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A B S T R A C T

Shock-wave diffraction over double concave cylindrical surfaces has been numerically investigated at different
flow regimes by varying the incident-shock-wave Mach number from =M 1.6s (transonic) to =M 4.5s (super-
sonic regime). The purpose of this study is to better understand the dynamics of shock-wave structure and the
associated wave configurations. A mesh-independent solution is obtained and the flow is assessed through
different physical quantities (transition angles, triple points trajectories, wall-pressure and skin-friction dis-
tributions, velocity and shock location). It is found that the transition angles, from regular to Mach reflection,
increase with the Mach number. This phenomenon remains almost the same over both concave surfaces for weak
Mach numbers (up to =M 2.5s ) and becomes relatively larger on the second surface for high Mach numbers. In
terms of shock dynamics, it is found that by increasing the incident incident-shock-wave Mach number to

=M 4.5s , unlike the first reflector, the transition from a single-triple-point (STP) wave configuration to a double-
triple-point (DTP) wave configuration and back occurred on the second reflector, indicating that the flow is
capable of retaining the memory of the past events over the entire process. For the shock velocity, the velocity
deficit is found to be increasing with increase in Ms. A best fitting scaling law is derived, to ensure a universal
decay of the shock velocity depending on the flow parameters.

1. Introduction

The interaction of shock-waves with rigid boundaries has been the
subject of many investigations, since shock-wave diffraction occurs and
takes place in the majority of important applications today, such as
design of inflow/outflow valves in an internal combustion engine and
aerospace propulsion systems. In order to understand the different
phenomena resulting from these interactions such as shock-diffraction,
shock-reflection, shock-focusing, shock-attenuation and the different
flow structures generated by the passage of the shock-wave, several
studies have been conducted (Whitham (1956) [1], Whitham (1957)
[2], Whitham (1958) [3], Bird (1958) [4], Bazhenova (1978) [5],
Henderson (1980) [6], Hilier (1991) [7], Sivier et al. (1992) [8], Skews
et al. (2011) [9]). . Two types of shock-reflection configuration namely
RR (regular reflection involving two shock waves configuration) and
MR (Mach reflection involving three shock waves configuration) were
first introduced by the pioneering experimental work of Ernest Mach
(1878). However, no significant progress was made until the eminent
work of von Neumann in the 1940s. Since then, a considerable amount
of work has been carried out in order to better understand the

phenomena of shock-waves reflection (Bryson and Gross [10]; Hen-
derson and Lozzi [11]; Krassovskaya and Berezkina [12]; Soni et al.
[13]; Chernyshov and Tolpegin [14]). Berezkina et al. were interested
in the diffraction of shock waves by cylindrical surfaces. In a first study
[23], they studied diffraction of a two-shock configuration by a convex
cylindrical surface with the diffraction angle varying continuously, as
opposed to [23], where the process, starting at small angles of dif-
fraction, develops at ever-increasing angles, diffraction in [24] starts at
a large angle, which progressively decreases. This distinction causes a
substantial difference in the formation and development of the struc-
tures within the perturbed flow-field. Gvozdeva et al. [15] have found a
new pattern of the triple-shock configuration with a negative angle of
shock reflection, which is formed in a steady supersonic flow within the
range of Mach numbers exceeding 3.0 and specific heat ratios below
1.4. Recently, Smirnov et al. ([16,17]) have investigated mixture igni-
tion and detonation onset in RAM engines due to focusing of a shock
wave reflected inside a cone in order to change the mode of flame
propagation from slow combustion to detonation. Soni et al. [13] have
conducted numerical simulations in order to understand the different
wave configurations associated with the shock-wave reflection over
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double-concave cylindrical reflectors. The double-concave cylinder
configuration is different than that presented in Ref. [13] in terms of the
orientation and entrance of the shock wave.

In this work, a parametric study is performed to determine the in-
fluence of the incident shock strength on shock-wave diffracting me-
chanism. We use the Navier-Stokes solver to quantify the shock
strength, the dynamics of shock-waves and the different wave config-
urations in shock-wave diffraction over double-concave cylindrical
surfaces. Furthermore, different grid resolutions are used to investigate
the grid size effect on the results. The paper is organized as follows.
Section 2 introduces the numerical methodology used in this study.
Section 3 is devoted to introduce the problem set-up and different
conditions used in this study. Section 4 is dedicated to discussing the
results obtained in this study. In §4.1, the effect of shock strength on
transition angle from regular to Mach reflection and triple point tra-
jectories is investigated. The effect of shock strength on shock position
and velocity is discussed in §4.2.

2. Governing equations and numerics

2.1. Governing equations

The numerical solution is obtained by solving compressible Navier-
Stokes equations for an ideal gas

+ =div v( ) 0t (1)

+ + =div pv v v( ) ( )t (2)

+ + = +E div E div Tv v v( ) ( ) ( ) ( )t (3)
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= +µ v v v I( ) 2
3
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where t stands for the time, ρ, v , p, E, T, , μ, e are the density, velocity,
pressure, total energy, temperature, thermal conductivity, dynamic
viscosity and internal energy. The working gas is air with = 1.4 and
Prandtl number =Pr 0.72. The fluid viscosity follows Sutherland's law.

To simulate the flow field, we used an in-house parallel compres-
sible solver equipped with the adaptive multi-resolution method
[18–20]. The code uses an immersed-boundary method (IBM) to handle
fluid-solid interaction problems [21]. The solid body is embedded in a
Cartesian grid tracked using a ray-tracing technique. Inviscid and vis-
cous fluxes were computed using a fifth-order weighted essentially non-
oscillatory (WENO 5) scheme and a fourth-order central difference
formula, respectively, while the time was advanced using a third-order
Runge-Kutta method [22]. The time step is computed as:

=t CFL
max t t( , )x y (6)

and

= +t max u c
x x

µ
Pr

, 2
.x 2 (7)

The computations are performed with a CFL number of 0.7, which
gives t s10 8 .

3. Problem set-up

Numerical simulations were conducted to understand the dynamics
of shock-wave undergoing a double-concave cylindrical surfaces, a
schematic representation of the solid is given in Fig. 1. As for the
computational specifications, the boundary conditions were set to inlet
and outlet at the left (with h ) and the right (with H ) (see Fig. 1), of the
computational domain, respectively, while the top boundary and the

bottom-right part of the domain are treated as symmetry plane, and the
solid surface is considered with a no-slip boundary condition. In all the
simulations, the geometric parameters such; = = =R R R mm501 2 and

= = 751 2 were kept constant, the incident Mach number was
varied in the range of M1.6 4.5s . Initially, the shock is located at

=x mm5 for all Mach numbers. Rankine-Hugoniot relations are used
to set the initial conditions for left (shocked state) and right (stagnant
state) states associated with the chosen Ms. Air is considered as working
fluid and the initial stagnant state is assigned with temperature

=T K300 and pressure =p kPa101. 3 , and the flow is initialized as
uniform flow. A grid dependency study is performed to determine the
effect of numerics on the results. Grid convergence studies were carried
out by using different levels of grid refinement. Five different meshes
were used for Mach number =M 1.6s . Table 1 summarizes the relevant
parameters for grid sensitivity analysis.

4. Results and discussion

All length scales are normalized by the concave radius
= = =R R R mm501 2 and the dimensionless time is defined as

=t t a R. /1 where a1 is the speed of sound of the gas initially at rest.
Fig. 1 shows a planar shock-wave (I) with a Mach number of Ms pro-
pagating downstream and diffracting around a corner with a diffracting
angle = = 751 2 . When the shock wave arrives on the edge of the
first concave, the diffraction process starts. As the diffraction process
evolves, the end-wall corner vortices are formed with a rolling-up of
eddies that are convected away from the cavity entrance. These corner
instabilities are characterized by the formation of a primary vortex that
is followed by a secondary one. The key mechanism behind the ap-
pearance of this secondary near-wall instability are a large enough
advection velocity generated by the cavity boundary layer. It is found
that the interaction of this secondary instability with the primary vortex

Fig. 1. Schematic representation of a double-concave cylindrical surfaces. I:
incident shock, SS : secondary shock, r: reflected shock on the first cylinder, r :
reflected shock on the second cylinder, R: cylinder surfaces radius, TP : triple
point, =h R0.32 , =H R1.8 , =L R3.4 , =x x R/ , =y y R/ .

Table 1
Different grid resolution used, for shock-wave Mach number =M 1.6s (MP:
million points).

Grid x µm( )min y µm( )min number of points (MP)

G0 95 88 1.83
G1 60 50 5.04
G2 40 40 8.84
G3 30 29 17.3
G4 20 21 33.55
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core in the upstream part of the cavity is one of the main sources of
excitations and possible transition to turbulence and appearance of
secondary shocks (SS). When the conditions are gathered (the angle
between the incident shock wave and the surface of the first concave
and the Mach number), reflection of the shock wave takes place and we
can see appearance of reflected shocks (r for the first concave, r for the
second concave) and triple points (TP1 for the first concave, TP2 for the
second concave), the details of shock reflection are discussed on section
4.1.

Fig. 2 shows density ratio evolution along the axis y 1.58 for
=M 2s , in the space-time diagram. Because of the area increase, the

flow and the shock-wave undergo an expansion, the propagation of the
incident or primary shock-wave (I) in the medium at rest can be clearly
observed. Eventually, a left-running (with respect to the fluid) sec-
ondary shock-wave (SS) appears and is carried to the right because of
the supersonic carrier flow.

4.1. Transition angle from regular to Mach reflection

In this section, we present the mesh sensitivity analysis with respect
to the transition angle for Regular to Mach reflection (RR MR).
Table 2 shows that the transition angle is the same in both surfaces for
all the cases, and it begins to be independent of grid resolution fromG3.
Where tr

1 and tr
2 are respectively the transition angles in the first and

second concave surfaces. Fig. 3 represents non-dimensional wall pres-
sure and skin friction distribution for different grid resolution for

=M 1.6s . It can be seen that the two parameters start to be mesh in-
dependent fromG3. Based on these observations a mesh resolution ofG4
is used for the rest of the study.

Fig. 4 shows the RR MR transition angles, tr , over the first and
the second concave surfaces. As it can be seen, tr increases for larger
shock-wave Mach numbers Ms. It is also interesting to note that tr is
almost the same for both surfaces, except for =M 3.5s and 4.5 in which

tr is relatively larger on the second surface (approximately 7% for
=M 4.5s and 4% for =M 3.5s ). Soni et al. in their study [13] found tr to

be larger on the second cylindrical reflector (for Mach numbers up to
=M 2.5s ) and they noted that this behavior can be perceived as re-

sulting from the fact that the flow regions behind the Mach stems are
subsonic, hence the information can be communicated through them.

In order to track the triple points, the 2- norm of the pressure
gradient is computed, which translates to the analytical formula for the
two-dimensional case at the nth time step as;

= +TP p
x

p
y

n

n n

2 2

(8)

Applying max TP TP( , )n n 1 for each time step would give the entire
trajectories of the triple points[13]. Figs. 5 and 6 show the shock re-
flection process on the second concave, for the Mach numbers: 3.5 and
4.5 respectively . In Figs. 5(a) and 6(a) we can see the presence of a
single triple point (TP2), this configuration is known as a STP (single
triple point) configuration. A little further a second triple point is
formed (TP3 in Fig. 5(b) and 6(b)). This makes a transition from a

Fig. 2. Evolution of density ratio along y 1.58 for =M 2.0s , with =t ta R/1 .

Table 2
Transition angles, from regular to Mach reflection (RR MR), over
the two concave surfaces for different grid resolution for =M 1.6s .

tr
1

tr
2

G0 9. 6 9. 7
G1 10. 7 10. 8
G2 11. 8 11. 8
G3 12. 7 12. 6
G4 12. 7 12. 6

Fig. 3. (a): Non-dimensional wall-pressure distribution, (b): skin friction distribution at t = 294 µs for different grid resolutions at =M 1.6s ( G0, G1, G2, G3, G4).

Fig. 4. Transition angles from regular to Mach reflection (RR MR), over: the
first concave surface; × the second concave surface; - fitting curve, vs . Incident-
shock-wave Mach numbers.
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single-TP configuration to a double-TP configuration (STP → DTP
transition) . Fig. 7 depicts the Triple Points trajectories obtained for the
five shock-wave Mach numbers used in this study

= = =M M M1.6; 2.5; 3.5s s s and =M 4.5s (result for =M 2.0s is not
shown as it is almost identical to that of =M 2.5s ). For the first surface
and for the relatively low shock-wave Mach number ( =M 1.6; 2.5s )
(Fig. 7(a) and (b)), a Mach reflection at the end of the surface is ob-
served with a weak reflected shock-wave. For the higher mach numbers
( =M 3.5; 4.5s ) (Fig. 7(c) and (d)) we observe a regular reflection (RR)
just at the beginning of the surface, a little further on, a transition to a
Mach reflection (MR) (RR MR) takes place to give rise to a Mach

reflection with stronger reflected shock-waves. For the second surface
there is a change in behavior for the two shock-wave Mach numbers;

=M 3.5s and 4.5 while for the shock-wave Mach numbers; =M 1.6s , 2.0
and 2.5 the behavior of the shock-wave remains the same as that of the
first surface. For the shock-wave Mach number =M 1.6s , 2.0 and 2.5,
we notice the apparition of a Mach reflection (MR) at the end of the
surface. By increasing the shock-wave Mach number to 3.5 and 4.5,
(Fig. 7(c) and (d)) the behavior is completely different. At the beginning
of the second surface, we notice the appearance of a regular reflection
(RR) followed by a transition to a Mach reflection (MR) (RR MR),
characterized by the formation of a triple point (it is a STP configura-
tion). Further, at the end of the surface, we notice the appearance of a
second triple point (which is a DTP configuration) appearing in this
case. This makes a transition from a STP to a DTP configuration. For

=M 4.5s and as the shock-wave moves further up, the two triple points
merge together to give birth to a single-TP configuration again. So, we
have STP DTP STP configuration. Another point to note is that the
Mach stem associated with TP3 for the =M 4.5s is more substantial than
the one seen for =M 3.5s .

4.2. Shock-wave propagation and its attenuation

Here we present the possible influence of grid resolution on the
shock front position and velocity by using different meshes. We com-
pared the values of xs and W W/s s

i (where Ws is the velocity of the in-
cident shock and Ws

i is the initial velocity of the incident shock) ob-
tained by using five different refinements, and found their difference to
be negligible (see Fig. 8(a) and (b) respectively). This indicates that the
obtained solution is mesh independent. Fig. 8(a) shows the time evo-
lution of the transmitted shock wave. After an initial linear evolution,
the evolution of the transmitted shock wave becomes non-linear the
velocity of the transmitted shock wave decreased as can be seen in
Fig. 8(b), where, in the beginning before reaching the corner, the
transmitted shock-wave moves with a constant velocity (equal to the
initial velocity (Ws

i), the value given by the shock-tube theory (black
line in Fig. 8(b), =W W/ 1s s

i )). Once the shock-wave reaches the corner
of the double concave, its velocity starts to decrease due to the decel-
eration of the transmitted shock-wave.

We will now discuss the evolution (speed and position) of the shock
wave propagating within the double concave surfaces, by changing the
incident shock-wave Mach number Ms and using the mesh resolutionG4.
Fig. 9(a) illustrates the evolution of the incident shock wave location
(xs ) as a function of dimensionless time (t ). By differentiating xs with
respect to t, one can easily obtain the dimensionless velocity (W W/s s

i) of
the shock (Fig. 9(b)), for all shock-waves strength, the speed of the
incident shock wave starts with a constant value (equal to the initial
velocity) ( =W W/ 1s s

i ), and decreases steadily in time. Furthermore, its
rate of change is at first very large, but becomes smaller as it propagates
through the double concave surfaces, and as we can see in Fig. 9(b), the
speed of the incident shock wave starts to decrease earlier for stronger
shock waves (highest shock-waves Mach numbers) and this result is
expected because the shock waves with high shock-wave Mach numbers
reach the corner of the double concave first, and the velocity deficit is
increasing with the shock-wave Mach number.

The shock trajectory and velocity are plotted using dimensionless
coordinates. By finding the appropriate dimensionless time, it was
possible to show the data from different simulations with different
Mach numbers collapse into a single curve. From the data analysis, the
following relationship is found:

=t W
R

M t˜ ( , )s
i

s (9)

The scaling function M( , )s is defined as:

= + +M M ln M M( , ) ( 1) ( 1) 1 ( 1)s s s s
1/ 2

(10)

Fig. 5. Numerical schlieren pictures for =M 3.5s for the second concave sur-
face, at different instant. r’ and d’: reflected and additional shocks created on
the second concave surface, respectively, I: incident shock, TP: triple point.

Fig. 6. Numerical schlieren pictures for =M 4.5s for the second concave surface
at different instant. For legend, see caption of Fig. 5.
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By applying this normalization (Equation (9)), all results (shock
position, shock velocity for different Mach numbers) collapse together
into single curve and the results are presented in Fig. 9(c) and (d) re-
spectively.

5. Summary

In this paper, shock-waves diffraction over double-cylindrical
wedges (the centre of the first concave surface is at higher y-cordinate
than the second one) have been investigated. Numerical simulations
were carried out to study the dynamics of shock wave with regards to
the incident-shock-wave Mach number. Different grid resolutions were
used to investigate the grid size effect on the numerical solutions and it
was found that the quantities studied (transition angle, pressure and
skin friction distributions at the wall, shock position and velocity) are
mesh independent from certain resolution ( =x µm20min ,

=y µm21min ). The transition angle increases with Mach number, and

was found to be almost the same over the two concave surfaces for
weak Mach numbers (up to =M 2.5s ) and to be relatively larger on the
second surface for high Mach numbers (approximately 7% for =M 4.5s ,
4% for =M 3.5s ), the behavior of the shock wave is completely different
for =M 4.5s , at the end of the second concave surface we have a
STP DTP STP configuration, indicating that the flow was capable of
retaining the memory of the past events over the entire process for high
Mach numbers. In terms of shock's velocity, the velocity deficit was
found to be increasing with Mach number. The shock position and
shock velocity are proportional to the shock initial velocity reduced by
a scaling function that depending on the incident shock-wave Mach
number, the heat capacity ratio and the concave surface radius. The
proposed scaling was tested in the range of Ms ( < <M1.6 4.5s ), for heat
ratio of 1.4 and concave surface radius of mm50 .

Fig. 7. Trajectories of the triple points for different shock-wave Mach numbers: (a): =M 1.6s ; (b): =M 2.5s ; (c): =M 3.5s ; (d): =M 4.5s ; ( : TP1; : TP2; : TP3).

Fig. 8. Non-dimensional; (a); shock position and (b); shock velocity for different mesh resolutions; ( G0, G1, G2, G3, G4, shock position and velocity given
by the piston theory).
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