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ABSTRACT 

I have looked at skills required for end-users to operate a BCI communication system, 

attempted to define optimal cognitive commands for task design with Stimulus-Response 

compatibility, and discussed how hardware and system design may support accessibility. I 

have performed experiments with an Emotiv EEG headset and a game interface to find and 

the participants have reported perceived Workload with a NASA Tlx form. I have assessed 

the effectiveness and user experience of spontaneous EEG, by testing training data with 

different cognitive tasks and compared them with number of classifications per session, and 

the score achieved. There are benefits in user motivation and workload if we can present 

adjust tasks to skill level and customize stepwise skill acquisition to the individual user. I 

have hypothesised that a trade-off in dataset directionality may be outweighed by a more 

accessible workflow, and that different sets of training data are sufficiently equal in 

efficiency and accuracy. There is no significant evidence of a difference in tested efficiency or 

accuracy between using visual imagery and visual perception as training data with visual 

imagery gameplay task. There is no significant evidence of a difference in perceived 

workload between playing with different sets of training data.  
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INTRODUCTION 

20% of the general population is believed to be EEG “illiterate”. Some studies claim that 

everyone could master EEG if given the correct training and an accessible system (Lotte, 

Larrue, & Mühl, 2013). This study will focus on a potential user prerequisite for successfully 

using EEG signal as a BCI technology. There are theories about how to solve issues during 

training and recording that haven’t been tested. This study investigated training methods for 

a spontaneous EEG system based on theories about training and visual imagery (Ganis, 

Thompson, & Kosslyn, 2004.  

Persons with Complex Communication Needs (CCN) and intact cognitive abilities may be 

candidates for Augmentative and Alternative Communication (AAC) systems with BCI. BCI 

systems are widely used for research purposes, and some systems are developed for 

communication purposes. BCI communication systems are currently limited and fail to 

support the extent of user's abilities. The long-term goal for HCI development of BCI AAC 

systems is to introduce BCI technology in a manner that ensure technology acceptance and 

encourage skill development. In this section we are going to represent some of the 

background for the research questions and present associated concepts.  

Several studies suggest spontaneous EEG for BCI to bridge an ability gap for users with 

severe motor impairments (Beukelman, Fager, Ball, & Dietz, 2007; Bobrov et al., 2011; Jure, 

Carrere, Gentiletti, & Tabernig, 2016; Kübler et al., 2014). There are assistive technologies 

meant to alleviate the difficulties on a wide spectrum of motor impairments, such as text to 

speech and eye-tracking(Beukelman et al., 2007). For some patients with more acute 

impairments, bordering on Locked-n Syndrome or Total Locked-in Syndrome1, Spontaneous 

BCI might be a last stronghold before TLIS. Also, systems for spontaneous BCI are developed 

for gaming or interaction purposes for ordinary users as well. 

The users’ task is to create a pattern of brain activity that they can recreate and repeat at 

will. End users are faced with the challenge to produce and recreate clear brain patterns. 

(Lotte et al., 2013). As people don’t have much insight into their brain activity we need a 

strategy. There are three main approaches for spontaneous EEG: motor imagery, visual 

imagery and auditory imagery. Either you imagine moving a limb, to see something or hear 
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something. In this paper, we will focus mostly on visual imagery as a use-case for controlling 

a computer. In theory (Ganis et al., 2004), a brain will emit the same signals whether you 

look at a picture or imagine looking at it. This is referred to, respectively, as visual perception 

and visual imagery with EEG. If a user is good at imagining pictures at will, and the computer 

recognize those brain signals, the user can do this deliberately to perform classified 

functions (Bobrov et al., 2011). Such as ‘move a cursor’, or ‘push a button’. A goal in the 

data-acquisition-step, or data entry, is to collect robust recordings, with clear defining 

features, there are easily recognized and discriminated. What we want is as much recording 

of brain activity that are relevant for each visualization, rather than the remaining activity; 

the noise. This is referred to as signal-to-noise-ratio. Visual imagery is related to several 

areas in the brain. The frontal lobe, parietal lobe, temporal lobe, occipital lobe and posterior 

cingulate.  

Third Principle of Universal design 

When discussing Load in relation to Universal design in relation to cognitive load, it is first 

and foremost the third principle that is relevant. This is the principle of Simple and Intuitive 

Use; “Use of the design is easy to understand, regardless of the user's experience, 

knowledge, language skills, or current concentration level.” It comes with a suggested set of 

guidelines. “3a. Eliminate unnecessary complexity. 3b. Be consistent with user expectations 

and intuition. 3c. Accommodate a wide range of literacy and language skills. 3d. Arrange 

information consistent with its importance. 3e. Provide effective prompting and feedback 

during and after task completion.” In this project I attempt to explore and apply these 

principles to accompanying fields of theory. 
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LITERATURE REVIEW 

There are currently several research groups who work with questions related to EEG 

interactions and AAC. BCI development is now considered a multidisciplinary field for 

linguists, neurologists’, informatics, Ergonomics and psychology (Ball, Beukelman, & Pattee, 

2004; Curran & Stokes, 2003; Gramann, Fairclough, Zander, & Ayaz, 2017; A. Kübler & Birbaumer, 

2008; Lotte, Larrue, & Mühl, 2013; McFarland & Wolpaw, 2011).    

Wolpaw et al published an extensive review on BCI for communication and control, for the 

journal Clinical Neurophysiology (McFarland & Wolpaw, 2011). They outline important 

considerations for further BCI development. I will present them sorted by Development of 

Technology, End-User Accessibility and Research specific considerations. 

Development of BCI Technology 

General principles of EEG 

EEG is biometric data, collected from electrical currents emitted by neural activity in the 

brain. The activity can be recorded and monitored with sensors on the scalp. (“EEG  > 

introduction Biomedical Signals Acquisition,” 2005). This is a short introduction to present some 

of the underlying premises necessary for successful EEG classification. 

Initially, all signals are sampled relative to a baseline signal. The baseline signal is the 

background activity unrelated to intended activity. Offset is fluctuations in the baseline 

signal, and the baseline signal may need to be adjusted from time to time. 

Signal display properties such as rhythmic, arythmic or dysrythmic patterns. On top of this 

the signals hold morphologic attributes; the different shapes of the waveforms. Waves may 

be Transient, Monomorphic or Polymorphic EEG activity. While Monomorphic activity can be 

composed out of one activity, polymorphic activity is a complex waveform composed by 

multiple frequencies. While sinusoidal waves resemble sine waves, Transient patterns are 

distinctly separable as either Spikes or Sharp waves and are characteristic by their duration. 

Cognitive commands typically aim to classify Transient patterns. If the transient patterns 

occur with some intensity over several regions of the brain simultaneously, it is referred to 

as Hypersynchronous or Paroxysmal.  
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The signal intensity is measured in microvolts (µV). Signal wavelength is measured in signal 

frequency (Hz). Increase or decrease of signal intensity can be ascribed to stimulation or 

abnormal activity. Relevant terms cover abrupt gain in voltage; Paroxysmal gain, a general 

increase in voltage and rhythm;  

hypersynchrony, as well as decreased voltage referred to as 

Attenuation or blocking.  These indicate some specific 

activity or stimulation. While transient spikes last between 

20 and 70 msec, sharp waves last between 70 and 200 

msec. To provide accurate representations of changes in 

signal intensity, samples must be collected more than twice 

as often as the fluctuations on Transient patterns. 

Signal acquisition and processing  

The first level of selection of signal types is positioning and wavelength range selections. The 

10-20 system is a defined standard for sensor placement, defined in the guidelines SEPN. 

(Standard Electrode Position Nomenclature). The standard positions are reference for 

positions, relative to the nasal bones and the occipital bone at each side of the head, and 

from ear to ear. Their names are initials for the regions they are associated with. When 

designing an interaction, it is useful to choose sensors placements correlating with the 

desired signal types. The number of sensors will also contribute to the overall volume of data 

and resolution. The main frequencies are Delta, Theta, Alpha and Beta. The different 

frequencies are associated with different characteristics of activity in different mental states, 

ages and display of potential pathology.  

A-D conversion is conversion of Analogue, “real” signals 

as they are detected, into numerical values fit for digital 

processing. Filtering parts of the bandwidth provide 

easier processing of desired frequencies. This function 

may be performed while collecting the analogue signal, 

by analogue filtering before digitalization, or with a digital 

filter. Filtering primarily remove noise, as well as restrict 

the total amount of data collected so that it takes less 

computing power and less time to converse and process. 

Figure 0.1 EEG signal frequencies 

 Frequency 

Delta < = 3 Hz 

Theta 3.5 – 7.5 Hz 

Alpha 7.5 – 13 Hz 

Beta > 14 Hz 

Figure 0.2 Example of signal resolution 

and aliasing (“EEG  > introduction 

Biomedical Signals Acquisition,” 2005) 
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For instance, a standard band filter at 50-70 Hz may be applied during signal acquisition to 

remove background white noise, which occurs at about +- 60 Hz. Desired wavelengths may 

be amplified to increase voltage and signal attributes. Amplification may provide an added 

voltage, a higher signal intensity, to chosen wavelengths.  

While less EEG data ease demand on computing power and -time, a minimum of bit data is 

required to sustain necessary resolution.  Loss of data to less than required resolution may 

lead to amplitude saturation, and misclassification from aliasing. Amplitude saturation 

causes the signal to plateau from amplification, rather than provide a more intense signal. 

Aliasing means that the digital representations of wavelengths have a sample rate less than 

the signal rate, which means that the signal shape and rhythm may be misrepresented. 

Accurate resolution requires accessible sample representations of a voltage range twice as 

large as the digital range. The resolution requires Required sampling rate to be at least twice 

that of signal rate, as stated in Nyquist sampling rate. Sample interval is inverse to the rate. 

For sharp wave signals with durance from 70 to 200 msec, the sampling interval need be at 

least half that; this means sampling interval of 35 msec or less. 

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑎𝑛𝑔𝑒

𝑑𝑖𝑔𝑖𝑡𝑎𝑙 𝑟𝑎𝑛𝑔𝑒 =#2𝑏𝑖𝑡𝑠
 

Noise 

Noise is activity in the sampled signals that are not representative for the signal intent. Noise 

is categorized as environmental noise, system noise and user generated noise. Filtering 

handle a large part of bandwidth noise associated with the former, while the latter is made 

up from different signal types, artefacts, distractions and the overall difficulty producing 

stable, predictable brainwaves.  

Classification and Machine Learning 

When first forming a classification model with a support vector machine, the operator 

defines a bias, by assigning an appropriate class, then provide data with trait variation that is 

representative for the class. This is training data. The next step is to evaluate the classifier 

and tune parameters until predictions are sufficiently accurate for the purpose.  
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Figure 0.3 General scheme of an EEG-based BCI(Bobrov et al., 2011) 

For accurate classification the EEG data stream must hold a sufficient similarity of traits with 

the trained datasets. The classification model makes predictions from transient patterns and 

synchronicity in the EEG signal data stream. If the classifier finds a pattern in the data stream 

has a high probability of matching a trained class, then the associated functions of the class 

are triggered. 

Signal stimulation 

Signal acquisition is another aspect of the three-way relationship between: (i)the mental 

states and processes that provide the content and motivation for the communication (ii)the 

brain activity, as recorded by EEG, being utilised to drive the device (iii)the voluntary 

manipulation and control of that brain activity(Curran & Stokes, 2003).  

One of the first adaptations available during signal acquisition is signal stimulation as they 

are generated by the user. Signals can be divided into categories from Dependent and 

Independent BCI(Anderson et al., 2011; McFarland & Wolpaw, 2011). Methods utilizing 

Dependent BCI, such as Evoked Potentials, ‘depends’ on unaltered reactions and outputs. 

Neural artefacts directly related to perceptions and mental chronometry of motor 

operations fall into this category. Evoked potentials refer to the process of provoking, or 

“evoking” these artefacts, such as Visual Evoked Potentials (VEP). Independent BCIs, 

however, concern a capturing of the users’ intent and is the wilful mental command of 
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forcing your brain to output specific patterns. This is also called Spontaneous BCI, as it is the 

users initiative that precede the occurrence of such signals. One utilization of Spontaneous, 

independent EEG is Imagery. Motor imagery is a common approach, frequently applied in 

BCI experiments (Bashashati, Ward, Birch, & Bashashati, 2015; Bashashati et al., 2015; 

Curran & Stokes, 2003; Friedrich, Scherer, & Neuper, 2013; Leeb et al., 2013; Zickler, Halder, 

Kleih, Herbert, & Kübler, 2013). In motor imagery, the user attempt to imagine and recreate 

patterns of imagined movement of limbs. For instance, a user imagine that he moves a finger 

to “push a button”. Another form of imagery is visual imagery. 

BCI Tasks with visual imagery. 

In a study with fMRI, Ganis et al monitored activation in different brain regions during 

diverse tasks, two of which was imagined and evoked visual signals. They remarked; 

“Imagery and perception activated frontal structures in remarkably similar ways; in all of the 

regions we examined, the spatial pattern of activation was identical”(Ganis, Thompson, & 

Kosslyn, 2004). Their finding could indicate that Imagery and Perception tasks emit activities 

so similar that they might be used interchangeably when measured in the frontal regions. 

This turned out to be, at least in part, transferrable to EEG: Dentico et al hypothesised and 

concluded that the neural flow changed directionality, depending on whether participants 

performed visual imagery or visual perception(Dentico et al., 2014). The active regions of 

visual stimulus are hypersynchronous transient patterns that may be both evoked and 

improvised. This have also been tested as a cognitive command with spontaneous EEG. 

Bobrov presented Visual Mental Imagery as a Spontaneous EEG Task strategy(Bobrov et al., 

2011), where users emitted cognitive command by visualizing either a house or a car. 

Dependence on internal aspects of normal brain function 

 “Dependence on normal brain function” is a partially defined cognitive prerequisite for 

using a BCI system, and enable a three-way relationship between: (i)the mental states and 

processes that provide the content and motivation for the communication, (ii)the brain 

activity, as recorded by EEG, being utilised to drive the device, (iii)the voluntary 

manipulation and control of that brain activity(Curran & Stokes, 2003). BCI ‘literacy’ is 

allegedly to about 80% in the general population, where the remaining 20% are considered 

BCI illiterate(Allison & Neuper, 2010). What does this literacy or illiteracy consist of? 



   
 

18 
 

Systemic ability gaps  

Allison and Neuper emphasized that initial difficulties in using a BCI system are reinforced by 

limited BCI functionality. They compared BCI accessibility and ability to actual literacy; if a 

writer spells half the words in a paragraph correctly, he is likely to have communicated its 

intention and can be said to be 50 % literate. In contrast, a user that only express their 

intention correctly half of the time in a two-options AAC interface, experience 0% literacy. 

This is because the limitations of the AAC vocabulary don’t provide linguistic context to make 

the text comprehensible. They argued that the different BCI systems cater to different 

abilities; A user might not be able to use all BCI systems, but it is likely that most of us can 

use at least one. This support an assumption that the context of a system, BCI task design 

and recognition of ability gaps, precedes a definition of required user ability. 

Anatomical ability gaps 

 One size does not fit all. Anatomical differences may cause some users to have difficulties 

with a shelf ware headset. Ill fit with equipment may cause challenges with sensor 

placement. Structural differences in a robust nasal bone or occipital bone may block EEG 

signal acquisition with predefined, generic A-D and signal amplification settings. 

Lack of skill or training 

 There is still no consensus in BCI research about the kind of skill or skills that must be 

acquired in order to successfully drive a BCI system(Curran & Stokes, 2003). Dependent 

signals are straightforward in the sense that they hardly require skill at all, while 

Independent signals must be provoked at will by the user, and as such the skill depends on 

the task design. Tasks with visual imagery incorporate spatial tasks and require spatial 

abilities. ‘Encyclopaedia of the Sciences of Learning’ defines Spatial Ability as “[…] the 

perception and/or mental manipulation of visual stimuli. It may also include mentally 

rehearsing a visual experience […].”(Zydney et al., 2012). Then the user need Spatial Ability 

to acquire Spatial skills. 

Ability and Skill acquisition 

Emotional regulation has been accepted as a requirement for Spatial visualization. Executive 

functions cover cognitive control, self-regulation, attention, working memory, fluid 

intelligence, inhibitory control, task switching, mental flexibility, creativity and reasoning 

(Diamond, 2013).Human factors cover research on awareness, attentional control and 
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automaticity (Proctor & Vu, 2010). Complex cognitive challenges and skills are structured 

and usually handled by neural mechanisms in the Prefrontal Cortex. This is also referred to 

as top-down control and is associated with learning(Proctor & Vu, 2010). 

The prefrontal cortex is vulnerable to stress. Diamond described the Prefrontal Cortex as 

“the canary in a coal mine”, as it is the least robust brain region when faced with strain. The 

literature indicates that emotional and physical stress factors are likely to complicate 

learning of AAC and BCI systems in general, and BCI with spatial tasks. Mental states and 

processes that might alter a person’s ability to attain and maintain voluntary control of EEG 

signals are (i)concentration/[lack of]focus, (ii)other thoughts/control of thoughts, 

(iii)frustration, (iv)other mental/emotional states (e.g., depression), (v)relaxation, (vi)fatigue, 

(vii) distractions/interruptions, (viii)motivation/desire, (ix)intentions(Curran & Stokes, 2003). 

Hence, a person experiencing relatively ordinary stress factors, however temporary, may 

also experience learning difficulties during this period, and difficulties performing complex, 

cognitive tasks.  

However, as soon as skills are overlearned and automated, the user no longer depends on 

the top-down control of focus and discipline in the prefrontal cortex. Allegedly, seasoned BCI 

users have compared BCI use to “riding a bike”, and the strategies applied to initial learning 

are made redundant by experience (Curran & Stokes, 2003). Overlearned skills rely on 

posterior cortices, and their activity is referred to as bottom-up activity; a phrase describing 

the directionality of signals moving from the lower astern regions up towards areas of 

cognition. (VanLehn, 1996). Hence, although the Executive functions are imperative for 

learning BCI skills, they are superseded by automation once skill processes are 

overlearned(Proctor & Vu, 2010). This may suggest that we must ensure accessible task 

design for initial learning processes to help users overcome the potential learning difficulties 

associated with strain and confusion, until they have succeeded in overlearning and 

automating the cognitive command skill. 

Operation protocols and Task Design 

As for BCI interaction, the user’s task goal is to maximize the correlation between intent and 

signal to maximize the signal-to-noise ratio. (McFarland & Wolpaw, 2011). Operational 

competence is the competence to interact with an AAC interface, as described by Janice 
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Light(Light, 1989). This involves the physical ability to operate a device and contextual 

understanding  of the cognitive efforts. (Cook & Polgar, 2015).   

In Instruction theory, tasks can be divided into Skill-based and Problem-solving tasks 

(VanLehn, 1996). Skill-based tasks can be automated, and generally have a high level of 

performance. Skill task components include a) Means of work b) Input information c) 

Required actions d) Goal of the task. Given proper instructions, the task is skill-based. If the 

user is uncertain of how to solve a given task it is problem-based and need to be resolved 

before it can be trained. Bedny and Karwowski performed a functional analysis of attention 

in a review of SSAT (Systemic-Structural Activity Theory). They concluded that mental effort 

required to perform a task increase with difficulty. Then how do we alleviate the difficulty in 

such a complex content matter? They claim that users don’t experience a tasks complexity, 

but its difficulty. We avert difficulty and task load if we provide a (i) Strategy for Task 

Performance, (ii) with Specific instructions, (iii) for Clearly defined Task Components. 

In a review of Human Factors, Proctor & Vu presents Stimulus-Response compatibility (S-R 

compatibility) as a task strategy. S-R compatibility is a dimension of relevance between 

Stimulus (the objective), and its Task Response. Lack of S-R compatibility is referred to as the 

Simon Effect(Proctor & Vu, 2010), and requires more mental processing, a heavier cognitive 

load and a longer reaction time. 

Task adaptation 

S-R compatibility should be applicable as a strategy for task design to improve BCI 

interactions. One example is a Russian experiment with visuospatial tasks(Bobrov et al., 

2011). The participants task was to visualize either an icon of a house or of a car (Response). 

Their que to perform the task was conditioned by a green triangle shifting position within a 

geometric figure. Was this Stimulus relevant to imagine a house or a car? For a visuospatial 

task to be compatible, the Imagined icon should have a significant relevance to the task 

objective. (Proctor & Vu, 2010). The task appears not to have a contextual objective, and the 

prompt appears to be unrelated to the icons. This could indicate S-R incompatibility and 

provoke a Simon Effect. The authors in Bobrovs report on visuospatial tasks addressed, in 

their Discussion, that they expect improved EEG Performance from an improved training 

procedure. Task strategy might be one of the improvements the authors had in mind. 
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Stepwise skill acquisition as a design approach 

I have focused upon cognitive tasks for Spontaneous EEG with visual imagery for an initial 

learning phase. To minimize intrinsic load, it appears important to help user attain good first 

experiences with mastery and motivate them to the path of acquiring skills until tasks are 

automated. With a stepwise approach to skill acquisition we may introduce introduction 

level task with feedback and opportunities for self-assessment(Lotte et al., 2013). The issue in 

is that a novice practitioner may struggle to produce reliable training data, while having 

access to reliable training data is a critical step in the workflow. Poor quality in the training 

data may cause the provided feedback to appear arbitrary.  Ideally, we could attain high-

quality training data without expending the users’ efforts and self-regulation pool.  

One way to achieve this is to use bottom-up (dependent) signal for training a top-down 

independent signals for test data. The literature suggests that visual perception and visual 

imagery emit near identical signal patterns. If this is the case, and a signal acquired with one 

can be used interchangeably with a task emitting producing the other, we may be able to 

collect training data with dependent signals, perception, and utilize them in dependent 

signal imagery tasks with feedback during training.  

Define a sufficient similarity between training data and test data; that we may collect 

training data with one method and test data with another. 

Will a stored signal with bottom-up directionality (visual perception) classify correctly in an 

online session with a top-down (visual imagery) command? If not identical, then at least so 

similar that the user is not handed an intolerable disadvantage? We are looking at a 

situation where there is no discernible difference in classification between outcomes 

achieved with training data acquired by dissimilar methods, or a situation where outcomes 

are only similar when training data and test data are similar. 

Research metrics  

In this section I will present research strategies, methods for experiment procedures and 

analysis from relevant papers, and present research question and hypothesises. In general, 

this will revolve around methods for how to measure the amount of BCI activity, and how to 

analyse its correlation to users’ intent. 
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UX Methods with Cognitive Load 

Cognitive Load is a framework developed for Instructional Design Theory, describing the 

different forms of stress, as well as contexts for measurement. Cognitive Load can be divided 

into Intrinsic cognitive load, germane cognitive load and extraneous cognitive load, 

representing the internal load brought by the user, the inherent stress expended by a task 

and the added load expended by insufficient instruction or clumsy design, respectively. It 

may be measured as biological responses or reported as a subjective experience by users. 

In a review of UX evaluation metrics, Kübler et al divided metrics into Efficiency, 

Effectiveness and Satisfaction. (Andrea Kübler et al., 2014).They suggested to measure User 

Experience Efficiency with NASA Workload. Efficiency is a counterintuitive term in this 

context. NASA TLX measure Workload, as an experienced negative effect.  

NASA TLX 

NASA developed a system of workload measurement called NASA TLX, for use in pilot 

training. The NASA TLX form is a survey that collect information about the participants 

experience of tasks. A total of six factors, with ordinal values between 1 and 20, giving a total 

value Workload between 21 and 120. The factors are; Mental load, Physical load, Temporal 

load, Effort, Performance and Frustration.  

Those studies of BCI technologies that formally incorporate user feedback with BCI, that are 

reviewed in this paper all applied NASA TLX to gather user experience data.  The method is 

based on self-evaluation of tasks. The form have since been applied to studies in HCI and BCI 

(Anderson et al., 2011; Chavarriaga, Fried-Oken, Kleih, Lotte, & Scherer, 2017; McKinley, 

McIntire, Schmidt, Repperger, & Caldwell, 2011) Initially the user was asked to weight each 

option against each other, however new research areas have applied the total Workload in 

quantitative studies, with a simple ANOVA analysis instead. This unweighted version is 

referred to as Raw NASA TLX (Moroney, Biers, Eggemeier, & Mitchell, 1992).  

Some work with so called Raw NASA TLX, where the factors are summed up, not weighted. 

More recent studies suggest measuring and comparing each factor independently, rather 

than as the sum. These factors have also been applied to analyse causality between the 

workload factors and Cognitive Load theory.(Galy, Paxion, & Berthelon, 2018). Looking at 

Classical Test Theory, this approach appears equally valid if the dimensions compared are 
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parallel. In line with CTT, we assume that the total Score of NASA Factors = a hypothetical 

true Score with noise. However, the factors are not equally relevant, and in cases where it is 

difficult to obtain significant test results of interest in a hypothesis we may consider 

performing a more extensive factor analysis. We can remove factors that are similar across 

test groups. If we remove the same factor dimensions and are clear about what information 

we then obtain from the net total, we may have obtained significant test result with 

available data.  

Utility metrics 

As mentioned, Kübler et al divided metrics into Efficiency, Effectiveness and Satisfaction. 

(Andrea Kübler et al., 2014).They suggested to measure utility Efficiency with ITR, and 

Effectiveness with percentage correct responses. Number of classes is the complexity added 

to the interaction. Accuracy, or effectiveness, is a performance metric that evaluate whether 

the submitted bitrate was an expression of user control.  Accuracy decline is negatively 

correlated with number of available classes (trained commands). Target detection time is 

the amount of time it takes to issue a command or make a choice between options. In a 

review of BCI interfaces, Ramadan & Vasilakos listed utilitarian metrics as Information 

Transfer Rate with bitrate and (I-R); Target detection Accuracy, Number of classes and Target 

detection time.(Ramadan & Vasilakos, 2017). The definition of bitrate varies.  

Bitrate definitions and applications 

According to Ramadan and Vasilikos, bitrate is the most common measure for BCI systems 

(Ramadan & Vasilakos, 2017). According to them, bitrate is measured as the number of 

times a system classify commands per attempt/trial/minute. The details of what that entails 

vary. A Genevan research group(Julian Kronegg, Voloshynovskiy, & Pun, 2005; Julian Kronegg 

et al., 2005) have published reviews on bitrate and Information Rate (I-R) models from  

established BCI research institutions in Graz, Wadsworth and Albany(Curran & Stokes, 2003; 

McFarland & Wolpaw, 2011; Nicolas-Alonso & Gomez-Gil, 2012). Bitrate Farwell & Donchin is 

defined as a perfect classifier without errors; the amount of classified successes is then equal 

to the amount of emitted commands. BitrateWolpaw defines bitrate in relation to Information 

Rate; as any classified command that is distinguished from baseline signal with rejection 

inherent in I-R Accuracy. The Genevans argue for a third option, bitrateNykopp, which only 

ever consider accuracy.  
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The definitions have different areas of application. Bitrate Farwell & Donchin appear to be a 

theoretical idol of complete overlap between classifier and commands that is, in my 

estimation, not necessarily intended for practical use. Accuracy is a separate term from 

bitrate in the Wolpaw Information Rate Model. Kronegg et al presents arguments that 

bitrateWolpaw loses accuracy and validity for higher number of classes. Still, there is a 

discrepancy when Kronegg emphasize this condition to advice against use of bitrateWolpaw in 

circumstances where Wolpaws reference to I-R already takes accuracy into account. 

BitrateNykopp include a model for SNR optimization for offline analysis and is hence 

considered more accurate.  

In a more recent paper, the Genevan group differentiate between Single-trial protocols and 

repeated attempts (Julien Kronegg, Alecu, & Pun, 2003). They propose the term Average 

Trial Protocol to describe that the user may emit the same mental command repeatedly over 

time.  The term Average Trial Protocol may be appropriate as an assumption for an analysis 

protocol of online classifications. Rather than assume bitrateWolpaw to be a continuous value 

variable, they argue that the number of registered classifications in bitrateWolpaw is limited to 

a finite amount dictated by an optimal bitrate, where the bitrate is a Probability P of 

Classification rate V and leaves a possibility for alternative classifications in a context with 

multiclass options.  

Research question 

Can spontaneous EEG recordings, associated with either perceived or imagined stimuli, be 

used interchangeably without significant dissimilarity in results? 

Hypothesis 1 

H10: : Spontaneous EEG commands with visual imagery perform as Efficiently and Accurately, 

whether they are tested with recordings from perceived visual stimuli or conducted with 

recordings with imagined visual stimuli. 

H11: Spontaneous EEG commands with visual imagery perform more Efficiently and 

Accurately when they are tested with recordings from visual imagery than if conducted with 

recordings from visual perception. 
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Hypothesis 2 

H20: : Spontaneous EEG commands performed with recordings from perceived visual stimuli 

and imagined visual stimuli, demand the same amount of cognitive load; measured as 

perceived workload . 

H21: : Spontaneous EEG commands performed with recordings from perceived visual stimuli 

demand a higher cognitive load, measured as perceived workload, than if they were 

conducted with recordings from imagined visual stimuli. 

Hypothesis 3 

Is there a correlation between experienced cognitive load during training, and signal 

Efficiency & Accuracy? 

H3A0: There is no correlation between performance variables Score & bitrateWolpaw, and 

cognitive load measured as workload. 

H3A1: There is a positive correlation between cognitive load measured as workload and high 

performance, measured as bitrateWolpaw and Score. 

H3B0: Data training with visual imagery and visual perception are equally demanding in 

terms of workload. 

H3B1: Data training with visual imagery is more demanding to do than visual perception in 

terms of workload. 
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METHODS 

Experimental study adapted procedure comparing training data, across the conditions; 

imagined and perceived visual imagery, with assumed high S&R compatibility. Measured 

workload with workload factors, bitrate, accuracy as a score and correlation between inputs 

and objective.  The following section presents the various methods, their fit to the research 

question and hypothesis. It will cover what is being examined, how and with what tools. 

Then follows a presentation of Analysis performed and how the data will be stored for future 

use. The last paragraph present Ethical considerations for this project. 

Participants 

In this subsection I will present the population and the population sample. 13 participants 

were recruited into the project. 5 female, 5 male and 3 abstained from reporting gender. 

Aged between 22 and 51.  The participants were recruited based on convenience sampling.  

We demanded only that the users reported  to possess normal eyesight ability. One 

prospective volunteer was dissuaded from applying to the project due to legal blindness. 

Two prospective volunteers were dissuaded as they did not have access to glasses or lenses.   

Ethical considerations 

The project was reported to, and received permission from, NSD to conduct experiments 

and information handling in the way the project was finally conducted. Contact information 

and names were stored in two places; UiO servers and a folder placed in a locked closet. 

Notes were kept in a separate folder along with NASA tlx forms. Other collected information 

was stored in a server on a personal laptop with backups on cloud servers belonging to 

OsloMet.  Participants were informed of the experiments content, the projects purpose and 

their right to withdraw consent ahead of signing up. Experiments were designed as an HCI 

experiment, with the least necessary amount of impact on participants, and least time 

consuming as practicable. This has also been mentioned in Tasks were designed to not inflict 

stress or task load on users. The perceived task load for each participant can be found in the 

chapter for Results and Findings. Prospective participants would initially sign up for the 

project using Nettskjema. Nettskjema is a cloud survey tool hosted by The University of Oslo, 

and apply to the University standards for data storage and security. Later, when recruitment 

was more direct, participants also filles a paper formed in the beginning of their first session. 
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Tools / Measures 

EEG equipment 

Consumer grade EEG system Emotiv Epoc, a headset with 16 sensors. The sensor placements 

are distributed over the frontal, side and back regions of the skull; AF3, AF4, F7, F3, F4, F8, 

FC5, FC6, T7, T8, P3(ref), P4(ref), P7, P8, O1 and O2. Frequency range from 0.16 to 43 Hz. 

Saline soaked pads, no gel required. Comes with proprietary Bluetooth connection and 

software. Emotiv Epoc EEG system have previously been assessed for research purposes and 

applied to experiments with spontaneous EEG, it is considered reasonably independent from 

noise produced by muscular artefacts. (Bobrov et al., 2011; McMahan, Parberry, & Parsons, 

2015; Taylor & Schmidt, 2012).  

 

Figure 0.1 10-20 system(“EEG  > introduction Biomedical Signals Acquisition,” 2005) 

Software 

Emotiv Software: Emotiv Xavier Control Panel  

The software converts the data from analogue to digital signals, filters, classifies and 

generates an classifcation algorithm based on collected samples of training data. It also 

contains a GUI for sampling and classification.. Once the algorithms are generated, the 

software monitors online signal for trained actions.  

Emotiv Software: Emotiv Xavier Emokey  

EmoKey is also developed by Emotiv, for use with the Emotiv Control Panel. This software 

output a keypress in the event of detected, trained actions. In this project it is configured to 
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relay the action Push, limited to when the action is detected for more than 0.2 

microseconds. EmoKey emit Keypress Spacebar to the application in focus.  

Flappybird: Experiment interface 

The interface chosen is a customized smartphone game, FlappyBird, a side scrolling game 

with a single input, a Spacebar Key press event. The objective of the game is to avoid 

obstacles, and to achieve this the Participant both activate and relieve a single command, to 

navigate above and below objects in their avatars path. Each time the avatar dodges an 

obstacle the player gains an additional point.  

 

Figure 0.2 FlappyBird screenshot(“stikling/FlapPyBird: A Flappy Bird Clone using python-pygame,” n.d.) 

All commands in a gameplay is counted and divided by game time, giving a continuous 

variable Bitrate/min.  Accuracy is calculated from the achievement of intent, or game 

objective. The objective is to navigate the sprite between obstacles, and the success/fail is 

analysed from control limits. Lower control limit is 220 and upper control limit is 550 pixels. 

Each input adjusts the position of a sprite 33 pixels upwards. In the absence of input, the 

sprite adjusts back to its position, then decline 30 pixels per blit (for about 30 FPS / 30 blit 

per second) within the confines of the frame, see Figure 0.3 for the movement relative to 

timeline of 0-1 second. The first leg, before the first obstacle, lasts for 11 seconds.  Each leg 

after lasts for 6 seconds. Gameplay ends after 21 obstacles, where 20 legs are analysed for 

performance.   FlappyBird generate and save lines of text to a .txt file for offline 

performance analysis. The line of text includes the Sprites y-axis position, a timestamp and a 

participant identifier. I have adapted the prototype for HCI testing. The customizations 
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include even spaces between obstacles, and a set duration of each gameplay, and also 

removed the function that usually aborts gameplay. The applied version is stored in a 

separate fork repository on GitHub. (“stikling/FlapPyBird: A Flappy Bird Clone using python-

pygame,” n.d.)  

 

Figure 0.3: Y-axis position post command, 1 second timeline 

 Location 

The test facility is a selection of similar rooms, booked special for each session. It is a 

rectangular facility with white plaster walls, a window facing a quiet street on one end, and a 

door in a semi-transparent wall on the other end. The window has white curtains. Dark 

shutters on the facade with an available control unit. Curtains and shutters are drawn shut 

during the experiment. The facility has an even temperature and air quality. The facility is 

not soundproofed. Noise level vary.  The setup includes a rectangular table pushed up 

against one side of the room. Facing the wall, an ergonomic mid-range office chair for the 

participant. On the table, an open laptop facing the researcher, a BenQ FP222WH 22inch 
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LCD monitor facing the participants seating. For the participant there is also an additional 

keyboard, an Emotiv headset and a folder. On the opposite wall, directly behind the 

participant, an A3 poster of an upward pointing arrow. 

 

Experiment Procedure 

This subsection concerns the treatment applied to the research objects, in the form of 

introduction to an EEG exercise, rehearsal and test of performance. In this study we 

experiment with adaption of training data, by testing the utilitarian performance of training 

data with minor changes in the task protocol. The main task is to perform cognitive 

commands with visuospatial imagery. The protocol includes A) learning and memorizing a 

visuospatial cognitive command B) training the command with visual imagery without 

feedback, C) Test the visual imagery skill with a BCI interface and feedback. The BCi interface 

is a single class interface, with only one input using a single cognitive command, that they 

must both activate and relieve to achieve the task objective.  

Testing procedure during a Session 

Each session is appointed with which test condition will apply, and which training data will 

be collected during the session. It is either Method 1; Visual Perception. Or Method 2; visual 

imagery. The first activity  is to watch and memorize an icon depicting an upwards-pointing 

arrow. During memorization the participant sits approximately 1 meter from a wall, facing a 

A3 hard copy of the icon for 60 seconds. The second activity is to visualize the memorized 

icon. The Participant notify the operator when she is ready to begin the cognitive task. The 

operator abort the visualizaton each 8 seconds so that the Participant get to pause a 

moment to refocus. This visualization task is repeated 5 times. The procedure with 

Memorization training and Visualization training is performed three times.  Depending on 

the predetermined IV for the given session the operator ccollect command data, that the 

system uses to classify input signals. We record 5*3 sets of training data á 8 seconds, and a 

total of 2 minutes. These recordings are deleted immediately after the session. The Third 

Task is to play FlappyBird one time using visuospatial imagery a bird. Once the participant 

has completed the game they often share spontaneous feedback. I distribute a NASA tlx 

form, and the participants assess each task separately. 
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Statistical analysis 

Measured workload with workload factors, bitrate, accuracy as a score and correlation 

between inputs and objective.  

H1 

In this hypothesis we compare Methods 1, Visual Perception and Method 2 Visual Imagery 

using Efficiency as bitrateWolpaw , and Accuracy as Score.  

For bitrateWolpaw we compare number of classified commands as continuous variables with a 

paired t-test. For Score I compare the Bernoulli value Successes per Session and perform a 

paired t-test using Score as a continuous variable. 

H2 

This is a test of similarity of reported Workload across conditions. As subscales in NASA TLX 

are parallel and unidimensional(DeVellis, 2006), I count score for each item and add them up 

as a total workload, then test with a paired t-test of means across conditions for the 

gameplay Task.  I also perform a paired t-test of Workload reported in the activities related 

to acquisition of training data for each method to compare the workload associated with 

Visual Perception and workload associated with visual imagery.   

H3 

A test of correlation between Effort and Effect. It is a linear regression analysis of the 

correlation between Score and Workload, where the Score of the gameplay task is tested 

against the workload of the associated data acquisition task for the given Method. 
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RESULTS AND FINDINGS 

In this section I will present descriptive and inferential statistics for each hypothesis, with the 

values collected in Experiments, as described in Methods.  

RQ  

Can spontaneous EEG recordings, associated with either perceived or imagined visual 

stimuli, be used interchangeably without significant dissimilarity in results? 

Utility H1 

H10: Spontaneous EEG commands with visual imagery perform as Efficiently and Accurately, 

whether they are tested with recordings from perceived visual stimuli or conducted with 

recordings with imagined visual stimuli. 

H11: Spontaneous EEG commands with visual imagery perform more Efficiently and 

Accurately when they are tested with recordings from visual imagery than if conducted with 

recordings from visual perception. 

The performance was measured as Efficacy and Accuracy, represented by bitrateWolpaw and 

Score. Mean overall bitrateWolpaw per attempt is 146.562 (SD = 125.117). With visual 

perception-data the user achieves an average of 88.625 classifications per session, and with 

Figure 0.1 Figure showing the means of Scores with both visual perception (Method 1) and visual imagery (Method 

2) 
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visual imagery-data an average of 204.50 bit. Total mean Accuracy, as Score (n=8) averaged 

1.6 (SD = 2.2). Participants scored an average 1.6 successes of 20 attempts using visual 

perception data, which amounts to 5 percent of their opportunities. Using visual imagery 

data, participants scored a mean of 2.3 successes per session, which amounts to 11.8 

percent of 20 attempts.  

With the current variations in bitrateWolpaw (± 125.117) of the sample data (n = 8), there was 

no significant difference detected between the achieved bitrateWolpaw with visual perception 

data (88.625) and bitrateWolpaw with visual imagery data(204.50) in a two sample t-test (p = 

0.085). The difference in the metric Score, there was no statistically significant difference in 

Accuracy between visual perception (1 out of 20) and visual imagery (2.37 out of 20) with n = 

8 (two sample t-test, p = 0.2322).  

User experience H2 

In this hypothesis we tested the overall cognitive demand of performing the tasks associated 

with  H20: : Spontaneous EEG commands performed with recordings from perceived visual 

stimuli and imagined visual stimuli, demand the same amount of cognitive load; measured 

as perceived workload. H21: : Spontaneous EEG commands performed with recordings from 

perceived visual stimuli demand a higher cognitive load, measured as perceived workload, 

than if they were conducted with recordings from imagined visual stimuli. 

For each test session the participants answered a NASA TLX form for each task of the 

experiment. The total sum of factors for each form in the NASA TLX is Workload. The 

workloads of the associated signal acquisition task were compared across methods with a 

paired two-tailed t-test.  The participants reported average perceived Load of 33.12. The 

variation of reported Load was sd = 31.93 (n = 12), with no discernible difference between 

training data for Method 1 and training data for Method 2 (two sample t-test, p = 0,5). There 

is no significant difference in each user’s experience of workload based on the performed 

tests, even if the experience between users varied. 

Relationship between Utility and User experience H3 

This parameter is a test of a possible correlation between the measured utility and the self 

reported user experience. Is there a correlation between experienced cognitive load during 

training, and signal Efficiency & Accuracy? 
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H3A0: There is no correlation between performance variables Score & bitrateWolpaw, and 

cognitive load measured as workload. 

H3A1: There is a positive correlation between cognitive load measured as workload and high 

performance, measured as bitrateWolpaw and Score. 

H3B0: Data training with visual imagery and visual perception are equally demanding in 

terms of workload. 

H3B1: Data training with visual imagery is more demanding to do than visual perception in 

terms of workload.  

H3A0 was tested with Score and workload with linear regression analysis with Method 1 and 

Method 2 separately.  R squared for Method 1 was 0.167, while R squared for Method 2 was 

0.305.  

 R2 p 

Method 1 0.167 0.315 

Method 2 0.305 0.156 

Figure 0.2 R2 and p values for correlation between score and workload. 

R squared for Method 1 was 0.167 (p = 0.315), while R squared for Method 2 was 0.305 (p = 

0.156). Higher performance with Spontaneous EEG is not significantly correlated to task 

load, represented by Workload. There is a difference between the two, where Method 2 

have a somewhat higher correlation. Method 2 might indicate a negative correlation, while 

there is no such correlation with Method 1. 
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Figure 0.3 Linear regression of Workload and Score. 

Figure 0.4 Boxplots of Workload for conditon 1 and 2, h2 
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DISCUSSION 

In this study I have assessed the effectiveness and user experience of spontaneous EEG, by 

testing training data with different cognitive tasks. I have looked at skills required for end-

users to operate a BCI communication system, attempted to define optimal cognitive 

commands for task design with Stimulus-Response compatibility and discussed how 

hardware and system design can support accessibility. In the Discussion we will look more 

closely at the relationship between the performed study and the results, relating these 

results to previous literature. I will present potential for identifying new challenges for 

accessibility as well as suggest improvements to the experiment procedure and its 

execution. 

Findings 

We failed to find significant evidence for a higher task performance with perceived versus 

visualised cognitive command inputs. The results are inconclusive, and we accept the null 

hypothesis. The population was too small to reach a conclusive result. There were notable 

individual differences in performance that were far more significant than the variance seen 

between input methods. How may we address these individual differences? However, this 

experiment was performed with standard equipment, and the generic Emotiv EPOC 

algorithm for identifying cognitive commands was not adapted specifically to the challenge; 

specific adaptations of the algorithm to recognize signal patterns with an opposite 

directionality may contribute further to eliminate differences in task performance.  

We failed to find significant evidence that the perceived workload is affected by the type of 

its training method (perceived or visualised), and we accept the null hypothesis. The 

population was too small compared to the between-user variance. A test of power revealed 

it would require 900 participants to achieve a sufficient power. However, the variance may 

also be explained by a confounding factor in the workload subscales. Overall workload may 

be thwarted by inclusion of irrelevant factors that may are more subject-dependent than 

task-dependent. One of the subscales, Effort, was explained to be the one most closely 

correlated and indicative with Workload at any given time(Hart & Staveland, 1988).  
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Testing with Effort. Two tailed t-test with Effort performing the task with both methods, n = 

8, sd = 3.52, p = 0.4893. Conclusively similar Effort exercised for both methods during the 

game task. According to the literature there should be a greater difference between these 

tasks in term of WL. In fact, when looking at Effort, there is a significant difference. Effort is, 

allegedly, representative for Intrinsic, extraneous loads, as well as the mental resources 

expended by the task (Galy et al., 2018) and is the single factor most correlated to overall 

workload according to NASA TLX developers (Hart & Staveland, 1988).  

There was no significant relationship between perceived workload and task performance, for 

either the perceived or visualised conditions. Small population. As in H2 we may not have 

used the most relevant factors from the NASA TLX. Temporal Demand appear relatively 

unrelated to Workload, while Difficulty is a relevant factor when comparing tasks and 

protocols. We may use factor analysis to compare with Effort instead. As the workload was 

inconclusive, it is reasonable to extend the suggested alternative analysis to this hypothesis 

H3. Therefore I have performed a few more tests of our data to explore how the Efficiency 

and Accuracy of the game task induced positive and negative emotion. In that regard I ran 

linear regression on bitrate’ affect on Frustration and Perceived Performance, the score’ 

effect on Frustration and Perceived Performance 

Frustration vs bitrate: Number of observations; 16, n = 8, R2 = 0.209, p = 0.0748, Frustration 

vs. score: Number of observations; 16, n = 8, R2 = 0.0834, p = 0.2,  

Perceived Performance and Score: Number of observations; 16, n = 8, R2 = 0.38, p = 

0.011,Perceived Performance and Bitrate: Number of observations; 16, n = 8, R2 = 0.204 p = 

0.0787. 

I have also tested the correlation between Effort and Frustration, to see if the 

Expendedefforts themselves generated negative emotion. I tested this correlation across all 

sessions and all tasks where we collected NASA tlx data. Total number of observations; 76, 

R2 = 0.608, p = 1.05e-16. 

From the developers of the NASA TLX system, Frustration was explained as; “in a relatively 

less ambiguous way, relates task requirements, exerted effort, and success or failure.”(Hart & 

Staveland, 1988). Correlation between frustration and bitrate; Frustration is negatively 

correlated with bitrate, more so than a failure to score points.  Performance is indicative of 
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situation awareness and represents the users’ self-assessment. Sadly, none of the users 

appear to take much credit for their achievements. Only the user with the very highest 

bitrate reported a high performance, and the participant with the highest score reported 

only a moderate performance. Only the second runner up on the high score reported a high 

degree of performance. The users appear to experience a high degree of performance when 

they produce classifications and achieve a high bitrate.  

A higher workload doesn’t automatically lead to a higher alpha wave, which is usually 

indicative of stress (Insert reference). This result is very useful, as we may not dismiss poor 

results based on a biologically conditioned performance boundary in Alpha Waves related to 

stress. 

Complementary observations 

Participant activity 

4, Relaxation 

excercise 

3 participants expressed discomfort with this exercise. As a response 

to the description of the task and its purpose the participants, all but 

one, spontaneously shared details about their day, and stress factors 

in their lives. 

Participant activity 

1, memorization 

excercie 

One participant expressed annoyance, two participants also 

expressed that they spent the full minute in each repetition 

memorizing detail such as angles and corners. One of them expected 

a task where *he should describe or draw the arrow, or in some 

other way show off their memory verbally. 

Participant activity 

2, Visualization 

exercise 

Some expressed that this was a task it was difficult to conceptualize. 

Some took longer between each attempt before they were ready to 

clear their mind and focus on the visualizations. Every participant 

seemed to search their mind for the internal image before they gave 

all-clear to begin the recording process. One expressed *he doesn’t 

know how to visualize anything, never has visualized anything, and 

would rather use other coping mechanisms. 
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Table 0.1Summarized notes from testing 

  

Participant activity 

3, Gameplay 

Participants appear to use some attempts while they are playing, 

rather than think of each epoch as a goal that they have ambitions to 

cross successfully. They would make attempts, shake off the strain of 

the attempt, wait for the next epoch they were decidedly ready for 

and make their next attempt.  

Some struggled to make commands at all (floor effect), while yet 

others struggled to turn the signal off once they got started (ceiling 

effect) Have only seen ceiling effect with Condition 2. 

Technical Recording 

process 

Noticed calculated skill level in Emotiv control panel did not have a 

linear development for each recording. Also noticed that some 

participants had active feedback while preparing imagination task, 

but upon informing me of being ready, their focus dropped and 

feedback did not necessarily recover within the recording time. I 

quickly made a habit of delaying timed intervals for recording a 

couple of seconds, and in many instances their focus picked back up 

nicely within the timeframe. I did not wait for active feedback, but 

recorded training data at timed intervals. 
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Positive Psychology 

“Adapting the task difficulty to users skill improved one dimension of flow state, cognitive 

control. People who faced a challenge better suited to their skill felt more in 

control.”(Mladenović, Frey, Bonnet-Save, Mattout, & Lotte, 2017) It is interesting to pull a 

wide relation to Eudemonics. “Eudemonic view equates happiness with the human ability to 

pursue complex goals which are meaningful to the individual and society”. In this sense, 

difficulty is not necessarily a negative experience, but it depends on an intrinsic motivation. 

Flow Experience Theory have defined 7 principles; Knowing what to do, Knowing how to do 

it, Knowing how well you are doing, Knowing where to go, High perceived challenges, High 

perceived skills and Freedom from distractions. The possible rewards from fulfilling these 7 

principles lies in the definition of Flow Experience; “the mental state of operation in which a 

person performing an activity is fully immersed in a feeling of energized focus, full 

involvement, and enjoyment in the process of the activity”.  

)Performance Achieving bitrate 

indicates that the task itself is 

understood. A failure to produce 

classifiable signals is an indication 

that you have failed to understand 

the task and indicate high difficulty 

with low skills, which is positively 

anxiety inducing, according to the 

Flow model. As we can see from  , 

Mikhel Csikszentmihalyi have 

presented a model for the 

interaction between Skill level and 

Challenge level. Where Lack of skill produce 

negative emotion, and lack of challenge produce indifference in the user. A perceived high 

skill level always produces positive emotion regardless of the challenge level, the challenge 

level is experienced quite differently based on the skills. A high challenge level produce both 

Figure 0.1 Flow model (Csikszentmihalyi, 1997 
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Flow and a sense of Arousal with high levels of relevant skill but is only anxiety inducing if 

the user lack the reasonable skills to meet the challenge. (Csikszentmihalyi, 1997)   

Skill Acquisition 

The Difficulty of a task is, as mentioned earlier, a product of Task Components and the 

specificity of given Instructions. (Bedny & Karwowski, 2011) This can be understood as 

whether the instructions are specific enough to cover the underlying principles of 

components. It can also be understood as a warning of overexplaining a task, so that the 

student miss opportunities to self-explain and internalize learning. Lotte et al performed 

heuristic evaluations of BCI research procedures, based on Instructional theory (Lotte et al., 

2013). Lotte stated that training procedures for BCI were inconsistent and lacked conformity 

with best practise principles. For instance, he explains that the users need feedback to 

correct their performance. This is supported by vanLehn (VanLehn, 1996). However, Lotte 

don’t suggest how the cognitive process may be monitored upon or mentored, which also 

makes it difficult to imagine how students may self-monitor or self-explain their process.  

One of the challenges of introducing users to Spontaneous EEG with independent signals, is 

the lack of feedback related to the users’ performance. The opportunity to use training data 

from visual perception and visual imagery interchangeably, is the opportunity to gather 

dependent signals which require low effort for training data. It would grant a system or 

procedure designer relatively wide opportunities for Skill training programme with 

immediate feedback at the first challenging task with visual imagery.  

Training procedures 

While some central voices in BCI research emphasize Training procedures as one of the 

central fields of BCI development, other researchers have expressed a goal to abolish all 

need for instruction and training for users(Blankertz et al., 2006; Krauledat, Tangermann, 

Blankertz, & Müller, 2008). Krauledat, Tangermann, Blankerts og Müller stated that efficient 

detection algorithms and sophisticated hardware should provide sufficient capability for 

both system and for users. AAC stakeholders, however, have expressed a demand for 

instructions and training. Light and McNaughton encouraged researchers and rehabilitators 

to take a user-oriented perspective, rather than push their enthusiasm for potentials in 

specific technologies “[…] there is a danger that intervention will be limited to the provision 

of a device, without providing appropriate training and supports to maximize communicative 
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competence.” (Light & McNaughton, 2013) Beukelman et al requested better instructions for 

AAC equipment “The need to provide targeted instruction and support for these individuals 

as well as those who rely on AAC remains an important future goal for the AAC field. [sic]” 

(Beukelman, Fager, Ball, & Dietz, 2007). 

Comparable BCI projects have invested far more time and resources on their participants. I 

have added up total time spend in different projects in Table 0.2. While I have invested up to 

2 hours with each of the 16 participants, Bobrov et al invested approximately 30 hours per 

participant.  This is the most appropriate comparison, as they also researched Spontaneous 

EEG with visual imagery, with the same type of EEG equipment. The actual interaction in my 

experiment lasted mere minutes altogether. How would a more generous training 

programme have affected the results? If we had spend hours adding training data, how well 

could the prediction model have performed? What classification rate would that have 

granted us? In contrast, see Figure 10.2, where netto time spent directly with the 

experiment take less than 10 minutes. 

 
Table 0.2 Time spent with Participants in BCI studies 

Participants  Experiment 

time per 

participant  

Approximate 

total 

experiment 

time (hours)  

Number of 

sensors  

Reference  

7  4 days (approx. 

30 hours)  

210  16 sensors on 

day 1-3/ 30 

sensors on day 4  

(Bobrov et al., 

2011) 

20  2 hours  40  fMRI -little to 

no assembly  

(Ganis et al., 

2004) 

20  2 hours  40  19 sensors  (Shourie, 

Firoozabadi, & 

Badie, 2014) 

12  5  60  121 sensors  (Winkler, Haufe, 

& Tangermann, 

2011) 
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The results and the literature we have assessed suggest that difficulty and complexity is not 

universal accessible; unless the user experience a reasonably balanced relationship between 

their available personal resources, and the demands of sustained effort. It means that by 

eliminating challenges related to lack of understanding, we alleviate extraneous and 

germane load. We may boost Flow and an experience of eudemonic happiness, even as we 

are exerting great effort for a complex task. It means that an accessible interface induces an 

experience of understanding and mastery. This relates well with the third principle of 

Universal Design. 

Limitations of the study 

The greatest limitation to this study is the limited portion of the population we tested with 

both conditions. Although a total of 13 participants were tested, the distribution of methods 

across sessions failed to make all of them eligible for paired testing. A thorough factor 

analysis   

Participants and recruitment 

It might appear relevant to either measure cognitive abilities in participants to stratify the 

population or monitor neural activity during experiments. While this is a conservatively HCI 

centred study, a stratification like that may undermine the universal applicability in potential 

findings. 

 The total population in the project might not be low compared to other studies in the same 

field, however it is difficult to claim that the results are universally representative when it 

also fails to offer each participant a training programme, comparable to that of the 

compared studies. While other projects spent days, weeks and months to train participants 

0
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Figure 0.2 Total time spent with tasks each session 
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to use cognitive commands, we are analysing results from the very first introduction to our 

interface. 

Collecting training data 

  While the collection procedure was intended to be as similar as possible, the perception 

training task was self-paced, and the imagery training task was structured. The recordings 

were paced by the operator regardless of which method it applied. The timespan of each 

recording, 8 seconds, was conditioned by the control panel interface. 

Future iterations of my experiment 

H1 

There were great individual differences that were far more significant than the variance 

between methods. How may we improve these individual differences? Qualitative analysis 

of notes or semi-structured interview for each session demands resources to analyse, but we 

can identify some sessions or performances that deserve extra attention. See to control 

chart to find the individual participants that represent outliers. Either for their complete lack 

of ability to perform classifiable commands, or for outliers of great performances.  

H2 

There are other methods of gathering UX data that may be more reliable with small 

populations. Collecting biometric data such as pupillary changes, sweat or accelerated 

heartrate are a few true and tested methods. Then again, rather than introduce a second 

device, that may be experienced as invasive and stressful, we might utilize data directly from 

the EEG headset. Offline analysis of signals provide insight into the users’ emotional state 

during the experiment. The Emotiv EEG headset have an integrated detection suite for six 

signals that are monitored and available for online application. Those are Interest, 

Engagement, Stress, Relaxation, Excitement and Long-term excitement. There may not be a 

direct overlap between these factors and variables of interest, but a full licence version of 

Emotiv provide opportunities to customize functions with their System Development kit into 

the frequency range we are interested in. 

H3 

Researching the phenomenology of the BCI and the effect of task and performance on the 

users’ inter-subjective experiences. Building on a correlation between the utilitarian results 
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of H1 and the UX results in H2, we may Collecting raw data of the users’ state of mind, their 

qualia, is a tell-tale way to correlate the users experience to their interactions in real time in 

offline analysis. 

Would use Perceived difficulty rather than Time Pressure (Temporal demand). “[Temporal 

demand] ratings were only moderately correlated with [Overall Workload] ratings for 

individual experiments and categories of experiments”. Task difficulty was dropped from the 

final version of NASA TLX because it was less statistically independent and provided less new 

information. However, of all three task related scales that were evaluated, Time pressure 

was the only one that remained. Simply exchanging it for Task difficulty would maintain the 

information and make for a more relevant factor in our data.  

Identifying challenges 

The design process of improved BCI prototypes require effective ways to administer and 

communicate contemporary challenges throughout a design process.  

For an iterative development process, it would be helpful to apply qualitative methods to 

evaluate functionality. This may also involve qualitative analysis of quantitative data. 

Collecting qualitative data rarely take up resources, but the analysis is a resource demanding 

process. There are three models I would have preferred to incorporate effectively in the 

study, that could help identify which quality data to analyse, and also to convey and curate 

findings.  Those are Control charts, Activity diagrams and Pareto diagram. Control charts 

with control limits may help identify outliers of specific interest. First of all, outlier sessions 

with exceptionally high or low performance may have inspired the participant to share 

experience during their sessions. Participant testimonies may include variables that have a 

high correlation, or even causality with their level of performance. An activity diagram could 

help us track potential events during test sessions, indicate ability gaps and recurring 

disruptions to workflows. A Pareto diagram may help direct efforts of the research and 

development communities towards knowledge-based development and direct resources to 

the most pressing challenges.  

Collecting training data 

Why not just use the integrated system in Emotiv? The integrated interaction platform in 

Emotiv Control Panel is designed around visuospatial tasks, with manipulation of a figure in a 



   
 

46 
 

3D space. There could be advantages from using the integrated system, if altered to fit the 

tasks. However, when I initially planned to integrate functionality in customized code for a 

prototype, I presupposed that I would implement functionality from the native Emotiv 

Framework. Both options should be considered for future BCI HCI projects. If the budgets 

allow it, it is still preferable to implement native functionality in a customized interface, with 

the option of customizing machine learning models from a third-party provider, ie. 

TensorFlow playground. 
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CONCLUSION 

There are is no significant difference in task performance based on cognitive commands 

acquired with a visual imagery against both visual imagery and visual perception. The results 

are inconclusive regarding both utilitarian performance and user experience as perceived 

workload did not different between the two dataset conditions. I have performed 

experiments with an Emotiv EEG headset and a game interface to find and the participants 

have reported perceived Workload with a NASA Tlx form. I have assessed the effectiveness 

and user experience of spontaneous EEG, by testing training data with different cognitive 

tasks and compared them with number of classifications per session, and the score achieved. 

There are benefits in user motivation and workload if we can present adjust tasks to skill 

level and customize stepwise skill acquisition to the individual user. I have hypothesised that 

a trade-off in dataset directionality may be outweighed by a more accessible workflow, and 

that different sets of training data are sufficiently equal in efficiency and accuracy. There is 

no significant evidence of a difference in tested efficiency or accuracy between using visual 

imagery and visual perception as training data with visual imagery gameplay task. There is 

no significant evidence of a difference in perceived workload between playing with different 

sets of training data. The limited sample size places a significant constrain on the conclusions 

that can be drawn from out data.  

There is still need for base research in each technology associated with BCI and Spontaneous 

EEG. New approaches to machine learning and classification models will open new 

opportunities for us to design accessible cognitive command tasks. 
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 DATA FROM GAMETASK IN ALL SESSIONS 

Sessi

on 

Partici

pant 

Meth

od 

Mental 

Load 

Physical 

Load 

Temporal 

Load 

Eff

ort 

Frustra

tion 

Perform

ance 

Sco

re 

Bitr

ate 

1 1 1 20 1 10 20 8 16 0 148 

4 3 1 20 20 15 19 20 20 2 103 

5 3 2 20 20 14 20 19 20 1 120 

6 4 2 12 5 13 15 8 20 1 108 

7 4 2 12 8 8 9 7 9 4 193 

49 8 2 5 11 11 6 7 3 4 406 

15 8 1 18 2 9 17 17 18 2 83 

16 9 2 0 0 0 0 0 0 0 100 

17 9 2 19 13 10 18 15 5 4 234 

18 10 1 11 1 2 11 3 19 0 22 

19 10 1 11 2 1 11 3 19 0 24 

20 11 1 13 9 6 10 4 7 4 381 

47 12 2 17 8 6 17 18 16 0 28 

48 12 1 12 7 11 17 18 11 0 36 

27 14 1 11 5 14 16 16 17 0 85 

26 14 2 11 5 14 16 16 17 1 279 

46 16 1 18 1 1 20 1 11 0 62 

45 16 2 18 1 1 20 1 11 6 387 

35 18 2 19 12 2 19 19 13 7 354 

36 18 1 18 10 3 20 20 14 3 171 

38 20 2 18 5 14 18 18 19 0 42 

39 20 1 20 4 16 17 20 20 0 21 

43 22 2 20 1 12 20 20 20 0 20 

42 22 1 20 1 9 20 15 12 1 148 

 

Method 1 = Visual perception. Method 2 = Visual imagery 
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Participants and sessions 

 

 
 

Participant  

 

Condition 1-  

session 

Participant 

 

Conditi

on 2- 

session 

1 * Paired 3 4 3 5 

2* Paired 8 15 8 49 

3* Paired 14 27 14 26 

4* Paired 18 36 18 35 

5* Paired 20 39 20 38 

6* Paired 22 42 22 43 

7* Paired 16 46 16 45 

8* Paired 12 48 12 47 

9** Second 

sessions 

16 46 16 30 

10  8 14   

11** Grouped 10 18 4 6 

12** Grouped 10 19 4 7 

13** Grouped 

Single try 

/Grouped 

1 1 9 17 

14** Grouped 

Single try 

/Grouped 

11 20 9 16 

15 Grouped 

Single try 

19 34 
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APPENDIX 5. PROTOTYPE CODE 

from itertools import cycle 

import random 

import sys 

import pygame 

from pygame.locals import * 

FPS = 30 

SCREENWIDTH  = 288 

SCREENHEIGHT = 512 

# amount by which base can maximum shift to left 

PIPEGAPSIZE  = 100 # gap between upper and lower part of pipe 

BASEY        = SCREENHEIGHT * 0.79 

# image, sound and hitmask  dicts 

IMAGES, SOUNDS, HITMASKS = {}, {}, {} 

# list of all possible players (tuple of 3 positions of flap) 

PLAYERS_LIST = ( 

    # red bird 

    ( 

        'assets/sprites/redbird-upflap.png', 

        'assets/sprites/redbird-midflap.png', 

        'assets/sprites/redbird-downflap.png', 

    ), 
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    # blue bird 

    ( 

        # amount by which base can maximum shift to left 

        'assets/sprites/bluebird-upflap.png', 

        'assets/sprites/bluebird-midflap.png', 

        'assets/sprites/bluebird-downflap.png', 

    ), 

    # yellow bird 

    ( 

        'assets/sprites/yellowbird-upflap.png', 

        'assets/sprites/yellowbird-midflap.png', 

        'assets/sprites/yellowbird-downflap.png', 

    ), 

) 

# list of backgrounds 

BACKGROUNDS_LIST = ( 

    'assets/sprites/background-day.png', 

    'assets/sprites/background-night.png', 

) 

# list of pipes 

PIPES_LIST = ( 

    'assets/sprites/pipe-green.png', 

    'assets/sprites/pipe-red.png', 
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) 

try: 

    xrange 

except NameError: 

    xrange = range 

def main(): 

    global SCREEN, FPSCLOCK 

    pygame.init() 

    FPSCLOCK = pygame.time.Clock() 

    SCREEN = pygame.display.set_mode((SCREENWIDTH, SCREENHEIGHT)) 

    pygame.display.set_caption('Flappy Bird') 

    # numbers sprites for score display 

    IMAGES['numbers'] = ( 

        pygame.image.load('assets/sprites/0.png').convert_alpha(), 

        pygame.image.load('assets/sprites/1.png').convert_alpha(), 

        pygame.image.load('assets/sprites/2.png').convert_alpha(), 

        pygame.image.load('assets/sprites/3.png').convert_alpha(), 

        pygame.image.load('assets/sprites/4.png').convert_alpha(), 

        pygame.image.load('assets/sprites/5.png').convert_alpha(), 

        pygame.image.load('assets/sprites/6.png').convert_alpha(), 

        pygame.image.load('assets/sprites/7.png').convert_alpha(), 

        pygame.image.load('assets/sprites/8.png').convert_alpha(), 

        pygame.image.load('assets/sprites/9.png').convert_alpha() 
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    ) 

    # game over sprite 

    IMAGES['gameover'] = pygame.image.load('assets/sprites/gameover.png').convert_alpha() 

    # message sprite for welcome screen 

    IMAGES['message'] = pygame.image.load('assets/sprites/message.png').convert_alpha() 

    # base (ground) sprite 

    IMAGES['base'] = pygame.image.load('assets/sprites/base.png').convert_alpha() 

    # sounds 

    if 'win' in sys.platform: 

        soundExt = '.wav' 

    else: 

        soundExt = '.ogg' 

    SOUNDS['die']    = pygame.mixer.Sound('assets/audio/die' + soundExt) 

    SOUNDS['hit']    = pygame.mixer.Sound('assets/audio/hit' + soundExt) 

    SOUNDS['point']  = pygame.mixer.Sound('assets/audio/point' + soundExt) 

    SOUNDS['swoosh'] = pygame.mixer.Sound('assets/audio/swoosh' + soundExt) 

    SOUNDS['wing']   = pygame.mixer.Sound('assets/audio/wing' + soundExt) 

    while True: 

        # select random background sprites 

        randBg = random.randint(0, len(BACKGROUNDS_LIST) - 1) 

        IMAGES['background'] = pygame.image.load(BACKGROUNDS_LIST[randBg]).convert() 

 

        # select random player sprites 
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        randPlayer = random.randint(0, len(PLAYERS_LIST) - 1) 

        IMAGES['player'] = ( 

            pygame.image.load(PLAYERS_LIST[randPlayer][0]).convert_alpha(), 

            pygame.image.load(PLAYERS_LIST[randPlayer][1]).convert_alpha(), 

            pygame.image.load(PLAYERS_LIST[randPlayer][2]).convert_alpha(), 

        ) 

        # select random pipe sprites 

        pipeindex = random.randint(0, len(PIPES_LIST) - 1) 

        IMAGES['pipe'] = ( 

            pygame.transform.rotate( 

                pygame.image.load(PIPES_LIST[pipeindex]).convert_alpha(), 180), 

            pygame.image.load(PIPES_LIST[pipeindex]).convert_alpha(), 

        ) 

        # hismask for pipes 

        HITMASKS['pipe'] = ( 

            getHitmask(IMAGES['pipe'][0]), 

            getHitmask(IMAGES['pipe'][1]), 

        ) 

        # hitmask for player 

        HITMASKS['player'] = ( 

            getHitmask(IMAGES['player'][0]), 

            getHitmask(IMAGES['player'][1]), 

            getHitmask(IMAGES['player'][2]), 
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        ) 

        movementInfo = showWelcomeAnimation() 

        crashInfo = mainGame(movementInfo) 

        showGameOverScreen(crashInfo) 

def showWelcomeAnimation(): 

    """Shows welcome screen animation of flappy bird""" 

    # index of player to blit on screen 

    playerIndex = 0 

    playerIndexGen = cycle([0, 1, 2, 1]) 

    # iterator used to change playerIndex after every 5th iteration 

    loopIter = 0 

    playerx = int(SCREENWIDTH * 0.2) 

    playery = int((SCREENHEIGHT - IMAGES['player'][0].get_height()) / 2) 

    messagex = int((SCREENWIDTH - IMAGES['message'].get_width()) / 2) 

    messagey = int(SCREENHEIGHT * 0.12) 

    basex = 0 

    # amount by which base can maximum shift to left 

    baseShift = IMAGES['base'].get_width() - IMAGES['background'].get_width() 

    # player shm for up-down motion on welcome screen 

    playerShmVals = {'val': 0, 'dir': 1} 

 

    while True: 

        for event in pygame.event.get(): 
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            if event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE): 

                pygame.quit() 

                sys.exit() 

            if event.type == KEYDOWN and (event.key == K_SPACE or event.key == K_UP): 

                # make first flap sound and return values for mainGame 

                SOUNDS['wing'].play() 

                return { 

                    'playery': playery + playerShmVals['val'], 

                    'basex': basex, 

                    'playerIndexGen': playerIndexGen, 

                } 

        # adjust playery, playerIndex, basex 

        if (loopIter + 1) % 5 == 0: 

            playerIndex = next(playerIndexGen) 

        loopIter = (loopIter + 1) % 30 

        basex = -((-basex + 4) % baseShift) 

        playerShm(playerShmVals) 

        # draw sprites 

        SCREEN.blit(IMAGES['background'], (0,0)) 

        SCREEN.blit(IMAGES['player'][playerIndex], 

                    (playerx, playery + playerShmVals['val'])) 

        SCREEN.blit(IMAGES['message'], (messagex, messagey)) 

        SCREEN.blit(IMAGES['base'], (basex, BASEY)) 
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        pygame.display.update() 

        FPSCLOCK.tick(FPS) 

def mainGame(movementInfo): 

    score = playerIndex = loopIter = 0 

    playerIndexGen = movementInfo['playerIndexGen'] 

    playerx, playery = int(SCREENWIDTH * 0.2), movementInfo['playery'] 

    basex = movementInfo['basex'] 

    baseShift = IMAGES['base'].get_width() - IMAGES['background'].get_width() 

    # get 2 new pipes to add to upperPipes lowerPipes list 

    newPipe1 = getRandomPipe() 

    newPipe2 = getRandomPipe() 

    # list of upper pipes 

    upperPipes = [ 

        {'x': SCREENWIDTH + 200, 'y': newPipe1[0]['y']}, 

        {'x': SCREENWIDTH + 200 + (SCREENWIDTH / 2), 'y': newPipe2[0]['y']}, 

    ] 

    # list of lowerpipe 

    lowerPipes = [ 

        {'x': SCREENWIDTH + 200, 'y': newPipe1[1]['y']}, 

        {'x': SCREENWIDTH + 200 + (SCREENWIDTH / 2), 'y': newPipe2[1]['y']}, 

    ] 

    pipeVelX = -4 

    # player velocity, max velocity, downward accleration, accleration on flap 
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    playerVelY    =  -9   # player's velocity along Y, default same as playerFlapped 

    playerMaxVelY =  10   # max vel along Y, max descend speed 

    playerMinVelY =  -8   # min vel along Y, max ascend speed 

    playerAccY    =   1   # players downward accleration 

    playerRot     =  45   # player's rotation 

    playerVelRot  =   3   # angular speed 

    playerRotThr  =  20   # rotation threshold 

    playerFlapAcc =  -9   # players speed on flapping 

    playerFlapped = False # True when player flaps 

    while True: 

        for event in pygame.event.get(): 

            if event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE): 

                pygame.quit() 

                sys.exit() 

            if event.type == KEYDOWN and (event.key == K_SPACE or event.key == K_UP): 

                if playery > -2 * IMAGES['player'][0].get_height(): 

                    playerVelY = playerFlapAcc 

                    playerFlapped = True 

                    SOUNDS['wing'].play() 

        # check for crash here 

        crashTest = checkCrash({'x': playerx, 'y': playery, 'index': playerIndex}, 

                               upperPipes, lowerPipes) 

        if crashTest[0]: 
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            return { 

                'y': playery, 

                'groundCrash': crashTest[1], 

                'basex': basex, 

                'upperPipes': upperPipes, 

                'lowerPipes': lowerPipes, 

                'score': score, 

                'playerVelY': playerVelY, 

                'playerRot': playerRot 

            } 

        # check for score 

        playerMidPos = playerx + IMAGES['player'][0].get_width() / 2 

        for pipe in upperPipes: 

            pipeMidPos = pipe['x'] + IMAGES['pipe'][0].get_width() / 2 

            if pipeMidPos <= playerMidPos < pipeMidPos + 4: 

                score += 1 

                SOUNDS['point'].play() 

        # playerIndex basex change 

        if (loopIter + 1) % 3 == 0: 

            playerIndex = next(playerIndexGen) 

        loopIter = (loopIter + 1) % 30 

        basex = -((-basex + 100) % baseShift) 

        # rotate the player 
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        if playerRot > -90: 

            playerRot -= playerVelRot 

        # player's movement 

        if playerVelY < playerMaxVelY and not playerFlapped: 

            playerVelY += playerAccY 

        if playerFlapped: 

            playerFlapped = False 

            # more rotation to cover the threshold (calculated in visible rotation) 

            playerRot = 45 

        playerHeight = IMAGES['player'][playerIndex].get_height() 

        playery += min(playerVelY, BASEY - playery - playerHeight) 

        # move pipes to left 

        for uPipe, lPipe in zip(upperPipes, lowerPipes): 

            uPipe['x'] += pipeVelX 

            lPipe['x'] += pipeVelX 

        # add new pipe when first pipe is about to touch left of screen 

        if 0 < upperPipes[0]['x'] < 5: 

            newPipe = getRandomPipe() 

            upperPipes.append(newPipe[0]) 

            lowerPipes.append(newPipe[1]) 

        # remove first pipe if its out of the screen 

        if upperPipes[0]['x'] < -IMAGES['pipe'][0].get_width(): 

            upperPipes.pop(0) 
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            lowerPipes.pop(0) 

        # draw sprites 

        SCREEN.blit(IMAGES['background'], (0,0)) 

        for uPipe, lPipe in zip(upperPipes, lowerPipes): 

            SCREEN.blit(IMAGES['pipe'][0], (uPipe['x'], uPipe['y'])) 

            SCREEN.blit(IMAGES['pipe'][1], (lPipe['x'], lPipe['y'])) 

        SCREEN.blit(IMAGES['base'], (basex, BASEY)) 

        # print score so player overlaps the score 

        showScore(score) 

        # Player rotation has a threshold 

        visibleRot = playerRotThr 

        if playerRot <= playerRotThr: 

            visibleRot = playerRot 

        playerSurface = pygame.transform.rotate(IMAGES['player'][playerIndex], visibleRot) 

        SCREEN.blit(playerSurface, (playerx, playery)) 

        pygame.display.update() 

        FPSCLOCK.tick(FPS) 

def showGameOverScreen(crashInfo): 

    """crashes the player down ans shows gameover image""" 

    score = crashInfo['score'] 

    playerx = SCREENWIDTH * 0.2 

    playery = crashInfo['y'] 

    playerHeight = IMAGES['player'][0].get_height() 
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    playerVelY = crashInfo['playerVelY'] 

    playerAccY = 2 

    playerRot = crashInfo['playerRot'] 

    playerVelRot = 7 

    basex = crashInfo['basex'] 

    upperPipes, lowerPipes = crashInfo['upperPipes'], crashInfo['lowerPipes'] 

    # play hit and die sounds 

    SOUNDS['hit'].play() 

    if not crashInfo['groundCrash']: 

        SOUNDS['die'].play() 

    while True: 

        for event in pygame.event.get(): 

            if event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE): 

                pygame.quit() 

                sys.exit() 

            if event.type == KEYDOWN and (event.key == K_SPACE or event.key == K_UP): 

                if playery + playerHeight >= BASEY - 1: 

                    return 

        # player y shift 

        if playery + playerHeight < BASEY - 1: 

            playery += min(playerVelY, BASEY - playery - playerHeight) 

        # player velocity change 

        if playerVelY < 15: 
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            playerVelY += playerAccY 

        # rotate only when it's a pipe crash 

        if not crashInfo['groundCrash']: 

            if playerRot > -90: 

                playerRot -= playerVelRot 

        # draw sprites 

        SCREEN.blit(IMAGES['background'], (0,0)) 

        for uPipe, lPipe in zip(upperPipes, lowerPipes): 

            SCREEN.blit(IMAGES['pipe'][0], (uPipe['x'], uPipe['y'])) 

            SCREEN.blit(IMAGES['pipe'][1], (lPipe['x'], lPipe['y'])) 

        SCREEN.blit(IMAGES['base'], (basex, BASEY)) 

        showScore(score) 

        playerSurface = pygame.transform.rotate(IMAGES['player'][1], playerRot) 

        SCREEN.blit(playerSurface, (playerx,playery)) 

        FPSCLOCK.tick(FPS) 

        pygame.display.update() 

def playerShm(playerShm): 

    """oscillates the value of playerShm['val'] between 8 and -8""" 

    if abs(playerShm['val']) == 8: 

        playerShm['dir'] *= -1 

    if playerShm['dir'] == 1: 

         playerShm['val'] += 1 

    else: 
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        playerShm['val'] -= 1 

def getRandomPipe(): 

    """returns a randomly generated pipe""" 

    # y of gap between upper and lower pipe 

    gapY = random.randrange(0, int(BASEY * 0.6 - PIPEGAPSIZE)) 

    gapY += int(BASEY * 0.2) 

    pipeHeight = IMAGES['pipe'][0].get_height() 

    pipeX = SCREENWIDTH + 10 

    return [ 

        {'x': pipeX, 'y': gapY - pipeHeight},  # upper pipe 

        {'x': pipeX, 'y': gapY + PIPEGAPSIZE}, # lower pipe 

    ] 

def showScore(score): 

    """displays score in center of screen""" 

    scoreDigits = [int(x) for x in list(str(score))] 

    totalWidth = 0 # total width of all numbers to be printed 

    for digit in scoreDigits: 

        totalWidth += IMAGES['numbers'][digit].get_width() 

    Xoffset = (SCREENWIDTH - totalWidth) / 2 

    for digit in scoreDigits: 

        SCREEN.blit(IMAGES['numbers'][digit], (Xoffset, SCREENHEIGHT * 0.1)) 

        Xoffset += IMAGES['numbers'][digit].get_width() 

def checkCrash(player, upperPipes, lowerPipes): 
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    """returns True if player collders with base or pipes.""" 

    pi = player['index'] 

    player['w'] = IMAGES['player'][0].get_width() 

    player['h'] = IMAGES['player'][0].get_height() 

    # if player crashes into ground 

    if player['y'] + player['h'] >= BASEY - 1: 

        return [True, True] 

    else: 

        playerRect = pygame.Rect(player['x'], player['y'], 

                      player['w'], player['h']) 

        pipeW = IMAGES['pipe'][0].get_width() 

        pipeH = IMAGES['pipe'][0].get_height() 

        for uPipe, lPipe in zip(upperPipes, lowerPipes): 

            # upper and lower pipe rects 

            uPipeRect = pygame.Rect(uPipe['x'], uPipe['y'], pipeW, pipeH) 

            lPipeRect = pygame.Rect(lPipe['x'], lPipe['y'], pipeW, pipeH) 

            # player and upper/lower pipe hitmasks 

            pHitMask = HITMASKS['player'][pi] 

            uHitmask = HITMASKS['pipe'][0] 

            lHitmask = HITMASKS['pipe'][1] 

            # if bird collided with upipe or lpipe 

            uCollide = pixelCollision(playerRect, uPipeRect, pHitMask, uHitmask) 

            lCollide = pixelCollision(playerRect, lPipeRect, pHitMask, lHitmask) 
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            if uCollide or lCollide: 

                return [True, False] 

    return [False, False] 

def pixelCollision(rect1, rect2, hitmask1, hitmask2): 

    """Checks if two objects collide and not just their rects""" 

    rect = rect1.clip(rect2) 

    if rect.width == 0 or rect.height == 0: 

        return False 

    x1, y1 = rect.x - rect1.x, rect.y - rect1.y 

    x2, y2 = rect.x - rect2.x, rect.y - rect2.y 

    for x in xrange(rect.width): 

        for y in xrange(rect.height): 

            if hitmask1[x1+x][y1+y] and hitmask2[x2+x][y2+y]: 

                return True 

    return False 

def getHitmask(image): 

    """returns a hitmask using an image's alpha.""" 

    mask = [] 

    for x in xrange(image.get_width()): 

        mask.append([]) 

        for y in xrange(image.get_height()): 

            mask[x].append(bool(image.get_at((x,y))[3])) 

    return mask 
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if __name__ == '__main__': 

    main() 
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RESULTATER 

mdl1 =  

Linear regression model: 

    y ~ 1 + x1 

Estimated Coefficients: 

                   Estimate       SE        tStat      pValue  

                   ________    ________    ________    _______ 

    (Intercept)     -1.2643      2.1049    -0.60065    0.57005 

    x1             0.027405    0.024972      1.0974    0.31453 

Number of observations: 8, Error degrees of freedom: 6 

Root Mean Squared Error: 1.18 

R-squared: 0.167,  Adjusted R-Squared 0.0284 

F-statistic vs. constant model: 1.2, p-value = 0.315 

 

mdl2 =  

Linear regression model: 

    y ~ 1 + x1 

Estimated Coefficients: 

                   Estimate       SE        tStat      pValue  

                   ________    ________    _______    ________ 

    (Intercept)       7.979      3.5723     2.2336    0.066938 

    x1             -0.07027    0.043299    -1.6229     0.15574 

Number of observations: 8, Error degrees of freedom: 6 

Root Mean Squared Error: 2.59 

R-squared: 0.305,  Adjusted R-Squared 0.189 

F-statistic vs. constant model: 2.63, p-value = 0.156 

mdl3 =  
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SAMPLE T-TEST 

Two-Sample t-test 
The two-sample t-test is a parametric test that compares the location parameter of two independent data samples. 

The test statistic is 

t=‾x
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where ‾x and ‾y are the sample means, sx and sy are the sample standard deviations, and n and m are the sample sizes. 

In the case where it is assumed that the two data samples are from populations with equal variances, the test statistic under the 
null hypothesis has Student's t distribution with n + m – 2 degrees of freedom, and the sample standard deviations are replaced 
by the pooled standard deviation 
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In the case where it is not assumed that the two data samples are from populations with equal variances, the test statistic under 
the null hypothesis has an approximate Student's t distribution with a number of degrees of freedom given by Satterthwaite's 
approximation. This test is sometimes called Welch’s t-test. 

 

Figure 0.2 TwoSample t-test definition from MatLab 
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Figure 0.1 Text outout of ttests for h1 and h2 


