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ABSTRACT

I have looked at skills required for eniders to operate a BCl communication system,
attempted to define optimal cognitive commeéa for task design with Stimuhki®gesponse
compatibility, and discussed how hardware and system degigiy support accessibilityl.
have performed experiments with an Emotiv EEG headset and a game interfiroe and
the participants have reportederceived Workload with a NASA Tlx foirhave assessed
the effectivenessand user experience of spontaneous EEG, by testing training data with
different cognitive taskand compared them witmumber of classifications per session, and
the score achievedrhere are benefits in user motivation anarkload if we can present
adjusttasks to skill level and customize stepwise skill acquisition tantthgidualuser. |

have hypothesisethat a tradeoff in dataset directionality may be outweighed by a more
accessible workflowand that different sets of training data asefficiently equal in
efficiency and accuracyhere is no significamvidenceof adifferencein testedefficiency or
accuracybetweenusing visual imagergnd visual perception as trainim@ta with visual
imagery gameplay task. There is no signifi@mtdence of alifferencein perceived

workload between playing with different sets of training data
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INTRODUCTION

20% of the gener al p o piull lait tbemmeattidess claimthate ve d t o
everyone could master EEG if given the correct training and an accessible fysteEm

Larrue, & Muhl, 2013). This study will focuseopotential useprerequisitefor successfully

using EEG signal as a BCI technolDiggre are theories about how to solve issues during
training and recordi ng t mmedtigatectrairing methotlsdoe n t e s
a spontaneous EEG system basedh&ories about training and visual imagdfyanis,

Thompson, & Kosslyn, 2004

Persons withComplexdommunication Needs (CCHi)d intact cognitive abilitiesay be
candidates foAugmentative andAlternative Communicaton (AAGQ systemswith BCIBCI
systemsare widely used foresearch purposes, and some systems are developed for
communication purpose®8CI communicatiosystemsare currently limitedand fail to
support the extent dbuser'sabilities The longterm goal forHCI development dCl AAC
systemsds to introduceBCltechnology in a manner that ensure technology acceptaarod
encourage skill developmerin this section we are going to represent some of the

background fothe researchguestionsand presentassociated concept

Several studies suggest spontaneous EEG for B@titeean ability gap for users with

severe motor impairmentéBeukelman, Fager, Ball, & Dietz, 2007; Bobrov et al., 2011; Jure,
Carrere Gentiletti, & Tabernig, 2016; Kubler et al., 2014). There are assistive technologies
meant to alleviate the difficulties on a wide spectrum of motor impairments, such as text to
speech and eyracking(Beukelman et al., 2007). For some patients with moutea

impairments, bordering on LockedSyndrome or Total Locked Syndromel, Spontaneous

BCI might be a last stronghold before TLIS. Also, systems for spontaneous BCI are developed

for gaming or interaction purposes for ordinary users as well.

T h e usskeigtscreate a pattern of brain activity that they can recreate and repeat at

will. End users are faced with the challenge to produce and recreate clear brain patterns.
(Lotteetal.,2013As peopl e don’t have mucweneedai ght i n
strategy There are three main approaches for spontaneous:Bkdor imagery, visual

imagery and auditory imagery. Either you imagine moving a limb, to see something or hear
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something. In this paper, we will focus mostly on visual imagery as-ease for controlling

a computer. In theoryGanis et al., 2004), a brain will emit the same signals whether you
look at a picture or imagine looking at it. This is referred to, respectivelysaalpercetion
and visualmagery withEEG. If a user g®od at imagining pictures at will, and the computer
recognize those brain signals, the user can do this deliberately to perform classified

functions( Bobr ov et al ., 2011). Such as move a ¢c
data-acquisitionstep,or data entry, is to collect robust recordings, with clear defining

features, there are easily recognized and discriminated. What we want is as much recording

of brain activity that are relevant for each visualization, rather than the remaining activity;

the noise. This is referred to as sigt@hoiseratio. Visual imagery is related to several

areas in the brain. The frontal lobe, parietal lobe, temporal lobe, occipital lobe and posterior

cingulate.

Third Principle of Universal design

When discussing kdl in relation to Universal design in relationdognitive loadlit is first

and foremost the third principle that is relevant. This is the principl8infple and Intuitive

Use UsE of the design is easy to understand, regardless of the user's expgrienc

knowledge, language skills, or current concentration lével.I t comes wi th a su
g ui d e Ba. Himisate uninecessary complexBl. Be consistent with user expectations

and intuition.3c. Accommodate a wide range of literacy and langusigdlls.3d. Arrange

information consistent with its importanc@&e. Provide effective prompting and feedback

during and after task completiohlin this project | attempt to explore and apply these

principles toaccompanying fields of theory.
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LITERATUREVREW

There are currently several research groups wiwok with questions related t&EG
interactionsand AAC BCI development is now considerethaltidisciplinary fieldor
linguists,n e u r o |, infgmasics,Ergonomicand psychologyBall, Beukelman, & Pattee,
2004; Curran & Stokes, 2003; Gramann, Fairclough, Zander, & Ayaz, 2R{iBleA & Birbaumer,
2008; Lotte, Larrue, & Mihl, 2013; McFarland & Wolpaw, 2011)

Wolpaw et apublishedan exensive review on BCI for communication and contial the
journal Clinical NeurophysiologMcFarland & Wolpaw, 2011)heyoutline important
considerations for furtheBCI development will present thenmsorted byDevelopment of

Technology, EntlserAccessibility andResearch specific considerations.

Development oBCITechnology

Generabrinciples of EEG

EEG is biometric dateollected from electrical currents emitted by neural activity in the
brain. The activity can be recorded and monitored with sensarthe scalp( “ EE G >
introduction Biomedical Signafsc q u i s i t .iThisis & sha@rtdraréduction to present some

of the underlying premises necessary for successful EEG classification.

Initially, all signals are sampled relative to a baseline signal. The baseline signal is the
background activity mrelated to intended activity. Offset is fluctuations in the baseline

signal, and the baseline signal may need to be adjusted from time to time.

Signal display properties such as rhythmic, arythmic or dysrythmic patterns. On top of this
the signals hold mghologic attributes; the different shapes of the waveforms. Waves may

be Transient, Monomorphic or Polymorphic EEG activity. While Monomorphic activity can be
composed out of one activity, polymorphic activity is a complex waveform composed by
multiple frequencies. While sinusoidal waves resemble sine waves, Transient patterns are
distinctly separable as either Spikes or Sharp waves and are characteristic by their duration.
Cognitive commands typically aim to classify Transient patterns. If the transigetms

occur with some intensity over several regions of the brain simultaneously, it is referred to

as Hypersynchronous or Paroxysmal.
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The signal intensity is measurednmcrovolts(uV). Signal wavelength measured in signal
frequency (Hz). Increase or decrease of signal intensity can be ascribed to stimulation or
abnormal activity. Relevant terms cover abrupt gain in voltage; Paroxysmal gain, a general

increase in voltge and rhythm;

Figure0.1 EEG signal frequencie:
hypersynchrony, as well as decreased voltage referred to as

Frequency Attenuation or blocking. These indicate some specific
Delta <=3Hz activity or stimulation. While transiersipikes last between
Theta 3.5-7.5Hz 20 and 70 msec, sharp waves last between 70 and 200
Alpha 75-13HZ | sec. To provide accurate representations of changes in
Beta > 14 Hz signal intensity, samples must be collected more than twice

as often as the fluctuations on Transient patterns.

Signal acquisdn and processing

The first level of selection of signal types is positioning and wavelength range selections. The
10-20 system is a defined standard for sensor placement, defined in the guidelines SEPN.
(Standard Electrode Position Nomenclature). Thedsad positions are reference for

positions, relative to the nasal bones and the occipital bone at each side of the head, and
from ear to ear. Their names are initials for the regions they are associated with. When
designing an interaction, it is useful¢tboose sensors placements correlating with the

desired signal typed.he number of sensors will also contribute to the overall volume of data
and resolution. The main frequencies are Delta, Theta, Alpha and Beta. The different
frequencies are associatedttv different characteristics of activity in different mental states,

ages and display of potential pathology.

AD conversion 1is conversi'ﬁ I(\ ﬁue, “r
as they are detected, into numerical values fit for digital JJ & 1U U 7
processingFiltering parts of the bandwidth provide MY ||1 ||| AN |||'||Fi;J|4' IR

easier processing of desired frequencies. This function fn'u “ ,ﬂ /\\[\J\/\/\)

may be performed while collecting the analogue signal, *u" ' "

by analogue filtering before digitalization, or with a digit RR

filter. Filtering primarily remove noisas well as restrict  Figure0.2 Example of signal resolution
the total amount of data collected so that it takes less ~ 2ndaliasingg 699D 5 Ayd

_ _ CA2YSRAONE {ATYIE
computing power and less time to converse and process
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For instance, a standard band filter at-30 Hz may be applied during signal acquisition to
remove background white noisejhich occurs at about-60 Hz. Desired wavelengths may
be amplified to increase voltage and signal attributes. Amplification may provide an added

voltage, a higher signal intensity, to chosen wavelengths.

While less EEG data ease demand on computingepawd-time, a minimum of bit data is
required to sustain necessary resolution. Loss of data to less than required resolution may
lead to amplitude saturation, and misclassification from aliasing. Amplitude saturation
causes the signal to plateau from plification, rather than provide a more intense signal.
Aliasing means that the digital representations of wavelengths have a sample rate less than
the signal rate, which means that the signal shape and rhythm may be misrepresented.
Accurate resolution regjres accessible sample representations of a voltage range twice as
large as the digital range. The resolution requires Required sampling rate to be at least twice
that of signal rate, as stated in Nyquist sampling rate. Sample interval is inverse taighe r

For sharp wave signals with durance from 70 to 200 msec, the sampling interval need be at

least half that; this means sampling interval of 35 msec or less.

. LU, € 0 010aEQQQ

o

00 £ &6 e 0w
L2l & 00 s naxs son

Noise

Noiseis activity in the sampled signals that are not representative for the signal intent. Noise
Is categorized as environmental noise, system noise and user generated noise. Filtering
handle a large part of bandwidth noise associated with the former, whédatier is made

up from different signal types, artefacts, distractions and the overall difficulty producing

stable, predictable brainwaves.

Classification and Machine Learning

When first forming a classification model with a support vector machine, the operator
defines a bias, by assigning an appropriate class, then provide data with trait variation that is
representative for the class. This is training data. The next stepeisaloate the classifier

and tune parameters until predictions are sufficiently accurate for the purpose.
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Figure0.3 General scheme of an EHfased BCI(Bobrov et al., 2011)

For accurate classification tlieEG data stream must hold a sufficient similarity of traits with

the trained datasets. The classification model makes predictions from transient patterns and
synchronicity in the EEG signal data stream. If the classifier finds a pattern in the data stream
has a high probability of matching a trained class, then the associated functions of the class

are triggered.

Signal stimulation

Signal acquisition is another aspectloé three-way relationshigbetween (i)the mental
states and processes that provide tbentent and motivation for the communicatigi)the
brain activity, as recorded by EEG, baitiised to drive the devicéii)the voluntary

manipulation and control of thabrain activitfCurran & Stokes, 2003)

One of thefirst adaptations available during signal acquisition is signal stimulation as they

are generated Ppthe user.Sgnals ca be divided into categories from Dependent and

Independent BGAnderson et al., 2011; McFarland & Wolpaw, 20Mgthodsultilizing
Dependent BClI, such as Evoked Potentials, *d
Neural artefacts directly related to perceptions and mental ¢ctometry of motor

operationsfall into this categoryEvoked potentials refer to the processpobvoking, or
“evoking” these artefacts, such as, Visual Ev

however,concern a capturing df h e u s e andis theiwiltful memtal command of
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forcing your brain to output specific patternghis is also called Spontaneous,BGlit is the

users initiative that precede the occurrence of such signals. One utilization of Spontaneous,
independent EEG is Imagelotor imagery is a common approach, frequently applied in

BCI experiment@Bashashati, Ward, Birch, & Bashashati,®2@ashashati et al., 2015;

Curran & Stokes, 2003; Friedrich, Scherer, & Neuper, 2013; Leeb et al., 2013; Zickler, Halder,
Kleih, Herbert, & Kibler, 20130 motor imagery, the user attempt to imagine and recreate
patterns of imagined movement of limbBor instance, a user imagine that he moves a finger

t o push a button”. Another form of i magery

BCI Tasks witkisualimagery.

In a study with fMRI, Ganis et abmitored activation in different brain regions during

diverse taskstwo of which was imagined and evoked visual signeiey remarked,;

“I magery and perception activated frontal st
regions we examined, the spaf(Gans|/Thompsont& rn of
Kosslyn, 2004)Their finding could indicate that Imagery and Perception taskis activities

so similar that they might be used interchangealvlyen measured in the frontal regions.

This turned out tdoe, at least in part, transferrable to EEG: Dentico et al hypothesised and
concluded that the neural flow changed directionality, depending on whether participants
performed visual imagery or visual perceptibentico et &, 2014) The active regions of

visual stimulus aréypersynchrmous transient patterns that may be both evoked and

improvised This have also been tested as a cognitive command with spontaneous EEG.

Bobrov presented Visual Mental Imagery as a Spordasd&EG ask gategy(Bobrov et al.,

2011) where users emitted cognitive command by visualizing either a house or a car.

Dependence on internal aspects of normal brain function

“Dependence on nor pathly definad cognitiveipmecequisicefol i s a
using a BCI systerand enable dhree-way relationshigetween (i)the mental states and
processes that provide theontent and motivation for the communicatiofii)the brain

activity, as recorded by EE&ingutilised to drive the devicdiii)the voluntary

manipulation and control of thabrain activitfCurran & Stokes, 2003 C | |l i teracy’
allegedly to about 80% in the general population, where the remaining 20% are considered

BCl illiteratgAllison & Neuper, 2010What does this literacy oltiteracy consist of?
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Systemic ability gaps

Allison and Neuper emphasized that initial difficulties in using a BCI system are reinforced by
limited BCI functionality. They compared BCI accessibility and ability to actual literacy; if a
writer spells hdlthe words in a paragraph correctly, he is likely to have communicated its
intention and can be said to be 50 % literate. In contrast, a user that only express their
intention correctly half of the time in a twoptions AAC interface, experience 0% lira

This is because the | imitations of the AAC
the text comprehensibleThey argued that the different BCI systems cater to different

abilities A user might not be able to use all BCI systems, bulikielly that most of us can

use at least one. Thgipportanassumptiorthat the context ofa system BCltask design

and recognition of ability gapprecedes a definition aequireduser ability

Anatomical ability gaps

One size does not fit alnatamical differencesnaycause some users to have difficulties
with a shelf ware headsetl fit with equipmentmay cause challenges wiiensor
placement. 8uctural differences ira robustnasal bone or occipital bone majock EEG

signalacquisition withpredefined, genericA-D and signal amplification settings

Lack of skill or training

There is still no consensus in BCI research aboukititeof skill or skills that must be

acquired inorder tosuccessfully drive a BCI sys{€urran & Stokes, 2003)ependent

signals are straightforward in theensethat theyhardly require skill at all, while

Independent signals must beqvoked at will by the user, and as such the skill depends on

the task designTasks with visual imagery incorporate spatial tasks and require spatial

a b i | Encyclepaedia df the Scierscef Learning def i nes Spathei al Abi |
perception and/or mental manipulation of visual stimuli. It may also include mentally

rehearsing a visual experienfe.."{Zydney et al., 2012 hen theuser need Spatial Ability

to acquireSpatial skills.

Abilityand Skill acquisition

Emotional regulation has been accepted as a requirement for Spatial visualization. Executive
functions covercogntive control, selfregulation, attention, working memory, fluid

intelligence, inhibitory control, task switchingpental flexibility creativityandreasoning
(Diamond, 2013Human factors cover research awareness, attentional control and

18



automaticity (Proctor & Vu, 2010)Complex cognitive challenges and skills are structured
and usually handled by neairmechanisms in thBrefrontal Cortex.This is also referred to

as topdown control and is associated with learnfRgoctor & Vu, 2010)

The prefrontal cortex is vulnerable to stress. Diamond described the PrefrontakGs

“the canary in a coal mi ne” , adswithstrain.Bhet he | e
literature indicates that emotional and physical stress factors are likely to complicate

learning of AAC and BCI systems in general, and BCI withl spsit®Mental states and
processes that might alter a person’s abilit
signals ardi)concentrationflack offocus (ii)other thoughts/control of thoughts

(iifrustration, (iv)other mental/emotional state (e.g., depression(v)relaxation (vi)fatigue

(vii) distractions/interruptions (viii)motivation/desire (ix)intentiongCurran & Stokes, 2003)

Hence, a person experiencinglativelyordinary stress factors, however temporary, may

also experience learning difficulties during this period, and difficulties performing complex,

cognitive tasks.

However, as soon as skills are overlearned and automated, the user no longer depends on
the top-down control of focus and discipline in the prefrontal cortex. Allegedly, seasoned BCI
users have compared BCI wuse to “riding a bik
are made redundant by experien¢€urran & Stokes, 2003pverlearned skills rely on

posterior corticesand their activity is referred to as bottenp activty; a phraselescribing

the directionality of signalmoving fromthe lower asternregionsup towardsareas of

cognition (VanLehn, 1996Hence, although the Executive functions are imperative for
learning BCI skills, they are supeded by automation once skill processes are
overlearnedProctor & Vu, 2010)his maysuggest that we must ensure accessible task
design for initial learning processto help users overcome the potential learning difficulties
associated with strain ancbnfusion until they have succeeded in overlearning and

automating the cognitive commaiskill.

Operation protocoland Task Design
As for BCl interaction, the s e r ’ gealidt@ansakimize th correlationbetween intent and
signalto maximize the signab-noiseratio. (McFarland & Wolpaw, 2011(]pperational

competence is theompetenceo interact with an AAC interfagc@as described by Janice
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Ligh{Light, 1989)This involves the physical ability to operate a device and contextual
understandingof the cognitiveefforts. (Cook & Polgar, 2015)

In Instruction theory, tasks can be divided into Sldised and Problersolving tasks

(VanLehn, 19965killbased tasks can be automated, and generally have a high level of
performance. Skill task components include a) Means of work b) Input information c)

Required actions d) Goal of the tag€kven proper instruions, the task is skibased. If the

user is uncertain of how to solve a given task it is probb&®ed and need to be resolved

before it can be trainedBednyand Karwowskperformed a functional analysis of attention

in a review ofSSAT (SysteraRtructural ActivityTheory). They concluded that mental effort

required to perform a task increase with difficulty. Then how do we alleviate the difficulty in

such a complex contembatter? They claimthats er s don’t experience a
but its difficulty. We avert difficulty and task load if we provide a (i) Strategy for Task

Performance, (ii) with Specific instructions, (iii) for Clearly defined Task Components.

In areview ofHuman FactorsProctor & VipresentsSimulus-Response compatibilitf&R
compatibility) as a task strategg:R compatibility is @imension ofrelevance between
Stimulus(the objective), and its Task Respondeack ofSR compatibilityis referred to asthe
Simon EffeqProctor & Vu, 2010landrequiresmore mental processinga heavier cognitive

load and a longer reaction time.

Task adaptation

SR compatibilityshould be applicablas astrategy fortask desigrio improve BCI
interactions. One example &sRussian experimentith visuospatial task8obrov et al.,
2011) The mrticipantstaskwasto visualize either an icon of a house or of a @e&sponse).
Their que to perform the task was conditioneddgreen triangleshiftingpositionwithin a
geometric figire. Was ths Stimulus relevant to imagine a house or a car? For a visuospatial
task to be compatible, thétmagined icorshouldhave a significant relevance to the task
objective (Proctor & Vu, 2010)he task appears ndd have acontextualobjective, and the
prompt appears to baunrelated to the iconsThis could indicate-Bincompatibilityand
provoke a Simon Effecthe authors in Bobr@report on visuospatial taskaddressedin
their Discussiorthat they expect improved EEG Performance from an improved training

procedure.Taskstrategymight be one of the improvements the authors had in mind.
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Stepwise skill acquisition as a design approach

| have focused upon cognitive tasks for Spontaneousvidte&isual imagery for an initial
learning phaseTominimize intrinsidoad, it appearsmportant to help user attain good first
experiences with mastery and motivate them to the path of acquiring skills until tasks are
automated.With a stepwise approdrcto skill acquisition we may introduce introduction
level task with feedback and opportunities for saffsessmergLotte et al., 2013)The issue in

is that anovice practitioner may struggle to produce reliable trainitaga, while having
access taeliabletraining data is a critical step in the workflow. Poor quality in the training
data may cause the provided feedback to appear arbitrary. Ideally, we could attain high

quality training data without expending the usérs e f f o r-tegulatompdol. s e | f

One way to achieve this is to use bottarp (dependent) signal for training a tajpwn
independent signals for test datd@ihe literature suggests that visual perception and visual
imagery emit near identical signal peths. If this is the case, and a signal acquired with one
can be used interchangeably with a task emitting producing the other, we may be able to
collect training data with dependent signals, perception, and utilize them in dependent

signal imagery tasksith feedback during training.

Define a sufficient similarity between training data and test data; that we may collect

training data with one method and test data with another.

Will a stored signal with bottorup directionality(visual perceptionlassifycorrectly in an
online session with a tedown (visual imagerydommandf not identical, then at least so
similar that the user is not handed an intolerable disadvantaye?are looking at a

situation where there is no discernible difference in clasaifon between outcomes

achieved with training data acquired by dissimilar methods, or a situation where outcomes

are only similar when training data and test data are similar.

Research metrics

In this section | will present research strategies, methadekperiment procedures and
analysis from relevant papers, and present research question and hypothdsigeseral,

this will revolve around methods for how to measure the amount of BCI activity, and how to

analyse its correlation to users i ntent .
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UXMethods with Cognitive Load

Cognitive Load is a framework developed for Instructional Design Theory, describing the
different forms of stress, as well as contexts for measurement. Cognitive Load can be divided
into Intrinsic cognitive load, germane cogwdiload and extraneous cognitive load,

representing the internal load brought by the user, the inherent stress expended by a task
and the added load expended by insufficient instruction or clumsy design, respectively. It

may be measured as biological resges or reported as a subjective experience by users.

In a review of UX evaluation metrics, Kibler et al divided metrics into Efficiency,
Effectiveness and Satisfactiqhndrea Kubler et al., 2012hey suggested to measuser
Experiencéefficiency with NASA Workloaificiency is a counterintuitive term in this

context. NASA TLX measure Workloadyrasxperienced negative effect.

NASA TLX

NASA developed a system of workload measurement called NASA TLX, for use in pilot
training. The NASA TLX form is a survey that collect information about the participants
experience otasks A total of six factorswith ordinal values between 1 and 20, giving a total
value Workload between 21 and 120. The factors are; Mental load, Physical load, Temporal

load, Effort, Performance and Frustration.

Those studies of BCI technologies that formally incorporate usebtesdwith BCI, that are
reviewed in this papeall applied NASA TLX to gather user experience det& method is

based on selévaluation of tasks. The form have since been applied to studies in HCI and BCI
(Anderson et al., 2011; Chavarriaga, FR@kn, Kleih, Lotte, & Scherer, 2017; McKinley,
Mclntire, Schmidt, Repperger, & Caldwell, 20hitjally the user was asked to weight each
option against each other, however new research areas have applied the total Workload in
guantitative studies, wh a simple ANOVA analysis instead. This unweighted version is

referred to as Raw NASA TMoroney, Biers, Eggemeier, & Mitchell, 1992)

Some work with so called Raw NAZAX Twhere the factors are summed up, not weighted.
More recent studies suggest measuring and comparing each factor independently, rather
than as the sum. These factors have also been applied to analyse causality between the
workload factors and Cognitiveéd theory(Galy, Paxion, & Berthelon, 2018poking at

Classical Test Theory, this approach appears equally valid if the dimensions compared are
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parallel. In line with CTT, we assume that the total SObIASA Factors = a hypothetical

true Score with noise. However, the factors are not equally relevant, and in cases where it is
difficult to obtain significant test results of interest in a hypothesis we may consider
performing a more extensive factor dgais. We can remove factors that are similar across
test groups. If we remove the same factor dimensions and are clear about what information
we then obtain from the net total, we may have obtained significant test result with

available data.

Utility metics

As mentionedKubler et al divided metrics into Efficiency, Effectiveness and Satisfaction.
(Andrea Kibler et al., 2014hey suggested to measure utility Efficiency with ITR, and
Efectiveness with percentage correct responses. Number of classes is the complexity added
to the interaction. Accuracy, or effectiveness, is a performance metric that evaluate whether
the submitted bitrate was an expression of user control. Accuracy @eislinegatively

correlated with number of available classésified commands). Target detection time is

the amount of time it takes to issuecmmand omake a choice between optionis a

review of BCI interfaces, Ramadan & Vasilakos listed utilitaretricsasInformation

TransferRate with bitrate and @R); Target detection Accuracy, Number of classes and Target

detection time(Ramadan & Vasilakos, 201The definition of bitratevaries.

Bitrate definitions and applications

According tcRamadan and Vasilikdsitrate is the most common measure for BCI systems
(Ramadan & Vasilakos, 201&rcording to thembitrate is measured as the number of

times a system classify commands per attempt/trial/minute. The details of what that entails
vary.A Genevan research gro{dulian Kronegg, Voloshynovskiy, & Pun, 2005; Julian Kronegg
et al., 2005have pubishedreviewson bitrate andinformation Rate (I-R)modelkfrom

established BCI research institutions in Graz, Wadsworth and ABaman & Stokes, 2003;
McFarland & Wolpaw, 2011; NicotAsonso & Gomezil, 2012) Bitrateramwel & bonchidS

defined as a perfect classifier without errors; the amount of classified successes is then equal
to the amount of emitted commands. Bitratepaw defines bitrate in relation to Information

Rate; as any classified command that is dggiished from baseline signal with rejection
inherent in R Accuracy. The Genevans argue for a third option, biffiatg whichonly

ever consider accuracy.
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The definitions have different areas of applicati@itrateramwel & ponchir@appear to be a
theoretical idol of complete overlap between classifier aotnmands that is, in my
estimation, not necessarily intended for practical usecuracy is a separate term from
bitrate in the Wolpaw Information Rate Modé{ronegg et al preseatarguments that
bitratewopawl0ses accuracy and validity for higher number of classes. Still, there is a
discrepancy when Kronegg emphasize this condition to advice against use ofvieatie
circumstances where Wolpaws reference 48 hlready take accuracy into account.
Bitratenykoppinclude a model for SNR optimization for offline analysis and is hence

considered more accurate.

In a more recent paper, the Genevan group differentiate betw8egle-trial protocols and
repeated attemptgJulien Kronegg, Alecu, & Pun, 2003)ey propose the term Average
Trial Protocol todescribethat the user may emit the same men@mmandrepeatedly over
time. The term Average Trial Protocol may be appropragen assumption for an analysis
protocol of online classificationRather tharassumebitratewopawto be a continuousalue
variable they argue that the number of registered classifioas in bitrat@vopawis limited to
a finite amount dictated bwn optimal bitrate, where the bitrate is a Probability P of
Classification rat® andleaves gossibility foralternative classifications in@ntext with

multiclass options

Research qué®n
Can spontaneous EEG recordings, associated with either perceived or imagined stimuli, be

used interchangeably without significant dissimilarity in results?

Hypothesis 1
Hlo.: Spontaneous EEG commands with visual imagerprm as Efficiently anfccurately
whether they argestedwith recordings from perceived visual stimuli or conducted with

recordings with imagined visual stimuli.

H1i: Spontaneous EEG commands with visual imagerfgrm more Efficiently and
Accuratelywhenthey aretestedwith recordings fromvisualimagerythan if conducted with

recordings fronvisual perception
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Hypothesis 2
H2:.: Spontaneous EEG commaipdsformedwith recordings from perceived visual stimuli
and imagined visual stimuli, demand the same amourdaginitiveload, measured as

perceived workload

H2:.: Spontaneous EEG commaipdsformedwith recordings from perceived visual stimuli
demand ahighercognitiveload, measured as perceived workload, than if they were

conducted with recordings from imagined visstimuli.

Hypothesis 3
Is there a correlation between experiencedgnitiveload during trainingand signal
Efficiency & Accura@y

H3Ao: There is no correlation between performance variables Score & bitsate, and

cognitive load measured as workload.

H3A:: There is gositive correlation betweerognitive load measured as workloaddhigh

performance, measured as bitratepawand Score.

H3B: Data trainingwith visual imagery and visual perception are equally demanding in

terms of workload.

H3B: Data training with visual imagery is more demanding to do than visual perception in

terms of workload.

25



METHOB

Experimental studadaptedprocedurecomparingtraining data,across the conditions;
imagined and perceived visual imagemth assumed high S&dmpatibility. Measured
workload with workload factors, bitrate, accuracy as a score and correlation between inputs
and objective.The following section presents the various methods, their fit to the research
question and hypothesis. It will cover what is being examined, how and with what tools.
Then follows a presentation of Analysis performed and how the data will be stored foe futu

use.The last paragraph present Ethical considerations for this project.

Participants

In this subsection | will present the population and the population sam@earticipans
wererecruited into the project5 female 5 male and abstained from repding gender.

Aged between 22 an@l1. The participants were recruited based on convenience sampling.
Wedemanded only that the usergported to possess normadyesightability. One
prospective volunteer was dissuaded from applying to the project duegal blindness.

Two prospective volunteers were dissuaded as they did not have access to glasses or lenses.

Ethical considerations

The project was reported to, and received permission from, NSD to conduct experiments

and information handling in the wahe project was finally conducte@ontact information

and names were stored in two places; UiO servers and a folder placed in a locked closet.

Notes were kept in a separate folder along with NASA tIx forms. Other collected information

was stored in a seer on a personal laptop with backups on cloud servers belonging to

OsloMet. Participants were informed of the experiments content, the projects purpose and

their right to withdraw consent ahead of signing tgxperiments were designed as an HCI

experimen, with the least necessary amount of impact on participants, and least time

consuming as practicable. This has also been mentioned in Tasks were designed to not inflict

stress or task load on users. The perceived task load for each participant can derfde

chapter for Results and Findindg&ospective participantaould initiallysign up for the

project using Nettskjema. Nettskjema is a cloud survey tool hosted by The University of Oslo,

and apply to the University standards for data storage andistgc Later, when recruitment

was more direct, participants also filles a paper formed in the beginning of their first session.
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Tools / Measures

EEGequipment

Gonsumer grade EEG syst&motivEpoc, dheadset withl6 sensorsThe sensor placements
aredidributed overthe frontal, side and back regions of the skull; AF3, AF4, F7, F3, F4, F8,
FC5, FC6, T7, T&(ref), P4(ref), P7, P8, @id O2 Frequency range fro.16to 43 Hz

Saline soaked pads, no gel requir€bmes with proprietarluetoothconnedion and

software Emotiv Epoc EEG system have previously been assessed for research purposes and

applied to experiments with spontaneous EE® considered reasonably independent from

noiseproduced bymuscular artefactgBobrov et al., 2011; McMahan, Parberry, & Parsons,

2015; Taylor & Schmidt, 2012)

Figure0.1 10-20 systend & 9 9 D P AYGUNRRdAZOGAZ2Y . A2YSRAOIE {A3dylfta ! OldAanal
Software

Emotiv Software: Emotiv Xavier Control Panel

Thesoftwareconverts the datafrom analogue to digital signaliiters, classiiesand
generates an classifcatioralgorithmbased on collected samples of training ddtalso
containsa GUIfor samplingand classificationOnce the algorithms argeneratal, the

software monitorsonline signal for trained actions

Emotiv Software: Emotiv Xavier Emokey
EmoKey is also developed by Emotiv,use withthe Emotiv Control Panel. This software

output a keypress in the event of detected, trained actions. Ia goject it is configured to
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relay the action Push, limited to whehe action is detected for more thah2

microseconds. EmoKey emit Keypress Spacebar to the application in focus.

Flappybird Experiment interface

The interface chosen is a customizadartphone gamgFlappyBirda side scrolling game

with a single input, a Spacebar Key pregsnt. Theobjective of the game is to avoid

obstacles, and to achieve this the Participant both activate and relieve a single command, to

navigate above and belowbjects in their avatars path. Each time the avatar dodges an

obstacle the player gains an additional point.

Figure0.2 FlappyBird screenshétd 8 G A 1 f Ay Ik Cf I Lt @. ANRY 41k at y¥SrE y»RRO/f2yS

All commands in a gameplay is counted and divided by game time, gieorgiguous
variableBitrate/min. Accuracy igalculated from the achievement of intent, or game
objective.The objective is to navigate the sprite between obstackesl the success/fail is
analysedrom control limits Lower control limit is 220 and uppeontrol limit is 550 pixis.
Each input adjusts the position of a sprite 33 pixels upwards. In the absence of input, the
sprite adjusts back to its position, then decline 30 pixels per blit (for aBOEPS B0 blit
per second) within the confines of teame, seeFigure0.3 for the movement relative to
timeline of 01 second Thefirst leg, before the first obstacle, lasts for 11 seconBach leg
after lasts for6 seconds. @meplay ends after 21 obstacles, wa@0 legsare analysed for
performance. FlappyBird generate and save lines of text to a .txt file for offline
performance analysis. The line of text includes the Spri@sy position, a timestamanda

participant identifier | have adapted the prototype for HCI testiidne customizations
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includeeven spaces between obstaclesnd a set duratiorf each gameplay, and also

removed the function that usually aborts gameplayeappliedversion is stored in a

separate fork repository on GitHup.“ st i k1 i n g/ FyBir¢p@opeBusinggytherA F I app
n.d.)

pygame,

Y-axis predictions
T

50 T T T T T T T T T

Pixels

Il ! 1 1 A ! Il [l | Il 1

-100
7.37165000002 7.37165000004 7.37165000006 7.37165000008 7.3716500001

Microseconds 10°

Figure0.3: Y-axis position post commangdl secondtimeline

Location

The test facility is a selection of similar rooms, booked special for each session. It is a
rectangular facility with white plaster walls, a window facing a quiet street on one end, and a
door in a semtransparent wall on the other end. The window has wetagurtains. Dark

shutters on the facade with an available control unit. Curtains and shutters are drawn shut
during the experiment. The facility has an even temperature and air quality. The facility is
not soundproofed. Noise level varfhe setup inclues a rectangular table pushed up

against one side of the room. Facing the wall, an ergonomieramde office chair for the

participant. On the table, an open laptop facing the researcher, a BenQ FP222WH 22inch
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LCD monitor facing the participants seatifgr the participant there is also an additional
keyboard, an Emotiv headset and a folder. On the opposite wall, directly behind the

participant, an A3 poster of an upward pointing arrow.

Experimenfrocedure

This subsection concerns the treatment appliedhe research objects, in the form of
introduction to an EEG exercise, rehearsal and test of performandkis study we
experiment with @aption of training databy testing the utilitarian performanaef training
data withminor changes in the task@ocol. The main task is to perform cognitive
commands with visuospatial imageiyhe protocol includes)learningand memorizing a
viswospatialcognitive commandB)training the commanavith visual imagery without
feedback C) Test the visual imagenyilsWwith a BCinterfaceand feedbackThe BCi interface
is a single class interfaosith only one input using a single cognitive command, that they

must both activate and relieve to achieve ttaskobjective.

Testing procedurduring a Session

Each sesion is appointed witlwhichtest condition will apply, and whidhnaining data will
be collected during the sessiolt is either Method 1Visual Perception. QWlethod 2; visual
imagery.The firstactivity is to watch and memorize an icon depicting an upwardmting
arrow. During memorizationhte participant sits approximately 1 meter framwall, facinga
A3 hard copy of the icon for 60 seconds. The se@mtidityis to visualize the memorized
icon. TheParticipant notify theoperatorwhen she is ready to begin tlognitive taskThe
operatorabort the visualizatorach8 secondso thatthe Participant get to pause a
moment to refocus. Thigisualizatiortask is repeated 5 times. The procedure with
Memorization trainingand Visualization trainings performed three timesDepending on
the predetermined IV for the givesessiorthe operatorccollectcommand datathat the
system uses to classify input signde record5*3 sets of training data 8 seonds anda
total of 2 minutes. These recordings are deleteunediatelyafter the sessionThe Third
Task is to play FlappyBiodie timeusing visuospatial imagery a bidnce the participant
has completed the game they often share spontaneous feedbatiktribute a NASA tix

form, and the participants assess each task separately.
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Statistical analysis
Measured workload with workload factors, bitrate, accuracy as aesand correlation

between inputs and objective.

H1
In this hypothesis weompareMethods 1, Visual Perception and Method 2 Visual Imagery

usingEfficiency aditratewopaw, and Accuracyas Score.

Forbitratewopawwe compare number oflassifiedcommandsas continuous variables witi
paired ttest. ForScorel compare theBernoulli valueSuccesses p&ession ang@erform a

paired ttestusing Score as a continuous variable

H2

This is a test of similarity of reported Workload across conditidssubscales in NASA TLX
are parallel and unidimensior(@eVellis, 2006) countscore br eachitem and add them up
asa totalworkload then test with a paired-test of meansacross conditionfor the
gameplayTask | also performa paired ttest of Workload reported in the activities related
to acquisition of training data for each mettido compare the workload associated with

Visual Perception and workload associated with visual imagery.

H3
A test of correlation between Effort and Effelttis alinearregression analysis of the
correlation betweenscoreandWorkload where the Scoref the gameplay task is tested

against the workload of the associated data acquisition task for the given Method.
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RESULTS AND FINDINGS

In this section | will present descriptive and inferential statistics for each hypothétighe

values collected irExperiments, adescribed in Methods.

RQ
Can spontaneous EEG recordings, associated with either perceived or imagunedd

stimuli, be used interchangeably without significant dissimilarity in results?

Utility HL
H1o: Spontaneous EEG commands with aisonageryperform as Efficiently and Accurately
whether they argestedwith recordings from perceived visual stimuli or conducted with

recordings with imagined visual stimuli.

H1:: Spontaneous EEG commands with visual imagerform more Efficiently agh
Accuratelywhen they areestedwith recordings fronvisualimagerythan if conducted with

recordings fromvisual perception

The performance was measured as Efficacy/Aotlracy, represented by bitratepawand
Score Mean overalbitratewopawper attempt is146.562(SD=125.117. Withvisual

perceptiondatathe user achieves an aage 0f88.625classificationgper session, andith

Method 1 Method 2
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Figure0.1 Figure showing the means of Scores with both visual percep{itethod 1)and visual imageryMethod

2)
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visual imagengdataan average 0204.50bit. TotalmeanAccuracy, aScore (n=8) averaged
1.6 SD= 2.2) Participants scored an averageskuccessesf 20 attemptsusingvisual
perception data whichamounts to Spercent of their opportunities. Usingsual imagery
data, participants scored mean of2.3 successeper sessionwhich amounts tdl1.8

percent of 20attempts.

With the current variationsn bitratewopaw (£ 125.117 of the sample data (n 8), there was
no significant differenceetectedbetween the achievetitratewopawWith visual perception
data(88.625) anditratewopawWith visual imagerylata(204.50)in atwo sample ttest (p =
0.085) The difference in the metric Scqrihere was o statisticallysignificantdifference in
Accuracybetweenvisual perceptior(1 out of 20) andiisual imagery2.37out of 20) with n =

8 (two sample test, p =0.2322.

User experiencéi2

In this hypothesis we tested the overall cognitive demand of performing the tasks associated
with HZ:.: Spontaneous EEG commaésformedwith recordings from perceived visual
stimuli and imagined visual stimuli, demand the same amouibghitiveload; measured

as perceived workloadH2;:: Spontaneous EEG commarmasformedwith recordings from
perceived visual stimuli demandhéghercognitiveload, measured as perceived workload,

than if they were conducted with recordings from imagined visual dtimu

For each test session the participants answered a NASA TLX form for each task of the
experiment. The total sum of factors for each form in the NASA TLX is Workload. The
workloads of theassociated signal acquisitit&isk were compared across methodgtwa
paired twotailed t-test. The participants reported average perceived Load of 331
variation of reported Load wasls- 31.93 (n =12), with no discernible difference between
training data foMethod 1 andtraining data forMethod 2 (two sample-test, p =0,5). There
is no significant difference machuser experienceof workloadbased on the performed

tests even if the experience between users varied

Relationship betweetdtility and User experience H3
This parameter is a test of a possibtarelation between the measured utility and the self
reported user experienceds there a correlation between experienced cognitive load during

training, and signal Efficiency & Accuracy?
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H3A: There is no correlation between performance variables S&doératewoipaw and

cognitive load measured as workload.

H3A: There is a positive correlation between cognitive load measured as workload and high

performance, measured as bitratepavand Score.

H3B: Data training with visual imagery and vispafception are equally demanding in

terms of workload.

H3B: Data training with visual imagery is more demanding to do than visual perception in

terms of workload.

H3A was tested with Score and workload with linear regression analysis with Method 1 and
Method 2 separately. R squared for Method 1 was 0.167, while R squared for Method 2 was
0.305.

R p
Method 1 0.167 0.315
Method 2 0.305 0.156

Figure0.2 R2 and p values for correlation between score andrkload.

R squared for Method 1 was 0.167 (p = 0.315), while R squared for Method 2 was 0.305 (p =
0.156). Higher performance with Spontaneous EEG is not significantly correlated to task
load, represented by Workload. There is a difference between the where Method 2

have a somewhat higher correlation. Method 2 might indicate a negative correlation, while

there is no such correlation with Method 1
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DISCUSSION

In this study | have assessed #féectivenessand user experience of spontaneous EEG, by
testing training data with different cognitive $&s. | have looked at skills required for end
users to operate a BCl communication system, attempted to define optimal cognitive
commands for task design with StimuRgsponse compatibility and discussed how
hardware and system design can support accégyibn the Discussion we will look more
closely at the relationship between the performed study and the results, relating these
results to previous literature. | will present potential for identifying new challenges for
accessibility as well as suggemprovements to the experiment procedure and its

execution.

Findings

We failed to find significant evidence for a higher task performance pétheived versus
visualised cognitive command inpuf$e results arenconclusiveandwe accept the null
hypothesis.The population was too small to reach a conclusive reJiilere were notable
individual differences in performance that were far more significant than the variance seen
between input methods. How may we address these individual differendesver this
experiment was performed witetandardequipment, and thegeneric Emotiv EPOC
algorithmfor identifying cognitive commands was not adapted specifitalthe challenge;
specific adaptations of the algorithm to recognize signal patterns with an opposite

directionality may contribute further to eliminate differences in task performance.

We failed to find significant evidence that tperceivedworkload & affected by the type of
its trainingmethod (perceived or visualisednd we accept the null hypothesiBhe
populationwas too smaltompared to thebetweenuservariance A test of power revealed
it would require 900 participants to achiewgesufficient power. However, the variance may
also be explained by a cfmunding factor in the workloadubscalesOverall workload may
be thwarted by inclusion of irrelevant factors that mare more subjectdependent than
task-dependent.One of the subscale&ffat, was explained to be the one modbsely

correlatedand indicativewith Workloadat any given tim@Hart & Staveland, 1988)
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Testing with Effort. Two tailedtest with Effort performing the task with both methoda =

8, sd = 3.52, p = 0.489Bonclusely similar Effort exercised for both methods during the
game taskAccording to the literature there should be a greater difference between these
tasks in term of WL. In fact, when looking at Effort, there is a significant difference. Effort is
allegedy, representative for Intrinsic, extraneous loads, as well as the mental resources
expended by the tasiGaly et al., 201&nd is the single factor most correlated to overall

workload according to NASA TLX develogides & Staveland, 1988)

There was no significant relationship between perceived workload and task performance, for
either the perceived or visualised conditiof@all population As in H2 wamay not have

used the most relevant factors from the NASA.Tietnporal Demand appear relatively
unrelated toWorkload while Difficulty isarelevant factor when comparing tasks and

protocols We mayuse factor analysio comparewith Effortinstead.As the workload was
inconclusive, it is reasonable to extend thgggested alternative analysis to this hypothesis

H3. Therefore | have performed a few more tests of our data to exphone the Efficiency

and Accuracy of the game tasiduced positive and negative emotion. In that regard | ran

linear regression obitra t e affect on Frustration and Per

effect on Frustration and Perceived Performance

Frustration vs bitrateNumber of observations; 16, n = 8,5R0.209, p = 0.074&rustration

vs. scoreNumber of observations; 16, n =/&,= 0.0834, p = 0,2

Perceived Performance and Score: Number of observations; 16, #=8,38, p =
0.011,Perceived Performance and Bitrate: Number of observations; 16, n=8).R04 p =
0.0787

| have also testethe correlation between Effort anBrustration to see if the
Expendedefforts themselves generated negative emotidasted this correlation across all
sessiols and all tasks where weollected NASA tIx data. Totalmber of observations; 76,

R = 0608, p =1.05e16.

From the developere f t he NASA TLX system,indrelaively r at i on
less ambiguous way, relates task requirements, exerted effort, and success or feilames.
Staveland, 1988)Correlation between frustration and bitrate; Frustration is negatively

correlated with bitrate more so than a failure to score pointBerformance isndicative of
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situationawarenessand e pr e s e nt s -assessmentSadly, reohe ofsthe Lisers
appear to take much credit for their achievements. Only the user with the very highest
bitrate reported a high performance, and the participant with the highest score reported
only a moderate performance. Only the second runnepaghe high score reported a high
degree of performancelhe uses appear toexperience a high degree of performanghen

they produceclassificationgnd achieve a high bitrate.

A higher workloadl o e s n’ t a leadaora &igher@lphla Waygvhich susually
indicative ofstress [nsert reference)This result is very useful, as we may not dismiss poor
results based on a biologically conditioned performance boundary in Alpha Waves related to

stress.

Complemerdry observations

o o 3 participantsexpressed discomfort with this exercisks a response
Participant activity
to the description of the task and its purpose the participants, all
4, Relaxation
_ one, spontaneously shared details about their day, and stress fa
excercise
in their lives.

One participant expressed annoyance, two participants also
Participant activity || expressed that they spent the full minute in each repetition

1, memorization memorizing detail such as angles and corners. One of them expg
excercie a task where *he shouldescribe or draw the arrow, or in some

other way show off their memory verbally.

Some expressed that this was a task it was difficult to conceptua
Some took longer between each attempt before they werady to
Participant activity || clear their mind and focus on the visualizations. Every participan
2, Visualization seemed to search their mind for the internal image before they g
exercise all-clear to begin the recording proces8ne expr es s e (
know how to visualize anything, never hasualized anything, and

would rather use other coping mechanisms.
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Participant activity

3, Gameplay

Participantsappear to use some attempts while they are playing,
rather than think of each epoch as a goal that they have ambgion
cross successfullyTheywould makeattempts, shakeoff the strain of
the attempt, wait for the next epoch they were decidedly ready fo
and m&e their nextattempt.

Some struggletb make commands at glfloor effect) while yet
others struggled to turn the signal off ontieey got started(ceiling

effect) Have only seen ceiling effect with Condition 2

Technical Recording

process

Noticed calculated skill level Emotivcontrol panel did not have a
linear development for each recording. Also noticed thaitne
participant had activefeedback whilgoreparingimagination task,
but upon informirg me of being ready, their focus dropped and
feedbackdid not necessarily recover within the recording time. |
quicklymade a habit of delayingmed intervals forecording a
couple ofseconds, and in many instances their focus picked back
nicelywithin the timeframe | did not wait for active feedback, but

recorded training data at timed intervals.

Table0.1Summarized notes from testip
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Positive Psychology

“Adapting the task difficulty to users skill improved one dimension of flow state, cognitive

control. People who faced a challenge better suited to their skill felt more in

control. "Ml adenovi ¢-Savd; Matgut, & LBtten20149is interesting to pull a

wi de r el at i o nEudewmonitriawdeguatesmapgiress with the human ability to
pursue complex goals which are meaningful to
difficulty is not necessarily a negative experience, but it dege&mdan intrinsic motivation.

Flow Experience Theory haslefined 7 principles; Knowing what to déjowinghow to do

it, Knowing how well you are doing, Knowing where to go, High perceived challenges, High
perceived skills and Freedom from distractions. The possible rewards from fulfilling these 7
principleslis i n t he def i ni t thementa $tateFol openatiok xm whecha e nc e ;
person performing an activity is fully immersed in a feeling of energized focus, full

involvement, and enjoyment in the process of the activity

)Performance Achieving bitrate

indicates that the task itself is High
understood. A failure to produce g oo i
classifiable signals is an indication
that you have failed to understand
the task and indicate high difficulty Worry \— T e
with low skills, which is positively

Challenge level

anxiety inducing, according to the
Flow model. As we can see from

|\/|Ikh€| CS|kszentm|halylave Apathy Boredom Relaxation

Low \
presented a model for the o

Low Skill level High

interaction between Skill level and
Challenge levelWherelLack of skill produce Figure0.1 Flow model(Csikszentmihalyl, 1997

negatve emotion andlack of challenge produdadifference in the userA perceived high
skill level alwayproducespositive emotion regardless of the challenge letied challenge

level is experienced quite differently based on the sk#libigh challenge level produce both
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Flow and a sense of Arouseith highlevels of relevanskill butis onlyanxiety inducing if

the user lack the reasonable skills to meet the challef@sikszentmihalyi, 1997)

Skill Acquisition

The Difficulty of a task is, as mentionearlier, a product of Task Components and the
specificity of given InstructiongBedny & Karwowski, 201This can be understood as
whether the instructions are specific enough to cover the underlying principles of
components. It can also be understood as a warning of overexplaining a task, so that the
student miss opportunities to sedxplain and internalz learning. Lotte et al performed
heuristic evaluations of BCI research procedures, based on Instructional {theagyet al.,

2013) Lotte stated that training procedures for BCI were inconsistent and lacked conformity
with best practise principles. For instance, he explains that the users need feedback to
correct their performance. This is supported by vanL@henLehn, 1996 However, Lotte
don’t suggest how t he c o gpondrmenwred)whclcatse s may

makes it difficult to imagine how students may selbnitor or selfexplain their process.

One of the challenges of introducing users to Spontaneous EEG with independent signals, is
the |l ack of f eedb aedokmamceTlhadpmrunity to use thaminguwatae r s ’ p
from visual perception and visual imagery interchangeably, is the opportunity to gather

dependent signals which require low effort for training data. It would grant a system or

procedure designer relativelyide opportunities for Skill training programme with

immediate feedback at the first challenging task with visual imagery.

Training procedures

While some central voices in BCI research emphasize Training procedures as one of the
central fields of BCI delspment, dher researchers have expressed a goal to abolish all
need for instruction and training for us&Blankertz et al., 2006; Krauledat, Tangermann,
Blankertz, & Muller, 2008Krauledat, Tangermann, Blankerts og Mudieated that efficient
detection algorithms and sophisticated hardware should provide sufficient capability for
both system and for users. AAC stakéters, however, have expressed a demand for
instructions and training. Liglaind McNaughton encouraged researchers and rehabilitators
to take a useioriented perspective, rather than push their enthusiasm for potentials in
specific techniogiesd ®X8 G KSNB A& | RIFEFY3ISNI 0KIG AyaSNBS
of a device, without providing appropriate training and supports to maximize communicative
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O 2 Y LIS i GightsSMekaughton, 201Beukelmaret al requested better instructions for

AAC equipmendt ¢ KS ySSR (2 LINRPGARS Gl NBSGSR AyailNHzO
a4 6Stt a4 (K2a$S 6K2 NBfe 2y 11/ NBYFAY& Ly
(Beukelman, Fager, Ball, & Dietz, 2007)

Comparable BCI projects hawmeested far more time and resources on their participants. |
haveadded up total time spend in different projectsTiable0.2. Whilel haveinvested up to

2 hourswith each of thel6 participants Bobrovet al investedapproximately 30 hours per
participant. This is the most appnogte comparison, as they also researched Spontaneous
EEG with visual imagenyith the same type of EEG equipmemhe actual interaction in my
experiment lasted mere minutestogether. How would a more generous training
programme have affected the ressP If we had spend houeglding training data, how well
could the prediction model have performed? What classification rate would that have
granted usn contrast, seé-igurel0.2, wherenetto time spent directly with the

experimenttake less than 10 minutes.

Table0.2 Time spent with Participants in BCI studie

Participants Experiment Approximate Number of Reference
time per total sensors
participant experiment

time (hours)

7 4 days (approx. | 210 16 sensors on | (Bobrov et al.,
30 hours) day 13/ 30 2011)
sensors on day {
20 2 hours 40 fMRI -little to (Ganis et al.,
no assembly 2004)
20 2 hours 40 19 sensors (Shourie,
Firoozabadi, &
Badie, 2014)
12 5 60 121 sensors (Winkler, Haufe,

& Tangermann,

2011)
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Figure0.2 Total time spent with tasks each session

The results and the literature we haassesseduggesthat difficulty and complexity is not
universal accessiblenless the user experience a reasondidyanced relationship between
their available personal resourgeand the demands of sustained effolt means that by
eliminating challenges related to lackuiderstandingwe alleviateextraneousand
germaneload. We may boost Flow and an experience of eudemonic happiness, even as we
are exerting great effort for a complex taskmeans that an accesde interface induces an
experience of understanding and mastemis relates well with the third principle of

Universal Design

Limitationsof the study

The greatest limitation to this study is therlited portion of thepopulation we testedvith
both conditions Althougha total of 13 participants were testedthe distribution ofmethods
across sessiorfailed tomake all of thenreligible for paired testingA thorough factor

analysis

Participants and recruitment

It mightappearrelevant b eithermeasure cognitive abilities in participants to stratify the
population or monitor neural activity during experiments. While this is a conservatively HCI
centred study, a stratification like that may undermine the universal applicability in potential

findings.

The total population in the projechight not be low compared to other studigsthe same
field, however it is difficult to claim that the results are universally representativen it

also fails to offer each participant a training programmempaable to that of the

compared studiesWhile other projects spent days, weeks and months to train participants
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to use cognitive commangsve are analysing results from the very first introduction to our

interface.

Collecting training data

While the colletion procedure was intended to be as similar as possib&eperception
training task was selfaced,and theimagery training taskas structured The recordings
were paceddy the operatorregardless of which method it applie@he timesparof each

recarding, 8 seconds, wasonditionedby the control panel interface.

Future iterations ofny experiment

H1

There were great individual differences that were far more significant than the variance
between methods. How may we improve these individual differefc@ualitative analysis

of notes or semstructured interview for each session demands resources to analyse, but we
can identify some sessions or performances that deserve extra attention. See to control
chart to find the individual participants that rement outliers. Either for their complete lack

of ability to perform classifiable commands, or for outliers of great performances.

H2

There are other methods of gathering UX data that may be more reliable with small
populations. Collecting biometric datach as pupillary changes, sweat or accelerated
heartrate are a few true and tested methods. Then again, rather than introduce a second
device, that may be experienced as invasive and stressful, we might utilize data directly from
the EEG headseDffline analysis of signalsrovide insighinto the u s eemstional state
during theexperiment The Emotiv EEG headset have an integrated detection suitexfor
signalghat are monitored and available for online application. Thoselaterest,
Engagement, Stress, Relaxation, Excitementlamdyterm excitement.Thee may notbe a
directoverlapbetween these factors andariables of interest, but a fuicence versiorof
Emotivprovide opportunities tacustomize functions with theBystem Developmerkit into

the frequency range we are interested in.

H3
Researching the phenomenology of the BCI and the effect of task and performance on the

u s e r s-subjactive experiences. Building on a correlation between the utilitarian results
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oo H1 and the UX results in H2, we may Coll e
qualia, is a teltale way to correlate the users experience to their interactions in real time in

offline analysis.

Would use Perceived difficulty ratherthan Em Pr essur e ( Tempor al dema
demand]ratings were only moderately correlated wif®verall Workloadfatings for

individual experiments and categories of experiménts Tas k di fficulty was
final version of NASA TLX because & \eas statistically independent and provided less new
information. However, of all three task related scales that were evaluated, Time pressure

was the only one that remained. Simply exchanging it for Task difficulty would maintain the

information and mak for a more relevant factor in our data.

Identifying challenges
The design process whproved BCI prototypes require effective ways to administer and

communicate contemporary challenges throughout a design process.

For an iterative developmergrocessjt would be helpful to apply qualitative methods to
evaluate functionality. This may also involve qualitative analysis of quantitative data.
Collecting qualitative data rarely take up resourdas, the analysis is a resource demanding
process.There arghree models | would have preferred to incorporate effectively in the
study, that could helgdentify which quality data to analyse, and alsactmveyand curate
findings. Those areControl chartsActivity diagrams and Pareto diagram. Control charts

with control limits mayhelp identifyoutliers of specific interestFirst of alloutlier sessions
with exceptionally high or low performance mhagveinspired the participant tshare
experienceduring their sessiondParticipant testimonies may includariables that have a
high correlationor even causality with their level of performance. An activity diagram could
help us trackpotential events during testessionsindicateability gapsandrecurring
disruptionsto workflows. A Pareto diagranmayhelp direct efforts of the research and
development communitiesowardsknowledgebaseddevelopmentanddirect resources to

the most pressing challenges.

Collecting training data
Why not just use the integrated system in Emotiv? The integrated interactaifoph in

Emotiv Control Panel is designed around visuospatial tasks, with manipulation of arfigure
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3D space. There could be advantages from using the integrated system, if altered to fit the
tasks. However, when | initially planned to integrate fumeality in customized code for a
prototype, | presupposed that | would implement functionality from the native Emotiv
Framework. Both optionshould be considered for future BCI HCI projects. If the budgets
allow it, it is still preferable to implement tige functionality in a customized interface, with
the option ofcustomizingnachine learningnodels from a thireparty provider,e.

TensorFlow playground.
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CONCLUSION

Thereare is no significant differenda task performance based on cognitie@mmands
acquiredwith a visual imagery against both visual imagery and visual perception. The results
are inconclusiveegardingboth utilitarian performance and user experienas perceived
workload did not different between the twdatasetconditions.l have peformed

experiments with an Emotiv EEG headset and a game interface to find and the participants
have reported perceived Workload with a NASA TIx foimave assessed thedfectiveness

and user experience of spontaneous EEG, by testing training dataifféiedt cognitive
tasksand compared them with number of classifications per session, and the score achieved.
There are benefits in user motivation and workload if we can present adjust tasks to skill
level and customize stepwise skill acquisition to ithgividual user. | have hypothesised that

a tradeoff in dataset directionality may be outweighed by a more accessible workflow, and
that different sets of training data are sufficiently equal in efficiency and accuracy. There is
no significant evidence @t difference in tested efficiency or accuracy between using visual
imagery and visual perception as training data with visual imagery gameplay task. There is
no significant evidence of a difference in perceived workload between playing with different
setsof training data.The limited sample size places a significant constrain on the conclusions

that can be drawn from out data.

There is still need for base research in each technology associated with BCl and Spontaneous
EEGNew approaches to machidearnng andclassification models will open new

opportunitiesfor us to design accessible cognitive command#gas
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Appendix 1. Nasa TLX

Figure 8.6
NASA Task Load Index

Hart and Staveland’s NASA Task Load Index (TLX) mathod assesses
work load on Fve 7-poit scekes. Inoemernts of high, medium and ow
estimaies for each poirk resul in 21 gradations on the scales.

Hame Tarsi Date
Memal Demand Howr mentally demanding was the task?
I I N Y Y O I | I L 1 111 117111
Very Lowr ery High
Physical Demand How physically demanding was the task?
1111 111°1 I L1111 11111
Very Low Very High

Temporal Demand How buaried or rushed was the pace of the task?

IIIIIIIIIIIIIIIIIIIII
Very Low Very High

Performance How successiul were you in accomplishing wihat
you were asked 1o do?

IIIIIIIIIIIIIIIIIIIII
Parfect Failure

Effort Horwr hard did you have to work o accomplish
your level of performance?

IIIIIIIIIIIIIIIIIIIII
Very Low Very High

Frustration How msecure, discouraged, imitated, stressed,
and annoyed wereyou?

IIIIIIIIIIIIIIIIIIIII
Very Low Wery High




Appendix 2. DATAFROMGAMETASK INLL SESSIONS

Sessi| Partici | Meth | Mental | Physical | Temporal | Eff | Frustra | Perform | Sco | Bitr
on pant od Load Load Load ort | tion ance re | ate
1 1 1 20 1 10 20 | 8 16 0 |148
4 3 1 20 20 15 19 | 20 20 2 |103
5 3 2 20 20 14 20 |19 20 1 |120
6 4 2 12 5 13 15 |8 20 1 108
7 4 2 12 8 8 9 |7 9 4 193
49 |8 2 5 11 11 6 |7 3 4 | 406
15 |8 1 18 2 9 17 |17 18 2 |83
16 |9 2 0 0 0 0O |0 0 0 |100
17 |9 2 19 13 10 18 |15 5 4 234
18 |10 1 11 1 2 11 |3 19 0 |22
19 |10 1 11 2 1 11 |3 19 0 |24
20 |11 1 13 9 6 10 (4 7 4 1381
47 |12 2 17 8 6 17 |18 16 0 |28
48 |12 1 12 7 11 17 |18 11 0 |36
27 |14 1 11 5 14 16 |16 17 0 |85
26 |14 2 11 5 14 16 | 16 17 1 279
46 |16 1 18 1 1 20 |1 11 0 |62
45 |16 2 18 1 1 20 |1 11 6 |387
35 |18 2 19 12 2 19 |19 13 7 | 354
36 |18 1 18 10 3 20 | 20 14 3 171
38 |20 2 18 5 14 18 |18 19 0 |42
39 |20 1 20 4 16 17 | 20 20 0 |21
43 |22 2 20 1 12 20 | 20 20 0 |20
42 |22 1 20 1 9 20 | 15 12 1 |148

Method 1 = Visual perception. Method 2 = Visual imagery




Appendix 3. NSD

NSD

MELDESKJEMA
Meideskjema [version 1.6) for forsknings- o9 Cesjeit som r e
{F. person: og reen med forskriter).
1. Intro
Eamiss det Inn din=xie Ja s Mei o En person vi viere dinsiie dentfisarbar via nawn,
parsonidentisarends parsonnummer, sk andne personentidps KEnnstsgn.
opplysninger?
Les meer o hyva personoppiysninger ar.
Hivis o, bilke? m Mawn HE! Seiv om
o 11-sifret fadselsnummer mmidﬁmwmdﬂm
:E’j esse e | ErtinGeie e S
mTi nurmmer Li=s mer o hva Bfanding av personcpplysninger
o Annet Innehmrer.
Annet, spesfizer hvilke
Skl direkte i Mk at meidepilken Utieses sei om du lkke = figang
personidentiserends Ja o Nei o lhnhlnnlnski.l:l slk hml&'l n;
opplysninger kobies i benytteren
ciamaterise
(kobing=nakks)?
‘Samiss det Inn i Enpﬂm;lﬂmhmuruuﬂmmmtt
soppiysninger som JacMeis ar iy A denifisee vadiommends gennom
Ekan identiian: Eakgrunrsopniysninger som for sisemps]
enketpersoner (ndreke Ebcsiedskommune siler arbeidspiass/stoie kombnert
serence med opplysninger som aider, kjonn, yrie, diagnose,
oppiysninger)? e,
ME! For af stemme skal
Fivts Ja, Fnvlke Personidentfizsrende. M Germe bl regsrert |
mnmmmmmﬂk:m
kan genkjsnnes.
‘Skall det registenes Ja & Meic Les mer om netibaserie spameskjema.
(dir=xtendirekieivia IP-'epost
adesse, eir) ved hjeip av
matthazaris snomeskiema’
Bl det regizirert i Bldefvideooppiak v ansikter v regnes som
riger pd JacMeis personidentsarends
digmle bikde siler
idecopptak?
Sekes detvaderng fn REK. | 3 o Mei e ME! Dersom REK (Regional Kombe for medisinsk og
o hyorvidt prosjeshet er Feeizefagig forseningsedkx) har prosjekies som
crabiet av [ er et lkke serde Inn
Feetz=forskningshoven? meideskiema Bl personvemombudet (NB! Gisider ke
prosjeiier s skal et dabs fra posudonyrme
Freizeregl
Ls mer.
tibakemeiding fra REX Kke foreligger,
munxmmmmmlmn
2. Prosjekttittel
Frosiskitie] Comparing the Reliability of Perceived visual stlﬂull and | Cnpegl posjekosts el NS Detie kan ke
aMastaropogaves
Imagined visual stimuli as a Data Eniry sirategy, for e rrr e sier lknende. Ravnet m2 beskrve
commands with spontanecus EEG
3. Behandlingsanswarlig institusjon
Insttusion i v:utn Instiusjonen du er'llln:.tt_ Adenivd md
Hogskolen | Osho og Akershus
Avciiing Fakulet Fakultet for teknologi, kunst og design |n:mnu’ﬂ“mmm ke avizie med MED som
peerzonvemombud. Vennbgs: & konsaict med
Irsthitt Insfitutt for nformasjonstelmologi !
Les mer om behandingsansvarlg Irestiusjon.
4. Daglig ansvarlig (forsker, veileder, stipendiat)




Participants and sessions

Participant | Condition | Participant | Conditi
session on 2
session

1* Paired 3 4 3 5
2* Paired 8 15 8 49
3* Paired 14 27 14 26
4* Paired 18 36 18 35
5* Paired 20 39 20 38
6* Paired 22 42 22 43
7* Paired 16 46 16 45
8* Paired 12 48 12 47
Ox* Second 16 46 16 30

sessions
10 8 14
11** Grouped 10 18 4 6
12** Grouped 10 19 4 7
13** Grouped 1 1 9 17

Single try

/Grouped
14** Grouped 11 20 9 16

Single try

/Grouped
15 Grouped 19 34

Single try




APPENDIX 5. PROTOTYRIODE

from itertools import cycle
import random
import sys
import pygame
from pygame.locals import *
FPS =30
SCREENWIDTH =288
SCREENHEIGHT =512
# amount by which base can maximum shift to left
PIPEGAPSIZE = 100 # gap between upper and lower part of pipe
BASEY = SCREENHEIGHI * 0
# image, sound and hitmask dicts
IMAGES, SOUNDS, HITMASKS = {}, {}, {}
# list of all possible players (tuple of 3 positions of flap)
PLAYERS_LIST =(
# red bird
(
‘assets/sprites/redbireupflap.png’,
‘assets/sprites/redbiremidflap.png’,

‘assets/sprites/redbiredownflap.png’,



# blue bird

(
# amount by which base can maximum shift to left
‘assets/sprites/bluebirelpflap.png’,
‘assets/sprites/bluebu-midflap.png’,
‘assets/sprites/bluebiredownflap.png’,

),

# yellow bird

(
‘assets/sprites/yellowbirelpflap.png’,
‘assets/sprites/yellowbiremidflap.png’,

‘assets/sprites/yellowbiredownflap.png’,

)

# lig of backgrounds

BACKGROUNDS _LIST =(
‘assets/sprites/backgrounday.png’,
‘assets/sprites/backgroundight.png’,

)

# list of pipes

PIPES_LIST = (
‘assets/sprites/pipegreen.png’,
‘assets/sprites/pipered.png’,
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)
try:
xrange
exceptNameError:
Xrange = range
def main():
global SCREEN, FPSCLOCK
pygame.init()
FPSCLOCK = pygame.time.Clock()
SCREEN = pygame.display.set_mode((SCREENWIDTH, SCREENHEIGHT))
pygame.display.set_caption('Flappy Bird’)
# numbers sprite$or score display
IMAGES['numbers'] = (
pygame.image.load(‘assets/sprites/0.png’).convert_alpha(),
pygame.image.load(‘assets/sprites/1.png’).convert_alpha(),
pygame.image.load(‘assets/sprites/2.png’).convert_alpha(),
pygame.image.load(‘assets/sprites/3.png’).convert_alpha(),
pygame.image.load(‘assets/sprites/4.png’).convert_alpha(),
pygame.image.load(‘assets/sprites/5.png’).convert_alpha(),
pygame.image.load(‘assets/sprites/6.png').convert_alphal()
pygame.image.load(‘assets/sprites/7.png').convert_alpha(),
pygame.image.load(‘assets/sprites/8.png').convert_alpha(),
pygame.image.load(‘assets/sprites/9.png'’).convert_alpha()
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)

# game over sprite
IMAGES['gameover']pygame.image.load(‘assets/sprites/gameover.png’).convert_alphal()
# message sprite for welcome screen
IMAGES['message'] = pygame.image.load(‘assets/sprites/message.png’).convert_alpha()
# base (ground) sprite
IMAGES['base'] = pygame.imdgad(‘assets/sprites/base.png’).convert_alpha()
# sounds
if 'win' in sys.platform:

soundExt = ".wav'
else:

soundExt = ".ogg’
SOUNDS['die'] = pygame.mixer.Sound(‘assets/audio/die’ + soundExt)
SOUNDS['hit] = pygamaxer.Sound(‘assets/audio/hit' + soundExt)
SOUNDS['point’] = pygame.mixer.Sound(‘assets/audio/point' + soundExt)
SOUNDS['swoosh'] = pygame.mixer.Sound('assets/audio/swoosh’ + soundExt)
SOUNDS['wing] = pygame.mixer.Sound(‘assets/audio/wisgundExt)
while True:

# select random background sprites

randBg = random.randint(0, len(BACKGROUNDS - l1)ST)

IMAGES['background’] = pygame.image.load(BACKGROUNDS_LIST[randBg]).convert()

# select random player speis
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randPlayer = random.randint(0, len(PLAYERS 41F5T)

IMAGES['player] = (
pygame.image.load(PLAYERS_LIST[randPlayer][0]).convert_alpha(),
pygame.image.load(PLAYERS_LIST[randPlayer][1]).convert_alpha(),
pygame.image.load(PLAYERS_LIST[randPlayer][2]).convert_alpha(),

)

# select random pipe sprites

pipeindex = random.randint(0, len(PIPES_LI$))

IMAGES['pipe'] = (
pygame.transform.rotate(

pygame.image.load(PIPES_LIST[pipeindex]).convert_alpha(), 180),
pygame.image.load(PIPES_LIST[pipeindex]).convert_alpha(),

)

# hismask for pipes

HITMASKS['pipe'] = (
getHitmask(IMAGES['pipe’][0]),
getHitmask(IMAGES['pipe’][1]),

)

# hitmask for player

HITMASKS['player] = (
getHitmask(IMAGES['player'[0]),
getHitmask(IMAGES['player[1]),

getHitmask(IMAGES['player1[2]),



)

movementinfo = showWelcomeAnimation()
crashinfo = mainGame(movementinfo)
showGameOverScreen(crashinfo)
def showWelcomeAnimation():
"""Shows welcome screen animation of flappy bird™"
# index of player to blit on screen
playerindex= 0
playerindexGen = cycle([0, 1, 2, 1])
# iterator used to change playerindex after every 5th iteration
looplter =0
playerx = int(SCREENWIDTH * 0.2)
playery = int((SCREENHEIGHWIAGES] 'player'][0].get_height()) / 2)
messagex t((SCREENWIDTHMAGES['message'].get_width()) / 2)
messagey = int(SCREENHEIGHT * 0.12)
basex =0
# amount by which base can maximum shift to left
baseShift = IMAGES['base’].get_width(YAGES|['background’].get_width()
# player shm for tylown motion on welcome screen

playerShmVals = {'val: 0, 'dir": 1}

while True:

for event in pygame.event.get():



if event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE):
pygame.quit()
sys.exit()
if event.type == KEYDOWN and (event.key == K_SPACE or event.key == K_UP):
# make first flap sound and return values for mainGame
SOUNDS['wing'].play()
return {
‘playery': playery + playerShmVals['val],
'basex’: basex,
‘playerindexGen': playerindexGen,
}
# adjust playery, playerindex, basex
if (looplter+1) % 5==0
playerindex = next(playerindexGen)
looplter = (looplter + 1) % 30
basex =((-basex + 4) % baseShift)
playerShm(playerShmVals)
# draw sprites
SCREEN.blit(IMAGES['background'], (0,0))
SCREEN.WIMAGES['player][playerindex],
(playerx, playery + playerShmVals['val))
SCREEN.DbIit(IMAGES['message'], (messagex, messagey))

SCREEN.blit(IMAGES['base’], (basex, BASEY))
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pygame.display.update()
FPSCLOCK.tick(FPS)
def mainGame(movementinfo):
score = playerindex = looplter =0
playerindexGen = movementinfo['playerindexGen’]
playerx, playery = int(SCREENWIDTH * 0.2), movementinfo['playery’]
basex = movementinfo['basex’]
baseShift = IMAGES['base'].get_widthf(YJAGES|['background’].get_width()
# get 2 new pipes to add to upperPipes lowerPipes list
newPipel = getRandomPipe()
newPipe2 = getRandomPipe()
# list of upper pipes
upperPipes =
{x': SCEENWIDTH + 200, 'y": newPipel[O]['y]},
{’x': SCREENWIDTH + 200 + (SCREENWIDTH / 2), 'y": newPipe2[0]['y']},
]
# list of lowerpipe
lowerPipes = [
{x': SCREENWIDTH + 200, 'y": newPipel[1]['y']},
{’x': SCREENWIDTH + 2G8@REENWIDTH / 2), 'y": newPipe2[1]['y']},
]
pipeVelX =4
# player velocity, max velocity, downward accleration, accleration on flap
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playerVelY =9 # player's velocity along Y, default same as playerFlapped
playerMaxVelY = 1@ max vel along Y, max descend speed
playerMinVelY =8 # min vel along Y, max ascend speed
playerAccY = 1 # players downward accleration
playerRot = 45 # player's rotation
playerVelRot = 3 # angular speed
playeiRotThr = 20 # rotation threshold
playerFlapAcc =9 # players speed on flapping
playerFlapped = False # True when player flaps
while True:
for event in pygame.event.get():
if event.type== QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE):
pygame.quit()
sys.exit()
if event.type == KEYDOWN and (event.key == K_SPACE or event.key == K_UP):
if playery >2 * IMAGES['playef(].get_height():
playerVelY = playerFlapAcc
playerFlapped = True
SOUNDS['wing.play()
# check for crash here
crashTest = checkCrash({'x": playerx, 'y": playery, 'index'": playedn
upperPipes, lowerPipes)
if crashTest[O]:
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return {
'y': playery,
‘groundCrash’: crashTest[1],
'basex’: basex,
‘upperPipes': upperPipes,
'lowerPipes': lowerPipes,
'score": score,
'playerVelY': playerVely,
‘playerRot": playerRot
}
# check for score
playerMidPos = playerx + IMAGES]'player[0].get_Rdt 2
for pipe in upperPipes:
pipeMidPos = pipe['x] + IMAGES]'pipe'][0].get_width() / 2
if pipeMidPos <= playerMidPos < pipeMidPos + 4:
score +=1
SOUNDS['point].play()
# playerindex basex change
if (looplter + 1) % 3 == 0:
playerindex = next(playerindexGen)
looplter = (looplter + 1) % 30
basex =((-basex + 100) % baseShift)

# rotate the player
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if playerRot >90:
playerRot-= playerVelRot
# player's movement
if playerVelY < playerMaxVelY and not playerFlapped:
playerVelY += playerAccY
if playerFlapped:
playerFlapped = False
# more rotation b cover the threshold (calculated in visible rotation)
playerRot = 45
playerHeight = IMAGES['player][playerindex].get_height()
playery += min(playerVelY, BASMyery- playerHeight)
# move pipes to left
for uPipe, IPipe in zip(upperPipes, lowerPipes):
uPipe['x'] += pipeVelX
IPipe['x'] += pipeVelX
# add new pipe when first pipe is about to touch left of screen
if 0 < upperPipes[0]['x] < 5:
newPipe = getRanawoPipe()
upperPipes.append(newPipe[0])
lowerPipes.append(newPipe[1])
# remove first pipe if its out of the screen
if upperPipes[0]['x'] <IMAGES['pipe'][0].get_width():
upperPipes.pop(0)
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lowerPipes.pop(0)
# draw sprites
SCREEN.blit(IMAGES['background’], (0,0))
for uPipe, IPipe in zip(upperPipes, lowerPipes):
SCREEN.blit(IMAGES]'pipe'[0], (uPipe['x], uPipe['yT))
SCREEN.blit(IMAGES['pipé][IPipe['x], IPipe['y]))
SCREEN.blit(IMAGES['base'], (basex, BASEY))
# print score so player overlaps the score
showScore(score)
# Player rotation has a threshold
visibleRot = playerRotThr
if playerRot <fplayerRotThr:
visibleRot = playerRot
playerSurface = pygame.transform.rotate(IMAGES['player’][playerindex], visibleRot)
SCREEN.blit(playerSurface, (playerx, playery))
pygame.display.update()
FPSCLOCK.tick(FPS)

def showGameOverScreen(crashinfo):

score = crashinfo['score']

playerx = SCREENWIDTH * 0.2

playery = crashinfo['y']

playerHeight = IMAGES['player'][0].get_height()
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playerVelY = ashinfo['playerVelY’]
playerAccY =2
playerRot = crashinfo['playerRot']
playerVelRot = 7
basex = crashinfo['basex’]
upperPipes, lowerPipes = crashinfo['upperPipes'], crashinfo['lowerPipes']
# play hit and die sounds
SOUNDST hitplay()
if not crashinfo['groundCrash’]:
SOUNDSJ['die"].play()
while True:
for event in pygame.event.get():
if event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE):
pygame.quit()
sys.exit()
if event.type == KEYDOWN and (event.key == K_SPACE or event.key == K_UP):
if playery + playerHeight >= BASREY
return
# player y shift
if playery + playerHeight < BASHY
playery += min(playerVelY, BASRMyery- playerHeight)
# player velocity change
if playerVelY < 15:
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playerVelY += playerAccY
# rotate only when it's a pipe crash
if not crashinfo['groundCrés):
if playerRot >90:
playerRot-= playerVelRot
# draw sprites
SCREEN.blit(IMAGES['background’], (0,0))
for uPipe, IPipe in zip(upperPipes, lowerPipes):
SCREEN.blit(IMAGES]'pipe'l(QRipe['x], uPipe['y]))
SCREEN.blit(IMAGES['pipe'[1], (IPipe['xT], IPipe['y]))
SCREEN.blit(IMAGES['base'], (basex, BASEY))
showScore(score)
playerSurface = pygame.transform.rotate(IMAGES['player'][1], playerRot)
SCREEN.blit(playerSurface, (playerx,playery))
FPSCLOCK.tick(FPS)
pygame.display.update()
def playerShm(playerShm):
""" oscillates the value of playerShm['val'] between 8 agt™
if abs(playerShm['val']) == 8:
playerShmpir] *= -1
if playerShm['dir'] == 1:
playerShm['val] +=1
else:
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playerShm['val}= 1
def getRandomPipe():
#y of gap between upper and lower pipe
gapY = random.randrange(O{(BASEY * 0.6PIPEGAPSIZE))
gapY +=int(BASEY * 0.2)
pipeHeight = IMAGES['pipe'][0].get_height()
pipeX = SCREENWIDTH + 10
return [
{X": pipeX,'y": gap¥YpipeHeight}, # upper pipe
{X": pipeX,'y": gapY + PIPEGAPSkaWer pipe
]
def showScore(score):
""" displays score in center of screen™"
scoreDigits = [int(x) for x in list(str(score))]
totalWidth = 0 # total width of all numbers to be printed
for digit in scoreDigits:
totalWidth += IMAGES['numbers'][digit].get_width()
Xoffset = (SCREENWIDTotalWidth) / 2
for digit in scoreDigits:
SCREEN.blit(IMAGES['numbers'][digit], (Xoffset, SCREENHEIGHT * 0.1))
Xoffset += IMAGES['numbers'][digigtgwidth()

def checkCrash(player, upperPipes, lowerPipes):
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pi = player['index’]
player['w'] = IMAGES['player'][0].get_width()
player['h'] = IMAGES['player’][0].get_height()
# if player crashes into ground
if player['y'] + player['h'] >= BASEY:
return [True, True]
else:
playerRect = pygame.Rect(player['x'], player['y1],
player['w, player['h7)
pipeW = IMAGES['pipe’][0].gewxidth()
pipeH = IMAGES]'pipe'[0].get_height()
for uPipe, IPipe in zip(upperPipes, lowerPipes):
# upper and lower pipe rects
uPipeRect = pygame.Rect(uPipe['x'], uPipe['y'], pipeW, pipeH)
IPipeRect = pygae.Rect(IPipe['x’], IPipe[y], pipeW, pipeH)
# player and upper/lower pipe hitmasks
pHitMask = HITMASKS['player][pi]
uHitmask = HITMASKS['pipe'][0]
IHitmask = HITMASKS['pipe'][1]
# if bird collided with upipe or Ipipe
uCollide = pixelCollision(playerRect, uPipeRect, pHitMask, uHitmask)
ICollide = pixelCollision(playerRect, IPipeRect, pHitMask, IHitmask)
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if uCollide or ICollide:
return [True, False]
return [False, False]
def pixelCollision(rectl, rect2, hitmaskl, hitmask?2):
""Checks if two objects collide and not just their rects"™
rect = rectl.clip(rect2)
if rect.width == 0 or rect.height == O:
return False
x1, y1 = rect.xrectl.x, rect.y- rectl.y
X2, y2 = rect.xrect2.x, rect.y rect2.y
for x in xrange(rect.width):
for y in xrange(rect.height):
if hitmask1[x1+x][yl+y] and hitmask2[x2+x][y2+y]:
return True
return False
def getHitmask(image):
""returns a hitmask using an image's alpha."™
mask =[]
for x in xrange(image.get_width()):
mask.append([])
for y in xrange(image.get_height()):
mask[x].appen¢bool(image.get_at((x,y))[3]))
return mask
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if _name___ ==' main__"

main()
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RESULTAR

mdll =

Linear regression model:
y~1+x1
Estimated Coefficients:

Estimate SE tStat  pValue

(Intercept) -1.2643  2.1049-0.60065 0.57005
x1 0.027405 0.024972 1.0974 0.31453
Number of observations: 8, Error degrees of freedom: 6
Root Mean Sgared Error: 1.18
R-squared: 0.167, Adjusted®&juared 0.0284

F-statistic vs. constant model: 1.2yalue = 0.315

mdI2 =

Linear regression model:
y~1+xl

Estimated Coefficients:

Estimate SE tStat  pValue

(Intercept) 7979 35723 2.2336 0.066938
x1 -0.07027 0.043299-1.6229 0.15574

Number of observations: 8, Error degrees of freedom: 6
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SAMPLE-TEST

Two-Sample t-test
The two-sample t-test is a parametric test that compares the location parameter of two independent data samples.

The test statistic is

= G ,
! Z_A/ szxn+szym

here Z and 2/ are the sample means, s. and s, are the sample standard deviations, and n and mare the sample sizes.
In the case where it is assumed that the two data samples are from populations with equal variances, the test statistic under the
null hypothesis has Student's t distribution with n+ m71 2 degrees of freedom, and the sample standard deviations are replaced
by the pooled standard deviation

s=

G(nT IS+ 1A+ 2

In the case where it is not assumed that the two data samples are from populations with equal variances, the test statistic under
the null hypothesis has an approximate Student's t distribution with a number of degrees of freedom given by Satterthwaite's
approximation. This testttests someti mes called Welchoés

Figure0.2 TwoSample ttest definition from MatLab

hl = h2 =
0 0
pL = p2 =
0.2322 0.7817
ci= ci =
-3.7363 -24.7051

Figure0.1 Text outout of ttests br h1l and h2
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