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Summary

As the policies of a software-defined networking (SDN) network can be updated

dynamically and often at a high pace, conflicts between policies can easily occur. Due

to the large number of switches and heterogeneous policies within a typical SDN net-

work, detecting those conflicts is a laborious and challenging task. This article presents

three main contributions. First, we devise an offline method for detecting unmatched

OpenFlow rules, that is, rules that are never fired. In our taxonomy such anomalies

can stem from either invalid or irrelevant unmatched rules. Second, we introduce a

new set of definitions for the intraanomalies between rules in the same table, which

might occur when using the multiaction feature of an OpenFlow rule. Third, our detec-

tion method has been enhanced to support parallel execution, which makes it a viable

solution for troubleshooting large-scale networks. We provide some comprehensive

experimental results based on both synthetic and real-life setup the synthetic set up

is designed in such a way that the rule matching takes place in the last rules of the

switch and thus putting more stress on the rule detection process. The parallel method

is shown to outperform the single-threaded checking method by order of magnitude

up to 21.
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1 INTRODUCTION

The software-defined networking (SDN) paradigm addresses these challenges by automating the network control process. SDN separates the con-

trol plane from the forwarding devices via a standard protocol called “OpenFlow.”2 As the SDN controller is controlling the state of the network,

it is possible to analyze network misconfigurations in a centralized manner. The OpenFlow protocol allows the controller to write rules directly to

forwarding devices. In addition, SDN allows numerous applications and even multiple users to program the same physical network simultaneously.3

Although SDN presents an alternative for facilitating network control by providing the ability for the network administrators to program the

network data plane, the risk of misconfiguration still constitutes an omnipresent problem.

Various methods have been presented to deal with misconfiguration challenges. These methods fall under two main categories: log-based vs

rule-based verification. Log-based methods detect policy violations based on mining the logs of the network devices.4,5 Rule-based verification, on
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the other hand, reveals policy violations by examining the semantics of the rules. For instance, when it comes to firewall misconfiguration, Al-Shaer

and Hamed6 propose a tool called Firewall policy advisor. In the same context, Rezvani and Aryan7 used propositional logic to detect policy violations

between a new inserted rule and the combination of existing rules.

Research can also be categorized based on whether it mainly focuses on misconfigurations on a single device or between devices. We refer to

this as intradevice anomalies and interdevice anomalies, respectively, or simply intraanomalies and interanomalies for short. For example, the works

of Al-Shaer and Hamed6 and Rezvani and Aryan7 take an intradevice approach and focus on rule anomalies within a firewall (intraanomalies). On the

other hand, VeriFlow8 and the work of Kazemian et al9 both belong to the intradevice category, as they are able to check policy violations among

connected devices in a network (interanomalies).

In this article, we present a rule-based approach for detecting misconfigurations in SDN, which applies to both intra- and inter-device settings.

It supports not only original single-action OpenFlow rules (ie, One action per rule), it also supports multiaction rules, that is, Rules that have more

than one action.

We devise an offline method that is able to predict the action on a packet according to the applied rules by the controller. Furthermore, we

develop a formal tracing method that can predict all the possible routes of any set of packets from a specific node in the network. The formal predi-

cates are based on second-order logic.10 Offline verification methods are applied before the deployment of a new network policy which might consist

of thousands of rules. In those cases, usually, some latency in the order of minutes can be tolerated. Once a network policy has been deployed, it is

updated in an incremental manner which raises the need for so-called online verification. The verification of the changes in the policy in the form of

new installed rules or removed rules should take place in a nearly real-time manner. Therefore, online verification methods face stringent require-

ments in terms of processing time in order to cope with the new policy updates. The online verification operates by the principle of only checking

the affected set of packets due to the policy update. In Reference 11, we show how we can extend the offline verification method proposed in Ref-

erence 1 to cover online verification. In this article, we focus on the offline method for modeling the static networks and verifying policies before

any changes.

The formal prediction method has been used for detecting the rules that are never matched by any packets. Moreover, the new descriptions

for the intra- and inter-anomalies between the unmatched rules and the rest of the rules are presented. Finally, our detection methods, which we

reckon as OpenFlow policy checker (OPC), is described in detail.

The main contributions of this article are as follows:

• Using few insights, we show that the speed of the detection anomaly method can be significantly enhanced using parallelization and generation

completely disjoint queries.

• A multithread design is implemented and evaluated as a demonstration of the parallelization capability of the anomaly detection method.

• The OPC has adequate performance even in the presence of a considerable number of overlapping rules.

• We resort to the Stanford University Backbone Network12 as a real-life topology for analyzing the functionality and performance of

the OPC.

• We show that the performance of the intraanomalies detection method is independent of the number of detected anomalies.

• In addition to the Standford realistic topology, we design a synthetic topology for simulating the Last Match scenario according to which is at

least a subset of input query that parses bottom rules of middle-boxes.

• A new definition for the intraanomalies has been described for OpenFlow with the multiaction feature. This definition generalizes the

state-of-the-art intraanomalies definition, which is only based on the single-action feature.

• We introduce the nomenclature irrelevant and invalid rule anomalies for the case of unmatched rules.

• Our query-based proposed method covers whole policy segments, and therefore it is more efficient than the ping-based troubleshooting

methods that operate on a packet basis.

• Our suggested method, OPC, in contrast to Netplumber and VeriFlow, considers dependencies between rules in flow tables.13

• By contrast to the header space analysis (HSA),14 our method is a priority-based method, which makes it compatible with the OpenFlow protocol.

Comparison results show that our OPC method outperforms HSA considerably in terms of execution time.

In Reference 1, we presented a very initial stage of the work presented in this article where only the single-thread approach was tackled.

Moreover, in Reference 1 we just presented two detection algorithms without further explaining the rest of the algorithms. The implementation

of the single-thread design was tested in Reference 1 to merely obtain the preliminary set of results based on the synthetic dataset. This current

work presents a considerable extension of Reference 1 that can be summarized in a nutshell by (1) designing a parallel approach for detection, (2)

further development of the detection algorithms, (3) using a realistic experimental set up based on the Standford Topology and reporting more

through experimental results.



ARYAN ET AL. 3 of 29

The remainder of the article is organized as follows. In Section 2, we provide a comprehensive overview of the state-of-the-art. Section 3 dis-

cusses our formal tracing method. In Section 4, the definition of anomalies in OpenFlow rules is described, and their detection is explained. Finally,

the evaluation results are presented in Section 5.

2 RELATED WORK

In recent years, a significant amount of research has addressed network policy conflict analysis. A notable work is due to Kazemian et al,9 who

introduced a real-time policy checking tool based on HSA14 called NetPlumber. By contrast to the HSA, NetPlumber checks the real-time net-

work traffic incrementally. The authors proposed a new formal language to express policy checks, which is fast enough for real-time traffic

monitoring.

Netplumber generates what is called a dependency graph between rules and keeps this graph updated on insertion or deletion of rules. Net-

Plumber is able to not only detect loops and other invariant violations but also check more sophisticated failures in policy such as: “Web traffic from

A to B should never pass through waypoints C or D between 9 AM and 5 PM.” NetPlumber9 was tested on both the Stanford backbone and the SDN

network of Google. It was reported that checking the conformity of updated rule to the general policy takes 50 to 500 microseconds.

HSA9 tries to find automatically typical failures in both operational and experimental networks regardless of the running protocols. The

protocol-agnostic framework is based on a formalism that is able to detect classical misconfiguration problems such as reachability fail-

ures, loops, and traffic leakage problems. Apart from detecting the aforementioned misconfiguration problems, HSA also permits to check

that the network slices are perfectly isolated according to the network slicing policy. HSA was tested on the Stanford University back-

bone network and found all the forwarding loops in less than 10 minutes. The verified reachability constraints between two subnets in

13 seconds.

It is worth mentioning that there are some other pioneering works such as Xie et al,15 which checks the reachability statically based on the anal-

yses of IP connectivity and the firewall configuration. However, HSA looks at the entire packet header as a concatenation of bits with no associated

meaning. Thus, it can be considered as a protocol-independent automated method for policy checking.

Although Netplumber proposes a real-time method for detecting all typical violations, it ignores interrule dependencies in flow tables. Both HSA

and Netplumber verification processes are time-consuming and could not be suitable for networks at a high rate of links up and down. Therefore,

for Netplumber, which focuses on the real-time environment, this is a significant weakness. Please note that Netplumber and HSA are only able to

detect misconfigurations and not prevent them. Moreover, physical defect is not detected in these methods.

Mai et al16 tackle the misconfiguration problem by formal analysis of data plane state rather than by diagnosing bugs in the control plane. This

approach is able to not only detect the “invisible” bugs in routing configuration files but also unified the analysis regardless of the many imple-

mentations and protocols. The authors try to develop a tool to collect the forwarding information bases of network devices and detect some

typical failure by the Boolean functions. The tool is called “Anteater” and can check reachability and consistency of rules among the routers and

loops in networks. It combines the data plane and invariants into instances of a Boolean satisfiability problem (SAT) and uses SAT solver to per-

form analysis. Anteater was deployed in a campus network with 178 routers, 70 000 users and a combination of BGP and OSPF routing protocols.

It was able to detect 23 bugs, including loops and stale access control rules. Similarly to Netplumber and HSA, Anteater is not able to detect

hardware defect.

Khurshid et al propose VeriFlow,8 a tool to check inserted policies from the controller to the forwarding devices in real-time. VeriFlow can be

seen as a layer between the controller and network devices for dynamically detecting violations of network policy invariants. VeriFlow can detect

anomalies in the scenario of inserted, modified or deleted rules, using an incremental algorithm. The tool is able to not only raising the alarm imme-

diately after detecting the violations but also blocking a modification process that would lead to anomalies such as loops or black holes. VeriFlow

has been evaluated on a Mininet environment with a NOX controller, and it was shown that the process for each rule insertion or deletion takes

hundreds of microseconds. However, VeriFlow’s verification phase has a negative impact on the network performance as it inflates TCP connection

setup latency by a significant amount, around 15.5% on average. In addition, the method does not consider rules dependency inside flow tables.

Furthermore, VeriFlow is unable to detect a physical failure.

Al-Shaer and Al-Haj5 present a configuration verification tool, which is called “FlowChecker,” to validate, analyze and enforce at the run-time

OpenFlow end-to-end configuration across multiple federations. It exploits FlowVisor,17 which partitions the network resources into smaller seg-

ments. FlowChecker is able to detect both intraswitch and interswitch misconfiguration in a path of OpenFlow forwarding devices across the same

or different infrastructure. It uses the binary decision diagram (BDD) to encode the flow tables. Afterward, it tries to model the interconnected

OpenFlow switches’ network via model checker techniques. The method is useful for verifying policy consistency. In addition, validating the con-

figuration correctness in different switches and controllers across the distinct OpenFlow infrastructure also benefited from this tool. Furthermore,

it is convenient for debugging reachability and predicting the impact of a new policy on the network. FlowChecker extends the Config-Checker18

method in order to include the QoS configuration verification. In a federated OpenFlow infrastructure, the authors propose to run FlowChecker
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as a Master Controller that interfaces the different domain controllers to detect and resolve the inconsistencies across different federated

domains.

El Atawy et al4 propose a firewall testing technique based on policy-based segmentation of the traffic address space. By separating the packet’s

header (ie, protocol, source address/port, destination address/port) into different segments and assign a distinct weight to each segment which

reflects the importance of the segment, the accuracy of the testing process increased. The operator can assign specific weight to each segment

according to the test scenario and whether the segment represents a critical domain. However, the weight usually is computed based on different

factors such as the number of rules intersecting in the segment, which reflects the probability of an error occurring in that segment. The method is

shown to achieve a superior detection accuracy to the random sampling method as it has a higher tendency to focus on the testing of potential fault

locations.

Golnabi et al19 use three main techniques to provide an automated tool for analyzing and managing firewall policies. Frequency analyses based

on both data mining and filtering-rule generalization techniques are used for reducing the number of rules. Furthermore, the authors propose a

method that tries to detect dominant firewall rules as well as decaying rules. By virtue of this algorithm, network administrators not only can detect

some hidden but not detectable anomalies but also are able to review the firewall rules automatically and possibly reorder them based on matching

frequency or edit them to remove or aggregate some rules.

Config-Checker18 is a novel method that models the end-to-end behavior of access control configuration, including routers, IPsec, fire-

walls, and NAT for Unicast and multicast packets. It is concerned about security aspects in firewalls. The novelty of the method is the cre-

ation of a symbolic model checker and its optimization. The model represents the network as a state machine defined by the packet header

and its location on the network hops. Packet header, packet location, and the policy define the transitions in the state machine. The authors

try to model the semantics of access control policies using BDDs. In addition, symbolic model checking and computation tree logic have

been used to probe all past and future states of the packet in the network. According to this modeling, it is possible to verify the reacha-

bility. The scalability of the Config-Checker was evaluated by running the method on a network with thousands of devices and millions of

configuration rules.

Sherwood et al17 present a logical isolation approach in one hardware switch, which is compatible with commodity switching chipsets and does

not require the use of programmable hardware such as FPGAs or network processors. They develop a tool, which is called “FlowVisor.” The tool uses

OpenFlow for applying the policy isolation in the target network and is located between controller and forwarding devices. FlowVisor is a special

purpose OpenFlow controller that acts as a transparent proxy between OpenFlow switches and multiple OpenFlow controllers. It prepares seg-

ments of network devices, controls them independently in a separate logical controller, and guarantees the isolation. FlowVisor can create variant

segments based on the combination of the forwarding devices or its ports, packet’s address or packet’s protocol.20 However, it has a latency and

overhead on the control channel due to the use of an additional TLS connection.

Parkinson et al21 proposed GraphBAD to both detect security anomalies and suggest mitigation plans. GraphBAD generates an undirected

graph model from the security configurations and logs data. Afterward, the anomalies and anomalous subgraphs are identified via analyzing the

graph-based model. Two synthetic data and KDD dataset are used for evaluating the proposed method.

Son et al devised a model checking system called “FloVer,”22 a formal approach to prove the conformance of dynamically produced OpenFlow

flow rules against nonbypass security properties, including those with set and go to table actions. The authors demonstrate how to translate Open-

Flow rules and network security policies into an assertion set, which can then be processed and verified by an SMT solver. This method uses the

Yices SMT solver, which is integrated into NOX, a popular OpenFlow network controller. This system verifies that the aggregate of the OpenFlow

network’s policies does not breach the network security and integrity of its policies.

Hinrichs et al23 propose a NOX-based application, which uses a language-based method for designing, implementing, and testing a flow-based

network policy language and enforcement infrastructure. Their approach named FSL is able to model and express basic network access con-

trols, directionality in communication establishment (similar to NAT), network isolation (similar to VLANs), communication paths, and rate

limits. It supports modular construction, distributed authorship, and efficient implementation. This solution supports external authentication

sources for providing access control. A significant effort has been dedicated to the issue of policy conflict resolution. Nevertheless, research

on designing secure SDN is limited. Probably, one of the most significant contributions in this regard is the implementation of an Open-

Flow security application development framework called Fresco.24 This framework is integrated with FortNox,25 which is a security enforce-

ment kernel. FRESCO’s idea is to propose a rapid architecture and implementation of specific security modules, which are incorporated as an

OpenFlow application.

Porras et al25 use reusable modules based on the FortNox enforcement engine for detecting and mitigating network conflict and threats. Based

on those modules, an inserted rule is analyzed to detect its effect on enabling or disabling prohibited/allowed existing rules. The new OpenFlow rule

might be rejected or accepted depending. It prevents rules issues by lower priority applications from overriding rules generated by higher priority

security applications.

This article deals with policy conflicts in OpenFlow switches. We propose an approach to detect typical problems such as loops, black holes, and

policy violations based on a devised routing prediction method, and query-based auditing processes. The second-order logic is used for describing

the query-based checking process.
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3 ROUTING PREDICTION BASED ON THE INTERSECTION METHOD

Policies in the SDN-based network are changed frequently. Clarifying the side effects of new policies in a complicated network has always

been vital for network administrators. Therefore, proposing an accurate approach for parsing the complex network by input traffic could be

helpful.

In this section, we present a tracing method that is able to predict the route of both single and multiple input packets. The method is compatible

with pipeline tables, group tables, and required action as stated in OpenFlow 1.1.0.13

Moreover, all common policy misconfigurations in SDN, such as loops and black holes, can be detected via our proposed method. We adopt

second-order logic for expressing the packet tracing process. Meanwhile, the input process in the middleboxes and the interdependency of rules

have been represented via the Raining 2D-Box model. In this section, we explain the prediction method and all the functions for misconfiguration

detection.

3.1 Tracing function

The function “T” defines a recursive traceroute process from a specific node for a single packet. In each iteration, the function detects which rule

matches the input packet and detects the next hop consequently.

T(X, q) ∶

⎧⎪⎪⎪⎨⎪⎪⎪⎩

T(Aix
, q) if ∃Cix

,Aix
,Cix

,Aix
∈ X[

((Cix
∧ q) ⇔ Aix

) ∧
[
∄C′

jx
.C′

jx
∈ X

[(C′
jx
∧ q) ∧ (C′

jx
≠ Cix

) ∧ (j > i)]
]]

Ax if Ax = Client or Drop,

(1)

X denotes a node, which comprises a set of rules, X ∶ {R1x
,R2x

, … }. Each rule contains a matching condition C and an action A, which refers

to a next hop in the form of Rix
∶ (Cix

,Aix
). The matching condition C includes the ingress_port and packet’s header properties such as source IP,

destination IP and destination port. q denotes a query representing a packet. The function T returns the next node as a result. The recursive process

is terminated whenever the next node is a client or when the drop action is met. Therefore, via the tracing function, we can predict the destination of

the input query. i and j are used to denote the rule’s order in the flow table. Based on Equation (1), the Tracing_Function is developed and presented

in Algorithm 1.

3.2 Transfer function

The function TA→B(Q) proposes a packet transit process from a node A to node B via a precise input (Q). The matching process relies on the Raining

2D-Box model26 that is shown in Figure 1. In this model, the input is checked sequentially against the higher priority rules as depicted in Figure 2.
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F I G U R E 1 The rules’ order and input query in Raining 2D-Box model

F I G U R E 2 The input query, rules’ intradependency and rules’ order in
Raining 2D-Box model

F I G U R E 3 Simple directed graph and its transfer function

The unmatched part of input is checked further with the next rules.

TA→B(Q) ∶ ∀q ∈ Q.T(A, q) = B. (2)

Equation (2) gives a formal definition of the transfer function. Figure 3 illustrates via a sample example the transfer operation in a directed

graph. According to Figure 4 and Equation (2), the results of the transfer function can be described as follows:

TA→B(q1) ∶ {TB→C(q3), TB→D(q4, TB→Drop(q8))}

q3 ∪ q4 ∪ q8 = q1

TA→C(q2) ∶ {TC→E(q6), TC→Drop(q9))}

TB→C(q3) ∶ {TC→E(q5), TC→Drop(q9))}

q6 ∪ q5 ∪ q9 = q2 ∪ q3

T(B, q4) ∶ {D}, T(C, q5) ∶ {E}
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F I G U R E 4 Sample directed graph and its transfer function

Therefore, based on Equations (1) and (2), T(B,q4) can be expressed recursively as follows:

T(B, q4) ≡ TA→D(q4) ≡ TA→B(TB→D(q4))

As it can be clearly seen in Figure 4, the node E is reached via two branches. The recursive expression of joining of these branches can be described

as follows:

T(C, q5) ∪ T(C, q6) ≡

TA→E(q5) ∪ TA→E(q6) ≡

TA→C(TC→E(q5)) ∪ TA→B(TB→C(TC→E(q6)))

In addition, by using the transfer function it is possible to check whether the path taken by the query passes through a specific node or not. As an

example and according to Figure 4, from the result of TA→D(q4), it is possible to check whether the query path meets node B or C. The result is shown

as follows:

B ∈ TA→D(q4), C ∉ TA→D(q4)

In order to check all possible routes from a source node via an input query, we shall use the depth first search algorithm.

3.3 Reachability checking between endpoints

As mentioned above, reachability checking is one of the critical troubleshooting operations for a network administrator that is dealing with com-

plex networks. According to the tracing function (Equation (1)) and the transfer function (Equation (2)), it is possible to check the reachability

between to endpoints, that is, whether one specific host can connect to another specific host. The reachability checking method is defined based on

second-order logic (Equation (3)). The predicate𝜑 has been declared for checking the reachability of hop Y from hop X by a query Q. X and Y denote

nodes, each of which comprises a set of rules.

𝜑(X,Y,Q) ∶ ∃q.q ∈ Q [TX→Y(q)]. (3)

Since the OPC is an offline method, we assume that whenever a packet is faced with table-miss1, the tracing function returns as a final state the

last hop where the table miss packet took place. The Reachability_Checking_Function has been developed based on Equation (2) and is described

in greater detail in Algorithm 2. According to the algorithm, for each query, we detect the next hop. For instance, in Figure 5 a network with all

routing tables is presented. According to Equation (3) and Algorithm 2, if the query Q is defined by “inPort=Port3, srcIP=*.*.*.*, dstIP=192.168.20.5,

dstport=80”, the reachability predicate𝜑(A,D,Q) returns True.

1 Whenever a table-miss takes place, the packet gets forwarded to the controller according to the OpenFlow protocol.
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F I G U R E 5 Sample network with routing tables

3.4 Reachability checking through a specific hop

In addition to checking the reachability between two nodes, A and B , a network administrator might also want to check whether the traffic from A

to B passes through a given node C. The answer is useful for many debugging procedures. As stated in Equations (2) and (3), it is feasible to check

the result of the query by second-order logic (Equation (4)). The predicate𝜓 has been declared for checking the reachability from a node X to a node

Y by a query Q with the condition that the traffic passes through the node K. Each node X,Y, and K comprises a set of rules, such that, for node X, for

instance: X ∶ {R1x
,R2x

, … }. Q represents a query, which could check the reachability of one or a set of packets.

𝜓(X,Y,K,Q) ∶ ∃q.q ∈ Q[TX→Y (q) ∧ (K ∈ T(X, q))]. (4)

Based on Equation (4), The Conditional_Reachability_Function has been developed and shown in Algorithm 3. According to Figure 5 and

Equation (4), the result of predicate𝜓 for the considered scenarios can be written as follows:

Q = “Port3, ∗ . ∗ . ∗ . ∗,192.168.20.5,80” 𝜓(A,D,B,Q) = True

Q = “Port3, ∗ . ∗ . ∗ . ∗,192.168.20.5,25” 𝜓(A, E,B,Q) = True

Q = “Port3, ∗ . ∗ . ∗ . ∗,172.20.15.5,80” 𝜓(A, E,B,Q) = False

Q = “Port3, ∗ . ∗ . ∗ . ∗,172.20.15.5,25” 𝜓(A, E,C,Q) = True

Q = “Port3, ∗ . ∗ . ∗ . ∗,192.168.20.5,25” 𝜓(A, E,C,Q) = True

Q = “Port3, ∗ . ∗ . ∗ . ∗,192.168.20.5,25” 𝜓(A,D,B,Q) = False
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3.5 Loop checking

Conforming to the second-order logic and Equation (2), the loop checking function could be declared as by Equation (5). The predicate L has been

declared for checking the existence of a loop in all possible routes by a query Q from hop X. X represents a node, which comprises a set of rules, such

as X ∶ {R1x
,R2x

, … }. Q represents a query, which could do loop checking for a specific packet or for a set of packets.

L(X,Q) ∶ ∃q.q ∈ Q
[
∃Z.Z ∈ T(X, q)

[
∃q′.q′ ∈ Q

[(Z ∈ T(X, q′)) ∧ (q′ ≠ q)]
]]
. (5)

By virtue of Equation (5), the Loop_Checking_Function has been developed and is presented in Algorithm 4. According to Figure 5 and

Equation (4), the result of predicate L for the considered scenarios is as follows:

Q = “Port3, ∗ . ∗ . ∗ . ∗,192.168.20.5,80” L(A,Q) = False

Q = “Port1, ∗ . ∗ . ∗ . ∗,192.168.20.5,25” L(B,Q) = False

Q = “Port3, ∗ . ∗ . ∗ . ∗,172.20.15.5,80” L(A,Q) = False

Q = “Port3, ∗ . ∗ . ∗ . ∗,172.20.15.5,23” L(A,Q) = True
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F I G U R E 6 Ingress switch in network

4 ANOMALY DETECTION ON SDN-SWITCHES

In this section, we present an offline anomaly detection approach, based on the formal methods defined in Section 3. The proposed approach is

to generate queries that contain all possible packets that could pass through the network from all ingress switches. Subsequently, our anomaly

detection algorithms are called for detecting possible policy conflicts.

4.1 Generating queries

As mentioned previously, our anomaly detection method needs to check all possible packets that might enter the network via the ingress switches.

By definition, ingress switches are gateways between the end clients and the rest of the network. Figure 6 sketches a sample for the ingress switch

concept. In the ingress switch’s flow table, the first rule is considered as one query. In order to generate the second query, we subtract the next rule

from the previous rules2(here the previous rules is merely the first rule). This process continues for the rest of the rules in a flow table of an ingress

switch. The query generation operation is described in Equation (6). The queries, which are generated based on a specific flow table, are completely

disjoint. Therefore, the queries can be executed in parallel without any specific order.

Query1 ∶ Rule1

Query2 ∶ Rule2 − Rule1

Query3 ∶ Rule3 − (Rule1 ∪ Rule2)

⋮

Queryn ∶ Rulen −

(
n−1⋃
i=1

Rulei

)
. (6)

While calling the transfer function (3.2), each rule in the whole network (whether or not it is in the ingress switches) will only be marked as a

matched rule if it is matched with at least one query or subquery. At the end of the process, the unmatched rules are further investigated in order to

discover the possible anomaly that caused the unmatch. The latter question will be the subject of the following subsection.

4.2 OpenFlow rule anomaly

Sometimes one rule will never be matched by any possible queries, and there are several reasons for this type of anomaly. Al-Shaer and

Hamed6 introduced four types of pairwise anomalies among rules in a firewall: shadowing, correlation, generalization, and redundancy. Rez-

vani and Aryan7 define three more anomalies, namely, total shadowing, total generalization, and total redundancy. Moreover, interanomalies,

which might occur in distributed firewalls, have been defined by Al-Shaer and Hamed27 and categorized as shadowing anomaly and redundant

anomaly.

Since the OpenFlow-based rules consist of two main parts, Conditions and Actions, the same categorization has been used for intraanomalies

here. However, as explained by Reference 28, OpenFlow-based rules might have more than one action, that is, multiaction. Thus, we shall propose

a new expression for intraanomalies of rules that supports multiaction. To the best of our knowledge, this aspect has not been investigated in the

literature before. In addition, another categorization has been represented for the interanomalies of rules. Therefore, the unmatching of rules can

be a result of intra- or inter-anomalies, which will be defined in greater detail below.

2 Without loss of generality, we suppose that the subtraction operation operates on the matching condition Ci .
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4.2.1 Intraanomaly for single-action and multiaction

An intraanomaly takes place between rules on the same device. According to References 6 and 7, these types of anomalies are categorized into

seven groups. We shall use the bitwise format defined in Reference 7 in order to rewrite rules and packets. The formal specification of OpenFlow

rule anomalies is put forward as follows.

Shadow anomaly

If rule Rj matches all the packets that match rule Ri, Ripriority
< Rjpriority

and the two rules have different actions, Ri is shadowed by previous rule Rj.

Formally, rule Ri is shadowed by rule Rj if the following condition holds:

Ripriority
< Rjpriority

Ri ∶ (Ci,Ai),Rj ∶ (Cj,Aj)

∃Ri,Rj ∈ FlowTable (Ci ⇒ Cj) ∧ (Ai ⊕ Aj). (7)

As per Equation (7), rule Ri is shadowed by the rule Rj for the group of actions, which are true in (Ai ⊕ Aj).

Correlation anomaly

Two rules in a flow table are correlated if they have different actions, and the first rule matches some packets that match the second rule, and also

the second rule matches some packets that match the first rule. Formally, rule Ri and Rj have a correlation anomaly if the following condition holds:

Ripriority
< Rjpriority

Ri ∶ (Ci,Ai),Rj ∶ (Cj,Aj)

∃Ri,Rj ∈ FlowTable

[¬(Ci ⇒ Cj) ∧ ¬ (Cj ⇒ Ci) ∧ (Ci ∧ Cj)]

∧ (Ai ⊕ Aj). (8)

As described by Equation (8), rule Ri and rule Rj have correlation for the group of actions that are true in (Ai ⊕ Aj).

Generalization anomaly

Rule Rj is a generalization of a preceding Rule Ri if they have different actions, Ripriority
< Rjpriority

and if the rule Ri can match all the packets that match

the rule Rj. Formally, rule Ri is generalization of rule Rj if the following condition holds:

Ripriority
< Rjpriority

Ri ∶ (Ci,Ai),Rj ∶ (Cj,Aj)

∃Ri,Rj ∈ FlowTable (Cj ⇒ Ci) ∧ (Ai ⊕ Aj). (9)

According to Equation (9), rule Ri and rule Rj have generalization for the group of actions that which are true in (Ai ⊕ Aj).

Redundant anomaly

Rule Ri is redundant to Rule Rj if they have the same actions, and if the rule Rj can match all the packets that match the rule Ri. Formally, rule Ri is

redundant to rule Rj if the following condition holds:

Ri ∶ (Ci,Ai),Rj ∶ (Cj,Aj)

∃Ri,Rj ∈ FlowTable [(Ci ⇒ Cj) ∨ (Cj ⇒ Ci)]

∧ (Ai ∧ Aj). (10)

As described by Equation (10), rule Ri and rule Rj have redundancy for the group of actions that are true in (Ai ∧ Aj).
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Total shadow anomaly

Rule Ri is totally shadowed by a set of previous rules if the previous rules match all the packets that match the rule Ri, and the rule Ri has a different

action from the previous rules. Formally, rule Ri is totally shadowed by rules {R1 … Rk} if the following condition holds:

Ripriority
< R1priority

, … ,Rkpriority

Ri ∶ (Ci,Ai)R1 ∶ (C1,A1), … Rk ∶ (Ck,Ak)

∃Ri,R1, … ,Rk ∈ FlowTable
(

Ci ⇒

(
k
∨

n=1
Cn

))
∧
((

k
∨

n=1
Ak)⊕ Ai

)
. (11)

According to the Equation (11), rule Ri and rules in the set: {R1 … Rk} have total shadow for the group of actions that are true in ((
k
∨

n=1
Ak)⊕ Ai).

Total redundant anomaly

Rule Ri is a total redundant of a set of rules if the set of rules match all the packets that match the rule Ri, and the rule Ri and the set of rules have the

same action. Formally, rule Ri is a total redundant of a set of rules {R1 … Rk} if the following condition holds:

Ripriority
< R1priority

, … ,Rkpriority

Ri ∶ (Ci,Ai),R1 ∶ (C1,A1), … Rk ∶ (Ck,Ak)

∃Ri,R1, … ,Rk ∈ FlowTable
(

Ci ⇒

(
k
∨

n=1
Cn

))
∧
((

k
∨

n=1
Ak) ∧ Ai

)
. (12)

As per Equation (12), rule Ri and rules in the set: {R1 … Rk} have total redundancy for the group of actions that are true in ((
k
∨

n=1
Ak) ∧ Ai).

Total generalization anomaly

Rule Ri is a total generalization of a set of further rules if the rules match all the packets that match the rule Ri , and the rule Ri has different action

from the rules. Formally, rule Ri is a total generalization of a set of rules {R1 … Rk} if the following condition holds:

Ripriority
> R1priority

, … ,Rkpriority

Ri ∶ (Ci,Ai),R1 ∶ (C1,A1), … Rk ∶ (Ck,Ak)

∃Ri,R1, … ,Rk ∈ FlowTable
((

k
∨

n=1
Cn) ⇒ Ci

)
∧
((

k
∨

n=1
Ak

)
⊕ Ai

)
. (13)

As described by Equation (13), rule Ri and rules in the set: {R1 … Rk} have total generalization for the group of actions that are true in

((
k
∨

n=1
Ak)⊕ Ai).

4.2.2 Interanomaly

According to the nomenclature proposed in Reference 27, at any point along the path of a given flow, a preceding switch is called an upstream hop

whereas the following switch is called a downstream hop. Among two forwarding devices, when one or more rules in upstream shadows the specific

rule of a downstream hop matched by one or a group of the packet, an InterAnomaly takes place. Note that in this section, we assume that the

flow tables are intraanomaly free. The Al-Shaer and Hamed27 categorize the interanomalies in four groups. By contrast to Reference 27, this article

defines four types of interanomalies in a different way, which are the root cause of unmatched rules.

Subset rule anomaly

A subset rule anomaly occurs if all packets that can be matched with the unmatched rule in a downstream hop, matches with an upstream hop’s rule.

Formally, rule Ri has a subset rule anomaly with rule Rj if the following conditions hold:

Ri ∶ (Ci,Ai),Rj ∶ (Cj,Aj)

∃Ri ∈ SWi,Rj ∈ SWj Upstream (SWj)

∧ (Ci ⇒ Cj) ∧ ¬ 𝜑 (SWj, SWi,Ci). (14)
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In Equations (14) to (16), Upstream() represents a predicate that returns true if the input hop is an upstream hop. 𝜑 is regarded as a predicate,

which is described in Equation (3).

Superset rule anomaly

A superset rule anomaly occurs if all packets that matched with an upstream hop’s rule, can be matched by an unmatched rule in a downstream hop.

Formally, rule Ri has a superset rule anomaly with rule Rj if the following condition holds:

Ri ∶ (Ci,Ai),Rj ∶ (Cj,Aj)

∃Ri ∈ SWi,Rj ∈ SWj Upstream (SWj)

∧ (Cj ⇒ Ci) ∧ ¬ 𝜑 (SWj, SWi,Cj). (15)

Partial rule anomaly

A partial rule anomaly occurs if just parts of packets, which can be matched with an unmatched rule in a downstream hop, are matched by an

upstream hop’s rule. Formally, rule Ri has a superset rule anomaly with rule Rj if the following condition holds:

Ri ∶ (Ci,Ai),Rj ∶ (Cj,Aj)

∃Ri ∈ SWi,Rj ∈ SWj Upstream(SWj)

∧ ¬ (Ci ⇒ Cj) ∧ ¬ (Cj ⇒ Ci) ∧ (Ci ∧ Cj)

∧ ¬ 𝜑(SWj, SWi, (Ci ∧ Cj)). (16)

Irrelevant rule anomaly

The irrelevant rule anomaly occurs if all packets that can be matched with the unmatched rule are matched by different rules, and the paths for each

packet are expected by the network administrator. Formally, rule Ri known as an irrelevant rule if the following condition holds:

Ri ∶ (Ci,Ai),Rj ∶ (Cj,Aj)

∀sw ∈ ingress,
[
∃rule ∈ R

[
∄packets, (packets ∧ Crule)

∧ (T(sw, packet) ∉ Ex Path)
]
⇔ irrelevant(rule)

]
. (17)

Ingress represents a set of all ingress switches in the network. R is regarded as a set of all unmatched rules. Crule means rule’s condition. Ex_Path

refers to a set of expected paths, which are defined by the network administrator. T() represents the transform function, which is described in

Equation (2). Finally, irrelevant() denotes a predicate, which returns true if the input is an irrelevant rule.

4.2.3 Invalid rule anomaly

If the unmatched rule does not match with any subset of the input queries, it is considered as an invalid rule in the flow table. This anomaly is defined

in Equation (18).

∀q ∈ Q[∃r ∈ R[¬ (q ∧ Cr)] ⇔ invalid(r)]. (18)

As expressed by Equation (18), R represents a set of unmatched rules and each member of this set is regarded as r, which is formed as a condition

Cr and an action Ar . Q means a set of input queries. Finally, invalid(r) amounts to a predicate, which returns true if the input rule r is recognized as an

invalid rule.

4.3 Anomaly detection

In the previous subsection, unmatched rules’ anomalies are defined and categorized. In this subsection, we will describe the detection method.

According to our anomaly definition, there are three main groups of anomalies, namely, intraanomaly, interanomaly, and invalid rule anomaly. After

the unmatched rule detection, the following steps will be performed to find which rule in which switch that causes the anomaly in question.

4.3.1 Invalid rule anomaly detection

The unmatched rules are checked based on Equation (18) to detect invalid anomalies. The result determines the rules that might never be matched

by all possible queries. Due to the fact that the input queries are generated based on the rules in ingress switches, our queries represents all

possible traffic which can pass through the network from the clients. The invalid rule anomaly usually occurs when a network administrator updates
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the network policy and forgets to remove part of the old rules from the same flow tables. The detection process is described in greater details in

Algorithm 5. For each unmatched rule, the algorithm tries to find a query that has an intersection with the unmatched rule in question. Whenever

the function is unable to find any intersecting query, the rule is moved to the invalid rules list.

4.3.2 Intraanomaly detection

The intraanomaly detection operation is executed after the removal of the invalid rules from the unmatched rule list. Each remaining mem-

ber of the list will be checked with the other rules in the same flow tables to find the possible intraanomalies. The conflicting rules, together

with the anomaly types, are reported to the network administrator for making a decision. In relation to Algorithm 6, for each unmatched rule,

its corresponding flow table is fetched. Then, the target rule and its flow table are checked by the simple and total anomaly detection algo-

rithms. The Simple_Anomaly_Detection_Function is described by Algorithm 7. According to the Algorithm 7 and Equations (7) to (9), the Sim-

ple_Anomaly_Detection_Function is defined. This function checks shadowing, generalization, and correlation anomalies between the unmatched

rule and each of its flow table’s rules whenever the pair of rules have different actions. Moreover, according to Equation (10), the unmatched rule will

be checked with the rules that have the same action. The Total_Anomaly_Detection_Function, which is shown in Algorithm 8 aims to detect the total

anomalies based on Equations (11) to (13). In the first step, the algorithm collects the rules that have lower priority from the unmatched rule and

have a partial intersection with it. Then, total generalization anomaly condition (Equation (13)) is checked for the part of collected rules that have a

different action than the unmatched rule. In addition, the total redundancy anomaly condition (Equation (12)) is checked for the rest of the collec-

tion that has the same action as the unmatched rule. For the next part, rules with higher priority than the unmatched rule that partially overlap with

it are collected. Then, total shadowing anomaly condition (Equation (11)) is checked for the part of collected rules that have different action from

the unmatched rule. Subsequently, the rest of the rules, which have the same action with the unmatched rule, are checked for the total redundancy

anomaly condition (Equation (12)).
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4.3.3 Interanomaly detection

The interanomaly detection operation assumes that the flow tables are intraanomaly free. The conflicting rules together with the detected

anomaly types will be reported to the network administrator for making a decision. According to the Detection Algorithm (Algorithm 9), for

each unmatched rule, all paths from all ingress switches are calculated by the transfer function. Then, each path is compared with the expected

path, which is specified by the network administrator. If both paths are the same, then no interanomaly is reported. Whenever the paths

are different, the Check_Rule_InterAnomaly_Function will be called. Finally, according to Equation (17), the irrelevant rule checking will be

performed.

The unmatched rule is declared as an irrelevant rule provided that the rule’s host does not exist in any administrator’s expected path.

This anomaly usually takes place whenever an administrator updates the policies and does not check the side effect of policies’ modification.

So, the new or modified policies lead the irrelevant rule which is never matched by any packet, which being matched before the update. The

Check_Rule_InterAnomaly_Function aims to check and detect the anticipated anomalies between the unmatched rule and the rule that causes the

conflict. According to Algorithm 10, the rule that causes the difference between the query’s path and the expected one is found. Then, the type

of anomaly is further checked. The subset anomaly condition based on Equation (14) is checked between two rules. If it is not verified, the super-

set anomaly condition, which is represented by Equation (15), will be inspected. Finally, as per Equation (16), the partial anomaly condition will be

checked.
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5 EVALUATION

In this section, we evaluate our proposed method, OPC, which consists of four main phases: test query generating, probing process, intraanomaly

detection, and interanomaly detection. The single thread and multithread approaches are implemented, and the results are compared. All methods

are implemented in C++, and the experiments are run on the server with 48 Intel (R) Xeon (R) CPU 2.30 GHz.

Two network topologies are used in the evaluation: a mock setup with a fat-tree topology (Figure 11) and the Standford topology (Figure 15).12

In order to generate realistic OpenFlow rules, we use the Class Bench29 tool. The Stanford University Backbone Network12 depicted in Figure 15

represents a real-life topology widely used in the literature. The algorithm is run 30 times for each distinctive rule dataset. We report the average

execution time with a 95% confidence interval. Results are presented in the following subsections.

5.1 Test query generation

In this subsection, the execution time of the test query generation process for different flow table sizes is evaluated. The “Test Query Generator

Engine” is capable of generating all possible disjoint queries based on the flow tables of a specific ingress switch according to Equation (6).

As illustrated by Table 1 and Figure 7, the execution time increases dramatically whenever the ruleset size exceeds 5000 rules in the mock setup.

However, multithread implementation yields different results. According to Table 2 and Figure 8, the query generation processing time does not

Rules num. Average (s) CI (95%)

500 26.600 ± 0.569

1000 96.539 ± 1.163

2000 416.209 ± 9.205

5000 2448.830 ± 45.063

10 000 9736.508 ± 12.815

TA B L E 1 Single-thread query generation processing time for the mock setup
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F I G U R E 7 Query generating processing time with single-thread
approach for the mock setup

Rules num. Average (s) CI (95%)

500 1.170 ± 0.012

1000 4.699 ± 0.054

2000 19.529 ± 0.146

5000 116.78 ± 0.799

10 000 459.879 ± 2.767

TA B L E 2 Multithread query generation processing time for the mock setup
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F I G U R E 8 Query generating processing time with multithread
approach for the mock setup
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TA B L E 3 Single-thread query generation processing time for the Stanford network

Switch SW_1 SW_2 SW_3 SW_4 SW_5 SW_6 SW_7 SW_8 SW_9 SW_10 SW_11 SW_12 SW_13 SW_14 SW_15 SW_16

Rules num. 870 844 203 175 188 125 167 146 124 109 104 91 204 142 248 116

Average (s) 17 412.23 17 919.59 460.15 300.27 481.26 89.92 354.98 229.01 155.71 103.01 103.79 72.64 624.75 123.5 1462.26 108.89

CI (95%) ± 14.09 ± 158.33 ± 6.42 ± 2.80 ± 6.75 ± 0.33 ± 4.13 ± 1.80 ± 1.26 ± 0.29 ± 0.47 ± 0.13 ± 13.11 ± 0.34 ± 26.90 ± 0.34

TA B L E 4 Multithread query generation processing time for the Stanford network

Switch SW_1 SW_2 SW_3 SW_4 SW_5 SW_6 SW_7 SW_8 SW_9 SW_10 SW_11 SW_12 SW_13 SW_14 SW_15 SW_16

Rules num. 870 844 203 175 188 125 167 146 124 109 104 91 204 142 248 116

Average (s) 27.9 27.06 3.05 2.1 3.72 1.05 2.67 1.84 1.63 1.2 1.24 0.97 4.51 1.27 7.57 1.3

CI (95%) ± 0.08 ± 0.11 ± 0.01 ± 0.01 ± 0.02 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.03 ± 0.09 ± 0.01 ± 0.01

change dramatically by increasing the number of rules, and the process is exceedingly faster than a single-thread approach. As we can see from

Tables 1 to 2 that the parallel method outperforms the single-threaded checking method, and was about 21 times faster when we ran it on 10 000

rules. In the Stanford network, query generating algorithm is applied for each switch. The processing time of single-thread and parallel approach

are presented in Tables 3 and 4, respectively. As depicted in Figures 9 and 10, the parallel method was about 624 times faster than the single-thread

method when ran it on the SW_1, which contains 870 rules.

Comparing the obtained results of the single-thread and multithread approaches shows drastic performance improvement. This is due to the

fact that the query generation process for each rule in the ingress switch can be performed independently from the other rules.

5.2 Probing process

The “Probing Process Engine” is capable of detecting unmatched rules based on the test queries in the snapshot of the flow tables. The queries

are defined by the test query generator engine. For evaluating the probing process, a query, which contains ingress port, source IP, destina-

tion IP, and destination port, is used. The probing engine receives policy tables of middle-boxes and the test queries. The content of Open-

Flow switch tables are fetched by the dump command,30 and then will be prepared by the parsing algorithm for the process. The parsing

algorithm retrieves the table, in_port, nw_src, nw_dst, tp_dst, and actions fields from the flow table. Then the tool converts the inputs into a

binary content.
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F I G U R E 9 Query generating processing time with single-thread
approach for Stanford network
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F I G U R E 10 Query generating processing time with multithread
approach for Stanford network

Finally, we call the “Transfer-Function” to parse and check the query destiny. After each iteration, the “Loop_Checking functions” is called for

diagnosing loops. If a loop is detected, the process will be stopped. The probing process will also be terminated for a specific query if it received by

the client or dropped by a rule in one of the middle-boxes.

According to this procedure, with the predefined network’s flow tables and the test queries in the mock setup, the execution time is evaluated.

The flow tables do not have the pipeline tables and group tables. All the rules have the standard required action.

In order to test the scalability of our approach, we create a synthetic dataset with a varying number of rules in each middle-box. In this eval-

uation, we use five datasets involving 45 switches each containing 500, 1000, 2000, 5000, and 10 000 rules, respectively. According to Figure 11,

the switches are configured as a fat-tree topology. In order to generate a stress testing, we deliberately define position the rules that match

the test queries at the bottom of each of the flow tables. We call this scenario the Last Match scenario. After the subtraction operation, the

remaining set would be matched with the next rules. Clearly, there is at least a subset of query which parses all the middle-boxes. Therefore,

all the flow tables are read, and for each input query in each middle-box, we have at least three disjoint output as new queries for the next

switches.

The processing time for the probing procedure using the single-thread and the multithread approaches are presented in Tables 5 and 6, respec-

tively. Table 7 shows the number of rules in each middle-box and the total number of rules for each dataset. Moreover, it provides the number of the

transfer function call in both single-thread and multithread approaches.

As illustrated in Figures 12 and 13, the processing time for both approaches is roughly similar. In other words, the single-thread and multithread

produce similar results when it comes to the Last Match scenario, and the queried rules are at the bottom. Thus, there is a little possibility for creating
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F I G U R E 11 The mock topology

TA B L E 5 Single-thread probing processing time for the mock setup
Rules num. Average (s) CI (95%)

22 500 23.678 ± 0.23

45 000 46.985 ± 0.44

90 000 87.857 ± 1.4

225 000 201.714 ± 3.7

450 000 384.428 ± 8.8

TA B L E 6 Multithread probing processing time for the mock setup
Rules num. Average (s) CI (95%)

22 500 22.873 ± 0.013

45 000 39.751 ± 0.06

90 000 81.077 ± 0.168

225 000 180.057 ± 0.215

450 000 338.234 ± 0.642

TA B L E 7 Probing process

function call
Middle-box rules 500 1000 2000 5000 10 000

Total number of rules 22 500 45 000 90 000 225 000 450 000

Call transfer function 1.2×106 2.06×106 4.02×106 7.84×106 14.72×106

F I G U R E 12 Probing processing time with single-thread approach for
the mock setup
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F I G U R E 13 Probing processing time with multithread approach for
the mock setup

10

12

14

16

18

20

22

24

P
ro
c
e
s
s
in
g
T
im

e
(s
)

Multi-threadOPC

Single-threadOPC

F I G U R E 14 Average probing processing time for the Stanford
network

several “branches” and checking them in parallel. A branching process refers to the case where an input query is matched by a rule with multiple

actions in a flow table.

The probing algorithm is evaluated on the Stanford network as a real-world scenario. The mock setup tries to simulate the Last Match scenario

as by design and given a query originating ingress, and there is at least a subset of this query that parses all the middle-boxes and produces a match

in the last rule of each switch. However, in the Stanford topology, the branching can happen in each rule position and not necessarily starting at

the last rules. It causes a new process generated for each new subquery. Therefore, this scenario can evaluate another aspect of the performance

of the algorithm different from the Last Match scenario. As Figure 14 demonstrates, the processing time of multithread approach in average is

faster than single-approach because there are more branches in this scenario which gives an opportunity to the algorithm to use its parallelizing

capability.

Finally, we perform another performance check with introducing a modification in the rules the Stanford Topology. We rewrite the rules of each

OpenFlow table in the Stanford Topology and converted them to totally disjoint rules. It means there is no overlap between any pair of rules in the

same switch. Accordingly, the number of rules in each switch increases dramatically. On the other hand, subtraction is not required between disjoint

rules and input queries. The assessment tries to find out the effect of subtraction function and size of the flow table on the performance of the

probing algorithm Figure 15. The comparison of processing time average between the Stanford topology with and without disjoint rules is shown in

Figure 16.

According to Figure 16, the size of the flow table has a negative effect on the performance of the probing process and reducing the overlap

between rules cannot improve the performance considerably. This is due to the fact that the input queries should be checked with all the rules in a

flow table sequentially. Therefore, the processing time for each branch is increased when the number of rules in each switch is considerably higher

than the number of branches.
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F I G U R E 15 Stanford backbone
topology

F I G U R E 16 Rules with overlap vs disjoint rules average probing

processing time for the Stanford network
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As seen in Equations (14) to (17), the interanomaly detection resorts to the probing process. Therefore, the engine execution time follows the

same pattern under different number of rules.

At this juncture, we compare the performance of the OPC with the HSA method. In order to allow fair comparison, we resort to Hassel_C31

which is an optimized C-based implementation of the HSA method that supports multithreading. Furthermore, Hassel_C uses some algorithmic opti-

mization techniques to boost the execution speed further and reduce the memory footprint. The performance of Hassel_C for reachability test and

loop detection on the Stanford network is compared with both single-thread OPC and multithread OPC. The Hassel_C performs the loop detection

test and reachability check by launching two separate queries.

We manually verify HSA, single-thread OPC and multithread yield precisely the same result for the reachability and loop detection

tests.

We measure the time required for the loop detection and the reachability check. The comparison of the execution time of the HSA method

and the OPC is presented in Figure 17. As demonstrated by Figure 17, while the single-thread OPC is more than seven times faster than HSA, the

multithread OPC is more than 17 times faster compared with HSA. In fact, in this scenario, the processing time of the single-thread OPC, mul-

tithread OPC, HSA is, respectively, 24.40, 10.74, and 179.63 seconds. This result not only shows that the proposed transfer model has a proper

parallelization capability but also demonstrates that the single-thread OPC is superior in terms of processing speed to HSA despite its multithread

implementation.

In addition, we also evaluate the memory usage of the HSA and the OPC. According to Figure 18, the result shows that HSA takes up

6% memory at running time. The multithread OPC takes up 11%, and the single-thread OPC takes up 0.8% memory. Taking into account

the significant gain in terms of the execution time of the multithread approach, this increase in terms of memory consumption is not



24 of 29 ARYAN ET AL.

0

50

100

150

P
ro
c
e
s
s
in
g
T
im

e
(s
)

Multi-threadOPC

Single-threadOPC

HSA

F I G U R E 17 Comparison of processing time for probing for the
Stanford network

0

5

10

15

20

25

M
e
m
o
ry

U
s
a
g
e
(G

B
)

Multi-threadOPC

Single-threadOPC

HSA

F I G U R E 18 Comparison of memory usage for the Stanford
network

an issue and can be omitted. Furthermore, the single-thread approach outperforms HSA both in terms of execution time and memory

usage.

5.3 Intraanomaly detection

The “Intraanomaly Detection Engine” is capable of checking the existence of intraanomalies between one unmatched rule and the rest of

rules of the flow table. The engine receives one rule and its corresponding flow table and then tries to detect the simple and total anomalies

among them.

In this subsection, the execution time of the intraanomaly detection is evaluated for different rule sets based on both single-thread and mul-

tithread approaches. By design, the execution time is independent of the type of the anomaly and numbers of detected anomalies. The processing

time of intraanomaly detection via single-thread approach for mock setup is presented in Table 8 and Figure 19. As observed in Table 9 and Figure 20,

the multithread detection method is remarkably faster than the single-thread one.

The intraanomaly detection algorithm was applied also for the Stanford network. The processing time of single-thread approach for

intraanomaly detection is depicted in Table 10 and Figure 21. In addition, the processing time of parallel approach is presented in Table 10 and

Figure 22. According to Figures 21 and 22, the multithread approach can improve the performance of intraanomaly detection (Table 11). By com-

paring the obtained results from Figures 19 to 22, it can be concluded that the parallelizing capability improves the performance since there is
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TA B L E 8 Single-thread intraanomaly

detection processing time for the mock
setup

Num. of rules 500 1000 2000 5000 10 000

Simple shadow (ms) 28.83 49.97 115.40 241.66 515.90

Simple generalization (ms) 26.95 45.53 107.62 225.50 449.07

Simple correlation (ms) 49.84 94.16 199.50 419.64 830.60

Simple redundancy (ms) 53.20 120.16 214.28 445.19 890.22

Total shadow (ms) 3.23 5.20 11.93 24.70 48.99

Total generalization (ms) 3.23 5.20 11.94 24.66 49.08

Total redundancy (ms) 0.78 1.26 3.42 7.20 14.36

F I G U R E 19 Intraanomaly detection processing time with
single-thread approach
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TA B L E 9 Multithread intraanomaly
detection processing time for the mock setup

Num. of rules 500 1000 2000 5000 10 000

Simple shadow (ms) 0.024 0.050 0.115 0.287 0.551

Simple generalization (ms) 0.023 0.052 0.102 0.274 0.545

Simple correlation (ms) 0.026 0.051 0.106 0.276 0.550

Simple redundancy (ms) 0.025 0.051 0.104 0.277 0.550

Total shadow (ms) 0.002 0.001 0.009 0.022 0.041

Total generalization (ms) 0.0008 0.005 0.002 0.006 0.013

Total redundancy (ms) 0.003 0.006 0.012 0.027 0.054

F I G U R E 20 Intraanomaly detection processing time with multithread

approach
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F I G U R E 21 Intraanomaly detection processing time with
single-thread approach for Stanford network
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F I G U R E 22 Intraanomaly detection processing time with
multithread approach for Stanford network
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no dependency in the anomaly detection process between any pair of rules (Algorithm 7, Algorithm 7). Moreover, the detection process of the

total anomaly is faster due to the fact that the detection process is just applied on some specific rules and not on the whole set of rules as see

in Algorithm 8.

6 CONCLUSION

SDN rules are changed dramatically, which leads to error-prone policies. There have been some valuable studies on rule anomaly detection.

However, those studies do not cope with multiaction OpenFlow rules. In this article, we provide comprehensive and generalized anomaly classi-

fication and detection methods for SDN that cover multiaction OpenFlow rules. Furthermore, we introduce the taxonomy: invalid and irrelevant

anomalies for unmatched rules. An offline method is implemented based on the new definitions. Our detection method has been enhanced to

support parallel execution, which makes it a viable solution for troubleshooting large-scale networks. The execution duration of each step of the

method: (1) query generation, (2) probing, and (3) anomaly detection has been evaluated thoroughly under different scenarios, and the results

are very promising. As future work, we would like to generalize our method for real-time policy checking where rules get inserted and deleted

dynamically.
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