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Abstract
There is abundant evidence that behavioral variability is more predominant when rein-
forcement is contingent on it than when it is not, and the interpretation of direct reinforce-
ment of variability suggested by Page and Neuringer, Journal of Experimental Psychology:
Animal Behavior Processes, 11(3), 429–452 (1985) has been widely accepted. Even so,
trying to identify the underlying mechanisms in the emergence of stochastic-like variability
in a variability contingency is intricate. There are several challenges to characterizing
variability as directly reinforced, most notably because reinforcement traditionally has been
found to produce repetitive responding, but also because directly reinforced variability does
not always relate to independent variables the same way as more commonly studied
repetitive responding does. The challenging findings in variability experiments are
discussed, along with alternative hypotheses on how variability contingencies may engen-
der the high variability that they undeniably do. We suggest that the typical increase in
behavioral variability that is often demonstrated when reinforcement is contingent on it
may be better explained in terms of a dynamic interaction of reinforcement and extinction
working on several specific responses rather than as directly reinforced.
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In ontogenetic selection, as well as in phylogenetic selection of behavior, the adaption
to changing contingencies is explained parsimoniously by the principles of variation
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and selection (e.g., Donahoe & Palmer, 2004). Sources of variation are important both
for theoretical and for practical reasons. Without continued sources of variation,
selection alone could only serve to further constrict variation within preexisting
boundaries. Thus, any evolution of species or of behavioral repertoires beyond
preexisting characteristics depends on continuous sources of variation. For practical
reasons, sources of behavioral variation are important because they can help us increase
or decrease variability when such changes are desirable or essential (Neuringer, 2002).

In an extensive article, Page and Neuringer (1985) suggested that variability may be an
operant dimension of behavior, in the same way as, for example, response rate, force,
duration, and location. Several later experiments have shown that variability, normally
measured as the dispersion of different sequences, are higher when a variability contin-
gency is in effect, than when it is not (e.g., Denney & Neuringer, 1998; Kong, McEwan,
Bizo, & Foster, 2019; Miller & Neuringer, 2000). This finding is highly reliable, and the
interpretation of “direct reinforcement of variability” and “variability as an operant
dimension” has been widely accepted (e.g., Catania, 2013; Doughty & Galizio, 2015;
Dracobly, Dozier, Briggs, & Juanico, 2017; Lee, Sturmey, & Fields, 2007; Locey &
Rachlin, 2013; Odum, Ward, Barnes, & Burke, 2006; Rodriguez & Thompson, 2015;
Stahlman & Blaisdell, 2011; Stokes, 1995; Stokes, Mechner & Balsam, 1999; Ward,
Kynaston, Bailey, & Odum, 2008). Nevertheless, a few researchers (Barba, 2015;
Epstein, 2014; Holth, 2012; Machado, 1989, 1992, 1993, 1997; Machado & Tonneau,
2012; Marr, 2012) have raised the question of whether direct reinforcement of variability
is the most satisfactory view or whether the variability in these experiments is more
effectively or pragmatically considered as a derivative of other procedural characteristics.

The aim of the present article is to discuss whether directly reinforced operant
variability is a satisfactory description of the behavioral variability that results from a
variability contingency. In addition, we question the common notion of uncertainty and
unpredictability (Jensen, Miller, & Neuringer, 2006; Neuringer & Jensen, 2013; Page
& Neuringer, 1985) of the resulting variable responding. First, we summarize the basis
provided by Neuringer and colleagues for the commonly accepted interpretation of
variability as directly reinforced, as well as alternative interpretations, most notably by
Machado and by Barba. Second, we will present results of previous studies where
variability considered as an operant dimension has been found to differ from other,
typical operant dimensions. Third, we describe some potentially important procedural
details. Fourth, based on Catania’s (1973, 2013) analysis of the concept of the operant
in terms of descriptive and functional classes we will discuss whether the descriptive
unit commonly used in variability experiments can be assumed to turn into a valid
functional unit. Fifth, we contrast a molar and a molecular interpretation of variability.
Finally, an alternative interpretation where variability is interpreted as a derivative
phenomenon instead of a selected dimension of directly reinforced operant behavior is
suggested as a more parsimonious explanation of the results that have been consistently
replicated in experiments using variability contingencies. In this regard we have two
main concerns. The first is with specific details of the mainstream way of conducting
variability experiments. Our second concern is the extensive use of aggregated statistics
when interpreting results. Aggregated statistics are calculated from steady-state behav-
ior, which does not necessarily include data relevant to the identification of functional
relations in the development of responding (Reid, Chadwick, Dunham, & Miller, 2001;
Shimp, 2013; Skinner, 1976). We argue that in order to arrive upon a solid
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interpretation of the behavioral variability that results when reinforcement is contingent
upon it, experimental procedures that allow us to keep track of functional units are
needed.

The Support for Behavioral Variability as an Operant Dimension

Page and Neuringer (1985) demonstrated that a variability contingency could result in
varied sequences of pecks in pigeons, and Neuringer (1986) showed that human
participants could learn to distribute two different responses randomly—according
to an extensive set of statistical criteria. Neuringer and Jensen (2012) listed three
traditionally mentioned causes of behavioral variability and added a fourth: (1)
behavior caused by unrelated events (in the environment or within the organism);
(2) simply unexplained behavior; (3) behavior induced by extinction or aversive
events; and (4) directly reinforced variability. Neuringer’s hypothesis focuses on
the fourth source: directly reinforced variability. According to Neuringer and
Jensen (2012) variability is selected when reinforcement is contingent on it.
Hence, varying between sequences is considered as being directly reinforced and
functioning as an operant dimension on its own: “Stated simply, variability is a
reinforceable dimension of emitted behaviors” (p. 74).

Neuringer’s hypothesis is that the underlying process of this stochastic-like
behavior is an inborn variability generator (Page & Neuringer, 1985) or an
endogenous stochastic process (Jensen et al., 2006; Neuringer, 1986, 2002). The
theory of an endogenous stochastic process suggests that memory for prior
responses is not consistent with stochastic-like performance (Neuringer, 2002),
because a defining feature of random and stochastic processes is a lack of
predictability. Acknowledging that this underlying endogenous stochastic
process can never be proven, Neuringer (2002) listed several experimental find-
ings that are consistent with this process. These findings are from experiments
where stimulus control by prior responses are in some way interfered with
(Baddeley, 1966; Machado, 1993; Manabe, Staddon, & Cleaveland, 1997;
Morris, 1987; Neuringer, 1991; Page & Neuringer, 1985) or the experimental
findings are consistent with response distributions from a random generator
(Blough, 1966; Machado, 1989; Neuringer, 1986). Even if the theory of an
endogenous stochastic process underlying the variability in these experiments is
satisfactory as a descriptive summary of experimental findings, it is still unclear
how the mechanisms are most usefully described, when reinforcement in some
cases produces stereotypy whereas in others it produces highly variable behavior.

Doughty and Galizio (2015) suggested that variability may be a generalized higher-
order response class, learned from multiple exemplar training, where the response unit
is not necessarily the whole sequence, but possibly two consecutive responses. In this
explanation the contingency targets within-sequence variability, as opposed to what the
contingency is programmed to reinforce—between-sequence variability. The variabil-
ity is suggested to be directly reinforced, because it is hypothesized that the differential
reinforcement teaches the subjects that extended periods of only switching between
operanda or repeating the same operandum is likely to be followed by timeout
(nonreinforcement), whereas reinforcement is likely to follow a mixture of these events.
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Previous Challenges to the View of Variability as an Operant
Dimension

A few authors have questioned whether the results from variability experiments so far
have shown direct reinforcement of variability, even if this is the commonly accepted
interpretation. Machado (1993) asked what property defined the operant variability
class. He suggested that identifying the necessary and sufficient conditions to engender
variable responding, and describing the mechanisms or processes underlying the
behavior would be necessary to answer this question. In several articles, Machado
(1989, 1992, 1993, 1994; Machado & Tonneau, 2012) has argued that the necessary,
although not always sufficient, condition is a negative frequency-dependent contingen-
cy. Machado’s (1993) Frequency-Dependent Hypothesis proposes that the variability
in these schedules emerges or is mediated by frequency-dependent selection rather than
being directly reinforced. Machado and Tonneau (2012) explained this process as “one
strengthening the weakest responses and the other weakening the strongest responses
are logically sufficient to promote and maintain behavioral variability” (p. 254).
Adapted from Machado’s Frequency-Dependent Hypothesis is Barba’s (2015) Balance
Hypothesis. According to this interpretation, a frequent response just reinforced will
lose its strength because reinforcement is less likely to follow from it again, at least for
some time. The least likely responses, the responses not emitted before or not emitted
for a long time, will gain in strength because they are momentarily more likely to be
reinforced.

Catania (1973) distinguished between descriptive and functional response clas-
ses. A descriptive class consists of responses that satisfy the reinforcement con-
tingency, and a functional class is the class of responses generated by the
contingency. An operant is characterized by a correspondence between a descrip-
tive and a functional class. Barba’s (2015) interpretation suggests that although the
descriptive unit is sequences, because reinforcers are contingent on the variability
of the emitted sequence in relation to previous sequences, the functional unit is
nonetheless not the whole sequence. The hypothesis does not assume a formation
of a structurally consistent functional class, reinforcement is rather hypothesized
to act upon properties intrinsic to the sequence, that is, not dependent on the
relation to other sequences (Barba, 2015). It is important to note that in frequency-
dependent selection and Balance Hypothesis variability or unpredictability is not
directly reinforced. The contingency does not engender an operant class properly
characterized as responding unpredictably. It is rather a constant, dynamic
organism-environment interaction that produces and maintains the variable
responding, because the contingency continuously balances the strength of each
sequence or pattern and no specific response or response pattern is consistently
selected (Barba, 2015; Machado & Tonneau, 2012). Inseparably linked to vari-
ability contingencies is the repeated cycling between reinforcement and the dif-
ferential extinction of recently emitted behavior.

The important distinction between Neuringer’s and Doughty and Galizio’s interpre-
tation on the one hand, and Machado’s and Barba’s interpretation on the other, is
whether the best explanation of the data published so far is the direct reinforcement of
variability or whether it is more productive to view variability as a joint and dynamic
effect of reinforcement and extinction of many different responses. From the different
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interpretations of variability presented above, it seems clear that there are still several
unanswered questions regarding the mechanisms of variable responding.

Does Variability Behave Consistently with Other Operant Dimensions?

The standard interpretation, explained above, that variability is a directly reinforced
operant dimension, should entail that such variability behaves consistently with other
operant dimensions under different circumstances. However, Wagner and Neuringer
(2006) contended that although variable operant responding is controlled by reinforce-
ment contingencies, some characteristics of operant variability may differ from more
typically investigated repetitive responding. First, a general finding in research on
operant behavior is that, all else equal, responses closer to the reinforcer (measured
by time or number of responses) conforms to the contingency faster and more closely
than responses further away from the reinforcer. Experiments have shown that the
longer time from the response to the delivery of a reinforcer reduces the reinforcing
effect. Consult research on how temporal distance decrease the effectiveness of rein-
forcement (Catania, 1971; Catania et al., 2015; Killeen, 1994), and research on delayed
reinforcement (e.g., Dews, 1960; Ramey & Ourth, 1971; Richards, 1981; Skinner,
1938/1991). However, in a variability contingency this relation is reversed: behavior
exposed to a variability contingency comes to correspond to the contingency faster and
more closely with the inclusion of a forced interresponse time (IRT, in the literature
commonly denoted IRI for interresponse interval) than without (Morris, 1987, 1989;
Neuringer, 1991; Page & Neuringer, 1985). Morris (1987) conducted a variability
experiment with two different conditions. The first was a free-operant procedure, where
key lights were lit, and key pecks were recorded continuously. The second was a
discrete-trial procedure, where the key lights and houselight turned off for a forced IRT
of 2 s following each individual key peck. In both conditions, reinforcement was
contingent upon sequences of four key pecks distributed on two keys that differed
from the two immediately preceding sequences. The free-operant and discrete-trial
conditions produced surprisingly different results. During the free-operant sessions,
fewer than 32% of completed sequences met the reinforcement criterion, whereas
during the discrete-trial sessions with the forced IRTs approximately 75% met the
criterion.

Neuringer (1991) also investigated the effects of the forced IRT, using Long-Evans
rats. His results showed that in a contingency where sequences of four lever-presses
had to differ from the immediately preceding five sequences without a forced IRT,
variability was relatively low. In contrast, sessions with a 1-s forced IRT generated
higher variability. After manipulating the IRT from 0 to 20 s, he found that the
variability across sequences increased as a function of the duration of the forced IRT,
as the response repetitions within-trials decreased. The increase in variability as the IRT
increased from 0 to 1 s was dramatic, whereas longer IRTs only increased the
variability slightly. A forced IRT is commonly used in experiments with pigeons as a
response-pacing requirement, as pigeons tend to peck rapidly on a single key (Blough,
1966; Shimp, 1973). The original pacing argument for the IRT may be less valid with
respect to lever pressing in rats. Yet, the forced IRT is also typically used in variability
experiments with rats and regardless of the validity of its original justification, it has an
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equally dramatic effect on the variability of responding as in the pigeon experiments. It
is still unclear why and how the IRT has such a dramatic effect on variability (cf.
Doughty & Galizio, 2015).

Another area of interest is the research on units integrating several individual
responses. The general finding is that the fewer responses a unit or chain consists of,
the faster it will conform to the contingency. For example, a sequence consisting of two
responses will more easily conform to the contingency than sequences consisting of
three or four responses (e.g., Reed, Schachtman, & Hall, 1991; Schneider & Morris,
1992). As in the previous example on IRT, this relation is also reversed in a variability
contingency: behavior conforms faster and more closely to this contingency the longer
the descriptive unit is. For example, Page and Neuringer’s (1985) Experiment 4
investigated the influence of an increasing number of pecks in the descriptive unit, 4,
6, and 8 pecks. They concluded that increasing the number of responses per sequence
resulted in an increased percentage of reinforced trials, as responding conformed more
closely to the contingency. Their analysis showed that variability within the sequences
did not significantly change, but as more sequences are available for reinforcement
when the sequences are longer, the overall probability of sequences leading to rein-
forcer delivery increases.

A third finding was reported by Odum et al. (2006). They found that repetition and
variability were differentially affected by prereinforcement delays. In the repeat condi-
tion longer delays between the last response and delivery of reinforcement resulted in a
decrease of the targeted sequence (mostly RRLL), variability increased, and reinforce-
ment probability decreased. In the variability condition the variability and percentage of
trials ending in reinforcement typically remained unaffected by the lengthening of the
delay. This effect of delay of reinforcement on variability was also shown by Wagner
and Neuringer (2006). They made reinforcement contingent on either of three different
levels of variability, low, medium, and high. The sessions with prereinforcement delay
showed a modest increase in variability in the low and medium group, whereas
variability decreased slightly in the high variability group.

These three findings in variability experiments lead to the conclusion that, the longer
time between the effective responses in the sequence, or the more responses separating
the early responses in the sequence and the reinforcer, the closer the behavior conforms
to the variability contingency. This conclusion challenges the otherwise established
generality of the delay-gradient (e.g., Catania, 2005; Catania et al., 2015; Killeen,
1994).

A fourth example of a different effect on repetition and variability is the finding that
alcohol does not affect behavior significantly when responding is already variable or
random-like, whereas it has a disruptive effect on maintaining repetitive behavior
(Cohen, Neuringer, & Rhodes, 1990; McElroy & Neuringer, 1990). According to
Neuringer and Jensen (2012) these findings listed above are consistent with their
hypothesis that memory for, or discriminative control by, earlier responses are detri-
mental to variability and, by default, also consistent with the stochastic generator
hypothesis.

A fifth finding is that variability tends to decline when a possible reinforcer
approaches (Cherot, Jones, & Neuringer, 1996; Gharib, Gade, & Roberts, 2004;
McElroy & Neuringer, 1990; Wagner & Neuringer, 2006). This result is in accordance
with findings on repetitive behavior (Boren & Gollub, 1972; Ferster, 1960; Nevin,
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Cumming, & Berryman, 1963; Stubbs, 1968). When reinforcement is contingent on
repetitive behavior, the behavior will commonly be even more repetitive when a
possible reinforcer is approaching, increasing accuracy according to the contingency
(e.g., Nevin, 1967). In a variability contingency a higher level of repetitive responding
has also been found when approaching a possible reinforcer, but in this contingency,
increased repetition implies a decrease in accuracy. Hence, with standard operants the
properties upon which reinforcement is contingent become more likely closer to the
reinforcer, whereas in a variability contingency the property upon which reinforcement
is contingent, variability, becomes less likely closer to the reinforcer. McElroy and
Neuringer (1990) analyzed the internal structure of the sequences in their variability
experiment. They found that the last response in the sequence, the fourth response, was
more likely to be a repetition of the third response than the previous responses in the
sequence were likely to repeat the previous response. Cherot et al. (1996) investigated
even more thoroughly the repetition-inducing effect of reinforcement. In this experi-
ment the descriptive unit was still four lever-presses or key pecks, but the sequences
were reinforced on an FR 4 schedule, meaning that only the fourth sequence that
satisfied the contingency would be reinforced. The variability was higher in the first
two sequences in the FR 4 schedule, and declined in the third and fourth sequence.
Doughty, Giorno, and Miller (2013) found that this effect was even more predominant
with larger reinforcers.

The repetition-inducing effect when a reinforcer is typically scheduled, the nonaffect
of reinforcement delays, and other disrupters like alcohol, all seem to set variability
aside from standard operant dimensions. In addition, the fact that behavior conforms to
the contingency faster and more closely in a variability contingency with the inclusion
of a forced IRT, and the longer the descriptive unit is, suggest that it is worth
considering alternatives to the idea of variability as directly reinforced.

Potentially Important Procedural Details

The following variability contingency procedures have been used: recency, frequency-
dependent, and threshold contingencies. In a contingency based on recency, commonly
a lag-schedule, reinforcers are contingent on a unit of responses that are not among the
most recently emitted. In Lag n, reinforcement is contingent on a response that differs
from the immediately preceding n responses or sequences of responses. Page and
Neuringer’s (1985) Experiment 3 manipulated the lag value (n) from 5 to 50 using
sequences of eight key pecks. The result of this experiment was that the percentage of
different sequences emitted increased from Lag 5 and up to Lag 25, and then decreased
slightly from Lag 25 to Lag 50.

A frequency-dependent procedure only reinforces the least likely or the least often
emitted among the available responses. Frequency-dependent procedures can be either
absolute, where only the response sequence that has occurred least frequently is
reinforced (Blough, 1966; Shimp, 1967), or probabilistic, with a payoff probability
corresponding to how infrequently a response is emitted (Machado, 1992). Blough
(1966) reinforced the least-frequent interresponse time in an experiment with pigeons.
He divided the interresponse times into “IRT-bins” of different durations. Whenever a
response was reinforced, the bin of interresponse times with fewest occurrences was
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selected for the next reinforcement. The procedure resulted in highly variable
interresponse times.

A third variability procedure is a threshold procedure, where the reinforced re-
sponses are those with a frequency below or equal to a specified threshold. For
example, Denney and Neuringer (1998) used a threshold contingency of .09 with
sequences of four key pecks. This contingency delivers reinforcement for sequences
occurring less than or equal to 9% of the total trials.

The leniency of the variability contingency will affect the behavior in predictable
ways. An example of a lenient variability procedure is the frequency-dependent
contingency targeting individual responses used by Machado (1992). In this experi-
ment the probability of reinforcement was calculated from previously emitted L or R
key pecks. The more predominant R key pecks the less probable was reinforcement for
R key pecks and vice versa. Only when left and right key pecks were evenly emitted
(indifference), the probability of reinforcement was equal for both responses. A pattern
of strict alternation between responses emerged. These lenient types of variability
procedures are the ones used in most applied settings (e.g., Esch, Esch, & Love,
2009; Heldt & Schlinger, 2012). When more stringent variability procedures are in
effect, a very different pattern of behavior is predominant. In these procedures a higher-
order stereotyped pattern that would satisfy the contingency exists, but would be
exceedingly long, especially in procedures where the descriptive unit consists of
response sequences. Commonly responding becomes apparently stochastic- or ran-
dom-like. This may be characterized as a “memory capacity problem” or as a com-
plexity problem, in which the discriminative control by previous responses seems to
break down and stochastic-like responding emerges (e.g., Holth, 2012; Machado, 1993;
Page & Neuringer, 1985). According to Jensen et al. (2006), the overall relative
frequency of stochastic responding can be predicted, whereas the moment-to-moment
responses are independent of prior events and cannot be predicted any more precisely
than chance (random), or according to a probability statement (stochastic). These
stringent procedures have mostly been performed on nonhuman animals. The focus
of this article is the stochastic-like responding occurring in stringent variability proce-
dures. These are most typically found in laboratory research with nonhuman animals,
but we will also discuss some findings from applied studies with human participants.

Schwartz (1980, 1981) investigated if sequences of several responses could become
integrated (i.e., functional) behavioral units. In these experiments he used a five by five
light matrix where pigeon’s pecks moved a light from its start position in the upper left
corner either to the right or down in the matrix, in order to move the light from start to
goal position in the bottom right corner. The unit was therefore any sequences of four
left and four right key pecks needed to move the light from start to goal. He reported
that reinforcement commonly resulted in stereotyped behavior in pigeons, even when
stereotypy was not a requirement. Later, he reported that even when variability was a
requirement, reinforcement would still result in stereotypy (Schwartz, 1982). Accord-
ing to Schwartz’s interpretation, therefore, variability and novelty could not be a
product of reinforcement.

Page and Neuringer (1985) hypothesized that the constraint in Schwartz’s experi-
ments, of exactly four pecks on either disk, was what led to stereotyped responding. In
their Experiment 1, they investigated the difference of two conditions. One was a Lag 5
contingency called variability (V), the other a Lag 1 with the constraint of only four
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pecks on either key, a fifth peck would lead to a timeout and start a new sequence, this
condition was called variability with constraint (VC). Both conditions included a forced
0.5-s IRT. This IRT, not present in Schwartz’s experiments, functioned as a short time-
out between all the individual responses in the sequence, except between the last
response and accessing the reinforcer. It was signaled by the darkening of lights, and
responding had no programmed consequences, except resetting the interresponse time.
The result of Experiment 1 showed that in the V-sessions significantly more reinforcers
were obtained than in the VC-sessions, but variability, measured by the percentage of
different sequences per session, were close to identical. They concluded that the
constraint was responsible for the lack of success in Schwartz’s (1982) experiment.
In Page and Neuringer’s (1985) Experiment 2, a direct replication of Schwartz’s (1982)
Experiment 1, without the forced IRT, they again found that fewer of the available
reinforcers were obtained with the constraint than in sessions without the constraint.
Variability, on the other hand, was higher in the sessions with constraint. Page and
Neuringer (1985) concluded from the experiment that the constraint was responsible for
the low frequency of obtained reinforcers. In addition, they concluded that variability
was higher in the VC condition because the variability criterion was so low, Lag 1,
arguing that the low criterion was more discriminable during the V-sessions than in the
VC-sessions. The possible implications of the forced IRT were not discussed, but it was
implemented in the remaining experiments, and is a common variable in variability
experiments to date. As a result of Page and Neuringer’s experiments, Schwartz’s
results and interpretation was deemed to be flawed (Catania, 2013), and Page and
Neuringer’s (1985) conclusion regarding direct reinforcement of variability and vari-
ability as an operant dimension has been commonly accepted.

Another possible distinction in the V and VC conditions with Lag 1 was in whether
more than one response sequence was necessarily reinforced. In the V condition all
sequences were eight responses long, and the only way to produce a timeout was to
repeat, whereas in the VC-conditions both repeating a sequence and pecking a disc a
fifth time would produce a timeout. In a Lag 1, without constraint, the only incorrect
sequence would be the repeating of the preceding response. Hence, a different sequence
had to occur and be reinforced before the first sequence again would produce rein-
forcement. This is not the case in the Lag 1 with constraint, VC, where the first
sequence may be reinforced again after any “error” of five pecks on the same key
(Schwartz, 1982). In effect the constraint of no more than four responses on each key
makes possible the reinforcement of a single sequence only, so that no alternative
sequence is ever reinforced. Thus, whereas the VC condition allows for intermittent
reinforcement of a single response sequence, the V condition forces the alternating
reinforcement of at least two different sequences. A similar difference is also present
between a variability contingency and the control condition in variability experiments
commonly called “yoke.”

Procedures that have been found to induce variability in behavior include slowed
responding, for example, including an IRT (Morris, 1987, 1989; Neuringer, 1991),
intermittent reinforcement (e.g., Eckerman & Lanson, 1969; Ferraro & Branch, 1968),
delayed reinforcement (e.g., Odum et al., 2006), as well as extinction (e.g., Antonitis,
1951; Eckerman & Lanson, 1969; Iversen, 2002; Mechner, 1958; Mechner, Hyten,
Field, & Madden, 1997; Notterman, 1959; Schwartz, 1980; Stokes, 1995). Several
experiments have shown more variability during intermittent than during continuous
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reinforcement. To rule out such induced intermittent and delayed reinforcement effects,
several variability experiments have included the yoke control condition. In this
condition, reinforcement of sequences is based on reinforcers delivered on a previous
trial or the reinforcers earned by the same or another subject in an earlier session. In
effect, the yoke schedule becomes a VR-schedule of reinforcement of sequence
completion, regardless of left or right position. This condition allows variability, but
it does not require it. The relatively repetitive behavior in the yoke condition, compared
with the variable behavior when the variability contingency is in effect, indicates that
inducing effects of intermittent and delayed reinforcement are not the primary sources
of the variability in these contingencies.

However, the yoke procedure is sometimes purported as a control procedure for the
differential extinction in these experiments (Neuringer, 2002, 2004; Page & Neuringer,
1985). Extinction is a familiar source of variability. Several studies (e.g., Antonitis,
1951; Eckerman & Lanson, 1969; Iversen, 2002; Mechner, 1958; Mechner et al., 1997;
Notterman, 1959; Schwartz, 1980; Stokes, 1995) have shown that variability increases
initially when the contingency changes from reinforcement to extinction. Where there
is extinction there may be extinction-induced variability. As concluded above, the yoke
condition is a good control condition for intermittent and delayed reinforcement, as
these variables are still present in the control condition. Contrary, because reinforce-
ment is independent of sequence variability, and therefore there is no consistent or
enduring extinction of any specific response: “the pigeons could vary or not without
penalty” (Jensen et al., 2006, p. 460), we argue that it is not a satisfactory control
condition for extinction-induced variability. Whereas reinforcement according to a lag
schedule, for example, always requires the occurrence of different descriptive units, at
least two, the yoke condition allows for intermittent reinforcement of a single unit—
even without the occurrence of others.

The Behavioral Unit: Descriptive and Functional Classes

As previously mentioned Catania (1973) distinguished between descriptive and func-
tional classes. Moreover, as outlined by Catania (2013), in order to determine that
operant reinforcement has taken place, three criteria must be fulfilled: first, certain
responses must produce consequences. Second, such responses occur more often when
they produce those consequences than when they do not. Third, the increased
responding must occur exactly because those responses are followed by those
consequences.

As Barba (2012a) pointed out the correspondence between the descriptive and the
functional class, has not typically been met in experiments on behavioral variability.
Whereas the descriptive class is defined by some variability contingency, the functional
class is typically defined in terms of aggregated statistics. The most typically studied
functional class is variability measured as the relative frequency of emitted sequences.
A statistical analysis used in most variability experiments is the U value (e.g., Abreu-
Rodrigues et al., 2005; Doughty & Lattal, 2001; Kong et al., 2019; Odum et al., 2006;
Page & Neuringer, 1985; Ward et al., 2008), an aggregated statistical uncertainty
measure (see appendix for the most commonly used formula), derived from informa-
tion theory (Miller & Frick, 1949) introduced by Page and Neuringer (1985). Despite
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the suggestion that the U value provides indices of level of uncertainty and stochasticity
(Neuringer, 2004; Neuringer & Jensen, 2013; Page & Neuringer, 1985), it does not, by
itself, measure uncertainty when calculated as a single value over entire sessions (Kong,
McEwan, Bizo, & Foster, 2017; Souza, Pontes, & Abreu-Rodrigues, 2012). Rather, the
U value indicates a relative frequency of the available units. A U value of 0 would
indicate no dispersion, only one of the available units (whether this is individual
responses or sequences of several responses) have been emitted by the subject,
indicating a completely peaked frequency distribution. The opposite, a U value of 1,
indicates a flat frequency distribution, where all the available units are emitted with the
same frequency.

Barba (2012a) highlighted that the property that defines the descriptive class (lag,
frequency, and threshold contingencies) is different from the property by which the
functional class is measured (commonly U value). As a result, the differentiation
process through which the functional class is shown to correspond more and more
closely to the descriptive class is not demonstrated. We will add that, even if such a
correspondence between the descriptive and the functional classes could be demon-
strated, Catania’s third criterion above would not automatically be met. To illustrate the
point, let us consider the case of “operant reinforcement of autonomic responses.” For
example, reinforcers may be contingent on an increased heart rate (descriptive class)
and, as a result, the heart rate may increase (functional class). Yet, the change in heart
rate may depend on a change in other behavior, involving increased physical activity,
which may be operant (e.g., Carroll & Rhys-Davies, 1979; Hatch & Gatchel, 1979).
Thus, even the fact that a descriptive class is accompanied by a corresponding
functional class is not sufficient as proof of an operant class or dimension. The assumed
operant dimension may have come about as an indirect effect of experimenter-
controlled contingencies.

How do we define a unit of behavior? After all, behavior is fluid and continuous,
and not naturally divided into neat units (e.g., Epstein, 1991; Thompson & Lubinski,
1986). Skinner (1935) proposed to define units as classes by their function rather than
by their appearance. Thompson and Lubinski (1986) stressed the importance of
delineating units based on consistent, and not arbitrary, criteria. They asserted that
the success of the scientific study of behavior relies on the way continuous behavior is
divided into classes of replicable behavior units because, as Zeiler (1986) stated, using
invalid units easily leads to confusion as to the significance and meaning of data. Even
so, common units in most basic research experiments are selected by the experimenters
based on topography. Although the previously mentioned light-matrix is no longer
typically used in variability experiments, the most common descriptive unit is still
sequences consisting of a fixed number of responses, usually on two operanda, L and
R. If the sequence consists of four responses the number of possible different sequences
is 16 (24), and if the sequence consists of eight responses the number is 256 (28). These
sequences, when complying with the variability criterion, constitute the pool of
responses that may be selected for a descriptive operant class, that is, the class of
responses upon which reinforcement is contingent. Other important and common
independent variables are (1) a forced IRT, (2) timeout, and (3) the probability of
reinforcement. In spite of the complexity of these sequences as descriptive units, Cherot
et al. (1996) stated simply that, “when reinforcement depends on a particular sequence
of responses, the sequence comes to function as an operant unit” (p. 497). However,
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whether a contingency actually results in a corresponding functional class is not
obvious. A reasonable alternative is that the resulting functional units in experiments
relying on sequences as descriptive classes can be individual responses and/or combi-
nations of different individual responses, not necessarily conforming strictly to the
descriptive unit (e.g., Schneider & Morris, 1992).

Catania (1971) concluded that there is no reason to believe that a reinforcer only
strengthens the last, contiguous response when several responses are followed by a
reinforcer. However, as Zeiler (1977) argued, the mere occurrence of a predictable
pattern is insufficient evidence for a unit. It is required that the unit itself is condition-
able. Sequences can function as units, as several experiments have shown (Fetterman &
Stubbs, 1982; Schneider & Davison, 2006; Schneider & Morris, 1992). These exper-
iments, using both pigeons and rats, have concluded that sequences of two individual
responses may form a functional unit, but for sequences containing more than two
responses or two-response sequences with long intertrial intervals the results are either
inconsistent or the functional unit has been found to be individual responses. Reid,
Dixon, and Grey (2008) suggest that we differentiate between integrated behavioral
units, also called chunks (Catania, 2013), and behavioral chains, because reinforcement
is assumed to operate at different levels in integrated behavioral units and behavioral
chains. In integrated behavioral units “reinforcement is presumed to operate at the level
of the integrated unit, independent of its constituent responses” (Bachá-Méndez, Reid,
& Mendoza-Soylovna, 2007, p. 7), whereas in behavioral chains it is presumed that
each response is separately influenced by the reinforcer.

Catania et al. (2015) found that reinforcers affect earlier responses in addition to the
last lever press or key peck, which is contiguous with the reinforcer. Their results made
them conclude that time separating individual responses from the reinforcer was more
important than intervening responses for weighting the contribution of each single
response. A related question of importance when using sequences as units are whether
these will change as a unit when the contingencies change or whether such a change
will affect the different responses in the sequence differently. Catania (1971) concluded
that “any account in terms of sequences of pecks as response-units must deal with the
different effects of reinforcement on pecks at different positions in the sequence” (pp.
281–282). Reid (1994) addressed this issue with rats, using sequences consisting of
three lever presses. When responding was stable he altered the criterion sequence,
either changing the first lever-press (e.g., from LLL to RLL) or the last lever-press (e.g.,
from RLL to RLR) of the required sequence. A change in the last response led to faster
acquisition of the new sequence than when the change was in the first response in the
sequence. This result supports the hypothesis that differential reinforcement affects the
responses closest to the reinforcer to a greater extent than responses more temporally
distant from the reinforcer, even if steady-state behavior was obtained before changes
were initiated. Reid’s result, in an experiment using fixed sequences, was replicated in a
variability experiment by Peleg, Martin, and Holth (2017) using a Lag 5 contingency,
with three-response sequences as units. In addition, Reid et al. (2008) interpreted data
from Neuringer, Kornell, and Olufs’s (2001) experiments on variability and extinction,
and their analysis suggested that the conclusion made by Neuringer et al. (2001) could
adequately be explained by response-level processes instead of sequence-level process-
es. These results suggest that several variables may influence how reinforcement/
nonreinforcement affects different positions of the responses in the sequences. Hence,
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variability within sequences may be induced by the differential temporary distance of
the individual responses to the reinforcer. The result challenges the interpretation that a
“no-memory,” endogenous stochastic process (Jensen et al., 2006; Neuringer, 1986,
2002; Page & Neuringer, 1985) is necessarily the major source of variable responding
in a variability contingency.

In variability experiments it is not standard procedure to include pretraining on
differentiation of sequences as units (see, e.g., Neuringer, 1991; Page & Neuringer,
1985). Some have included a few sessions on an FR 4 schedule (e.g., Doughty &
Galizio, 2015), and some experiments have used multiple schedules with a vary and a
repeat condition, where one sequence of four responses has been reinforced in the
repeat condition (e.g., Cohen et al., 1990; Doughty & Lattal, 2001; Odum et al., 2006).
Yet, there is little or no evidence to suggest that the commonly used descriptive units,
sequences of four responses or longer, typically turn into functional units, and again,
invalid units may lead to confusion when interpreting the data (Zeiler, 1986). Still, the
common descriptive units in these experiments are sequences of four to eight lever
presses or key pecks, always separated by a forced IRT, and the data analysis uses the
relative frequency of each sequence, whereas data analysis on individual responses are
usually not applied. This seems to constitute a major problem, as the question remains
whether other types of data analysis, performed on individual responses, or
combinations of responses, will lead to the same conclusions. As Shimp (2014) has
written, “If aggregated responses were otherwise different, the aggregate would consist
of apples and oranges, as it were, and their average would fail to reflect meaningful
relative frequencies of either apples or oranges” (p. 230). Using sequences of
responses on two identical operanda is, on the other hand, easy to program and
execute. According to Neuringer (2012), the Lag n schedules are easy to program,
and the use of them is in accord with Skinner’s (1956) informal principle that “some
ways of doing research are easier than others” (p. 224). In applied research the
descriptive unit is commonly not sequences but rather socially relevant units of
responses, as in vocal responding (e.g., Koehler-Platten, Grow, Schulze, & Bertone,
2013; Lee, McComas, & Jawor, 2002; Susa & Schlinger, 2012), pointing at
different drawn images (Heldt & Schlinger, 2012) or activity selection
(Cammilleri & Hanley, 2005). An exception to this is Dracobly et al. (2017), who
used sequences consisting of four different colored blocks as a unit. A Lag 4
schedule produced varied responding in most participants, but some maintained a
higher-order stereotyped behavior. One possible explanation for this, suggested by
the researchers, was that the children might have discriminated that the response
consisted of four trials of sequences of four blocks. This exemplifies the problem of
using complex descriptive units, even with humans. Could it be that the commonly
used complex descriptive units, in the form of sequences, obscure response-level
processes, because we do not know what the functional unit is, and therefore make
moment-to-moment interpretation of the data more challenging?

In sum, it is still not clear what constitute functional units in these experiments.
Whether calculated from individual responses or sequences consisting of several
responses, the results for experiments using a variability contingency, do show variable
responding. However, as the common analyses are conducted without consideration of
potential functional units, reinforcement, and timeout, we question whether the
statistical measures commonly used necessarily give a valid description.
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Molar and Molecular Interpretations of Variability

Shimp (2014) argued that behavioral variability has different meanings in molar and
molecular analyses. Although the molar/molecular distinction may have different
interpretations, a molar analysis is understood here as a statistical analysis of aggregat-
ed behavior, either between subjects or within subject over time, focusing on the
strengthening effect of reinforcement. In contrast, a molecular analysis is considered
to be a moment-to-moment analysis of ongoing behavior within a single subject,
focusing on the shaping effect of reinforcement (Shimp, 2014). According to Shimp,
the molar claim that aggregated free-operant behavior is under the control of its
consequences, implies that there is no moment-to-moment shaping effect of individual
patterns. In a molar perspective, therefore, moment-to-moment behavior “has to be
emitted independently of momentary stimuli, independently of time since previous
behaviors and events, and has to have sequential properties that can [be] described only
in terms of random emission” (Shimp, 2014, p. 234). Shimp’s explanation of the molar
interpretation of behavior exemplifies a standard way of interpreting variability data.
Possible moment-to-moment shaping effects are difficult to search for, due to the large
and complex units and the extended use if aggregated statistics, in addition, identifying
the existence of these potential processes is commonly not a priority. In the few cases
where shaping effects have been identified, researchers have tentatively suggested that
the behavior may be a joint product of the molar variability-contingent reinforcement,
and immediate consequences (Doughty & Galizio, 2015; Doughty & Lattal, 2001;
Neuringer, 1991, 1992).

Both Sidman (1960) and Skinner (1976) argued that statistical analysis of aggregat-
ed data, even within an individual, can lead to loss of important information about the
moment-to-moment behavior under study. Epstein (2014) suggested that there might be
an orderliness in variable behavior, which sometimes seems random and unpredictable.
He argued that the observed variability might be due to the methodological and
statistical procedures used in these experiments, and that these statistical approaches
obstruct a proper understanding of the behavior, because it is happening moment-to-
moment. Epstein’s argument is perfectly aligned with Shimp’s (2014), who argued that
the molar interpretation dismisses any shaping effect on the temporal organization of
variable behavior and suggests that molecular behavior varies randomly with a constant
probability over time. He concluded that there is little, if any, literature that supports
this molar interpretation of molecular behavior and “a considerable literature that
suggests it is incorrect” (Shimp, 2014, p. 224). Both Epstein (2014) and Shimp
(2014) have argued that disregarding possible shaping and other moment-to-moment
effects does not necessarily mean that there are no such effects. Doughty and Lattal
(2001) also suggested that a molecular analysis of the serial order in variability
experiments may show orderliness where molar statistical analyses, like the commonly
used U value calculated over entire sessions, do not.

The few somewhat more molecular analyses of sequences performed in variability
experiments, show that different variables at least sometimes have local effects.
Neuringer (1991) analyzed the local effect that reinforcement and timeout had on
sequences consisting of four responses. He found that if a sequence ended in reinforce-
ment the operandum of the last individual response in the first sequence was likely to
be repeated as the first response in the next sequence. On the other hand, if the previous
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sequence ended in a timeout, a switch to the other operandum was more likely.
Neuringer’s (1992) results extended this finding to entire sequences, in an experiment
where repetitive and varied sequences were reinforced according to different probabil-
ities. Hence, if a sequence ended in reinforcement the entire four-response sequence
was more likely to be immediately repeated, whereas a sequence ending with a timeout
was less likely to be immediately repeated. Doughty and Lattal (2001) found response
stereotypies for some of the birds in their variability experiment. One bird tended to
peck the same key as the third response in the sequence, another bird would commonly
start a sequence with a left key peck, and yet another subject often ended the sequences
with a repetition.

Thus, analysis of moment-to-moment responses shows that even when a variability
contingency is in effect, reinforcement increases the probability of a repetition, whereas
timeout and delay of reinforcement decreases it. So, even if statistical analyses com-
puted over entire sessions indicate that the data show variable behavior, more molecular
analyses have found at least some order and predictability. It is important to note that
even if “molecular” shaping effects within sequences show orderliness, or at least some
orderliness, it does not necessarily entail that the responding is not variable. What it
does entail, however, is that the responding is not necessarily unpredictable. Variability,
uncertainty, and unpredictability sometimes seem to be used interchangeably (Jensen
et al., 2006; Neuringer & Jensen, 2013). It is possible that the variable responding in
variability contingencies is more predictable than standard interpretations of experi-
mental results so far have suggested.

Variability as a Derivative Process

In a variability contingency, such as a Lag 1 schedule, once a particular sequence has
led to the reinforcer, that sequence is temporarily excluded from the descriptive operant
and thus exposed to extinction until after another sequence has occurred. This is an
example of a recency schedule, but frequency and threshold schedules function in a
similar fashion, except that in these schedules the responses temporarily under extinc-
tion (or having a low probability of reinforcement), are not necessarily the last
responses. Rather, it would be the most frequently emitted responses over some
predetermined period. In a least-frequent schedule it would be all the other defined
responses than the least frequently emitted response. Temporary exclusion of several
sequences from the descriptive unit is common in these procedures. The critical point
here is that the responses most recently emitted or most frequently emitted, are the
responses under temporary extinction, and these most recently or most frequently
emitted responses change continuously with responding (see also, Barba, 2012a;
Machado, 1993). Thus, reinforcement selects responses or patterns of responses and
maintains them, whereas local extinction induces variability. In a variability contin-
gency, extinction is contingent on non-variability (i.e., repetition), so the more repeti-
tion of patterns the more extinction, which again produce more variability, which leads
to reinforcement, leading again to more repetition, and so on.

We suggest that responses are repeated in a variability contingency, only to be
extinguished when reinforcement is not forthcoming. The pattern of repeated responses
would probably have been relatively easy to observe, at least in the first sessions of the
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experiments, had it not been for the elusive units in these experiments. The principle of
reinforcement requires that the probability of a reinforced response will increase (e.g.,
Ferster & Skinner, 1957; Tatham, Wanchisen, & Hineline, 1993). In the first sessions,
because the organism has no previous training with sequences as units, we can be
confident that the sequence of four responses is not a functional unit, and repetition of
the sequence would therefore not be expected. Thus, because reinforcement and
extinction do not operate at the level of the observed descriptive unit, the use of these
units makes the extinction of repeated patterns difficult to observe. This process will
become even more difficult to observe when steady state is reached after several
sessions, because the extinction process is known to speed up with repeated exposure
(e.g., Clark & Taylor, 1960; Perkins & Cacioppo, 1950). The main difficulty with
repetitive-response sequences as descriptive units is that they have no well-defined
end—other than that forced by either reinforcement or time-out. Thus, exactly what is
reinforced when a sequence produces a reinforcer is extremely hard to observe. A
pattern of repetition of just-reinforced responses and a clear decrease in its frequency
when not reinforced would be difficult to identify. However, when descriptive units
consist of topographically distinct responses, there is evidence to suggest that such a
pattern of repetition of the just-reinforced response and a decrease in this response in
the absence of reinforcement is exactly what emerges (Holth, 2012).

Because they did not manage to teach the pigeons to repeat an eight-response
sequence in a repetition component, Page and Neuringer (1985) excluded the possibil-
ity that extinction could be the major contributor to the variable behavior shown in their
experiments. They concluded that it was unlikely that the pigeons could execute a
specific eight-peck sequence and repeat it so that this sequence could then be exposed
to extinction and a new sequence of eight pecks induced. We argue that this conclusion
is valid only with respect to the entire response sequence as a unit. To the extent that
only parts of the sequence, single responses, or possibly doublets are the actual
functional unit, the intermittent extinction theory is not easily dismissed based on the
findings mentioned above.

Neuringer and Jensen (2012) pointed out that neither variability nor changing levels
of variability by themselves are sufficient to conclude that variability is an operant. An
additional requirement is an “independent contingency-of-reinforcement control, i.e.,
independent of elicited or induced effects and independent of average values”
(Neuringer & Jensen, 2012, p. 74). We have suggested that the yoke condition often
claimed to show the direct function of a variability contingency on establishing
variability as an operant dimension is not sufficient. An important consideration with
the yoke condition is the removal of differential reinforcement specifically targeting
unlikely responses found to increase during extinction (Neuringer et al., 2001). As
explained by Machado and Tonneau (2012), when reinforcement is contingent on
nonfrequent responses, a strong response (a response often or recently reinforced) will
not be reinforced and will weaken. On the other hand, a response not often emitted or
emitted a long time ago, and therefore not reinforced recently, is more likely to be
emitted and reinforced, whereas more recently reinforced responses are under extinc-
tion. The differential extinction present in variability contingencies continuously
weakens strong responses and differentially reinforces unlikely, rare responses evoked
by the intermittent extinction. No such differential reinforcement of rare or unlikely
responses is involved in the yoke procedure. Thus, the well-documented greater
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response variability during variability contingencies than during the yoke procedure
seems fully explained by the fact that differential reinforcement of infrequent re-
sponses, hence differential extinction of frequent responses, is implicit in the variability
contingency but not in the yoke procedure. When the variability contingency is lenient
and the responses that satisfy the contingency are relatively simple, the functional
operant class will correspond closely to the descriptive class. This correspondence will
imply a higher-order stereotypy—or consistency—with repeated cycling through some
of the different exemplars of the descriptive class (Abreu-Rodrigues et al., 2005).
However, when the variability contingency is more stringent and/or the responses
exposed to the contingency are more complex, stimulus control by previous responses
is muddled, and variability results.

There is little doubt that induced variability is part of the variability observed in
operant-variability studies (Morgan & Neuringer, 1990; Neuringer, 2012). In fact, no
variability experiment to date has excluded the possibility of an induced variability
effect inherent in extinction. Yet, as pointed out by Neuringer and Jensen (2012),
variability as an operant dimension is what remains when such induced variability is
subtracted. Interpreting the evidence to date, we suggest that a more productive and
useful way to explain how a variability contingency engenders and sustains variable,
random-like responding, is by a dynamic process of intermittent conditioning and
extinction of responses or response patterns. When the descriptive operant consists
of sequences, these patterns are not necessarily made up by the whole descriptive
sequence, but likely by individual responses, doublets (e.g., a changeover from one
operandum to another, or a stay at one operandum), triplets, and so on. Reinforcement
continuously selects new patterns, induced by the differential extinction, and it also
maintains responding. So, although reinforcement is necessary to maintain operant
responding whether variable or not, it does not automatically follow that variability is
directly reinforced. In short, it seems most satisfactory to consider the production of
behavioral variability as a derivative, dynamic process, in accordance with Machado’s
(1993) Frequency Dependent Selection and Barba’s (2015) Balance Hypothesis. Var-
iability contingencies boil down to local periods of extinction, locally inducing variable
behavior, and then to reinforcement of (a few or many) different responses.

Challenges to the View of Variability as a Derivative Process

In the previously mentioned experiments by Neuringer (1986) human participants
distributed two individual responses randomly according several statistical criteria.
Thus, the results of that study may seem to strengthen the view of variability as a
directly reinforced dimension. However, the mechanisms through which the results
came about are difficult to analyze. Although the feedback in the form of performance
graphs following each 100-response trial was called reinforcement (see also Neuringer
and Jensen, 2013), that feedback likely had different functions. To some extent, the
feedback may have functioned as negative reinforcement, resulting in participants
avoiding certain types of feedback patterns. The maintenance of such behavior across
a later period with no programmed feedback is hardly surprising (cf. Sidman, 1955).
Perhaps more important was the potential role of the feedback as instruction governing
behavior on succeeding trials. In Experiment 1, the feedback graph was accompanied
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by continuous suggestions regarding how behavior could be adjusted to satisfy the
current statistical tests. Additional instructions accompanied successively added tests.
Although instruction was reduced in Experiment 2, the experimenter still described the
statistical randomness criteria as they were successively added. In addition, the exper-
imenter described to each participant how different performance patterns might affect
statistical evaluations at each step. Thus, the functions of different types of feedback as
independent variables in Neuringer’s (1986) study are not clear (see also, Barba,
2012b).

High rates of reinforcement are sometimes seen in variability experiments, in
particular where lenient or moderately lenient variability contingencies are used (e.g.,
Baumann, Abreu-Rodrigues, & da Souza, 2009; Doughty & Galizio, 2015, experiment
2). In some sessions rate of reinforcement has even reached a 100%, as in Page and
Neuringer’s (1985) Experiment 6, a Lag 5 session where sequences of eight responses
were the descriptive unit. This seemingly refutes the possibility that differential extinc-
tion may be the most important variable in these contingencies. Experimental results
that may explain these high rates of reinforcement include Abreu-Rodrigues et al.
(2005), who found that after extended exposure to a lenient and moderately lenient
variability contingency pigeons showed efficient strategies of higher-order stereotypies
in sequences of four key-pecks in Lag 1 and Lag 5 conditions. In the more stringent
Lag 10 condition this stereotypy was not observed, and the rate of reinforcement was
drastically lower. Another possible explanation was given by Machado (1997) who
suggested that the variability of response sequences in variability contingencies may be
an indirect effect of adjusting frequency of changeovers.

High rates of reinforcement and sessions without exposure to extinction have also
been found in applied research (Lee et al., 2002; Lee & Sturmey, 2006). It is important
to remember that most interventions in applied research commonly uses low lag
schedules, and the resulting behavior is most often of the type that we previously
called “variability where antecedents maintain discriminative control.” In these proce-
dures, as previously mentioned, one type of response becomes an SΔ for responding to
the same type of response again, and an SD for switching to another response. That
some individuals, having been exposed to this contingency for some time, manage to
respond in accordance with the contingency a 100% of the time is not surprising, and it
does not refute the interpretation that extinction could have been the most important
independent variable in the beginning of the intervention, when this behavior was
acquired. Although appreciating that research on direct reinforcement of operant
variability has been successfully applied in basic research, we would still argue that
using the term direct reinforcement of variability (e.g., Dracobly et al., 2017; Lee et al.,
2007; Miller & Neuringer, 2000) for these procedures may be misleading. In a lag
schedule repetition is differentially extinguished whereas the variants that appear
during extinction are differentially reinforced, as in any other procedure based on
extinction and differential reinforcement of another behavior. For example, Betz,
Higbee, Kelley, Sellers, and Pollard (2011) used extinction and a DRA procedure
and wrote: “To promote extinction-induced variability, reinforcement is typically
provided the first time a particular response topography is emitted, after which that
response form is no longer reinforced” (p. 357). The only difference between these two
procedures is that in an extinction and DRA procedure the behavior under extinction is
consistent throughout the intervention, whereas in a lag schedule, the behavior under
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extinction continuously changes with responding. Because lag schedules supposedly
directly reinforce variability, they have been presented as a superior alternative, and it
has been suggested that they will not result in problematic side effects, such as
extinction-induced aggressive outbursts (Miller & Neuringer, 2000). This seems mis-
leading and we would argue that extinction of repetition, and intermittent reinforcement
of different responses would be a more appropriate characterization.

Conclusion

Variability is very important in behavior analysis and yet disproportionately sparsely
researched. Research by Neuringer and colleagues has contributed tremendously to the
field, showing that certain contingencies reliably produce behavioral variability. Even
so, the prevailing view of behavioral variability as directly reinforced and as an operant
dimension seems incongruous with several empirical findings. In order to determine any
direct contribution to variability by reinforcement, experiments in this field need to be
conducted without the known additional variability-inducing independent variables
typically present (e.g., the forced IRT) and by establishing reliable behavioral units. In
addition, it is important to realize that the extinction component cannot be removed from
any differential reinforcement contingency and to acknowledge the variability-inducing
effect of this component—which leads to different responses being exposed to imme-
diate reinforcement. There is no doubt that variability can be increased with a variability
contingency, and as such the contingency may be defined as a reinforcement procedure
(Machado, 1994). What we question is whether experiments so far have shown that this
is best considered as direct reinforcement of variability. Neuringer (1992) made the
point that behavior may be jointly controlled by both molar and immediate conse-
quences. The question raised here is whether even the behavioral variability attributed to
molar contingencies can be attributed to more local contingencies.

Interpretations of steady-state responding in variability experiments have not typi-
cally involved a discussion of the importance of differential extinction as necessarily
embedded in variability contingencies. Yet it seems unthinkable that such extinction
plays no significant part in inducing variability. Most other operant dimensions do not
have this problem to the same extent, at least not in steady state. Rather than direct
reinforcement of variability, “direct extinction of repetition” seems central to the
emerging variability. This interpretation of data from variability experiments should
satisfy Occam’s razor better than the notion of operant variability because it explains
the variable responding as a derivative process, it does not lead to conclusions that
oppose well-known behavior-analytic principles, and neither does it presume the
existence of an internal stochastic-generator. If extinction of repetition, or in particular
of repeating patterns, is central in producing variable behavior, the fact that longer
sequences conform to the contingency faster and more closely makes perfect sense. The
harder a pattern would be to repeat, the faster it would disappear. Also, the forced IRTs
probably make it less likely that the sequences used as descriptive units form functional
units. This will also result in the pattern being less likely to be repeated.

An important additional concern is that the descriptive units in variability studies
(i.e., sequences) have been unjustifiably complex. Also, the functional unit(s) produced
in most of the experiments conducted to date on behavioral variability have been fuzzy
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at best, and it is essential to be able to isolate and calculate data from these functional
units. Our last concern is the use of the yoke procedure as a control condition for
differential extinction. A continued neglect of these important procedural issues will
continue to cause problems in the interpretation of variability data. If the issue of
whether behavioral variability should be considered as a directly reinforced operant
dimension of behavior can be settled at all, perhaps of crucial importance is the
development of different experimental procedures. We believe that persistent use of
sequences as descriptive units will continue to impede further understanding. Studying
distinct topographies, rather than sequences consisting of several responses to a limited
number of operanda, will remove some of the variability-inducing variables. It should
also make the descriptive unit more distinct, and functional units easier to delineate,
thereby making it easier to identify possible local shaping effects in future variability
experiments. This may lead to results revealing that the resulting variable responding
may not be as unpredictable as previously suggested.
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Appendix

The common formula for calculating the U value:

U ¼ −∑N
i¼1

Rf i � log2 Rf ið Þ
log2 Nð Þ

Where N equals the number of available categories, and Rf the relative frequency of
each category.
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