internal energy and energy transfer

Before moving to the phenomena of heat transfer through conduction and convection, a

study of the internal energy and energy transfer is necessary to better understand those

processes. The total energy of a system is denoted E, and the internal energy is U .

The sum of all microscopic forms of energy of a system is called the internal energy. The

internal energy can also be defined as the sum of the kinetic and the potential energy of

the molecules in a system. By adding sufficient energy to a solid or a liquid material, the

interconnecting molecular bindings will be broken, and the material can be turned into a

gas. The internal energy associated with this phase change is called latent heat or latent

energy.

When it comes to fluids, the internal energy of a stationary fluid is denoted u while the

energy for a flowing fluid is given as (Cengel, 2014):

h = u+ Pv (2.1)

Where h is the enthalpy, u is the internal energy, P is pressure, and v is the volume of

the system.

For gasses, the change in internal energy and enthalpy can be expressed by introducing

the notion of specific heat. Specific heat is the amount of heat per unit mass required to

raise the temperature by one degree Celsius. The following formulas give the change in
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internal energy and the change in enthalpy (Cengel, 2014):

∆U = mcv,avg∆T (2.2)

∆H = mcp,avg∆T (2.3)

The change in internal energy is dependent on the specific heat at a constant volume

donated cv, while the enthalpy is dependent on the specific heat held at constant pressure

cp. In addition, both the enthalpy and the internal energy are dependent on the mass and

the temperature of the system.

Unlike gasses, the specific heat for incompressible liquids and solids is constant, meaning

cv ≈ cp ≈ c. Because of constant specific heat, the internal energy formulation can be

re-written as (Cengel, 2014):

∆U = mcavg∆T (2.4)

where:

m is the mass of the system

cavg is the average specific heat

∆T is the change in temperature

Energy transfer

Energy can be transferred either through heat transfer by a temperature difference, as

mentioned previously or through work. Work can be a pump system, for example. The

heat transfer is denoted Q, while for work, the symbol is W . Since the steel foundation is

subject to a temperature difference, the energy will be transferred through heat movement;

hence heat transfer will be the main focus.

While Q is the symbol for heat transfer for an entire process, Q̇ is the symbol for the heat

transfer rate, where the dot mark denotes differentiation with respect to time. Q is the

overall amount of heat during a given time interval ∆t, and the following formula gives it
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(Cengel, 2014):

Q =

∫ ∆t

0

Q̇dt (2.5)

When Q̇ is constant and the time variation is known, the equation becomes:

Q = Q̇dt (2.6)

where:

Q is the heat transfer

Q̇ is the heat transfer rate

∆t is the change in time

The heat transfer rate through a given area is called heat flux and is given by:

q̇ =
Q̇

A
(2.7)

2.3 Steady state heat conduction

Conduction is the process where thermal energy is transmitted through a material when

there is a difference in temperature. The conduction process is present in both liquids and

gasses, as well as in solids. The heat transfer through conduction is given by the Fourier’s

law of heat conduction (Cengel, 2014):

Q̇cond = −kA∆T

dx
= kA

T1 − T2

dx
(2.8)



2.3 Steady state heat conduction 9

Figure 2.3: Heat conduction through a wall (Cengel, 2014)

In the equation 2.8 above, k is the thermal conductivity, and it is the ability of a material

to conduct heat. A high thermal conductivity means that the material is efficient in

conducting heat. In contrast, a low value of thermal conductivity means that a material is

a poor conductor of heat and can serve as an insulator. An example of insulator material

is the glass wool used in the walls of buildings (Cengel, 2014).

The second term in the equation is the area on which the heat transfer occurs, and the

third term ∆T
dx

is the temperature gradient. The temperature gradient is the slope of the

tangent of the temperature curve at a given point, see figure 2.4.

Figure 2.4: Temperature gradient (Cengel, 2014)

In equation 2.8 above, the heat transfer Q̇ illustrated in figure 2.3 travels through the

wall and the temperature drops as a result of the wall material resistance against the

temperature. The equation 2.8 can be re-written as (Cengel, 2014):

Q̇cond,wall =
T1 − T2

Rwall

(2.9)
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and:

Rwall =
L

kA
(2.10)

where:

Q̇cond,wall is the heat transfer rate

T1 and T2 are the temperatures

Rwall is the resistance of the material against heat

k is the material conductivity

A is the area

L is the thickness of the wall

2.4 Steady state heat convection

The heat transfer through convection is done by the movement of fluid between areas of

different temperatures. The heat transfer through convection is governed by Newton’s

law of cooling (Cengel, 2014):

Q̇conv = hAs(Ts − T∞) (2.11)

Similar to conduction equation 2.11 can be re-written as:

Q̇conv =
Ts − T∞
Rconv

(2.12)

and:

Rconv =
1

hAs
(2.13)

Where:

Q̇conv is the heat transfer rate through convection

Ts is the temperature of the solid surface

T∞ is the ambient temperature
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Rconv is the thermal resistance of the surface against heat convection

h is the convection coefficient

As is the solid surface area

Equation 2.13, where R is the thermal resistance, can be referred to as “the thermal

resistance network” and is used when the heat is transferred in a system through both

conduction and convection (Cengel, 2014). An example is the transfer of heat through a

wall of a building. See figure 2.5.

Figure 2.5: The thermal resistance network through a wall (Cengel, 2014)

The same principles of thermal resistance are applicable to the steel foundation, which

is the subject of this thesis. For the steel foundation, there is convection from the air

temperature both into the soil and into the hollow section, and conduction through steel,

ice, water, and soil. Convection can be divided into two types, natural (or free) convection,

and forced convection (Cengel, 2014).

2.4.1 Natural convection

Natural convection means that fluid moves only by natural means with no help from

external factors. In general, fluid motion by natural convection is low, because the

convection coefficient h from equation 2.11 above is also low. The convection coefficient

h is defined as the rate of heat transfer between a solid surface and fluid. An example

of natural convection is the heat transfer from a hot material to the surroundings. It is

important to note that the heat transfer in the material is first by conduction and then
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by convection to the surroundings (Cengel, 2014).

Figure 2.6 below presents an example of natural convection, the rise of a warmer fluid,

and the fall of a cooler fluid.

Figure 2.6: Example of natural convection (Cengel, 2014)

2.4.2 Forced convection

In forced convection, the fluid flow is forced over a surface or into a system by using an

external force. The size of heat transfer thorough force convection is strongly dependant

on the speed of the external forces. Higher velocity corresponds to a higher transfer rate.

The flow caused by a fan is an example of forced convection. See figure 2.7.

Figure 2.7: Example of forced convection (Cengel, 2014)

For the steel foundation, which is the subject of this thesis, both natural and forced

convection mechanisms are present. First, there is natural convection from the air into

the soil around the foundation. Further, there is also forced convection on the body of

the circular section of the foundation because of the wind (Cengel, 2014).

2.5 Transient heat conduction

Steady-state heat conduction sets the basis for the theory behind transient heat conduction.

As mentioned previously, in steady-state heat transfer, there is no variation of the
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temperature inside the body at any time or at any position. The steel foundation can

be analyzed using steady-state, but by doing so, we will only find the temperature at a

specific time, and no information can be retrieved about temperature differences within

the structure. In reality, the temperature varies with depth. The depth of the foundation

is approximately 3 m. For finding the temperature of the foundation as a function of

depth, a transient heat analysis is required. The first step in a transient heat analysis is

to study the behavior of a system of which the interior temperature remains the same at

any time during the heat transfer. In such a system, the temperature becomes a function

of time, T (t). This kind of analysis of a system is often referred to as a “lump system

analysis.”

For a lump system, the following expression applies based on energy conservation (Cengel,

2014):

Heat transfer into the body during dt = The increase in the energy of the

body during dt

hAs(T∞ − T )dt = mcpdT (2.14)

With m=ρV and dT = d (T-T∞), the equation 2.14 gives:

d (T − T∞)

T − T∞
= − hAs

ρV cp
dt (2.15)

Taking the integral of the expression 2.15 from t=0 to T=Ti the equation becomes:

ln
T (t)− T∞
Ti − T∞

= − hAs
ρV cp

t (2.16)

Taking the exponential of both terms, gives:

T (t)− T∞
Ti − T∞

= e−bt (2.17)

where:
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b =
hAs
ρV cp

(2.18)

The temperature of a lumped system at a given time or the time it takes for the lumped

system to reach a specific temperature can be found with the equation 2.17. It is to be

noted that a large value of b from equation 2.18 means that the lumped system will reach

the ambient temperature in a short amount of time; the plot from figure 2.8 illustrates

this. Additionally, b is proportional to the surface area but inversely proportional to the

mass and the specific heat of the body.

Figure 2.8: Temperature of the lump system (Cengel, 2014)

After finding the temperature of the lump system at a given time, the total amount of

heat transfer between a body and its surroundings over a time interval can be found with

the following formula:

Q = mcp(T (t)− Ti) (2.19)

The lump system analysis described above can only be used when the following criterion

is satisfied (Cengel, 2014):

Bi ≤ 0, 1 (2.20)

where:

Bi is the biot number

h is the convection coefficient
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k is the thermal conductivity

Lc is the characteristic length and is found by Lc= V
As

V is the volume

As is the surface area

Bi is called "biot number," which is dimensionless and gives the ratio of the heat transfer

resistance. The Biot number takes into consideration the resistance of the system to heat

convection and the resistance of the system to heat transfer through conduction (Cengel,

2014).

The lump system analysis is very helpful since it simplifies the problem by assuming that

the temperature is not changing within the body of the system. The steel foundation has

a length of approximately 3 m, and the temperature varies not only with time but also

with the location, meaning that the temperature will be different at the surface compared

to the bottom. When the foundation is filled with water, in wintertime, the water will

freeze. The freezing depth is a critical factor. Finding exactly how much of the water will

freeze gives the pressure that the foundation must withstand so that the circular section

will not rupture.

2.5.1 Transient heat conduction in semi–infinite solids

A semi-infinite solid is a model that extends to infinity in all directions apart one. For

example, the soil around the steel foundation can be considered as a semi-infinite solid.

For a semi-infinite solid, an analytical solution that calculates the temperature near the

surface can be developed. The analytical solution can then be used as a benchmark for

the analysis done with the finite element software in a later chapter.



16 2.5 Transient heat conduction

Figure 2.9: Illustration of a semi-infinite solid (Cengel, 2014)

In figure 2.9, we are interested in finding the heat transfer in x-direction if the surface

temperature is Ts and the whole body has an initial temperature Ti. It is assumed that

there is no heat generation in the body. Conductivity, density, and specific capacity are

all constant (Cengel, 2014).

The energy equation gives:

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
+
egen
k

=
1

α

∂T

∂t
(2.21)

From the assumption made above, since it is only considered heat transfer in the x-direction

and no internal heat generation, the energy equation becomes:

∂2T

∂x2
=

1

α

∂T

∂t
(2.22)

Boundary conditions: T (0, t) = Ts

Initial conditions: T (x, 0) = Ti. At any position x inside the body at t = 0, the temperature

is Ti.

The partial derivation can be solved by converting it into an ordinary differential equation.

This is done by changing the two variables x and t into a similarity variable called η,

which is defined as:
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η =
x√
4αt

(2.23)

By using the chain rule, equation 2.22 gives:

∂T

∂t
=
dT

dη

∂η

∂t
=

−x
2t
√

4αt

dT

dη
(2.24)

∂T

∂x
=
dT

dη

∂η

∂x
=

1√
4αt

dT

dη
(2.25)

∂2T

∂x2
=

d

dη

(
∂T

∂x

)
∂η

∂x
=

1

4αt

d2T

dη2
(2.26)

By substituting the answer from equation 2.26 into equation 2.22 and after simplification,

gives:

d2T

∂η2
= −2η

dT

dη
(2.27)

Equation 2.27 is an ordinary differential equation of second order with only one variable

η. Further the equation can be solved by defining a new variable:

w =
dT

dη
(2.28)

Furthermore equation 2.27 is converted into a first order differential equation by

substituting the new defined variable w:

dw

dη
= −2ηw (2.29)

In equation 2.29 by re-arranging the variables and integrating, gives:

dw

w
= −2ηdη (2.30)
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ln w = −η2 + C0 (2.31)

Taking the exponential, the solution is:

w = C1e
−η2 (2.32)

where:

C1 = lnC0 (2.33)

Equation 2.32 is now substituted back into equation 2.28

dT

dη
= C1e

−η2 (2.34)

dT = C1e
−η2dη (2.35)

Taking the integral in equation 2.35 gives:

T = C1

∫ η

0

e−u
2

du+ C2 (2.36)

Now solving for C1 and C2 with the following boundary conditions, gives:

BC1: At η = 0, gives C2=Ts

BC2: η →∞, gives Ti=C1

Ti = C1

∫ ∞
0

e−u
2

du+ C2 = C1

√
π

2
+ Ts → C1 =

2(Ti − Ts)√
π

(2.37)

By substituting C1 and C2 in equation 2.36 gives:

T − Ts
Ti − Ts

=
2√
π

∫ η

0

e−u
2

du = erf(η) = 1− erfc (η) (2.38)
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Where erf(η) is the error function, and 1− erfc(η) is the complementary error function.

The integral from equation 2.38, cannot be solved analytically only numerically; hence

the function erf(η) is evaluated numerically for different values of η. The term is similar

to sinus and cosine function, which also cannot be solved analytically. It is the result of a

numerical solution.

The graph in figure 2.10 gives different values for η.

Figure 2.10: Error function (Cengel, 2014)

Using the graph from figure 2.10 the error function value wouldn’t be very accurate, a

calculator can be used to get accurate values.

Now, by substituting 2.23 in to 2.38 the temperature distribution for a surface with

constant temperature is given by the following equation (Cengel, 2014):

T (x, t)− Ti
Ts − Ti

= erfc

(
x√
4αt

)
(2.39)

where,

Ts is the surface temperature

Ti in the initial temperature of the system

α is thermal diffusivity and is equal to α = k
ρcp

x is the depth measured from the surface

t is the time

T (x, t) is the temperature of the body at a given location and time
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erfc(η) is the complimentary error function

Equation 2.39 has been presented for comparations purposes. In a later chapter, a

benchmark of finite element analysis versus an analytical solution will be presented.



21

3 Thermal analysis

Three thermal analyses have been performed. First, two models were conducted to verify

the results received from the finite element analysis simulation. For the first model, an

analytical solution is possible based on the heat transfer theory previously described.

Furthermore, for the second model, more complexity was added, including non–linearity

of the heat transfer mechanism. The third analysis is a model of the foundation filled

with water for calculating the depth of the ice plug.

All models have been carried out using Abaqus/CAE 2019, a general-purpose finite element

program. All models are built as axis-symmetric models.

An axisymmetric analysis significantly reduces the computation time and the modeling

time, it requires smaller input and gives a smaller output file (Alavala, 2008).

The models are presented in the following order:

1. Model of soil without foundation with linear heat transfer to be validated with an

analytical solution

2. Model of soil without foundation with non-linear heat transfer to calculate the soil

frost depth, benchmark against the values given in "451.021 Klimadata for termisk

dimensjonering og frostsikring" (Byggforskserien, 2018)

3. Model of the steel foundation in soil filled with water for analyzing the amount of water

that freezes

For all analyses the sides of the models are insulated, i.e., no horizontal heat transfer is

allowed, as only vertical heat transfer is considered. This implies that the soil conditions

in the considered area are reasonably homogeneous, i.e., the model is far from large

rocks and buildings. Furthermore, the bottom end is also insulated (adiabatic) since the

temperature at this level is not known. In order to avoid boundary condition effects in

the upper 2-3 (m), the model is built 10 (m) deep and with a radius of 4 (m).
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3.1 Linear soil analyses

This model was built to verify the analysis methodology by comparing it to an analytical

solution. The analytical solution is based on the theory studied in subsection 2.5.1 of the

thesis.

3.1.1 Input parameters

For performing the calculations and the simulation several parameters are required. For

this analysis the input parameters were taken from the available literature. The parameters

have been chosen for a random soil type since the analysis is only for comparing the

analytical solution with the methodology used to build the FE-model. All parameters

are given in table 3.1. Please note that SI units for temperature is Kelvin degrees and,

for making it more convenient for the reader to follow, the temperature is converted into

Celsius degrees.

Table 3.1: Data for linear analysis of soil

Materials Specific heat Conductivity Density Initial
temperature

Surface
temperature

(J/kgK) (W/mK) (kg/m3) (°C) (°C)
Soil 1480 2,5 2000 0 20

3.1.2 Analytical solution

The equation developed in subsection 2.5.1 is applied to check the FE-model against the

analytical solution. Equation 2.39 is used to find the temperature of the soil at different

depths. The formula assumes a constant initial and surface temperature. The equation

also takes into consideration for how long the surface temperature is applied, in terms of

time. Further, the temperature at a specific location is calculated by taking into account

the thermal diffusivity. Thermal diffusivity measures the rate at which heat spreads

throughout the material. The equation can’t be used if non–linearities are introduced, for

example, if the conductivity is a function of temperature. An example is presented below

to clarify how the temperature at a specific point and time is found by using the equation

2.39.
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In the example below, the temperature at a depth of 0,5 (m) after a period of 7 days is

found. In order to stay consistent with the units the days are converted into seconds.

T (x, t)− Ti
Ts − Ti

= erfc

(
x√
4αt

)

α =
2, 5

2000 · 1480
= 8, 45 · 10−7m2/s

η =
0, 5√

4 · 8, 45 · 10−7 · 604800
= 0, 350

Knowing the value of η the complementary error function is:

erfc(η) = 0, 621

All variables are known, by substituting, the temperature at 0,5 (m) after 7 days (604800

s) is found:

T (0, 5; 604800) = 0, 621 · (293, 15− 273, 15) + 273, 15 = 285, 56°K = 12, 41°C

In the appendix A1, the temperature is calculated in the same manner to a depth of 3,5

(m).
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3.1.3 Model setup for the finite element analysis
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Figure 3.1: Model setup of the soil for the linear analysis (dimensions in m)

In this chapter, a simple model is created to be checked against the analytical solution.

The model is an important first step to the more advanced simulation needed in order to

find out the depth of the ice plug that can be formed in the steel foundation. In figure

3.1, the model is illustrated. The model represents the pit in which the steel foundation is

placed. The pit has a 10 (m) height and a radius of 4 (m). The simulation aims to find

the temperature inside the soil at different depths, in the same manner as the analytical

solution from the previous subsection. The same parameters used in the analytical solution

are used again here, see table 3.1 above. In Abaqus, this is a transient heat transfer

problem because the temperature is a function of position inside the soil, meaning that the

temperature will be different deeper in the soil. The heat transfer through soil is in the

y-direction, in the vertical direction only. In this case, the applied surface temperature is

higher than the initial temperature of the soil, meaning the heat transfer will be from top

to bottom. The heat transfer is through conduction only. The outer surfaces of the soil

are fully insulated; there is no heat loss, see figure 3.1. The element mesh size has been
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set to 250x250 (mm), which is indeed a coarse mesh, but this is enough for the purpose of

comparing it against the analytical solution.

3.1.4 Results and discussion

The FEA has been verified by comparing it with the values found from the analytical

solution. Based on the input data, the temperatures at different depths were found after

a period of 7 days while holding a constant surface temperature of 20 (°C).
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Figure 3.2: Comparison of temperature-depth relation between the analytical solution
and the FE-model

Figure 3.2 shows that the analytical solution gives very close results in comparison with

the FE-analysis. As mentioned before, the analysis does not involve any nonlinearities;

hence a convergence is easily achieved by Abaqus.

The plot shows how the temperature drops with depth. The slopes for both curves are

steep in the beginning and are flattened after a distance of approximately 2 (m).

After 2 (m), the temperature doesn’t quite reach deep in the soil; as a result, the

temperature stays close to the initial temperature given in the input. Closer to the surface,

both solutions are approximately identical, but deeper into the soil, the difference is

increasing. Notice that the curve from the finite element analysis between 1 and 2,5 (m)

depth it is not as smooth. This is a result of the mesh choice.
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In this case, the coarse mesh gave a very short computational time while providing close

results for comparison. Refining, the mesh and the use of smaller increments will result

in less discrepancy between the solutions and a smoother curve for the simulation. As

seen from the diagram, the analytical solution converges well with the simulation. More

complexity can now be incorporated into the simulation.

3.2 Nonlinear soil analysis

The first model was built to verify the analysis methodology by comparing it to the

analytical solution given by equation 2.39. The model was relatively simple without

nonlinearities. Further, in this section, a new model is built to verify the analysis

methodology by comparing it to the tubular frost depth values given in Byggdetaljer

451.021 (Byggforskserien, 2018).

3.2.1 Input parameters for the nonlinear soil analysis

In this subsection, the parameters used in the simulation conducted in Abaqus CAE are

provided and explained.

3.2.1.1 Conductivity

In the theory chapter, the conduction was defined as the process where thermal energy is

transmitted through a material when there is a difference in temperature. In table 3.2,

the conductivity of both frozen and unfrozen soil is presented (Byggforskserien, 2018).

Table 3.2: Conductivity data

Conductivity Temperature
(W/mK) (°C)

2,50 -30,00
2,50 -1,00
1,50 0,00
1,50 30,00

Conductivity is divided as temperature-dependent. The nonlinear conductivity reflects

the phase change from water to ice and back again. The conductivity given in table 3.2 is

graphically presented in figure 3.3.



3.2 Nonlinear soil analysis 27

0.00

0.50

1.00

1.50

2.00

2.50

3.00

-30 -20 -10 0 10 20 30

C
o

n
d

u
ct

iv
it

y
 (

 W
\m

K
 )

Temperature ( oC )

Figure 3.3: Temperature-conductivity relation

In figure 3.3 is shown how the finite element software is handing the input data given for

the conductivity. As mentioned, the conductivity, in this case, is temperature-dependent.

Abaqus CAE is using a conductivity of 1,50 (W/mK) when the applied temperature is

between 0 (°C) to 30 (°C) and 2,50 (W/mK) if the temperature is subzero.

Observe the slope of the curve when the conductivity and temperature values are changing.

Not to run into convergence issues, a slight slope is introduced. This way is easier for the

software to increment, reducing cutbacks and making the computational time shorter.

3.2.1.2 Volumetric heat capacity and specific heat

The finite element software used for the simulation doesn’t have a built-in volumetric

heat capacity function. Specific heat cp and the volumetric heat capacity C of a material

represents the heat storage capability. The volumetric heat capacity is expressed per unit

volume, while the specific heat is expressed per unit mass. The volumetric heat capacity

is given in Byggdetaljer 451.021 (Byggforskserien, 2018) and is converted to specific heat.

Specific heat is used as an input in Abaqus.

The conversion is made with equation 3.1 (Cengel, 2014).

C = ρcp (3.1)

where:

C is the volumetric heat capacity
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ρ is the total density

cp is the specific heat (at constant pressure)

The specific heat is found for both frozen and unfrozen soil state and given in the table

3.3.

Table 3.3: Volumetric heat capacity and specific capacity input

Volumetric heat capacity Specific heat Soil state
(J/m3K) (J/kgK)
1,90·106 1055,56 Frozen
3,00·106 1666,67 Unfrozen

3.2.1.3 Latent heat

The latent heat is the energy absorbed or released by a material during a phase change

or, in other words, a change during its physical state that occurs without any change in

temperature. In this case, from liquid to solid. The latent heat of soil is calculated with

the following equation (French, 2017):

L = ρ wLw (3.2)

where:

L is the latent heat of soil when the phase change occurs

ρ is the dry density of the soil

w is the water content in percent

Lw is the latent heat of water

The density and water content are dependent on the soil type while the latent heat of

fusion for water is always the same (Mellor, 1977). Byggdetaljer 451.021 gives the following

values for frost susceptible soils (Byggforskserien, 2018):

Table 3.4: Density, water content and latent heat of water

Density Water content Latent heat of water
(kg/m3) (%) (J/m3)
1350 33% 334·106

Based on the data from table 3.4 the latent heat for soil is calculated with equation 3.2:
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L = 1350 · 10−3 · 0, 33 · 334 · 106 = 150 · 106J/m3

Byggdetaljer 451.021 confirms the value of 150·106 (J/m3) found by using equation 3.2

above (Byggforskserien, 2018).

When the water in the soil freezes, the conductivity, volumetric heat, and the specific heat

changes. As a result, latent heat is released. Simulating the phase, change from liquid

to solid can be done in different ways. In this simulation, the latent heat is modeled by

increasing the specific heat capacity of the soil between 0 (°C) to -1 (°C), see table 3.5.

Table 3.5: Specific heat input data

Specific heat Temperature
(J/kgK) (°C)
1055,56 -30,00
1055,56 -1,005
85000,00 -0,995
85000,00 -0,005
1666,67 0,005
1666,67 30,00

This approach is supported by NS-EN 13793 (ISO, 2001). For soil, the value of 85000

(J/kgK) is added to the specific heat capacity curve, giving an extra heat of 150·106

(J/m3) required to reduce the temperature by one-degree (°C). The table 3.5 is graphically

represented in figure 3.4. The temperature is plotted only between -2 and 2 degrees to

show more clearly exactly where the specific heat changes. A slope is introduced here as

well for the same reason previously explained, see subsection 3.2.1.1.
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Figure 3.4: Specific heat-temperature relation

Figure 3.5 shows graphically how Abaqus CAE is processing the latent heat from the

specific heat and temperature (Hibbitt et al., 1997).

Figure 3.5: Specific heat, latent heat definition (Hibbitt et al., 1997)

As shown in figure 3.5, the latent heat is modeled by increasing the specific heat capacity
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of the soil over a temperature difference (Hibbitt et al., 1997). By taking into consideration

latent heat, the specific heat table previously given is extended. See table 3.5 above.

3.2.1.4 Temperature data

For the first project, Statnett has begun using the steel foundations in the North of

Norway, more specifically in the area of Alta; hence the temperature is set accordingly.

The initial temperature of the soil is equal to the annual mean. "Loading" is applied as a

surface temperature time series at the top nodes of the model.

The time series is defined as a sine curve that cycles about the annual mean temperature.

It starts at 21.03.2019 (Equinox) and ends at 04.05.2021, as shown in figure 3.6. The frost

depth is then found at the end of the second winter season.
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Figure 3.6: Temperature for Alta, Tmean=1,6 (°C) and Tampl= 17,9 (°C)

Note that the sine curve parameters are given in (Byggforskserien, 2018), i.e., temperature

mean and amplitude, define a 100-year return period.

3.2.2 Analytical solution

In Byggdetalj 451.021, the frost depth is given for a range of locations in Norway. The

frost depth is based on 100-year return period and is calculated with the following equation

(Byggforskserien, 2018):
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H0 =

√
7200Fdλf
L+ CΘm

(3.3)

The frost depth for Alta is:

H0 =

√
7200 · 43000 · 2, 5

150 · 106 + 3 · 106 · 1, 6
= 2, 24m

where:

Fd is the design freezing index. For Alta Fd= 43000 h°C (Byggforskserien, 2018)

λf is the conductivity of the frozen ground ref. table 3.2

L is the latent heat of freezing for soil given previously

C is the volumetric heat capacity ref. table 3.3

Θm is the annual mean temperature. For θm= 1,6 °C (Byggforskserien, 2018)

The values for calculating the frost depth have been validated by experimental data

from actual constructions and have been used in Nordic countries over many years with

satisfactory results in preventing frost heave (ISO, 2001) (Byggforskserien, 2018).

The analytical solution to the problem is 2,24 (m).

3.2.3 Model setup for the finite element analysis

As in the previous analysis, the dimensions of the soil are unchanged and the model is 2D

axis-symmetric. The model represents the soil in which the steel foundation is placed and

buried. The model geometry is 10 (m) height and 4 (m) long, figure 3.7. The foundation

is approximately 3 (m) high and the geometry of the soil is chosen to avoid the boundary

conditions effects in the upper 3 (m) where the foundation is placed.

The soil is assumed to be fully saturated; hence the values for specific heat, conduction, and

density were chosen accordingly. The heat transfer through soil is one dimensional, in the

vertical direction only. This implies that the soil conditions are reasonably homogenous,

i.e., the model is far from large rocks, buildings, etc. Since the only material is wet soil,

the heat transfer is through conduction only.
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Figure 3.7: Meshed model setup for the nonlinear analysis (dimensions in m)

The temperature is applied on the surface of the soil (red squares in figure 3.7) with a

given initial temperature. The mesh size is set to 150x150 (mm), like in the previous

simulation. The dimensions of the mesh size are based on computation cost and accuracy.

Since this is a validation model, we are only interested in checking the maximum frozen

depth of the soil by comparing it with the analytical solution from the previous section.

The small variations in temperature inside the soil are not of interest here, only the

maximum frozen depth; hence a finer mesh is not needed. The time increments in the FE

analyses are set to ensure that the non-linearities are properly handled. A time step of

86400 seconds (1 day) is used, for which the maximum temperature change is roughly 0,5

(°C). In this way, the non-linear heat capacity between 0 (°C) and -1 (°C) is well handled.

3.2.4 Results and discussion

The analysis model has been verified by comparing it with the analytical solution from

section 3.2.2. Table 3.6 summarizes the results.
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Table 3.6: Results comparison

Solution Return period Frost depth (m) at T: Percent error at T:
-0.1 (°C) -1 (°C) -0.1 (°C) -1 (°C)

FE-model 100-year 2,34 1,9 4,4% 15,1%
Analytical 2,24

The maximum frost depth is taken at the time just before it starts to melt from the top

and the end of the second winter period. Two values are given in table 3.6, one when the

temperature profile intersects -0.1 (°C) and one where it intersects -1 (°C). Those values

are chosen since ice starts to form at 0 (°C) but is not completely formed until -1 (°C).

Note the modeling of latent heat, where the specific heat capacity is increased between 0

(°C) and -1 (°C). This means that latent heat is not fully generated until the temperature

reaches -1 (°C), for the temperature in between water and ice can be viewed as existing

together.

Physically, a temperature of -1 (°C) is most accurate, where all the water has turned to

ice. However, it is evident that the analytical solution agrees better with the temperature

limit of -0.1 (°C). It appears that the values given in Byggdetaljer 451.021 are chosen to

be on the conservative side, thus frost depth is given down to a level where ice has started

to form.

The analysis methodology used to simulate the maximum frozen depth of the soil has

shown to correlate reasonably well with the frost depth given by the empirical equation

and the values specified by Byggdetaljer 451.021. The relatively small difference between

the values (percent error 4,4%) is assumed to be because of two different calculations

approaches.

Having confirmed that the analysis methodology gives trustworthy results, the same

analysis methodology will be used in the next chapter to evaluate the amount of ice that

can be formed inside the steel foundation.

3.3 Analysis of the steel foundation

The steel foundation developed by Statnett may be situated in areas with high groundwater,

where low temperatures can lead to ice formation inside the hollow vertical section. In
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this section, a thermal analysis is presented, performed to evaluate the amount of ice that

can be formed inside the hollow section when this is assumed to be filled with water at the

ground level. The simulation is done based on the same analysis methodology previously

presented.

3.3.1 Input parameters for the steel foundation

In addition to the soil properties evaluated earlier, parameters for steel and water are

added to the simulation.

3.3.1.1 Conductivity

The conductivity parameters for soil are unchanged. For steel, the conductivity is chosen

based on the steel quality of the foundation (Cengel, 2014). Ice has a different conductivity

than water. Furthermore, the conductivity is dependent on the temperature. The graph

under shows how conductivity of water and ice varies with the temperature (Melinder,

2007; Ramires et al., 1995).
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Figure 3.8: Thermal conductivity of ice and water as function of temperature (Melinder,
2007; Ramires et al., 1995)
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Based on the plots from figure 3.8 an average value for the conductivity of water and

ice was chosen with respect to the temperature intervals at which the steel foundation is

subjected. It is important to note that water transports heat most efficiently by convection.

However, conduction can become the dominant heat flow in the steel foundation. This

requires a higher density at the bottom than at the top. In a situation where the bottom

layers hold between 1 and 4 (°C), while the top layers hold close to 0 (°C), convection is

reduced to a minimum.

The non–linear conductivity given in table 3.7 reflects the phase change from water to ice

and back again.

Table 3.7: Thermal conductivity data for water and ice

Materials Conductivity Temperature
(W/mK) (°C)

Water/Ice

2,30 -30,00
2,30 -1,00
0,61 0,00
0,61 30,00

Steel 60,50

3.3.1.2 Density

From figure 3.9 it can be seen how the density is fluctuating with the change in temperature,

notice how water has the maximum density when the temperature reaches 4 (°C) (Melinder,

2007).
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Figure 3.9: Density of ice and water as a function of temperature (Melinder, 2007)
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The density of water and ice changes with temperature, an average density value for ice,

and another for water has been selected based on the temperature. The density of steel

was chosen based on the S355 strength class of the steel foundation.

Table 3.8: Density parameters

Material Density
(kg/m3)

Water 1000
Ice 918,28
Steel 7850

For the soil, the density is unchanged. The same values are used as in the previous

simulation.

3.3.1.3 Volumetric heat capacity and specific heat

The specific heat for water is calculated from the volumetric heat capacity in the same

manner as in the previous model by using equation 3.1. For soil, the parameters are

unchanged, while for steel, the specific heat reflects the chemical composition of the

structural steel grade (ISO, 2001; Cengel, 2014).

Table 3.9: Volumetric heat capacity and specific capacity input for the foundation

Material Volumetric heat capacity Specific heat
(J/m3K) (J/kgK)

Water 4,18·106 2048,39
Ice 1,88 ·106 4180,00
Steel N/A 434,00
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3.3.1.4 Latent heat

For water, the latent heat is modeled by increasing the specific heat capacity between 0

(°C) and -1 (°C) in the same way as in the previous analysis. Here are as well the soil

parameters are unchanged.

Table 3.10: Specific heat input for water and ice

Specific heat Temperature
(J/kgK) (°C)
2048,39 -30,00
2048,39 -1,005
338180,00 -0,995
338180,00 -0,005
4180,00 0,005
4180,00 30,00

3.3.1.5 Film coefficient

The film’s coefficient or convection coefficient is defined as the heat transfer rate between

a solid surface and a fluid. In general, convection can be of two types, natural or forced

convection. Both were explained in the theory chapter.

For the steel foundation, two film coefficients are required, one for free convection and

one for forced convection. The highest value of the film coefficient is valid for forced

convection (by wind), whereas the lower value represents the interior of the foundation

hence it is natural convection. See table 3.11

Table 3.11: Film coefficients parameters

Material Film coefficient Type of convection
(W/Km2)

Soil 25 Forced
Water 10 Natural

Steel inside 10 Natural
Steel outside 25 Forced

It is difficult to assign a film coefficient because h is an experimentally determined

parameter and depends on properties like surface geometry, nature of fluid motion,

properties of the fluid, fluid velocity and the inclination of the surface (Bai and Bai, 2010).

The film coefficients used on the simulation are based on typical values found in (John
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et al., 2006). These values were crosschecked with other different sources and have been

found to converge well.

3.3.1.6 Temperature

The surface temperature is applied at the top nodes, as it was done in the previous soil

model. Also, for this analysis, the body of the foundation and the water inside it are also

subjected to the same surface temperature. Two temperatures scenarios are analyzed.

In the first scenario, the surface temperature represents the average day temperature

recorded in Alta over a period of two years. The winters in which the temperatures are

lowest are used from the available data provided by the meteorological institute. The

input surface temperature is plotted, and it can be seen in figure 3.10 below (institutt,

2020).
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Figure 3.10: Average day temperature in Alta over a period of 760 days

The local recorded temperatures give a good representation of the actual conditions from

the site where the foundations are placed.

In the second scenario, the applied surface temperature is the one from the previous

simulation representing a 100-year return period (Byggforskserien, 2018).
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The hole model has been given an initial temperature of Tmean = 1,6 (°C) which represents

the annual mean temperature for Alta.

3.3.2 Model setup for the finite element analysis

The FE-model is an axis-symmetric model with a 4-node linear axisymmetric heat transfer

quadrilaterals. The first two models previously presented were built to verify the analysis

methodology by comparing it with the available analytical solutions.

This model was built nearly with the same boundary conditions and the same soil properties

as the second model but with water, ice and steel included.

The right, left, and bottom sides of the model are insulated, i.e., no horizontal heat

transport is allowed, as only vertical heat transport is considered. As in the previous

models it is assumed that the model is far from large rocks and other obstacles. To avoid

boundary conditions effects in the upper 2-3 (m), the model is built 10 (m) deep and with

a radius of 4 (m).

Note that the steel pad is not modeled; this is because the pad connected to the hollow

steel section is considered to have a negligible effect on the formation of ice inside the

tubular section.

In figure 3.11 the axis-symmetric model of the foundation is presented. The figure to the

left gives an overview of the model, while the one to right presents a closer view of the

upper side of the model. In addition, for better understanding, Abaqus CAE can render a

3D-view of the axis-symmetric model, see figure 3.12.
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Figure 3.11: Overview of the steel foundation model (dimensions in m)

Figure 3.12: 3D view of the steel foundation FE-model

The temperature loading is applied to the top of the foundation. The water inside the

pipe is modeled at the same level as the soil. This is considered a worst-case scenario.

The steel foundation extends 0,4 (m) over the soil level. On top of it, the lattice steel
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tower is mounted, hence water can only come inside of the foundation from the bottom

end as a result of the groundwater.

To ensure that the FA-model is producing accurate results, a mesh convergence study

was done by checking the maximum and minimum temperature value with different mesh

density. For each mesh density, the temperature is recorded at the last step and presented

in table 3.12.

Table 3.12: Mesh convergence check

Mesh density Tmin Tmax

Element size ( m ) Number of elements ( °C ) ( °C )
0,30 463 -0,03 1,69
0,21 962 -0,08 1,70
0,15 1879 -0,17 1,71
0,10 4004 -0,30 1,71
0,07 8242 -0,32 1,71
0,05 16208 -0,35 1,71

By using the data from 3.12, a graphical representation is given in figure 3.13. Figure 3.13

shows how the minimum and maximum temperature changes by increasing the number of

elements in the model.
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Figure 3.13: Diagram of the mesh convergence check

For the mesh density test, the boundary conditions, geometry, and all the other parameters

are kept the same as in the primary model. The only difference is that the temperature is

applied over a period of 30 days only. The main simulation will be run with a temperature

applied over 760 days, as described in section 3.3.1.6

Since the temperature is applied on the top surface, as a result, deeper, we check less

sudden changes can occur in temperature because of the distance the heat has to travel;
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hence the temperature is more stable. See the plot for maximum temperature from figure

3.13.

Closer to the surface, the temperature fluctuates more, resulting in a less accurate value

when using a coarser mesh. By increasing the mesh density, pass 1879 elements, the

minimum temperature values begin to stabilize. The mesh size has been set to 100x100

(mm), resulting in 4004 total number of elements, which has been found to be a good

balance between computational cost and accuracy.

3.3.3 Results and discussion

The first analysis was run based on the surface temperature plotted in figure 3.10 to

evaluate the ice plug based on the temperatures recorded in the area of Alta. Figure 3.14

presents the temperature profile at the foundation center line at various times.
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Figure 3.14: Scenario 1: temperature profiles at different times for Alta
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It can be observed from the plot in figure 3.14 how temperature varies between negative

degrees and positive degrees. The variation is more frequent up to a depth of roughly two

meters; after that the temperature is more stable. This was expected since closer to the

surface; the effect of the change in temperature has a greater impact.

The maximum ice plug for this simulation for a fully frozen plug -1 (°C) is 1,32 (m),

whereas the maximum depth to which ice is formed -0,1 (°C) is approximately 1,60 (m).

The sensitivity of the temperature criteria can be seen in figure 3.15.

Notice that the frost depth next to the wall of the pipe, is higher than in the middle of

the pipe. That is because of the steel’s ability to conduct heat.

Figure 3.15: Ice plug length according to two criteria at day 635 -0,1 (°C) (left), -1 (°C)
(right). The location of the steel pipe and foundation is shown in black.

Figure 3.16 shows the formation of two ice plugs, a thin one on top and a larger one

further down. Two ice plugs can occur if the ice in the foundation melts partly from the

top prior to a second freeze period. When this happens, water is trapped between the

two plugs, if a new freezing period occurs, the water between the plugs will freeze, and

so applying pressure on the wall of the pipe and on the existing ice plugs. However, the

thermal analysis shows that the top ice plug is melting the next day; hence no water is

trapped.
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Figure 3.16: Two ice plugs occurrence at day 680 (left), top ice plug melted at day 681
(right). Ice is coloured in grey, water is blue

Based on the meteorological institute’s temperature profile, the two plugs scenario that

occurred is not considered dangerous for the steel foundation. However, it is possible

that a temperature profile that leads to more durable ice plugs can occur. To further

investigate this scenario a new temperature profile is created, see figure 3.17.
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Figure 3.17: Average day temperature in Alta, followed by extreme heat and cold periods
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The diagram shows a prolonged heat period at 20 (°C) defined at the end of the second

winter period, followed by a new cold period at -10 (°C). The heat and cold periods are

extreme and are assumed to be unlikely to occur.

Even so, the size of the ice plugs formed as a result of the extreme temperatures gives an

indication of a worst-case scenario and what it could mean for the foundation.

Figure 3.18 shows the results of the simulation. Two ice plugs are formed. On the top,

the ice plug measures approximately 0,5 (m), and the bottom of the plug is 1,6 (m).

Figure 3.18: Two ice plugs as a result of extreme heat and cold periods

The plot given in figure 3.19 shows how temperature changes with the distance for the

two ice plugs simulation. The top plug is strongly affected by the temperature up to

approximately 0,5 m depth, after which the water is getting supercooled but yet is not

freezing. If the temperature keeps decreasing, the confined water will begin to expand.

The structural effect the formation of two plugs has on the foundation will be discussed

in a later chapter.



3.3 Analysis of the steel foundation 47

-3

-2.5

-2

-1.5

-1

-0.5

0

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

D
is

ta
n

ce
 f

ro
m

 t
h

e 
to

p
 (

 m
 )

Temperature ( °C )

Figure 3.19: Temperature plot for the two plugs scenario

With the methodology used, where latent heat is implemented with a non-linear heat

capacity, it is not so easy to define a temperature criterion for the two-plug scenario. A

plug is considered fully formed at -1 (°C) and fully melted at 0 (°C). For the model to

represent two ice plugs, one at the bottom due to partial melting and one freezing from

the top, the temperature limit was set to -0.5 (°C). This is considered to give a rough

estimate of the size of the two ice plugs.

For the second scenario where the surface temperature was changed with the one that

defines a 100 – years return period, as expected the size of the ice plugs has increased.

The maximum ice plug for a fully frozen ice plug has been found to be 1,95 (m), while

the maximum depth at where the ice started to form is 2,39 (m). See figure 3.20 below.

The temperature profiles for various dates are plotted and given in figure 3.21.

This simulation gives the worst-case scenario, while the first analysis is assumed to be a

more realistic representation while keeping in mind that it is only based on the lowest

temperatures recorded in the last ten years.
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Figure 3.20: Ice plug length according to two criteria at day 709 -0,1(°C) (left), -1(°C)
(right). The location of the steel pipe and foundation is shown in black.
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Figure 3.21: Scenario 2: Temperature profiles at different times for Alta, 100-year return
period
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The conservative simulation gives a more considerable value of the ice plug mainly because

it assumes a sinus curve with temperature fluctuating over a very long time period. The

temperature begins to decrease, and it stays negative for a long period. As a result, the

ice plug keeps increasing until the warmer period starts again.

On the other hand, in the area of Alta, it is not unusual for the temperature to vary from

minus degrees to positive degrees in the course of 48 hours especially at the end of the

winter. Having a few days in the winter period with positive degrees can have a significant

effect on reducing the size of the ice plug, which is exactly what we see happening in the

first simulation.

A summary of the result is presented in table 3.13 below.

Table 3.13: Summary of the results

Scenario Plug ( m ) at T:
-0,1 (°C) -1 (°C)

Realistic 1,6 1,32
Conservative 2,39 1,95

Note that the realistic scenario refers to the simulation where the input temperature is

based on the daily average temperature recorded in Alta, figure 3.10. The conservative

scenario is based on a 100-year return period, figure 3.6.

3.3.3.1 Sensitivity of the parameters

The input soil parameters in the analysis were based on typical values for frost-susceptible

soils given by Byggforsk (Byggforskserien, 2018). However, the properties of the soil may

vary, especially the density. Different soil density can have different water content. If the

density and water content change, so does the latent heat.

Soil samples from other projects done by Statnett in the South of Norway have shown that

a density of 1900 (kg/m3) and water a content between 12-15% are not uncommon. The

density and water content vary slightly in comparison with Byggforsk’s recommendation.

Regardless, a simulation was performed to investigate how the ice plug changes, see table

3.14. The simulation was run with the temperature profile for a 100-year return period

(the conservative scenario).
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Table 3.14: Simulation results with alternative density parameter

Return period Plug ( m ) at T:
-0.1 (°C ) -1 (°C )

100-year 2,84 2,40

By changing the density and water content, the ice plug’s size increased with approximately

0, 4 (m). The main reason is because of the latent heat of the soil. When water freezes, it

releases energy in the form of latent heat. A higher value of dry density and a smaller

value of water content give a lower latent heat value. The latent heat, when released, acts

as a brake by increasing the temperature and slowing down the cold. Hence a lower latent

heat value, less energy is released; therefore, deeper in the soil, the ice front moves.

The analysis shows that the depth of the ice front is strongly dependent on the density

and water content. However, for the foundation to be filled with water, soil with high

water content is required. The investigation of the thesis assumes a worst-case scenario

when the pipe of the foundation is filled with water. Therefore, when the pipe in not

filled with water up to the ground level, the situation is considered less critical for the

foundation.
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4 Theory of material behavior

This chapter covers the properties of ice and the process of water freezing, followed by

the mechanism that can be damaging for tubular sections when water is freezing inside.

Furthermore, the theory required for analyzing the strength capacity of the tubular part

of the foundation is presented. When water freezes, the volume expands by approximately

9%. The value of the force exerted by water as it freezes is dependent on several factors

including the temperature, pressure and the material in which it freezes. The pressure

exerted by freezing water has through history caused a number of damage to structures

and structural elements. Some examples here are the bursting of pipes, the crush of the

hulls of ships trapped in ice and the offset of foundations and buildings. The forces that

water creates when it freezes can be extremely high and, in theory, based on the phase

diagram of ice a value of approximately 200 MPa can be read, assuming the water freezes

in an infinitely stiff container (Akyurt et al., 2002).

4.1 Properties of ice

To fully understand the mechanism that breaks pipes, a brief study of the freezing process

and properties of ice are undergone in this chapter. In tubular sections at low temperature

when water changes states from liquid to solid it expands; this expansion leads to stresses

which are acting on the walls of the tube. As mentioned previously the density of water is

dependent on temperature.

Water is most dense at 4 (°C), after which the density decreases with the temperature.

This behavior of water is the reason why ice floats for example. Ice can exist in different

forms; the way ice forms is dependent on pressure and temperature. The phase diagram

in figure 4.1 shows the different types of ice structures at different temperatures and

pressures. In figure 4.1 the horizontal axis is temperature given in degrees Celsius and

the vertical axis is the pressure expressed in MPa. All-natural ice found on earth is of

the type Ih and has a hexagonal dendritic form. The Ih ice type it can be seen from the

diagram is stable between 0 (°C) to -200 (°C) and up to a pressure of 200 (MPa). Other

types of ice structures are shown in the diagram II, III, etc. For most common engineering

problems the Ih ice type is encountered (Akyurt et al., 2002).
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Figure 4.1: Water phase diagram

4.2 Mechanical behavior of ice

The same as other solids ice Ih exhibits three stages when an external force is applied:

elastic, plastic and a brittle stage. The elastic behavior is anisotropic, and the young’s

modulus varies by less than 30% between the loading direction for a single ice crystal.

In general, for ice, the young’s modulus is dependable on the purity of ice, temperature,

frequency of stress, the time of applied stress and several other factors. Figure 5.2 below

shows the stress-strain curves for ice at different strain rates: low (I), intermediate (II),

and high (III). From the diagram it can be seen for both tension and compression at a

low strain rate (I) that the behavior of ice is ductile. In tension, at intermediate strain

rate, the ice displays a brittle behavior because the applied load leads to initiation of

cracks while in compression the behavior stays ductile. Further regardless of tension or

compression at a high strain rate, the behavior of ice is brittle (Schulson, 1999).

Figure 4.2: Stress-strain curves for ice (Schulson, 1999)
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Even though the elastic modulus and the yield strength of ice are dependent on several

factors mentioned earlier, it has been shown that the factor of utmost importance for

both the elastic modulus and the yield strength is in fact the strain rate. By knowing

the strain rate, it is possible to approximate the yield strength of a given type on ice by

reading it from figure 4.3 below.

The diagram in figure 4.3 shows the compressive strength of different types of freshwater

ice at various strain rates. Freshwater ice is the ice that is formed from lakes, rivers, and

groundwater. Further freshwater ice in the diagram is divided into T1- granular ice, S1-

columnar large crystals ice, S2- smaller crystal ice, and S4- frazil ice (Gold, 1977).

Figure 4.3: Yield and brittle strength dependence of strain rate (Gold, 1977)

Another property of ice that is very important for the mechanism that leads to structural

failure in steel tubes is the adhesion of ice. The damage done by ice adhered to structures

every year is very costly, a few examples here are damage done at road surfaces, high

voltage cables, airplane wings and so forth. Adhesion of ice can be defined as the ability

of ice to cling to other surfaces. Experiments have been conducted to measure the

adhesion strength of ice on different materials. Different materials have different adhesion

mechanisms to ice, and the strength of adhesion is also dependent on several factors.

Some of the factors are surface pattern, temperature and the ice’s microscopic structure.

When it comes to the adhesion strength of ice on steel surfaces, experiments have shown

a maximum strength of approximately 0,5 (MPa) in shear.
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Figure 4.4: Adhesion strength of ice on different surfaces (Makkonen, 2012)

Figure 4.4 shows the strength of ice adhesion for different surfaces. Notice that for steel the

highest adhesion strength is between -10 and -15 (°C). The other curves show the adhesion

strength of ice for coated surfaces. Vellox 140, for example, is an anti-icing coating, making

the surface smoother hence the ice can be removed with less effort (Makkonen, 2012).

Thermal expansion of ice

In general, when a solid is exposed to high temperatures, it expands, and when it is

exposed to low temperatures, it shrinks. As stated previously water is doing the opposite.

When it is exposed to subzero temperatures is expanding by approximately 9 %. Further,

when water becomes ice, it starts behaving similarly to a typical solid. Research shows that

if ice is kept exposed to prolonged freezing temperatures, ice is shrinking. Experimental

observations have been made on ice floating on rivers, lakes, and sea. When thin floating

ice is suddenly exposed to very low temperatures, the ice begins to contract, and if the

temperature is sudden enough, it cracks. The cracks can again be filled with water, and

as a result, the ice surface keeps increasing. If, after a prolonged period with subfreezing

temperatures, a period with warmer temperatures fallows, the ice is warmed up and begins

to expand. Further, if an object restricts the expansion, thermal ice pressure is created.
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Thermal ice pressure can be critical for structures that are built next to the shores, for

example (Fransson, 1988). But not only, thermal ice pressure can also occur when ice is

confined like in the case of the steel foundation. Thermal expansion of ice in general is a

load case that has to be considered when designing for example offshore wind turbines

(TC88-MT, 2005). In the next chapter the thermal ice pressure on the foundation will be

investigated.

4.3 The freezing process in tubular sections

For water, when the temperature drops below 0 (°C) the phase transition from liquid

to solid begins. For a tubular section filled with water when exposed to subfreezing

temperature from all directions the freezing process can be divided into four stages:

1. Cooling

2. Dendritic ice formation

3. Annular ice formation

4. Final cooling

In the first stage when the pipe is exposed to the subfreezing temperature the

water temperature drops. The heat transfer mechanism from water to the ambient is by

convection and conduction. According to experiments, the water in the pipe does not

immediately begin to freeze when the temperature of 0 (°C) is reached but continues to

fall until the water temperature reaches the ambient temperature. This process is also

referred to as supercooling. In the second stage the dendritic ice forms. The formation of

ice leads to the release of latent heat which raises the temperature of the water. Hence a

spike in temperature can be seen in various experiments. After the formation of dendritic

ice is done in stage three annular ice begins to form. The annular ice is a denser type of

ice. In this stage, the dendritic ice from the second stage is embedded in the annular

ice. The final stage referred to as final cooling is when all water is transformed into solid

annular ice. All stages are illustrated in figure 4.5 below (Gordon, 1996).
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Figure 4.5: Freezing process in a tubular section (Gordon, 1996)

4.4 Freezing scenarios in vertical tubular sections

Previously the process of freezing and the stages water goes through before it becomes

solid ice has been presented. To understand the impact water has when it freezes on the

steel foundation an assessment of different freezing scenarios is analyzed. It is a common

misconception that tubular sections are being damaged when ice growth pushes against

the walls of the tubular section.

Research has shown that in fact bursting of pipes happens when a solid plug of annular

ice is formed inside a pipe, and it pushes the remaining water in a confined space leading

to increase pressure on the walls of the pipe. In other words, it is not the ice growth

that damages the pipe but the trapped water in a confined volume. It is also important

to mention that dendritic ice formation can’t lead to a pressure build high enough to

rupture the pipe, only when ice has entered stage 4, solid annular ice the rupture can

occur. When the pressure of the confined water is high enough the wall of the pipe will

begin to fracture creating a crack and the release of the pressure by forcing the water out

(Akyurt et al., 2002).

The pipe orientation and the surface/surfaces from where the ice begins to form plays a

significant role in the pressure build. Below different scenarios for the freezing mechanism

in a vertical tube section are presented and explained. For all the scenarios presented

below, assumed a vertical tubular section closed at the bottom end and open at the top

end is assumed.

As mentioned previously the steel foundation which is the topic of this master thesis
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consists of a tubular steel section mounted vertically on top of a steel pad. By analyzing

the different cases below a conclusion of what happens to the steel foundation when water

freezes can be formulated. The following five cases of ice expansion have been identified:

1. Water freezes from the bottom and up

2. Water freezes from the walls

3. Water freezes from the top end

4. Water freezing from bottom and top-end

5. Water freezes from all sides

Case 1: Water freezes from the bottom and up

Figure 4.6: Freezing from the bottom end

In this case, the water starts freezing from the bottom only, it is assumed that all other

surfaces are fully insulated. The ice will grow faster along the cylinder walls, as the

thermal conductivity of steel is higher than that of ice. The expansion of ice is pressing

the water up, where water can escape freely. As a result, there will be no pressure build-up

in this case.
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Case 2: Water freezes from the walls

Figure 4.7: Freezing from the walls

For the second case, the water is freezing from the walls and inwards. The same as in the

previous case it is assumed that all other surfaces are insulated. As long as water freezes

with the same velocity from both sides there will always be a gap in the middle where

water can freely expand. In this case, they will be no pressure build, hence the tubular

section will not be damaged because of the water freezing.

Case 3: Water freezes from the top end

Figure 4.8: Freezing from the top

This scenario is critical for the tubular section and is directly related to the theory

discussed earlier. When water freezes from the top the expansion of ice is driving the

water into a confined space. As a result, the pressure will keep increasing until the pipe

ruptures, allowing some of the water to be released. It is important to note that the

rupture of the pipe is dependent on several factors, including the material of the pipe,

freezing temperature, and the dimensions of the pipe. In some cases, the expansion of
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ice may only create a high stress on the walls of the pipe and not rupture it or deform it.

This case can be critical for tubular sections.

Case 4: Water freezing from bottom and top-end

Figure 4.9: Freezing from the bottom and from the top

This is another critical scenario for a tubular section. In this case, water is freezing from

both ends leading to the formation of two ice plugs that will keep growing trapping the

water between them. The confined water leads to a pressure build creating a critical point

in the middle of the section.

Case 5: Water is freezing from all sides

Figure 4.10: Freezing from all sides

This is a combination of all the cases presented above. For this to happen the tubular

section must be exposed to freezing temperatures from all sides. When ice is expanding

from all sides water is trapped somewhere in the middle, resulting in a pressure build that

can be critical for the pipe.
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4.5 Thin walled pressure vessel

A thin walled pressure vessel is one in which the walls have a thickness that is much

smaller than the overall size of the vessel, and the vessel is subjected to internal pressure

that is much greater that the exterior air pressure. In order for a vessel to be categorized

as thin walled the following expression must be met (Ibrahim et al., 2015):

t <
rm
10

(4.1)

where:

t is the wall thickness

rm is the middle radius

Figure 4.11: Section of the pipe showing the internal pressure, radiuses and the wall
thickness

When an internal pressure P is acting on the walls of the vessel to satisfy equilibrium

there must be some forces which counteract the internal pressure P .

The counteracting force in the longitudinal direction is called the axial stress or the

longitudinal stress and is given by the following equation (Ibrahim et al., 2015):

σa =
Prm
2t

(4.2)

where:

σa is the axial stress

P is the internal pressure
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rm is the middle radius

t is the wall thickness

Further the second stress counter acting the internal pressure P is called the tangential or

the Hoop stress and is given by the following equation (Ibrahim et al., 2015):

σt =
Prm
t

(4.3)

where:

σt is the axial stress

P is the internal pressure

rm is the middle radius

t is the wall thickness

4.6 Yield criterion

A yield criterion defines the the limit of elasticity in a material and the onset of plastic

deformation under any possible combination of stresses. There are a few yield criteria.

For metals, the von Mises Yield Criterion is most often used. According to the criterion,

yield occurs when the von Misses stress is equal or greater than the yield strength σY

divided by a material factor. The yield strength σY is usually determined in a uniaxial

tensile test (Irgens, 2006).

σVM ≤
σY
γM0

(4.4)

Von Mises stress criterion is defined as:

σVM =

√
1

2
[(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2] (4.5)

For a two-dimensional plane stress state, the von Mises stress can be defined as:

σVM =
√
σ2

1 − σ1σ2 + σ2
2 (4.6)
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where:

σVM is the von Mises stress

σY is the yield strength

σ1, σ2 and σ3 are principal stresses .

γM0 is the material safety factor
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5 Structural analysis

Based on the thermal analysis, the amount of water that can freeze inside the tubular

section of the steel foundation is known. This chapter will assess the structural impact ice

has on the steel foundation. Based on theory from the previous chapter, three cases are

analyzed below, one when water freezes from the top a second case when the thermal ice

pressure is investigated and a third when temperature fluctuation leads to the formation

of two ice plugs.

Summary of the cases investigated below:

• Case 1: Freezing from the top

• Case 2: Thermal expansion of ice

• Case 3: Formation of two ice plugs

5.1 Case 1: Freezing from the top

Based on the thermal analysis it has been found that the size of the ice plug can be up to

approximately 2,4 (m). When the air temperature drops below 0 (°C) ice starts to form

from the top and then grows downwards. The ice will grow faster along the cylinder walls

because the thermal conductivity of steel is higher than that of ice, thus illustrated ice

shape in figure 5.1.

However, since the foundation geometry allows water to escape at the bottom end, the

pressure-rise is minimized. Since entrapped water is a prerequisite for a substantial

pressure build-up, this freezing process is not considered harmful for the steel foundation.

Figure 5.1 presents a schematic of the steel foundation, assuming the worst case when the

foundation is filled with water up to the ground level.
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Figure 5.1: Steel foundation filled with water; freezing from the top

5.2 Case 2: Thermal expansion of ice

The theory chapter explained how ice contracts and expands when it is subjected to low

temperatures followed by rising temperatures. For the steel foundation, the following case

is proposed based on the theory, see figure 5.2.

Figure 5.2, illustrates the stages that lead to the thermal expansion of ice. In the first

stage, subfigure a. an ice plug of 1,95 (m) is fully formed. The size of the ice plug was

previously found from the thermal analysis.

If the temperature keeps decreasing after a period of time, the ice will begin to contract,

subfigure b. After a period with cold temperature, warmer temperatures will likely come;

as a result, the ice’s top surface will start to melt and begin to fill up the space between

the wall pipe and the actual ice plug, see subfigure c. and d.

If, after the warmer period, a new period will come with subfreezing temperatures, the

gaps will freeze, subfigure e. The next time the temperature rises, ice will start to expand,

applying pressure on the wall of the pipe.

The pressure that the thermal expansion of ice exerts on the pipe is further investigated

in Abaqus CAE.
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Figure 5.2: Thermal expansion of the steel foundation

5.2.1 Finite element analysis of the thermal expansion of ice

The thermal expansion of ice inside the hollow steel section of the foundation is simulated

with a fully coupled thermal-displacement analysis in Abaqus CAE. A coupled thermal-

displacement model is needed when the stress analysis is dependent on the temperature

distribution, and the temperature distribution depends on the stress solution.

5.2.1.1 Material properties

The input parameters used in the simulation are presented in table 5.1. Most of the

parameters were already discussed in the thermal analysis chapter. In addition, the

young’s modulus, poisson’s ratio, and the expansion coefficient of both steel and ice are
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added.

Table 5.1: Input parameters for the coupled thermal-stress analysis

Element type Material properties Units

Steel

Conductivity 60,5 ( W/mK )
Density 7850 ( kg/m3)
Young‘s modulus 2,1 ·1011 ( N/m2)
Poisson’s ratio 0,3
Expansion Coeff. 1,2·10−5 (1/K)
Specific heat 434 ( J/kgK )

Ice

Conductivity 2,3 ( W/mK )
Density 918,28 ( kg/m3)
Young‘s modulus 9 ·109 ( N/m2)
Poisson’s ratio 0,33
Expansion Coeff. 5·10−5 (1/K)
Specific heat 2048,38 ( J/kgK )

The young’s modulus for ice can vary considerably, as discussed previously. However, a

typical average value was chosen for the simulation-based on measurements done on Ih

ice type (Randhawa, 2018; Nimmo, 2004).The input parameters for steel are chosen based

on the strength class of steel (Norge, 2015). The expansion coefficient for ice is based

on mean values measured on samples from fresh and saline water ice (Marchenko et al.,

2016).

5.2.1.2 Model setup for the analysis

The FE-model is an axis-symmetric thermally coupled that consists of two parts, steel,

and ice. The model reflects the pipe geometry and the size of the ice plug found from the

thermal analysis, see figure 5.3.
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Figure 5.3: Coupled thermal-displacement model (dimensions in m)

Further, the model is given a temperature difference of 15 (°C) over a day, which is a

conservative case in comparison with temperature swings from Alta, ref. the temperature

plot from section 3.3.1.6. This means that the steel and the ice will expand in the course

of one day. The bottom surface of the pipe is restricted in the y-direction. In reality,

the pipe is mounted on the steel pad, and underneath is resting on pure soil, hence the

restriction of the model in the y-direction. Since this is an axis-symmetric model the
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center ax is pinned in the x-direction as well (yellow dotted line in the figure 5.3).

5.2.1.3 Results and discussion

The figure 5.7 below presents the Mises stress distribution in the model as a result of the

thermal expansion. For visibility reasons, the model is divided into two parts, the figure

on the left shows the upper part of the model while the one to the right gives the bottom

part.

The model is meshed with 20574 elements. The mesh choice was to ensure that the

thickens of the steel pipe is meshed with more than just one element. By using more than

one element across the pipe thickness, the accuracy of the results is improved. It was

observed by changing the mesh density; the stress value is higher than when only one

element across the pipe thickens was used. This is because a higher mesh density catches

is up the relatively small bending stresses as well.

Ice has a higher coefficient of thermal expansion than steel; as a result when a temperature

difference is present, ice begins to expand faster than the steel, and so is applying pressure

on the steel section. The highest stress concentration of approximately 110 (N/mm2) is

on the inside of the pipe wall next to both ends of the ice plug, marked in figure 5.7. The

stress is highest here because of the bending stresses and the sharp angle. Further, in

the middle of the pipe, an average stress value of approximately 93 (N/mm2) is found.

The stress plot along the outer side of the pipe wall is given in figure 5.4, figure 5.6 green

arrow shows the path for the plot.

The plot shows higher stresses at both ends of the ice plug as expected, while the stress

is more stable in the middle of the pipe. Further, in figure 5.5, the stress overtime in

the middle of the tubular section is plotted. The three chart lines represent the stress

overtime for the elements across the pipe thickness, denoted 1,2, and 3 in figure 5.6. The

element 1 shows the highest stress since it is closest to the ice plug, followed by 2 and 3.

Note that already after the first 14 hours (50400 s) the ice plug has almost reached the

given input temperature and the pressure as a result of the expansion is created.

A stress value of 93 (N/mm2) is well within the yield stress of the hollow section. Another

simulation was conducted with a temperature difference of 50 (°C) over one day. The

average Mises stress was found to be around 316 (N/mm2). Based on the analysis results,
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it is concluded that the thermal expansion of ice is not critical for the hollow section of

the foundation. Furthermore, the stress caused by the thermal expansion is within the

capacity of the steel even for the unlikely temperature difference of 50 (°C).
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Figure 5.6: Close up view in the middle of the meshed model
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Figure 5.7: Stress contour in the model due to thermal expansion of ice (units in N/m2 )

5.3 Case 3: Formation of two ice plugs

The formation of two ice plugs can occur if an ice-filled steel foundation will melt from the

top. If, after a period of melting the foundation is again exposed to a prolonged period of

sub-zero temperatures, ice will form at the top and grow downwards in the vertical pipe.

In this case, the water can be trapped, between the not-yet melted lower part of the ice

column and the newly formed ice on the top. The phenomenon is illustrated in figure 5.8

below.
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Figure 5.8: Formation of two ice plugs

However, for this scenario to be critical the following conditions must be met:

• The ice plug at the bottom and top must be large enough to support a critical

pressure build-up

• An ice column of sufficient height must be formed before the melting period

• There must be enough water in the vertical pipe

The thermal analysis has shown that based on temperatures from the meteorological

institute the formation of the ice plugs doesn’t meet the conditions named above. Almost

immediately after the ice plug on the top is formed a period with warmer temperature

follows leading to the melting of the top ice plug. Hence no pressure is built up. It is

possible that in the future a temperature profile that leads to the formation of two fully

formed ice plugs can occur. To further investigate this phenomenon a thermal analysis

was conducted with a temperature profile which induces the formation of two ice plugs,

figure 3.17. Based on the results from the thermal analysis will further investigate the

strength capacity of the pipe with respect to the formation of two ice plugs.

5.3.1 Analytical solution

When an internal pressure builds up between two ice plugs, the plugs are assumed to

fail due to shear stresses at the ice/steel boundary. This shear stress can be found for a

certain internal pressure and can be compared to the stress limit of ice. In subsection 4.2,
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the maximum ice adhesion strength has been determined to have a value of 0,5 (MPa),

where the yield strength (brittle if high enough strain rate) can be found from figure 4.3

if the strain rate is known.

The internal pressure that the pipe can withstand is calculated based on the theory

presented previously.

Figure 5.9: Cross section of the pipe presenting the internal area,radiuses and wall
thickness

Design data:

σY = 355 MPa

ro = 254 mm

rm = 247,75 mm

ri = 241,5 mm

t = 12,5 mm

Ai = 1,83·105 mm2

γM0 = 1,10 (Norge, 2015)

By trial and error, the maximum internal pressure that the pipe can withstand is found

to be 18,8 (N/mm2). From the value of the internal pressure, the axial and the tangential

stresses are determined:

Equation 4.2 gives:
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σa =
Prm
2t

=
18, 8 · 247, 75

2 · 12, 5
= 186, 30N/mm2

Further the equation 4.3 gives the tangential stress:

σt =
Prm
t

=
18, 8 · 247, 75

12, 5
= 372, 61N/mm2

The axial and the tangential stresses are in fact the principle stresses of the pipe, hence

using the equation 4.6 the Mises stress is found:

σVM =
√
σ2

1 − σ1σ2 + σ2
2 =

√
186, 302 − 186, 30 · 372, 61 + 372, 612 = 322, 69N/mm2

According to the equation 4.4 the pipe yields when:

σVM ≤
σY
γM0

=
355

1, 10
= 322, 72N/mm2

The value of Mises stress confirms the internal pressure the pipe can withstand. Now

the shear stress between the ice plug and the wall pipe can be found. The shear stress

can then again be compared with the adhesion and the ice’s yield strength, as mentioned

previously.

The force corresponding to an internal pressure of 18,8 (N/mm2) can be found from the

equation below:

F = P · Ai = 18, 8 · 1, 83 · 105 = 3, 44 · 106N

From the thermal analysis, a maximum ice plug at the top end was found to be

approximately 0,5 (m). For a 0,5 (m) length, the area of the ice plug in contact with the

pipe wall is:

Aplug = 2πriLplug = 2 · π · 241, 5 · 500 = 7, 59 · 105mm2
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Finally the shear force along the pipe wall is taken from the following equation:

τ =
F

Aplug
=

3, 44 · 106

7, 59 · 105
= 4, 54N/mm2

5.3.1.1 Examination of the strain rate

An approximation of the yield strength of ice can be evaluated from figure 4.3 if the strain

rate in the ice plug due to water pressure is known. From the thermal analysis, it is

possible to measure the amount of water that freezes per day. How fast the water freezes

in the steel foundation is mainly influenced by the temperature. In figure 5.10 the frost

depth inside the steel foundation is plotted for the conservative surface temperature given

by Byggforsk (Byggforskserien, 2018).
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Figure 5.10: Frost depth per day

From the plot in figure 5.10, it can be seen that after one day of subzero temperatures, the

frost depth is 30 mm, after which it starts to decrease. That is because the temperature

takes more time to penetrate deeper. After 7 days, frost penetration becomes almost

linear. This is not exactly correct; here, a more decline in frost depth was expected. For

measuring the frost depth, the model was re-meshed with 10x10 (mm) elements that

result in very high computation time, hence only a period of 14 days was simulated.

Furthermore, even with an element size of 10x10 (mm), the analysis doesn’t capture the

very small changes in the frost depth. Therefore the linear section in the plot is present.

However, the simulation gives an indication of the freezing depth per day. Further, in the

calculations, the average conservative frost depth of 16 mm per day is chosen.
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Based on the freezing depth per day the strain rate can be found, figure 5.11 illustrates

the two plug scenario in question.

Figure 5.11: Illustration of the two plugs scenario (dimensions in mm)

The initial volume of the top ice plug is given by the following equation:

V0 = πr2h0 = π · 241, 502 · 500 = 9, 16 · 107mm3

As mentioned previously when water freezes it expands by approximately 9,2% (Pople,

1987) and since per day 16 mm of it freezes, the change in volume per day is:

∆V = π · 241, 502 · 16 · 0, 092 = 2, 69 · 105mm3

In the calculation above, it is assumed that the expansion of water is only in the vertical

direction.

The strain increase per day is then given by:

ε =
∆V

V0

=
2, 69 · 105

9, 16 · 107
= 0, 0029
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Where the strain rate per second is:

ε̇ =
ε

time
=

0, 0029

24 · 3600
= 3, 40 · 10−8/s

The strain rates for other surface temperature are calculated and given table 5.2:

Table 5.2: Strain rate at different temperatures

Temperature ( °C ) Strain rate ( 1/s )
T= -5 1,70 ·10−8

T= Byggforsk 3,40·10−8

T= -20 6,38·10−8

From the diagram in figure 5.12 a strain rate of 3,40·10−8(1/s) gives the value of

approximately 0,60 (N/mm2) (magenta colour) for the yield strength of ice. It can

be observed that the parameters are not very sensitive. For example an extreme freezing

rate of 50 (mm) per day will give a strain rate of approximately 0,85 (N/mm2) (green

arrow).

Figure 5.12: Yield strength of ice for different strain rates (Gold, 1977)

5.3.1.2 Results and discussion

The hollow section of the foundation can withstand a pressure build of 18,8 (N/mm2).

For this pressure, the shear stress along the wall pipe for an ice plug of 500 (mm) has

found to be 4,54 (N/mm).
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In theory chapter, according to (Gold, 1977), the ice has an adhesion strength of 0,5

(N/mm2). Since the shear stress along the pipe wall is higher than the adhesion strength

of ice means that the top ice plug will be pushed upwards. Therefore the pressure build

will be released in the case when water is confined between two ice plugs.

Further, the yield strength of ice has been investigated. As described in the theory chapter,

the yield strength of ice is dependent on a number of factors. Some of those factors are

the strain rate, temperature, type of ice, direction of loading, purity of ice, etc. Because

of the complexity of the factors, only an indication of the yield strength was found, hence

conservative values were chosen. However, by finding the freezing rate per day from

the thermal analysis, the yield strength of ice has been found to be approximately 0,60

(N/mm2). For this value, the ice will start to yield before the shear stress capacity is

exceeded.

Based on the findings the conclusion is clear, for these plug lengths, the pressure can not

build up to burst the steel pipe, given that the adhesion and yield strength of ice is not

significantly higher than what is used in the calculations.

5.3.2 Finite element analysis of two plugs scenario

The hand calculations from subsection 5.3.1 are in this section controlled with the finite

element software Abaqus CAE by using a static, general simulation. The model has the

same dimensions as the illustration in figure 5.11. Further, the bottom surface of the

pipe is not allowed to move in the y-direction, and since the model is axis-symmetric,

the center ax is pinned in the x-direction.The model is defined as one element and then

partitioned in three parts, steel, top ice plug and bottom ice plug. Between the ice plugs

the internal pressure found previously is applied. The Abaqus model is presented in figure

5.13 below.

5.3.2.1 Material properties

The materials used in the model are steel and ice, and their properties are given in

table 5.3. Steel properties reflect the strength class of the pipe S355 structural steel. As

explained previously, the properties of ice are dependent on many factors, the values used

in this simulation are based on typical average values (Nimmo, 2004; Norge, 2015).
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Table 5.3: Material properties

Element type Material properties

Steel Young‘s modulus 210000 ( N/mm2)
Poisson’s ratio 0,3

Ice Young‘s modulus 9000 ( N/mm2)
Poisson’s ratio 0,33

Figure 5.13: The geometry of the model for the two plugs scenario (dimensions in m)

5.3.2.2 Results and discussion

The distribution of Mises stress is given in figure 5.14. Because of the mesh density in

order to be visible, the figure is divided into three parts. The figure to the left shows the

distribution of stresses in the upper part of the model, followed by the middle part and
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bottom part.

Figure 5.14: Stress contour in the model due to internal pressure (units N/mm2)

As expected, the maximum stresses are on the pipe wall. Notice the 90°corners between

the pipe and the plugs, if the whole model had been made from the same material with

the same young’s modulus, the highest stress concentrations would have been expected

there. Since the ice is less stiff than the steel the stress concentration is not an issue in

the corners. The stress plot from figure 5.15 is taken in the middle between the ice plugs ,
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through the pipe wall. Location and the path direction is marked in figure 5.14 with a

black arrow.
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Figure 5.15: Stress distribution in the middle of the pipe

From figure 5.15, it can be seen that the stress distribution is not linear. This implies

that bending stresses are present, which gives compression and tension stresses, and in

addition, membrane stresses are present as well. The theoretical decomposition of stress

into bending and membrane stresses is illustrated in figure 5.16 (Moss, 2004).

Figure 5.16: Decomposition of stress into a membrane stress and bending stress

Taking the average value from the total stresses plotted in figure 5.15 the membrane stress

value of σm= 323,60 (N/mm2) is obtained.

Further the shear stress between the top ice plug and the pipe wall is given in figure 5.17.
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Figure 5.17: Shear stresses between the pipe wall and the top ice plug

The graph shows higher shear stress values closer to where the internal pressure is applied,

towards the top surface, the stress is lower as expected.

It is important to mention that the plot was taken one element column from the pipe wall.

Because of the bending that occurs in the pipe as a result, shear stresses are present as

well.

Further, the shear stresses from the bending counteract the shear stress between the pipe

wall and the ice plug.

By moving one element column from the contact region between the plug and the wall, a

more accurate shear stress value is obtained. The average shear stress value found from

the model is τ = 4,43 (N/mm2).

In table 5.4, the results from hand calculation and the finite element model are given.

The percentage of error between the results is very small hence the calculations can be

trusted and the main conclusion remains the same. Based on the calculations the pressure

build between the plugs is not damaging for the pipe.

Table 5.4: Comparison of the results

Solution Mises stress Shear stress
N/mm2 N/mm2

Analytical 322,69 4,54
FE-model 323,60 4,43
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6 Concluding remarks

The thesis aimed to investigate if the groundwater that can freely enter into the hollow

section of the steel foundation can have a damaging impact on the structural integrity of

the foundation when it freezes.

In order to know if the freezing of water is damaging for the steel foundation, first, the

frost depth had to be found. The extent to which ice is formed was investigated by

performing a set of thermal analyses. In total, three models were created in Abaqus CAE.

The first two models were used to validate the analysis methodology for the third model.

The third model simulated the frost depth of water inside the foundation. The results

from the simulation gave a frost depth of a maximum of 2,4 m. Besides, the analysis

showed that water could be trapped between two ice plugs. The formation of two ice plugs

can be critical for the hollow section. A new thermal study was conducted to investigate

the scenario of two ice plugs further. By assuming conservative input parameters, the

simulation identified the formation of two fully formed plugs with water confined between

them.

Further, a set of structural analyses was conducted to understand what the frost depth

found from the thermal analysis meant to the structural integrity of the foundation. Based

on the theory of ice, the formation of a single ice plug of 2,4 (m) was found not to be

critical for the foundation.

In the second scenario, the thermal expansion of ice was investigated. When an ice plug

is fully formed, if the temperature keeps decreasing, the ice begins to shrink. Further,

when the temperature rises again, the ice will start to expand, creating pressure if the

expansion is restricted, as in the case of the steel foundation. The pressure created by the

expansion of ice was simulated in Abaqus CAE, and the result showed that the strength

capacity of the pipe was significantly higher than the force applied by the ice.

For the third and last scenario where two ice plugs with water trapped between them

are formed, hand calculations and an FE-model were performed. The steel pipe capacity

was investigated, and it has been found to be higher than the adhesion and the yield

strength of ice. Both the hand calculations and the finite element analysis converged well,

leading to the following conclusion: the formation of two ice plugs does not affect the
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structural integrity of the foundation given that the adhesion and yield strength of ice

is not significantly higher than what was used in the calculations. Furthermore, there

will likely be snow at least parts of the winter season. The snow on the ground acts

as an insulation, slowing the frost penetration into the ground and into the foundation.

Meaning the size of the ice plug/plugs is reduced. Because of the complexity and the

uncertainty of the parameters, the thesis was based on evaluating worst-case scenarios.

The structural integrity of the foundations is critical for the stability of the lattice steel

towers. And furthermore, the stability of the towers is crucial for the supply of electricity,

hence this thesis approach.
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Appendix

A1 Calculation of the temperature throughout the soil

Table A1.1: Temperature throughout the soil from the linear soil analysis

Depth Temperature Abaqus Temperature analytical solution

( m ) ( °C ) ( °C )

0,00 20,000 20,000

0,05 19,236 19,211

0,10 18,472 18,424

0,15 17,708 17,640

0,20 16,944 16,863

0,25 16,180 16,093

0,30 15,416 15,332

0,35 14,652 14,583

0,40 13,888 13,846

0,45 13,124 13,123

0,50 12,360 12,417

0,55 11,769 11,727

0,60 11,179 11,055

0,65 10,589 10,403

0,70 9,998 9,772

0,75 9,408 9,161

0,80 8,818 8,573

0,85 8,228 8,007

0,90 7,637 7,465

0,95 7,047 6,945

1,00 6,457 6,450

1,05 6,097 5,978

1,10 5,738 5,529

1,15 5,378 5,104
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Table A1.1 continued from previous page

Depth Temperature Abaqus Temperature analytical solution

( m ) ( °C ) ( °C )

1,20 5,018 4,703

1,25 4,659 4,324

1,30 4,299 3,968

1,35 3,940 3,633

1,40 3,580 3,320

1,45 3,221 3,028

1,50 2,861 2,756

1,55 2,684 2,503

1,60 2,506 2,269

1,65 2,329 2,052

1,70 2,151 1,852

1,75 1,974 1,668

1,80 1,796 1,499

1,85 1,619 1,344

1,90 1,441 1,203

1,95 1,264 1,074

2,00 1,086 0,957

2,05 1,014 0,851

2,10 0,941 0,755

2,15 0,868 0,668

2,20 0,795 0,590

2,25 0,722 0,520

2,30 0,649 0,457

2,35 0,577 0,401

2,40 0,504 0,351

2,45 0,431 0,307

2,50 0,358 0,268

2,55 0,333 0,233

2,60 0,307 0,202
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Table A1.1 continued from previous page

Depth Temperature Abaqus Temperature analytical solution

( m ) ( °C ) ( °C )

2,65 0,282 0,175

2,70 0,256 0,151

2,75 0,231 0,130

2,80 0,205 0,112

2,85 0,180 0,096

2,90 0,155 0,082

2,95 0,129 0,070

3,00 0,104 0,060

3,05 0,096 0,051

3,10 0,088 0,043

3,15 0,081 0,037

3,20 0,073 0,031

3,25 0,065 0,026

3,30 0,058 0,022

3,35 0,050 0,018

3,40 0,042 0,015

3,45 0,034 0,013

3,50 0,027 0,011
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