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Abstract: Electromyography (EMG) signals can be used for action classification. Nonetheless, due to 
their nonlinear and time-varying properties, it is difficult to classify the EMG signals and it is critical to 
use appropriate algorithms for EMG feature extraction and classification. In previous studies various ML 
methods have been applied. In this paper, we extract four time-domain features of the EMG signals and 
use a generative graphical model, Deep Belief Network (DBN), to classify the EMG signals. A DBN is a 
fast, greedy deep learning algorithm that can find a set of optimal weights rapidly, even in deep networks 
with many hidden layers and a large number of parameters. To evaluate this model, we acquired EMG 
signals, extracted their features, and then utilized the DBN model as human action classifiers. The real 
data analysis results are presented to show the effectiveness of the proposed deep learning technique for 
4-class recognition of human actions based on the measured EMG signals. The proposed DBN model has 
potential to be applied in design of EMG-based user interfaces. 

Keywords: Deep learning; Deep Belief Network (DBN); Restricted Boltzmann Machine (RBM); 
Electromyography (EMG); Feature extraction; Human action recognition. 

 

1. INTRODUCTION 

The electromyography (EMG) signals reflect the 
physiological behavior of the neuromuscular system and have 
been widely used for diagnosis of neuromuscular disorders, 
prosthetics, control of human-machine interface, and human 
movement tracking (Taylor et al., 2010). The EMG pattern 
recognition algorithm can be applied to prosthesis control of 
patients with amputated limbs (Ajiboye and Weir 2005; 
Lorrain, Jiang and Farina 2011; Young, Smith, Rouse et al. 
2013; Ning, Rehbaum and Vujaklija et al. 2014). Since 
mobile or wearable computing is gaining in visibility, there 
has been a revived interest in user interface/user experience 
(UI/UX) in recent years (Jaime, Israel and Luis et al. 2011). 

The recent advance in EMG signal processing and analysis 
techniques has potential to be assistive to the disabled and 
elderly people with limited mobility. EMG pattern 
recognition consists of two core algorithms, i.e., feature 
extraction and classification. Some important performance 
indices for EMG pattern recognition include reproducibility, 
accuracy and precision. 

However, in practice it is difficult to classify EMG signals 
because an EMG signal has nonlinear and time-varying 
characteristics. The quality of EMG signal acquisition and 
analysis performance can be influenced by many factors, 
such as measurement instruments, environmental condition, 
electromagnetic interference, and human factors. On the other 
hand, the user's age, muscle movement pattern, skin 

thickness, etc. may also influence, to certain degree, the 
signal quality. 

Feature extraction may highly influence the computational 
complexity and classification accuracy of a machine learning 
(ML) algorithm. The gist of deep learning (DL) paradigm is 
to learn useful features and improve the classification 
accuracy by constructing a machine learning (ML) model 
with many hidden layers based on a large amount of training 
data (LeCun et al., 2015). Different from traditional shallow 
ML, DL is characterized by depth of the learning model as 
well as feature learning through layer-by-layer feature 
transformation. Compared with manual feature engineering, 
using big data to learn features can obtain more complete 
representation of the data. 

In the past two decades, multi-channel EMG signals have 
been widely used to recognize limb movements in biology 
and clinical medicine and there has been a number of 
research on multichannel EMG signal classification. The 
general limitations of conventional classifiers include: 1) The 
data distribution of each class is overlapping; and 2) The 
classification accuracy is not stable across subjects, i.e., there 
are inter-subject variations in classification performance. 
Thus various ML methods have been applied recently. ML 
algorithms for classification task can be roughly categorized 
to shallow learning and DL. DL algorithms can be used to 
solve multi-dimensional, non-linear transformation problems. 
In general, DL comprises multiple layers, and each layer 
comprises many units. DL algorithms may suffer from slow 
learning rate and over-fitting issue. 
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On the other hand, shallow learning algorithms, such as 
support vector machine (SVM) and linear discriminant 
analysis (LDA), are faster and have satisfactory classification 
performance in many applications (Subasi 2013; Young, 
Smith and Rouse et al. 2013). The performance of shallow 
learning algorithms, however, decreases with an increase in 
the amount and dimensionality of input data. 

Deep belief network (DBN) was shown to be able to 
overcome the overfitting and local minima problems of the 
BP algorithm, reduce the training time, and improve the 
classification performance (Hinton, Osindero and Teh, 2006; 
Mohamed, Sainath and Dahl et al., 2011; Mohamed, Dahl 
and Hinton, 2012; Shim and Lee, 2015; Abdel-Zaher and 
Eldeib, 2016). These characteristics are important in 
biosignal recognition applications, including an EMG-based 
user interface system. The major goal of this work is to 
develop an improved EMG classifier system on the basis of 
the DBN. 
In order to achieve accurate recognition of limb movements 
from the EMG signals, it is essential to select appropriate 
feature extraction and classification algorithms. In this paper, 
we combine four time-domain features to select the best 
features of EMG signals. We use DBN to classify the EMG 
signals. The motion EMG data measured from 10 normal and 
10 aggressive actions of three male and one female subjects 
was used to validate the proposed deep learning scheme. For 
each subject, 4-class classifier based on DBN was trained and 
tested. 

2. DEEP BELIEF NETWORK

The Deep Belief Network (DBN) was proposed in Hinton et 
al. (2006). It is a generative model. By training the weights 
between the neurons in each layer, the features can be 
automatically learned to realize data classification and 
recognition. 

DBN is composed of multiple layers of neurons. The explicit 
neurons are used to accept the signal input, while the hidden 
units (also called feature detector) are used to extract the 
features. The bottom layer represents the data vector, where 
each neuron represents one dimension of the data vector. 

The basic components of DBN are the Restricted Boltzmann 
Machines (RBM). The training of DBN is performed layer by 
layer. Firstly, the RBM that constitutes the DBN is trained. 
The data layer is used to infer the hidden layer, which is 
treated as the data vector of the next layer. After each layer of 
the RBM training is completed, it is combined to form a 
DBN. 

2.1  Deep Learning 

The deep learning (DL) model consists of multiple hidden 
layers, which form abstract high-dimensional features 
through the combination of low-level features to learn the 
data distribution (Hinton et al., 2006). Through the stacking 
of multiple layers, the output of the previous layer is used as 
the input to the next layer to realize hierarchical 

representation of the input. 

DL trains a ML model with multiple hidden layers using a 
large amount of data, learns representative features, and 
therefore can improve the classification accuracy of 
traditional shallow learning models. Different from the 
traditional shallow learning, DL places more emphasis on the 
depth of the model structure and can automatically learn the 
features. Through layer-by-layer feature transformation, the 
feature representation of the sample in the original space is 
transformed into a new feature space to facilitate the solution 
of regression/classification task. Using big data to learn 
features, one can obtain more comprehensive representation 
of the data. 

2.2  Restricted Boltzmann Machine 

The RBM is a component of the DBN, which is a 
probabilistic graphical model (Bielza, Moral, and Salmerón, 
2015; Fischer and Igel, 2014). The outputs of random 
neurons have active and inhibited states. Neuronal states are 
determined by probabilistic rules. RBM consists of a visible 
layer and a hidden layer. There is no connection between the 
neurons in the same layer. The neurons are fully connected, 
that is, each neuron in the hidden layer is connected to the 
visible layer. The general structure of RBM is shown in Fig. 
1. 

Fig. 1. The general structure of RBM. 
The units in the visible layer of the RBM describe the 
features of the observed data. The units in the hidden layer is 
used to extract features and obtain the interdependency 
between the variables corresponding to the units in the visible 
layer.  

The visible units [ ]1, , mv v=v   represents the visible data,

while the hidden units [ ]1 , , nh h=h   are used to obtain the
relationship between the observed variables. The random 
vector ( , ) {0,1}m n+∈v h  , the joint probability distribution of 
the model is given by Gibbs distribution (also called 

Boltzmann distribution) ( ) ( , )1( , ) Ep eZ
−= ⋅ v hv h , where the 

normalization denominator Z is the canonical partition 
function resulted from the constraint that the probabilities of 
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all accessible states must add up to 1, and the energy function 
is: 

         
1 1 1 1
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As shown in Fig. 1, for all 
{1, 2, , }i n∈  and {1, 2, , }j m∈  , ijw denotes the 

connection weight between jv and ih , jb and ic are the 
biases of the j-th visible variable and the i-th hidden variable, 
respectively. Different from the standard Boltzmann machine, 
there are only connections between the hidden and visible 
layers in the RBM (i.e., no connections within a layer). 
Therefore, the hidden variables can be given by the states of 
the visible variables, which in turn can be reconstructed from 
the inferred hidden variables. Then we have the probabilities: 
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Since there is no connection in either the hidden layer or the 
visible layer, the conditional 
distribution ( | )p h v and ( | )p v h can be perfectly 
decomposed. The conditional independency of the variables 
in a layer makes the Gibbs sampling very simple (Gelfand, 
2000): The variables in the same layer are jointly sampled 
without the need to sample the new values for all variables in 
turn. As a result, the Gibbs sampling consists of only two 
steps: 

Step 1: Based on ( | )p h v , sample the new states of the 
hidden units h ; and 

Step 2: Based on ( | )p v h , sample the states of the visible 
layer v . 

The distribution of the vector v on{0,1}m can be formed by 
the RBM with the marginal distribution: 
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2.3  Deep Belief Network 

The DBN is a combination of simple learning modules, 
restricted Boltzmann machines (RBMs). Each RBM is 
composed of a visible layer and a hidden layer. The two 
layers are connected through a symmetric weight matrix, and 
the units within a layer are not connected. 

The probability of the generated visible vector is: 

       ( ) ( | ) ( | , )
n

p p W p w= ∑v h v h                                      (5)        

The weight between visible and hidden units is updated by: 

        0 1( , , )ij i j i jw v h v hε∆ = < > − < >                                 (6)  

where 0 and 1 denote the network state and reconstructed 
state, respectively. 

DBN can be implemented as a deep neural network with 
many hidden layers and was shown by many studies to be 
superior to traditional ML models, such as back-propagation 
(BP) network, K-Nearst Neighbor (KNN), and support vector 
machine (SVM) (Mnih, Zhang, and Hinton, 2009; Lecun, 
Bottou, Bengio and Haffner, 1998; Cristianini and Schölkopf, 
2002; Erhan, Bengio, and Courville et al., 2010). 

3. FEATURE EXTRACTION 

The common feature extraction methods include time-domain 
analysis (Knox et al, 1993), frequency-domain analysis 
(Carlo et al., 1981), parametric models (e.g., ARMA), and 
dual spectral analysis (Sezgin, 2012). 

3.1  EMG Datasets  

This paper uses the EMG Physical Action Dataset 
downloaded from UCI Machine Learning repository (data 
contributed by University of Essex, UK). Three subjects were 
male (sub1, sub2, sub3) and one were female (sub4), aged 
25-30 y/o. Each subject's EMG signals, corresponding to 10 
normal and 10 aggressive actions, were recorded by using 
Delsys EMG device. There are eight EMG signal 
measurement electrodes (CH1-CH8). One female and three 
male subjects were used in the experiments (sub1-3 male, 
sub4 female). For each action, about 10,000 samples were 
collected with a sampling rate of 1k Hz. The relevant 
information concerning the dataset (8 measurement channels 
from different parts of body) is given in Tables 1 and 2. 

Table 1. The EMG dataset. 
Type of data Type of attribute # samples # attributes 
Time series Real-valued 10,000 8 

 
Table 2. The eight channels of EMG signal measurement. 
R-Arm L-Arm R-Leg L-Leg 

CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8 
R-
Bic 
 

R- 
Tri 
 

L-
Bic 
 

L- 
Tri 
 

R-
Thi 
 

R- 
Ham 
 

L-
Thi 
 

L- 
Ham 
 

Right 
bicep 

Right 
tricep 

left 
bicep 

left 
tricep 

Right 
thigh 

Right 
hamstring 

Left 
thigh 

Left 
hamstring 
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The EMG signal processing and analysis can be divided into 
feature extraction and model training/testing. Appropriate 
features must be selected to characterize the data. This paper 
used selected four salient time-domain features of EMG 
signal. The methods and data analysis results will be 
described below. 

The raw EMG signals are classified into normal and 
aggressive, each including 10 actions. The normal actions 
include bowing, clapping, handshaking, hugging, jumping, 
running, seating, standing, walking, and waving. The 
aggressive actions include elbowing, front-kicking, 
hammering, headering, kneeing, pulling, punching, pushing, 
side-kicking, and slapping. For each action, there were 
approximately 10,000 sample data per channel. As an 
example, the raw EMG signal (9,930 sampling data points) 
due to the bowing action of sub1 is shown in Fig. 2. 
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Fig. 2. The measured EMG signal of bowing action (sub1). 

There are differences in EMG signals between different 
movements. There are also individual differences in EMG 
signals across subjects, but there is a certain relationship 
between the EMG signal and the tension and relaxation of the 
muscle. The noised contained in the original/raw signals may 
strongly affect the action classification accuracy. 

This paper extracted four significant time-domain features 
from the EMG signals. With the deep learning algorithm, the 
4-class subject-specific and subject-independent classifiers 
are trained respectively. 

3.2 Time-domain Features 
Features can be calculated by time series analysis. This paper 
selects four time-domain features, including the number of 
Zero Crossings (ZC), Mean Absolute Difference (MAD), 
Mean Absolute Value (MAV), and Sign Change Slope 
(SCS). ZC is the number of zero crossings of the signal. For 
two consecutive sampling points 1,k kx x

+
, if the following 

condition is fulfilled, the value of ZC is increased by 1: 

   
1

1
1

| |

sgn( )

k k
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k k
i

x x

ZC x x

δ
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+
=

− ≥

= −






∑
                                                    (7) 

where the threshold δ is used to reduce the noise and the sign 
function is given by: 

      
1, 0

sgn( )
0, otherwise

x
x

>
=





                                                  (8)  

If we have N sampling data points, MAD represents the 
average of the absolute difference between two consecutive 
samples and is defined by: 

       1
1

1 N

k k
k

MAD x x
N +

=

= −∑                                                 (9) 

MAV is defined by: 

    
1

1 N

k
k

MAV x
N =

= ∑                                                           (10)                                                          
  

For three consecutive sampling points 1 1, ,k k kx x x
− + , if the 

following condition is satisfied, the value of SCS is increased 
by 1: 

          1 1( )( ) , 1, 2, ,k k k kx x x x k Nω
− +

− − ≥ =                    (11) 

4.  CLASSIFICATION RESULTS AND ANALYSIS 

4.1  Structure and Parameters of Classifier 

In normal and aggressive movements, there are hand and leg 
movements respectively. We divide these movements into 4 
classes: normal hand movement (Clapping, Handshaking, 
and Waving (swinging)), normal leg movement (Jumping, 
Running, and Walking), aggressive hand movement 
(Hammering, Punching, and Slapping), and aggressive leg 
movement (Frontkicking, Kneeing, and Sidekicking). The 
classifier network structure is shown in Fig. 3, where the 
input of the network is the features from the eight channels 
CH1-CH8, and the outputs are the four class labels: 
Hand_Normal (Normal Hand action), Hand_Aggressive 
(Aggressive Hand action), Leg_Normal (Normal Leg action), 
or Leg_Aggressive (Aggressive Leg action). 

 

Fig. 3. Configuration of 4-class action classifier system. 

The number of hidden units in the RBM (grey units in Fig. 3) 
is 50, the number of RBM training iterations is 300, and there 

2019 IFAC HMS
Tallinn, Estonia, Sept. 16-19, 2019

274



 
 

     

 

is only a single hidden layer in the DBN. Fifty percent of 
sample data is chosen randomly for training, while the 
remaining 50% sample data for testing. When training the 
subject-specific classifiers, there are 57 data points of normal 
hand movement, aggressive hand movement, normal leg 
movement, and aggressive leg movement, among which 114 
were selected randomly as training samples, and the 
remaining 114 were used as test samples. When training a 
generic classifier using all the EMG signals from the four 
subjects, there are 228 data points for normal hand 
movements, aggressive hand movements, normal leg 
movements, and aggressive leg movements, among which 
456 were selected randomly as training samples, and the 
remaining 456 were used as test samples. 

4.2  Performance Metric 

The classification testing accuracy is evaluated by: 

# of correctly classified samples
100%

# of all samples
ACC = ×                   (12)   

The training and test samples were partitioned at random. 
The same training procedure is repeated 5 times, and the 
corresponding testing classification accuracies are saved. The 
mean and standard deviation (s.d.) are finally calculated. 

4.3  Results and Analysis 

The task is to train classifier to classify 12 actions into four 
classes: Hand_Normal, Leg_Normal, Hand_Aggressive,  and 
Leg_Aggressive. Different combinations of the four time-
domain features, i.e., MAV, [MAV, SCS], [MAD, SCS], 
[MAD, SCS, ZC], are explored to design the classifier. The 
accuracy of the 4-class subject-specific and generic classifiers 
is presented in Tables 3 and 4, respectively.  

Table 3. The percentage accuracy of subject-specific 
classifiers. 

Features sub1 sub2 sub3 sub4 

MAV 97.66±1.83 92.11±2.32 93.57±1.02 90.06±2.68 

[MAV, 
SCS] 98.58±1.76 88.39±2.54 99.71±0.51 99.12±0.88 

[MAD, 
SCS] 97.67±2.68 85.96±0.88 98.56±0.48 100 

[MAD, 
ZC, SCS] 94.15±2.20 86.81±1.07 93.67±2.92 97.66±2.00 

 
Table 4: The percentage accuracy of generic classifier, 

trained using EMG signals from all four subjects. 
Features ACC 

MAV 74.59±3.15 
[MAV, SCS] 89.53±1.36 

[MAD, SCS] 87.03±1.05 

[MAD, ZC, SCS] 90.66±1.47 

We can see that for the subject-specific classifier, the feature 
sets [MAV, SCS] and [MAD, SCS] lead to better 
classification performance. For the generic classifier, the 
classification accuracy of feature set [MAD, ZC, SCS] is the 
best. These results show that the multi-classification problem 
can be effectively solved by selecting appropriate feature set. 
With an increase in the amount of sampling data, DL is more 
efficient than shallow learning because BP algorithm could 
get stuck in the local minima. DBN is shown to be more 
stable than BP and be able to circumvent over-fitting. 

5. SUMMARY AND CONCLUSIONS 

This paper uses a DBN-based EMG pattern classifier to 
classify the EMG signals. We combined four time-domain 
features, i.e., MAD, MAV, ZC, and SCS, to form different 
feature sets. The best feature set is found to design a 4-class 
EMG signal classifier. The subject-specific and generic 
classifiers were trained and tested. The results showed the 
effectiveness of the DBN model for design of EMG-based 
user interface systems. The developed DL method have 
potential applications in such areas as rehabilitation and 
enhancement of user experience. 

This work proposed a general method for EMG signal 
classification based on DBN. However, the real-time multi-
class EMG signal recognition is still challenging. The 
datasets used in this work cover 20 actions. The training of 
multi-classifier (e.g., more than four classes) is more difficult 
than the binary or 4-class recognition. Moreover, the data 
measured from four subjects may be too small to select the 
best classification algorithm since the EMG signals are 
highly variable across different limb movements and different 
subjects. Therefore, in the future we need to pursue the 
following research directions: 

1) To further enhance the classification performance, 
more investigations on extraction of salient (or 
dominant) features and optimization of the DBN 
structure is warranted. The nonlinear and time-
varying characteristics of the EMG signals make the 
classification problem less amenable to conventional 
classifiers. Many hidden layers contribute to 
extraction of the dominant features and reduced 
number of misclassifications. However, too deep 
layers may engender divergence. Therefore, it is 
important to optimize structural parameters of the 
DBN, such as the number of hidden layers, number 
of units in each layer, and the learning rate. 

2) EMG signals are usually highly noisy and nonlinear, 
therefore we need to develop more sophisticated 
real-time EMG multi-classification method. 

3) Use more subjects to examine individual differences 
due to gender, age, health condition, etc. 
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